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Abstract We propose an approximation algorithm based on the Lagrangian or price -
directive decomposition method to compute an�-approximate solution of the
mixed fractional packing and covering problem: findx 2 B such thatf(x) �(1 + �)a, g(x) � (1 � �)b wheref(x); g(x) are vectors withM nonnegative
convex and concave functions,a andb areM - dimensional nonnegative vectors
andB is a convex set that can be queried by an optimization or feasibility ora-
cle. We propose an algorithm that needs onlyO(M��2 ln(M��1)) iterations or
calls to the oracle. The main contribution is that the algorithm solves the general
mixed fractional packing and covering problem (in contrastto pure fractional
packing and covering problems and to the special mixed packing and covering
problem withB = IRN+ ) and runs in time independent of the so-called width of
the problem.

Keywords: Convex and concave optimization, approximation algorithms.

1 Introduction.

We study mixed fractional packing and covering problems(MPC�) of the
following form: Given a vectorf : B ! IRM+ of M nonnegative continuous
convex functions and a vectorg : B ! IRM+ of M nonnegative continuous
concave functions, twoM - dimensional nonnegative vectorsa; b, a nonempty
convex compact setB and a relative tolerance� 2 (0; 1), find an approximately
feasible vectorx 2 B such thatf(x) � (1 + �)a andg(x) � (1� �)b or find a�Research of the author was supported in part by EU Thematic Network APPOL, Approximation and
Online Algorithms, IST-2001-30012, by EU Project CRESCCO,Critical resource sharing for cooperation
in complex systems, IST-2001-33135 and by DFG Project, Entwicklung und Analyse von Approximativen
Algorithmen für Gemischte und Verallgemeinerte Packungs-und Überdeckungsprobleme, JA 612/10-1.
Part of this work was done while visiting the Department of Computer Science at ETH Zürich.
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proof that no vector is feasible (that satisfiesx 2 B, f(x) � a andg(x) � b).
W.l.o.g. we may assume thata andb are equal to the vectore of all ones.

The fractional packing problem with convex constraints, i.e. to findx 2 B
such thatf(x) � (1 + �)a, is solved in [6, 7, 10] by the Lagrangian decompo-
sition method inO(M(��2 + lnM)) iterations where each iteration requires a
call to an approximate block solverABS(p; t) of the form: findx̂ 2 B such
that pT f(x̂) � (1 + t)�(p) where�(p) = minx2B pTf(x). Furthermore,
Grigoriadis et al. [8] proposed also an approximation algorithm for the frac-
tional covering problem with concave constraints, i.e. to findx 2 B such thatg(x) � (1 � �)b, within O(M(��2 + lnM)) iterations where each iteration
requires here a call to an approximate block solverABS(q; t) of the form: findx̂ 2 B such thatqT g(x̂) � (1 � t)�(q) where�(q) = maxx2B qT g(x). Both
algorithms solve also the corresponding min-max and max-min optimization
variants within the same number of iterations. Furthermore, the algorithms can
be generalized to the case where the block solver has arbitrary approximation
ratio [9–11].

Further interesting algorithms for the fractional packingand fractional cov-
ering problem with linear constraints were developed by Plotkin et al. [14] and
Young [16]. These algorithms have a running time that depends linearly on
the width� - an unbounded function of the input instance. Several relatively
complicated techniques were proposed to reduce this dependence. Garg and
Könemann [5] described a nice algorithm for the fractional packing problem
with linear constraints that needs onlyO(M��2 lnM) iterations. On the other
hand, the algorithm by Grigoriadis et al. [8] is the only known algorithm that
solves the fractional covering problem with a number of iterations indepen-
dently on the width.

For the mixed packing and covering problem (with linear constraints and
polytopeB), Plotkin et al. [14] proposed also approximation algorithms where
the running time depends on the width. They present an algorithm that usesO(M2(ln2 �)��2 ln(��1M ln�) ln�) calls to an oracle of the form: find a ver-
tex x̂ 2 B with f(x̂) � va andpT f(x̂)� Xm2I(v;x̂) qmgm(x̂) = minfpT f(x)� Xm2I(v;x) qmgm(x)jx vertex of Bg
whereI(v; x) = fmjgm(x) � vbmg, v is a constant and where� = maxx2B maxm=1;:::;M(fm(x)=am; gm(x)=bm):
Young [17] described an approximation algorithm for a special mixed pack-
ing and covering problem with linear constraints with non-negative coeffi-
cients and special convex setB = IRN+ . The algorithm has a running time
of O(M2��2 lnM). Recently, Fleischer [4] gave an approximation scheme
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for the optimization variant (minimizingTx such thatCx � a, x � b andx � 0 wherea, b, and are nonnegative integer vectors andC is a nonneg-
ative integer matrix). Applications of the pure and mixed fractional packing
and covering problems can be found in [1–5, 9–12, 14, 17]. Young [17] posed
the following open problem: find an efficient width-independent Lagrangian-
relaxation algorithm for the abstract mixed packing and covering problem: findx 2 B such thatPx � (1 + �)a, Cx � (1� �)b, whereP;C are nonnegative
matrices,a; b are nonnegative vectors andB is a polytope that can be queried
by an optimization oracle (given a vector, returnx 2 B minimizing Tx) or
some other suitable oracle.

New Result: Our contribution here is an efficient width-independent La-
grangian - relaxation algorithm for the mixed packing and covering problem
that uses a suitable optimization oracle of the form (given two vectors; d, re-
turn x 2 B, dTx � 1, minimizing Tx). Interestingly, a feasibility oracle of
the form (given two vectors; d, returnx 2 B such thatTx � 1 anddTx � 1)
is also sufficient. This solves the open problem by N.E. Young[17]. Interest-
ingly, our algorithm works also for a more general problem with a convex setB and nonnegative convex packing and concave covering constraints.

The algorithm uses a variant of the Lagrangian or price directive decompo-
sition method. This is an iterative strategy that solves(MPC�) by computing
a sequence of triples(p; q; x) as follows. A coordinator uses the current vectorx 2 B to compute two price vectorsp = p(x) 2 IRM+ andq = q(x) 2 IRM+
with

PMm=1 pm + qm = 1. Then the coordinator calls an optimization or-
acle to compute a solution̂x 2 B of the block problem(BP ) of the form�(p; q) = minfpT f(y)jy 2 B; qT g(y) � PMm=1 qmg, and makes a move
from x to (1 � �)x + � x̂ with an appropriate step length� 2 (0; 1). Such
a iteration is called a coordination step. For our algorithm, we only require
an approximate block solver(ABS) that solves the underlying block problem(BP ) to a given relative tolerancet 2 (0; 1):ABS(p; q; t) : ompute x̂ = x̂(p; q) 2 B suh thatpT f(x̂) � (1 + t)�(p; q) and qT g(x̂) � 11+tPMm=1 qm:

Our main result is the following:Theorem 1 There is an approximation algorithm that for any given accu-
racy � 2 (0; 1) solves the mixed fractional packing and covering problem(MPC�) within N = O(M��2 ln(M��1))
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iterations or coordination steps, where each of which requires a call toABS(p;q;�(�)) and a coordination overhead ofO(M ln(M��1)) arithmetic opera-
tions.

Alternatively, instead of using the approximate block solver an approximate
feasibility oracle of the form (computêx 2 B such thatpTf(x̂) � (1 +t)PMm=1 pm andqT g(x̂) � 11+tPMm=1 qm) is also sufficient.

Main Ideas: Our algorithm builds on approximation schemes of Grigori-
adis et al. [7, 8] and Young [17]. One of the ideas is to combinetwo different
potential functions that were proposed for pure fractionalpacking and covering
problems [7, 8]. We associate here with the packing and covering constraints
the following potential function:�0t(�; x) = 2 ln � � tM PMm=1 ln(� � fm(x))� tM PMm=1 ln(gm(x)� 1� )
where� 2 IR+ andt > 0 is a tolerance that depends on� and is used in the
approximate block solver. The function�0 can be extremely small, since there
is no upper bound on the function valuesgm(x). LetA be a nonempty subset
of M = f1; : : : ;Mg. To control the values of the covering functionsgm(x)
and to have a lower bound for the potential function, we eliminate functionsgm (and the corresponding index inA) when the function valuegm(x) is larger
than a prespecified threshold valueT and modify the potential function. LetA(x) denote the index set corresponding to a given vectorx 2 B. Then the
modified potential function has the form:�t(�; x;A(x)) = 2 ln � � tM PMm=1 ln(� � fm(x))� tM Pm2A(x) ln(gm(x)� 1� )� tM Pm62A(x) ln(T ):

The potential function�t has an unique minimum�A(x)(x) that approxi-
mates the objective value�A(x)(x) = max(maxm2M fm(x); maxm2A(x) 1=gm(x)):
This potential function�t and the minimizer�A(x)(x) is used to define the
price vectorsp = p(x) and q = q(x) for the current vectorx 2 B and
to optimize in the correct direction. Another important parameter for the
convergence of the algorithm is the reduced potential value�t(x;A(x)) =�t(�A(x)(x); x; A(x)) for x 2 B andA(x) � f1; : : : ;Mg. Since we can not
control the values of eliminated functionsgm for m 62 A(x) (after the elimina-
tion), at the end of each phases we take a convex combination over different
computed vectors.
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The main problem is to choose a good step length� in order to obtain a
fast and width-independent convergence. To achieve this goal we study the
following four cases:(1) : pT f(x)� pT f(x̂) � 0 and qT g(x̂)� qT g(x) � 0;(2) : pT f(x)� pT f(x̂) < 0 and qT g(x̂)� qT g(x) � 0;(3) : pT f(x)� pT f(x̂) � 0 and qT g(x̂)� qT g(x) < 0;(4) : pT f(x)� pT f(x̂) < 0 and qT g(x̂)� qT g(x) < 0;
wherex is the current solution and̂x is the block solution corresponding to the
price vectorsp = p(x) andq = q(x). Case(4) with pT f(x)�pTf(x̂) < 0 andqT g(x̂)� qT g(x) < 0 is not possible. In this case one of the stopping rules is
satisfied and the algorithm stops with the iteratex. The step length� is defined
carefully in dependence on the cases(1) � (3) and the minimizer�A(x)(x) of
the potential function. In the general case, the coordinator moves from solutionx to (1 � �)x+ � x̂ and sets the index setA(x0) = fm 2 A(x)jgm(x0) < Tg.
In the case wheremaxm2A gm(x)(1 � �) + gm(x̂)� > T we reduce the step
length from� to �� and use as next vectorx0 = (1� ��)x+�� x̂. This is important
for the convergence analysis.

2 Potential function and price vectors
Let A be a nonempty subset ofM = f1; : : : ;Mg. During a phase, we

eliminate a concave functiongm (and the corresponding index inA) when the
function valuegm(x) � T . LetA(x) denote the index set corresponding to a
given vectorx 2 B. For simplicity we useA = A(x) (if the dependence is
clear).

2.1 Potential function
The potential function�t (given above) is well defined for�A(x) < � <1

where �A(x) = max( max1�m�M fm(x);maxm2A 1gm(x) ):
If gm(x) = 0 for at least one indexm 2 A then we define�A(x) = 1.
Furthermore,�t has the barrier property (i.e.�t(�; x;A) ! 1 for � ! 1
and for� ! �A(x)). We define the reduced potential function�t(x;A) as
the minimum value�t(�; x;A) over � 2 (�A(x);1) for a givenx 2 B.
The unique minimizer�A(x) can be determined from the first-order optimality
condition:
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t�M MXm=1 1� � fm(x) + tM� Xm2A 1gm(x)� 1=� = 2: (1)

The implicit function�A(x) approximates�A(x). This is important for the
further analysis.Lemma 2�A(x)=(1 + t=(2M)) � �A(x) � �A(x)(1 � t2 � tjAj2M ) � �A(x)(1 � t):

Lemma 2 shows that the value�A(x) approximates the objective value�A(x)
for smallt. Interestingly, the reduced potential function�t(x;A) can be bounded
also in terms of�A(x).Lemma 3 If gm(x) � T for eachm 2 A then�t(x;A) � (2� t) ln �A(x)�t lnT . Furthermore, ifT > 1=�A(x) then�t(A; x) � 2 ln �A(x)+2t ln(2Mt )+t ln(1 + t=(2M)).
2.2 Price vectors

Given a vectorx 2 B and a subsetA � f1; : : : ;Mg, the price vectorp(x;A) is defined bypm(x;A) = t2M �A(x)�A(x)� fm(x) (2)

and the price vectorq(x;A) is given byqm(x;A) = 8><>: t2M 1gm(x)�A(x)�1 m 2 A;0 otherwise.
(3)

Using the first-order condition,
PMm=1 pm(x;A)+PMm=1 qm(x;A) = 1 and

each componentpm(x;A); qm(x;A) is nonnegative.Lemma 4 (a) p(x;A)T f(x) = �A(x)(PMm=1 pm(x;A)� t=2) � �A(x)(1�t=2),
(b) q(x;A)T g(x) = (Pm2A qm(x;A)+tjAj=(2M))=�A(x) � (Pm2A qm(x;A)+t=2)=�A(x) � (1 + t=2)=�A(x).

Notice that Lemma 4 (a) implies that
PMm=1 pm(x;A) � t=2.
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3 Our approximation algorithm
In this section we describe the approximation algorithms for the mixed frac-

tional packing and covering problem. First we suppose that there exists a fea-
sible solutionx 2 B with f(x) � e andg(x) � e. Then the approximation
algorithm works as follows:

(1) compute initial solutionx(0), s := 0, �0 := 1=4;

(2) repeat fsaling phase g
(2.1) s := s+1; �s := �s�1=2; x := x(s�1); T (s) := 528(M3=�2s)=�M(x);A := fm 2 f1; : : : ;Mgjgm(x) < T (s)g; finished := false;k := 0;

(2.2) if A 6= f1; : : : ;Mg then begin k:=k+1; xk := x end;

(2.3) if stopping rule1 is satisfied forx then finished := true; y := x
end;

(2.4) while not(finished) do begin
(2.4.1) compute�A(x), p(x;A) andq(x;A);
(2.4.2) x̂ := ABS(p(x;A); q(x;A); �s=32);
(2.4.3) if one of the stopping rules is satisfied

then begin finished := true; y := x end
else begin
(2.4.3.1) compute step length� andx0 := (1 � �)x+ � x̂;
(2.4.3.2) if maxm2A gm(x)(1 � �) + gm(x̂)� > T (s) then

reduce� to �� andx0 := (1� ��)x+ �� x̂;
(2.4.3.3) A0 := A n fmjgm(x0) � T (s)g; x := x0;
(2.4.3.4) if A 6= A0 then begin k := k + 1; xk = x0;A := A0 end

end
end;

(2.5) compute convex combination ofx1; : : : ; xk; y to getx(s);
(2.6) until �s � �=2 or �(x(s)) � 1 + �;

(3) return(x(s)).
The details of the algorithm are described later in this section (how to com-

pute an initial solution, the stopping rules, the choice of the step length, and the
reduction of the step length). For the case where the set of feasible solutionsfx 2 Bjf(x) � e; g(x) � eg is empty, we have to modify the program above.
If an inequalityp(x;A)T f(x̂) > (1+ t)P pm(x;A) holds for a block solutionx̂, then we can conclude that there is no feasible solution.
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3.1 Initial solution
For eachm 2 f1; : : : ;Mg, we consider the block problem(Bm) of the form�(p; q) = minf 1M PM̀=1 f`(x)jx 2 B; gm(x) � 1gwherep = (1=M; : : : ; 1=M)

and q = em is the unit vector with all zero coordinates except for itsm.th
component which is1. If there is a solution�x 2 B with f(�x) � e andg(�x) � e, then this solution satisfies(1=M)PM̀=1 f`(�x) � 1 andgm(�x) � 1.
Let x̂[m℄ 2 B be an approximate solution of the block problem(Bm) with tol-
erancet = 1=2, and letx(0) = (1=M)PMm=1 x̂[m℄. Using the convexity ofB,x(0) 2 B. If the approximate solution satisfies(1=M)PM̀=1 f`(x̂[m℄) > 1 + t,
then we conclude that the solution set of the mixed problem isempty. In the
other case we can prove:Lemma 5 If there exists a feasible solution of the mixed packing and covering
problem, then�(x(0)) � 3M=2.

3.2 Stopping rules
In the algorithm we stepwise decrease in phases the objective value� from3M=2 to 1=(1� �=2). In the first phase we decrease3M=2 to �1 = 1=8. After

that we set�s = �s�1=2. The goal in phases is to obtain a solutionx(s) with�(x(s)) � 1=(1 � �s). In order to get such a solution we need at the end of
phases a solutiony with �A(y) � 1=(1 � �s=4). This is necessary, since
we eliminate covering constraints within the phases. To obtain the solutiony
and to show the convergence we use three stopping rules. For the first rule we
simply test whether �A(x) � 1 + �s=4 (4)

for the current solutionx. For this rule we get immediatelyLemma 6 If �A(x) � 1 + �s=4 thenfm(x) � 1 + �s=4 � 1=(1 � �s=4) for
eachm 2 f1; : : : ;Mg andgm(x) � 1=(1+�s=4) � 1��s=4 for eachm 2 A.

For the second rule we define a parameter� that depends on the current
iteratex and the approximate block solution̂x as follows� = �(x; x̂) = pTf(x)� pT f(x̂) + �(qT g(x̂)� qT g(x))pTf(x) + pT f(x̂) + �(qT g(x̂) + qT g(x)) (5)

wherep = p(x;A), q = q(x;A) and � = �A(x). Clearly, �(x; x̂) �1. The Lemma below states thatx is an approximate solution of the phases
corresponding to subsetA, when� is bounded byts = �(�s).Lemma 7 Suppose�s 2 (0; 1) and ts = �s=32. For a givenx 2 B, letp; q be computed by(2; 3) and x̂ computed byABS(p; q; ts). If �(x; x̂) � ts,
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then fm(x) � 1 + �s=4 � 1=(1 � �s=4) for eachm 2 f1; : : : ;Mg andgm(x) � 1=(1 + �s=4) � (1� �s=4) for eachm 2 A.

The third stopping rule is used to control the number of iterations during
one phase. Here we use a parameter!s that depends on the phases:!s = 8><>: 23M(1��1=4) s = 11��s�11��s=4 s > 1

Then the third rule is defined by�A(x) � !s�M(x(s�1)) (6)

wherex(s�1) is the solution of phases � 1 that satisfies�(x(s�1)) � 1=(1 ��s�1):Lemma 8 Letx(s�1) be the initial solution andx be a vector in phases � 1
with �A(x) � !s�(x(s�1)) for A �M. If �A(x(s�1)) � 3M=2 for s = 1 and�A(x(s�1)) � 1=(1� �s�1) for s � 2, then we obtain�A(x) � 1=(1 � �s=4).
3.3 Choice of the step length

In this subsection we describe the choice of the step length� . We suppose
that we have computed a vectorx and an approximate block solution̂x in a
phases such that�(x; x̂) > t, pT f(x̂) � (1 + t)PMm=1 pm andqT g(x̂) �11+tPMm=1 qm (wheret = ts, p = p(x;A(x)) andq = q(x;A(x))). Let x0 =(1� �)x+ � x̂. First we focus on the case wheregm(x0) < T = T (s) for eachm 2 A(x). In this case we do not eliminate a component (i.e.A(x0) = A(x)).
The other case will be discussed later (in some cases we have in addition to
reduce the step length). For simplification we use� = �A(x)(x). Since each
functionfm is convex and each functiongm is concave, we get independently
on the choice of� the following inequalities� � fm(x0) � (� � fm(x))(1 + 2�Mt� pm(fm(x)� fm(x̂)));gm(x0)� 1=� � (gm(x)� 1=�)(1 + 2�M�t qm(gm(x̂)� gm(x)))
for each indexm 2 M or m 2 A(x), respectively. We call a step length�
feasible if � 2 (0; 1) and if the following value:max(maxm2M j2�Mt� pm(fm(x)� fm(x̂))j; maxm2A(x) j2�M�t qm(gm(x̂)� gm(x))j)

(7)
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is bounded by1=2. Suppose from now on that� is a feasible step length.
Later we will specify different step lengths� with � 2 (0; 1) to obtain the
bound(7). Then using� � fm(x) > 0 and gm(x) � 1=� > 0 we obtain� � fm(x0) > 0 andgm(x0) � 1=� > 0 for the next computed vectorx0 2 B.
This implies that the objective value�A(x0)(x0) for the next vectorx0 is at most�A(x)(x), where hereA(x0) = A(x).Lemma 9 For any two consecutive iterations in a phase with computed vec-
tors x; x0 andA(x0) = A(x) and any feasible step length� , the difference�t(x;A(x)) � �t(x0; A(x0)) is at least+2� [(pT f(x)� pT f(x̂))=� + (qT g(x̂)� qT g(x))�℄�4M�2t [(pT f(x) + pT f(x̂))=� + (qT g(x̂) + qT g(x))�℄2;
where� = �A(x)(x), p = p(x;A(x)) andq = q(x;A(x)).

The proof of Lemma 9 can be found in the full version. In our algorithm we
use the following step lengths:�1 = t�=(4M [(pT f(x) + pT f(x̂))=� + (qT g(x̂) + qT g(x))�℄);�2 = t�=(4M [(pT f(x) + pT f(x̂)) + (qT g(x̂) + qT g(x))�℄);�3 = t2=(4M [(pT f(x) + pT f(x̂))=� + (qT g(x̂) + qT g(x))�℄);�4 = t=(12M)
where� = �A(x) and� = �(x; x̂). With exception of the last case, all step
lengths above are feasible for anyt 2 (0; 1=2℄. The last step length�4 is
feasible only for the caseqT g(x̂) � qT g(x) and anyt 2 (0; 1℄. Furthermore,
note that each step length� 2 (0; �i℄ is also feasible fori 2 f1; : : : ; 4g. In our
algorithm we use the step lengths (see Table 1) in dependenceon the current
vectorx, the approximate block solution̂x, the minimizer� = �A(x)(x) and
the price vectorsp = p(x;A(x)), q = q(x;A(x)).

The main goal now is to prove the following result. The proof can be found
in the full version of the paper.Theorem 10 For any two consecutive iterations in a phase with computed
vectorsx; x0, index setsA(x) = A(x0) andt � 1=224 we obtain:�t(x;A(x))��t(x0; A(x0)) � �( t3M ).
3.4 Reducing the step length

Letx0 = (1��)x+� x̂ wherex is the current vector,̂x is the block solution
and� is the step length as used in the previous subsection. Consider a phase
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� � 2 2 < � � 200 200 < �pT f(x)� pT f(x̂) � 0
and �1=120 �1=120 �1=2qT g(x̂)� qT g(x) � 0pT f(x)� pT f(x̂) < 0
and �2 �2 �2qT g(x̂)� qT g(x) � 0pT f(x)� pT f(x̂) � 0
and �3=3 �4=9 �4=9qT g(x̂)� qT g(x) < 0

Table 1. The choice of the step lengthss with threshold valueT (s). For simplicity we useT = T (s). If gm(x0) � T
for eachm 2 A(x), then we usex0 as the next iterate and setA(x0) = fm 2A(x)jgm(x0) < Tg. In this case some components may be eliminated, but
we use the original step length. Now we consider the case thatgm(x0) > T
for at least one coordinatem 2 A(x). Let (~�) = maxm2A(x) gm(x)(1 �~�) + gm(x̂)~� for 0 � ~� � 1. If (�) > T then we reduce the step length� .
In this case we compute�� < � such that(�� ) = T . Usinggm(x) < T for
eachm 2 A(x) and(�) > T , there is at least one componentm 2 A(x)
such thatgm(x̂) > T . In addition, the value�� is unique and can be computed
in O(M) time. We use herex0 = x(1 � ��) + x̂�� as next iterate and setA(x0) = fm 2 A(x)jgm(x0) < Tg. If (�) � T then we do not have to
reduce the step length� and use againx0 = x(1 � �) + x̂� . But we eliminate
as above all componentsm 2 A(x) with gm(x0) � T . Notice that the case
with gm(x0) > T > gm(x)(1 � �) + gm(x̂)� is possible (since the functionsgm are concave). For eachm 2 A(x0) we havegm(x0) < T . If we use a
reduced step length�� < � thenA(x) 6= A(x0). ButA(x) 6= A(x0) can happen
also when(�) < T or gm(x0) � T for eachm 2 A(x). Now we consider
two cases depending whether we use the original step length� or the reduced
step length�� . We can prove similar to Theorem 10 the following two results
(the proofs are given in the full paper).Theorem 11 For any two consecutive iterations with computed vectorsx; x0,
index setsA(x) 6= A(x0), maxm2A(x) gm(x)(1 � �) + gm(x̂)� � T andt � 1=224, we obtain�t(x;A(x)) � �t(x0; A(x0)) � �( t3M ).Theorem 12 For any two consecutive iterations with computed vectorsx; x0,
index setsA(x) 6= A(x0), maxm2A(x) gm(x)(1 � �) + gm(x̂)� > T andt � 1=224, we obtain�t(x;A(x)) � �t(x0; A(x0)) � 0.
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3.5 Convex combination of different vectors
First we can prove an upper bound for the packing constraints.Lemma 13 For any iteration of the phases with computed vectorx, �f (x) =max1�m�M fm(x) is bounded by4M=ts.
Lemma 13 shows that the valuesfm(x) are not arbitrary large in the algo-

rithm. Notice that this is independently from the chosen step length� 2 (0; 1).
We use this bound for the convex combination below. Notice that in addi-
tion the componentspm(x;A(x)) of the price vectorp(x;A(x)) are not arbi-
trary small (i.e. pm(x;A(x)) > ts=(2M)). At the end of phases we have
computed a vectory 2 B with �A(y)(y) � 1=(1 � �s=4). This impliesfm(y) � 1=(1 � �s=4) for eachm 2 f1; : : : ;Mg and gm(y) � 1 � �s=4
for eachm 2 A(y). The goal is now to compute a vectorx(s) 2 B with�M(x(s)) � 1=(1� �s). The key idea is to use a convex combination over sev-
eral vectors computed during the phase. Letx1; : : : ; xk be the vectors in phases where at least one functiongm is eliminated (i.e. wheregm(xi) � T (s)).
Clearly, k � M . We havex1 = x(s�1) if gm(x(s�1)) � T (s) for at least
onem 2 M (herex(s�1) is the solution of the previous phase). We take the
following convex combination:x(s) = Pki=1 �2s264M2 xi + (1� k�2s264M2 ) y:
Since the setB is convex andx1; : : : ; xk; y 2 B, we obtainx(s) 2 B. Our
threshold valueT (s) is equal to528(M3�2s ) � 1�M(x(s�1)) . Notice thatT (s) �528M3=�2s, since�M(x(s�1)) � 1 (otherwise we are done). Then we can
prove:Lemma 14 The computed solutionx(s) satisfies�M(x(s)) � 1=(1 � �s).
4 Analysis of the approximation algorithm

In this subsection we determine the total number of iterations of our algo-
rithm. To do this we calculate first the number of iterationsNs in a single
phases. Let y; ~y denote the initial and final iterate of phases. Furthermore,
let �y be the solution after�Ns = Ns � 1 iterations. For consecutive iterations
with computed vectorsx; x0 in a phase andA(x) = A(x0), the difference in
the potential values�t(x;A(x)) � �t(x0; A(x0)) � t3M where is a positive
constant andt = ts = �s=32. In addition, there are at mostM iterations
with consecutive vectorsx; x0 and different subsetsA(x) 6= A(x0) (i.e. in
these iterations at least one component is eliminated). In these cases, we have�t(x;A(x)) � �t(x0; A(x0)) � 0. Therefore,�t(y;A(y)) � �t(�y;A(�y)) �t3M ( �Ns �M). Then we can prove the following result:
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Theorem 15 The number of iterationsNs in phases is at mostO(M��2s ln(M��1s ))
and the total number of iterations of our algorithm is at mostO(M��2 ln(M��1)):

Remark: The root�A(x) can often be computed only approximately, but
an accuracy ofO(�2=M) for �A(x) is sufficient to generate the above bounds
on the number of iterations. With this required accuracy, the number of eval-
uations of the sumt�M PMm=1 1��fm(x) + tM� Pm2A 1gm(x)�1=� is bounded byO(ln(M��1)). This givesO(M ln(M��1)) arithmetic operations to determine�A(x) approximately.

5 Concluding Remarks
In this paper we have presented an approximation algorithm for the mixed

packing and covering problem that uses onlyO(M��2 ln(M��1)) calls to an
oracle of the form: compute âx 2 B such thatf(x) � 1 and g(x) � 1.
We note that probably the computation of the convex combination can be
avoided and the number of calls to the oracle can be improved toO(M(lnM+��2 ln ��1)). The details will be given in the full paper.
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