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Abstract. We introduce the following optimization version of the clas- 
sical pattern matching problem (referred to as the mazimum pattern 
matching problem). Given a two-dimensional rectangular text and a 2- 

dimensional rectangular pattern find the maximum number of non-over- 
lapping occurrences of the the pattern in the text. 
Unlike the classical 2-dimensional pattern matching problem, the maxi- 
mum 2-dimensional pattern matching problem is NP-complete. We devise 
polynomial time approximation algorithms and approximation schemes 
for this problem. We also briefly discuss how the approximation algo- 
rithms can be extended to include a number of other variants of the 
problem. 

1 Introduction 

Given a pattern string PAT and a text T over a finite alphabet E, the clas- 
sical pattern matching problem is to find all occurrences of PAT in T. h the 
recent years there has been growing interest in finding efficient algorithms for 
multi-dimensional pattern matching problems (see [2, 22, 10, 1, 5,  251 and the 
references therein.). Consider the following optimization variant of the classi- 
cal pattern matching problem: Given a text T and a pattern PAT over a fi- 
nite alphabet E,  find the maximum number of non-overlapping occurrences of 
the pattern PAT in T. We call this problem the maximum pattern match- 
ing problem and use MPMd to denote the maximum d-dimensional pattern 
matching problem. Maximum pattern matching problem arises naturally in the 
areas of automated digital image processing. For example, researchers at the 
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Los Alamos National Laboratory are currently developing CANDID, the Com- 
parison Algorithm for Navigating Digital Image Databases, which facilitates a 
query-by-example approach to image retrieval [8, 23, 241. A user poses queries 
such as, "Show me all or the the maximum number of non-overlapping images 
in the database that contain textures similar to those in this example image". 
Such queries are useful in a variety of settings such as analysis of the images 
sent by remote sensing sateEtes.and medical diagnostics (See [a, 23, 241 and the 
references therein). For other applications of two-dimensional matching and a 
general survey, we refer the reader to [15, 221. 

2 Summary of Results 

Here, for the first time in the literature, we study the problem MPMd and sev- 
eral of its variants. In the one dmensional case (i.e., the problem MPMl),  the 
maximum solution can be easily found by successively taking the leftmost non- 
overlapping (with those already selected) location, if all possible locations are 
precomputed. In the case of tree matching the intersection graph corresponding 
to the set of matching locations is chordal [16]. Therefore, the maximum num- 
ber can be found in time linear in the size of the graph and the size of the text, 
by combining the results in [17] and 1301. For d 2 2, MPMd becomes harder 
to solve [9]. Specifically, we observe that a known NP-completeness result on 
planar geometric packing [14] implies the NP-completeness of the problem of 
maximum two-dimensional pattern matching (MPM2). In Section 4, we give 
a simple and efficient approximation algorithm with performance guarantee of 
2 for the problem MPM2. E the set of the so-called periods of the pattern is 
appropriately restricted, our simple approach yields maximum solutions. In Sec- 
tion 5,  we present our first involved approximation algorithm for MPM,, based 
on good separation properties of the intersection graph of the pattern locations. 
Our proof of these properties might be of independent interest. The separator- 
based approximation algorithm yields a solution of relative error O ( l / , / l l )  
for constant size patterns, and runs in O(n1ogn) time, on an input of size n. 
In Section 6, we present our second approximation algorithm for MPMz based 
on the shifting strategy introduced by Baker [4] and by Hochbaum and Maass 
[20; 211. Specifically, when patterns are of fixed size, we obtain NC-approximation 
schemes for MPM2. In the last Section we briefly describe various extensions of 
our results for MPM2. ' 

3 Preliminaries 

Following [l], the two-dimensiona2 ezact pattern matching is defined as follows. 
Input: A text matrix T[l ,  . . . ,n][l, . . . , n'], and a pattern matrix PAT[l, .  . . ,m] 
[l, . . . , m'] over a finite alphabet .E. 
Output: The set L of all location [i, j ]  in T such that T[i + k - 1, j + I - 1) = 
PAT[k,Z], 15 k 5 m and 1 5 15 m'. 



For two-dimensional pattern matching, since there are known linear-time algo- 
rithms that find all possible locations of PAT in T [2, 3, 61, we assume that the 
set L of all such locations is known. Following standard convention, the size of a 
pattern PAT is the number of characters in it. Thus the size of a m x m' pattern 
is O(mm') and the size of the n x n' tact is O(nn'). Finally, we assume a RAM 
model of computation with uniform cost criterion. 

We shall adhere to a standard notation for undirected graphs [19]. An in- 
dependent set in a graph G = ( K E )  is a subset S of vertices such that no two 
vertices of S are adjacent in G. S is maximal if every vertex in V - S is adjacent 
to  some vertex in S. S is a maximum independent set if it has the maximum 
size among all independent sets of G. An a-approximate independent set is an 
independent set of size at least ( l /a)  times the maximum independent size. Also 
recall that an approximation algorithm for a maximization problem 17 has a per- 
formance guarantee of p ,  iffor every instance I of 17, the solution value returned 
by the approximation algorithm is at least $ of an optimal solution for I. 

Let a < 1, f : N + N ,  and d > 0. A class F of graphs has an (a, f, d)- 
separator if for each n-vertex G E F either n 5 d or there is a a subset S of the 
set of vertices of G whose removal disconnects G into two subgraphs Gl and G2 
in F such that: 

1. Both G1 and Gz have at most an vertices each; and 
2. S has at most f(n) vertices. 

We sometimes identify the notion of an (a, f,d)-separator with the separation 
subsets S. Consequently, we say that an (a, f, d)-separator is constructible in time 
t if such S are computable in time t .  

Given T ,  PAT and the set L, we say that two locations [il,jl] and [iz , j2] 

in L overlap, if and only if lil - 4 < m and lj1 - j z l  < m'. Let Gr, = (L, EL) 
denote the intersection graph corresponding to L, i.e., for ZI, ZZ E L, (II, Zz) is 
an edge of Gr, if and only if the locations I1 and ZZ of PAT overlap in T.  The 
set L can also be thought of as defining a set of intersecting isothetic rectangles 
of size m x m' as follows. The isothetic equisized rectangles R are in one-to-one 
correspondence with the set of locations in L. A rectangle T E R corresponding 
to  a location ( i , j )  E L is placed with its lower left lower corner at ( i , j ) .  It is 
clear that two rectangles in R intersect if and only if the corresponding locations 
overlap. Now, we can apply the well known methods for reporting intersections 
of isothetic rectangles in order to construct Gr,. By Theorem 8.9 in [28], we have 
the following lemma. 

Lemmal. Gr, can be constructed from L in O(]L] IoglL] + IEr,I) time. 

It can be easily verified that the problem MPM2 reduces to finding a maxi- 
mum independent set in GL. Note that in general GL corresponds to the inter- 
section graph of equisized isothetic rectangles. Moreover, a-approximate inde- 
pendent sets in GL are precisely a-approximate solutions to MPMz. 

The NP-hardness of MPMz immediately follows from the NP-hardness of 
the planar geometric packing problem, given in [14]. An instance of this problem 



consists of a set of m isothetic squares laid out in the plane. The question is to 
decide if it is possible to  find k isothetic, pairwise disjoint locations of a given 
square (of integer side length) within an isothetic polygon with holes on an 
integer grid. To obtain the NP-hardness of MPM2 we simply set PAT to the 
square filled with O's, and model the input polygon P by setting the entries of 
T corresponding to  the grid points inside P to 0 and the remaining entries to  1. 
Importantly, the area of the integer grid containing the instance of the packing 
problem, modeling an instance of 3SAT in [14], is polynomial in the size of the 
instance of 3SAT. Thus MPM2 is NP-hard. The graph representation GL yields 
the membership of MPMz in NP. 

Theorem2. The maximum two-dimensional pattern matching problem is NP- 

complete. 

4- Simple Approximations 

Consider a maximum set S of non-overlapping locations of PAT in T. By a 
simple packing argument, it follows that any location in a maximal set of non- 
overlapping occurrences of PAT in T can overlap with at most four locations 
in S. Hence, the maximal set contains at least ISl/4 elements. The discussion 
also implies that the intersection graph GL is 5-claw free graph. (A d-claw is the 
graph Kl,d, i.e., a star with d independent neighbors. A graph is a d-claw free 
graph if it has no induced d-claw.) For the maximum independent set problem 
for d-claw free graphs, Hallddrsson [18] gives a local improvement heuristic with 
performance guarantee of 4 + E ,  for any E > 0. Since the intersection graphs 
associated with the problem MPM2 are 5-claw free, the result in [18] can be 
used to obtain an algorithm for MPM2 with asymptotic performance guarantee 
of 2. We ca,n obtain an alternative heuristic which is more efficient and has a 
performance guarantee 2 by observing the following. An extreme location of 
PAT in T in one of the four directions can overlap with at most two other 
independent locations. Let ML be a maximal independent set in GL constructed 
by repeatedly taking the vertex corresponding to the leftmost location of PAT 
and removing all its neighbors in the current graph. Then, we have the following 

Lemma3. The maximal independent set M L  yields a 2-approximate solution 

Theorem4. A 2-approximate solution to MPM2 can be computed in O(lnn'l+ 

ILllogjLI + !ELI) time. 

Proof. By Lemma 3, it sufltices to construct the set ML within the stated time. 

To achieve this, we build the graph GL and sort L by X-coordinate. The o p  

eration of extracting the leftmost location takes O(1) time. The operation of 
deleting the overlapping location takes time proportional to the degree of cor- 

responding vertex in GL. Finally? recall that L can be constructed in O(nn') 
time [9]? and GL in O((L1 log (LI + !ELI) time by Lemma 1. 

lemma. - 

to  MPMZ. 

' 



4.1 Periods of Pattern 

A period of the m x m' pattern array PAT is a non-null vector (T, s) such that 
-m < r < m, 0 5 s < m', h d  PAT[i, j ]  = PAT[. 3. i, s + j] whenever both 
sides are within PAT. There are two classes of periods depending on whether T 

is negative or not. 
If the pattern array has periods of only one class, a simple algorithm for 

optimally solving MPMz can be designed based on the following lemma. 

Lemma 5. If PAT has only nonnegative (negative) periods, no two locations 

corresponding to two vertices in the same connected component in GL are such 

that one lies to the right and over (respectively, under) the other. 

Proof. The proof is by contradiction. Let u, v respectively denote the vertices of 

Gr, corresponding to two locations contradicting the lemma, e.g., in the nonneg- 
ative case. Clearly, they cannot be neighbors in G. Consider the shortest path P 

in GL connecting u and 21. Let 1 be the first location corresponding to a vertex 
in P such that the locations 11 and 12 corresponding to the neighbors in P are 
both to the right or both to the left of 1. Note that both 11 and 12 have to cover 
the left-upper or the right-lower corner of 1. Hence, there is an edge connecting 
the two neighboring vertices in G. We obtain a contradiction to the optimality 

of P. The proof in the negative case is symmetrical. 

By Lemma 5,  we can order the vertices in each connected component of 
Gh according to their relative position in T ,  from the upper left or lower left 
corner depending on the class of periods. Now we can refhe the 2-approximation 
algorithm given in the proof of Theorem 4 by giving preference to the vertex 
corresponding to the uppermost or the lowermost location respectively in a sweep 
from left to right. In result, we obtain the following theorem. 

Theorem 6. If PAT has only nonnegative periods (or, only negative periods), 

then MPM2 can be solved in time O(lEtl+ nn' + ILI IoglL]). 

It follows from Lemma 5 that GL is a unit interval graph. Hence, GL is in 
fa& a chordal graph and a maximum independent set in GL can be found iii 
time linear in the size of GL by [30] and [17]. This yields an alternative proof of 
Theorem 6. 

5 Separator-based Approximation 

In case PAT is of small size compared with T, e.g., constant size, we show below 
that an efficient approximation to MPM2 exists and the approximation can 
be made arbitrarily close to the optimal solution. Our approach is inspired by 
the Lipton-Tarjan's method [26] of computing approximate independent sets in 
planar graphs. From the sophisticated randomized and deterministic methods for 

_-.._I_---- .- 



constructing separators for geometric graphs given in [27l and [ll] respectively, 
it follows that GL has a good separator. Independently of [ll, 271, we show that 
an equally good separator for GL is simply induced by m-1 consecutive columns 
and/or m' - 1 consecutive rows in T. This very simple separator construction is 
the basis of our sophisticated approximation algorithm for MPM2. 

Lemma7. The class of graphs GL has an ( 5 / 6 , U ( , / m ) , O ( m m ' ) ) - s e p a -  
mtor constructible in O(lLl+ n/m + n'/mr) time. 

Proof. It is sufficient to prove the following under the assumption of ILI > 
(48)2mmr. In time O(IL1 -t n/m + n'ym') one can find a sequence of m - 1 

consecutive columns or rows of T such that the locations of PAT in T with the 

left-upper corner in the sequence correspond to a subset of O ( I / ~ )  vertices 

of Gt disconnecting GL into two subgraphs none of which has more than 51L1/6 
vertices. 

For convenience, we shall say that a vertex of GL belongs to a subset S of 

entries of T if the left-upper corner of the location of PAT corresponding to this 
vertex is in S. 

Group the n columns of T into supercolumns, each consisting of m - 1 con- 
secutive columns of T (possibly but for the last one). Similarly, group the nr rows 
of T into superrows, each constiig of m' - 1 consecutive rows of T (p.ossibly but 
for the last one). 

Note that the removal of all vertices of GL belonging to a single supercol- 
umn disconnects the two subgraphs of GL induced by the vertices belonging 
respectively to the part of T to the left and to the part of T to the right of the 
supercolumn. A similar observation holds for the superrows. 

Let CI be the leftmost supercolumn such that there are at least totally ILI/S 

vertices in Cl and to  the left of C; in T. Symmetrically, let Cr be the rightmost 

supercolumn such that there are at least totally ILl/6 vertices in Cr and to the 
right of Cr in T. Clearly, both Cl and Cr are well defined and C; cannot lie to 
the right of Cr. Let BC be the block of consecutive supercolumns starting from 

Cl and ending with C,. 
and Cr with 5 ,/- 

vertices we are done. Note that otherwise BC contains less than 4-1-2 
supercolumns. 

Similarly, we define the analogous block BR of superrows. Similarly, if B R  

contains a superrow with less than ,/- vertices we are done, and other- 
wise BR contains less than d m +  2 superrows. 

To prove that BC or BR always contains a supercolumn (or superrow, r e  
spectively) with 5 4- vertices, we argue as follows. 

Let B be the intersection of BC with BR in T. Note that B has at least IL[/3 

vertices. On the other hand, since B has both width < (d-+ 2)m' 

and height < '(d-t- 2)m, it cannot contain IL1/3 vertices if ILI > 
(48)'mm'. We thus obtain a contradiction. 

If BC contains a supercolumn different from 



To find the number of vertices in each supercolumn in BC and eacb super- 

row in BR, we search the graph GL. While visiting a vertex v, we identify the 

supercolumn and the superrow it belongs to, increasing the counters associated 

with them by one. It takes O(lL1) time. To find the number of vertices to the 

left and to the right of each supercolumn (or, below or above each superrow, 

respectively), we apply prefix sums. It takes O(n/m + n'/m') time. 

For simplicity, we put N = [LI + n/m + n'/m' and d = (48)2mm'. 

Theorem8. For any k > d, GL has a set of vertices C of size O ( [ L [ m / f i )  
whose removal from GL leaves no connected component with more than k uer- 
tices. Furthermore C can be found in O(Nlog[L[) time. 

Proof. Initialize C := 0, and construct C as follows. 

while there is a connected component H of G - C with more than k 

vertices do 
find a separator C' of H and set C := C U C'. 

The construction of C may be visualized by means of a tree, whose vertices 

represent subgraphs of G (the root represents G) that are encountered during 

the execution of the procedure; the leaves correspond to  the components of G 
with at most k vertices. Define the level of a vertex v in the tree as the height 

of the full subtree rooted in v. Clearly, any two subgraphs on the same level 
are vertex-disjoint. By induction it follows that each i-th level (i 2 1) subgraph 
has at least (l/u)j-lk vertices for some constant a < 1. Thus the number of 
i-th level subgraphs is at most u'-'[L[/k. Since k > 1, the number of levels is 
O(log1LI). Further, we spend O(N)  time at each level, by Lemma 7. Hence the 
above procedure runs in O(N log [L[)  time. 

To bound the size of C, let n1,. . . , nl be the sizes of the subgraphs at some 
level i 1 1. The total number of vertices added to C by splitting these subgraphs 
is at most O(xj=l  d s ) .  This number is O ( a ( i - 1 ) / 2 [ L [ w / f i ) ,  since 

,< ui-'[L[/k and E:=, nj 5 IL(. * Hence IC]= O ( [ L l B / f i ) .  

Theorem9. In O(max{Nlog[LI, 2k[L[)) time, we can find an independent set 
I in GL such that the relative error in the size of I i s  O((mm')3/2/4i). 

Proof. Apply Theorem 8 to GL and find the set C. In each connected component 
of G - C, find a maximum independent set by an exhaustive search. Let I be 
the union of all such independent sets. Consider any maximum independent set 
I' in G. Observe that [I'I = G?([L[/(mm')), since every vertex in Gt has degree 
O(mm'). Notice that the restriction of I' to any connected component cannot 
be larger than the restriction of I to the same component. Thus, the difference in 
the sizes of I and I' is at most the size of C, which is O([L[=/G). Conse- 
quently, the relative error in the size of I is ([PI - [ I [ ) / [ I ' [  = 0((771m')~/~/&). 



To bound the time complexity, observe that the exhaustive search in each 

component takes O ( k ~ 2 ~ )  time. Thus the search over all components takes time 

0(2klLI). Finally, by Theorem 8, C can be found in O(N log ILI) time. 

Theorem 9 gives a trade-off between the running time of the algorithm and 
the quality of the solution. For small size and constant-size patterns, we have 
the following result by taking k = lloglog ILlJ. 

CorollarylO. If PAT is  of size 0((loglogIL1)'/~), then a solution to  MPMZ 
of rekative error o(1) can be constructed in O(N log ILI) time. 

Corollary 11. If PAT is of constant size, then a solution to  MPMz of relative 
error O(l/d-) can be constructed in O(Nlog1L)) time. 

6 An Approximation Scheme for MPM,  

6.1 Basic Technique 

The shifting strategy was used by Baker [4] for obtainingpolynomid time approx- 
imation schemes (PTAS) for problems restricted to planar graphs, by Hochbaum 
and Maass [20,21] for devising PTAS for certain covering and packing problems 
in the plane, and by Feder and Greene [13] for obtaining a PTAS for a certain 
location problem. 

We outline the basic technique by discussing our approximation scheme for 
MPM2. Without loss of generality, we may assume that the intersection graph 
GL of the set L of locations of PAT T is connected. As in the previous section, 
we divide T into supercoloumns composed of m - 1 consecutive coloumns of T 
(except the last one). For an E > 0, we calculate the smallest integer k such 
that (A) 2 1 - E .  Next, for each i, 0 5 i 5 k, we disconnect GL into I sub- 
graphs G I ,  - - . GI by removing the vertices of GL corresponding to the locations 
of L in supercoloums with number congruent to i mod (k + 1). (A location 
is said to lie in a given subarray if its left-upper corner lies in that subarray). 
For each subgraph G,, 1 2 p S I ,  we find an optimal independent set in G,. 
The independent set for this partition is just the union of independent sets for 
each G,. By an argument similar to the shifting lemma in [20], it follows-that 
the iteration in which the partition yields the largest solution value contains at 
least (&).OPT(G=) vertices, where OPT(G&) denotes the size of a maximum 
independent set in GL. (For simplicity, we also denote the cardinality of a max- 
imum independent set in GL by OPT(GL) .) The algorithm takes O(n) work. 

It is easy to see that the algorithm admits an NC implementation. We are now 
ready to give our approximation scheme for MPM;. The algorithm is outlined 
in Figure 1. 

6.2 Finding an  optimal solution in Step 3(c) 

We now discuss how to obtain an optimal solution for the independent set prob- 
lem in Step 3(c) of the algorithm MAX-IS. For each k e d  k > 0, the subgraph 



Algorithm: MAX-IS 

Input: A pattern PAT of size m x m', a text array T of size n x n' and the intersection 

graph GL of the locations of PAT in T. 
Output: An independent set in GL with at least (&) - OPT(GL) vertices. 

1. Find the smallest integer k such that (&) 2 1 - E .  

2. Divide T into supercolumns of width m - 1. 
3. For each i, 0 5 i IC do 

(a) Disconnect GL into r; disjoint subgraphs G ~ J .  - Gi,ri by removing all the 

vertices corresponding to locations of PAT in supercolumns with numbers 

congruent to i mod (k 4- 1); 

(b) Gi + UIGSri Gij ;  
(c) Compute an optimal independent set IS(Gi,j) in Gij -  

Algorithm 1: Details of the approximation scheme for the maximum independent set 

problem for equisized-rectangle intersection graphs. 

Gi,j obtained in Step 3(b) has treewidth 5 ck, for some constant c.> 0. Given 
this we can use the sequential (or NC-algorithms) for computing the maximum 
independent set in treewidth bounded graphs [7,29]. Thus the optimal indepen- 
dent set in Step 3(c) can be found by using O(ILi,jl) work. Here Lj,j denotes 
the vertex set of the graph Gi,j. 

6.3 Performance Guarantee 

We next prove that the algorithm given above indeed computes a near optimal 
independent set. That is, given any e > 0 the algorithm will compute an inde- 
pendent set whose size is at least (1 - E )  times that of an optimal independent 
set. 

We first prove that of all the different iterations for i, at least one iteration 
has the property that the number of vertices that are not considered in the 
independent set computation is a small fraction of an optimal independent set. 

Recall that for each i we did not consider the vertices in the subgraphs 

let Si be the set of vertices of GL which were not considered in the i-th iteration. 
Let ISopt(&) denote the vertices in the set Si which were chosen in the maximum 
independent set OPT(GL). 

Lemma12. 

Gjl,Gj,...Gjpi suchthat j l = i m o d ( k + l ) ,  1 < 1 5 p j . F o r - h i ) O s i < k ,  

.I 



Proof. First observe that the fouowing equation holds: 

O S i , j < k ,  i#j, S'inSj=4; 

since different subgraphs are considered in different iteration. It now follows that 

IIsopt(S~)l Ilsopt(&>I .'. IISopt(Sk)l =]OPT(GL)I. 

Therefore, 

Proof. We consider the iteration when the value of i is such that IOPT(Gi)l >_ 
(&)IOPT(GL)I. By Lemma 12 such an i exists. Fix the iteration i. 

IOPT(Gi)I = xizi IOPT(Gi,j)I 

Uskg the above equations we get that 

IIS(GL)I = maxo<i<k IIs(Gi)l 

= maxo<i<k IIs(Gi,j)l (BY Step 3(b)) 

3 maasi<k IOPT(Gi,j)l (By Step 3 ( ~ ) )  

2 maO<i<k IOPT(Gi)I (BY Step 3 ( ~ ) )  

The time required for each iteration of the For loop is . I$~~O(lLi , j l )  = 

O(/LI). Hence the total running time of our algorithmis .Z~~~O(lLl )+O(n/m)  = 
O(lL1) + O(n/m) (in case of the NC-algorithm the total amount of work is 
O(lL1) t- O(n/m).) Moreover, the algorithm has a performance guarantee of 
(k + l) /k.  

7 Extensions 

We briefly outline the possible extensions of our ideas presented in the previous 
sections. 



Higher Dimensional Matching Problems Our approximation algorithms 
for MPM2 directly extend to solve the problems MPMd for any k e d  d > 2. 
This can be seen by oberserving the following. For each k e d  d > 0 there is an 
T > 0 such that, the intersection graph associated with the problem MPMd is 
r-claw free. Also note that the d-dimensional geometric graphs have also good 
separator properties [27,11]. Finally, note that the shiftiig strategy can be eas- 
ily extended to apply to d-dimensional rectangles. The performance guarantee 
of the algorithm based on shifting strategy for solving MPMa is (?)"-'. 

Multiple Matchings Idury and Schzer [22] consider a variant of the classi- 
cal matching problem in which we are given a set of patterns instead of single 
pattern. Our results extend to handle the optimization version of the multiple 
pattern matching problem studied in [22]. In particular, we obtain two types 
of results depending on the size and the number of patterns. If the number of 
patterns and the size of each pattern is fixed, our approximation schemes can 
be extended to  obtain approximation schemes. To see this, note that although 
the rectangle graph induced now does not have equisized rectangles, we can 

subdivide the plane with respect to the largest rectangle. Furthermore, since 
the rectangles are of fixed size, for each E > 0, the treewidth of the subgraphs 
obtained as a result of decomposition is still a constant. With these two ob- 
servations in mind the extension is fairly straight forward. In the second case, 
when the shapes and the sizes of the patterns are not fixed, we can obtain a 
4-approximation by modifying the algorithm in Section 4 to choose the smallest 
rectangle instead of choosing the leftmost rectangle. Since the graph induced by 
the smallest rectangle and its neighbors is K I , ~  free, the performance guarantee 
follows immediately by an inductive argument. 

Non-Rectangular shapes As pointed out in Amir and Far& [l], severalprac- 
tical applications require us to match non-rectangular shapes. Using ideas similar 
to those outlined for the Multiple matching case, the approximation schemes for 
MPM2 can also be extended to the case when we have k e d  sized patterns that 
are non-rectangular, e.g., an L-shaped patterns. 

Allowing Mismatches Amir and Farach [l] also study the two dimensional 
pattern matching problem in which we are allowed certain number of mis- 

matches. Our approximation algorithms extend to finding a maximum number 
of non-overlapping patterns such that no more than k mismatches are allowed 
per matched location. 
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