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Abstract

We consider optimization problems that can be formulated as minimizing the cost of a feasible so-

lution w
T
x over an arbitrary combinatorial feasible set F ⊂ {0, 1}n. For these problems we describe

a broad class of corresponding stochastic problems where the cost vector W has independent random

components, unknown at the time of solution. A natural and important objective that incorporates risk

in this stochastic setting is to look for a feasible solution whose stochastic cost has a small tail or a small

convex combination of mean and standard deviation. Our models can be equivalently reformulated as

nonconvex programs for which no efficient algorithms are known. In this paper, we make progress on

these hard problems.

Our results are several efficient general-purpose approximation schemes. They use as a black-box

(exact or approximate) the solution to the underlying deterministic problem and thus immediately apply

to arbitrary combinatorial problems. For example, from an available δ-approximation algorithm to the

linear problem, we construct a δ(1 + ǫ)-approximation algorithm for the stochastic problem, which

invokes the linear algorithm only a logarithmic number of times in the problem input (and polynomial

in 1

ǫ
), for any desired accuracy level ǫ > 0. The algorithms are based on a geometric analysis of the

curvature and approximability of the nonlinear level sets of the objective functions.

Key words: approximation algorithms, reliable optimization, stochastic optimization, risk, mean-risk, non-

linear programming, nonconvex optimization

1 Introduction

In this paper, we consider generic combinatorial problems and ask what happens when their associated

costs are stochastic. The most common approaches in stochastic optimization are to find the solution of

minimum expected cost. However, in many applications reliability considerations are very important: risk-

averse users need reassurance regarding the level of risk, and not just the expected cost of the provided

solution. For example, the transportation community has recognized the importance of reliable route plans

(e.g., [7, 28, 25, 37, 9]), however the solutions offered are typically inefficient or heuristic with unknown

approximation guarantee. Similarly, reliability is a key consideration in finance and other continuous op-

timization settings [34]. It has been noted that incorporating reliability [34, 29] transforms the problems

into nonconvex ones for which there are no known efficient algorithms and rigorous approximative analysis

is scarce. In this paper, we provide a rigorous treatment of reliable combinatorial optimization, offering

fully-polynomial approximation schemes for a rich framework of reliability measures.

∗This work was supported in part by the National Science Foundation under grant 0931550.
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To illustrate our framework, consider an application such as driving to the airport in uncertain traffic.

Our goal is to find a route that gets us to the airport on time. Clearly, the route which minimizes our expected

travel time may not be an appropriate choice. In fact, the natural objectives may vary depending on when

we are submitting the route query: ahead of time, when we are debating how much time to budget for our

trip, or at the start of our trip, when we are optimizing our chance of ontime arrival. In the former setting,

we would typically want to allocate enough time to ensure some confidence of ontime arrival, say 95%. In

the latter, given a deadline to reach our destination, we need to find the route which will most likely reach

by the deadline. Another natural objective, used for example by the Federal Highway Administration as

a travel time reliability criterion, is given by the mean plus standard deviation of a route [10]. The latter

reliability criterion has been considered in the context of stochastic minimum spanning treess as well [2],

and this model is sometimes referred to as mean-risk optimization (e.g., [2]).

We thus focus on a general framework for reliable stochastic combinatorial optimization, which includes

the following problem settings:

1. minimize (mean + c · standard deviation) for a non-negative constant c which parametrizes the

level of risk-aversion. [Call this the Mean-risk model or objective.]

2. maximize Pr(solution cost ≤ budget) for a given budget. [Probability tail model / objective.]

3. minimize budget such that Pr(solution cost ≤ budget) ≥ p for a given confidence probability p.

[Value-at-risk model.]

In contrast with the diversity in model specifications above, we will show that the same approximation

algorithm design can simultaneously address all. Throughout, we assume that the cost distributions are in-

dependent, although our algorithms also extend to the case of correlations of neighboring edges for example

in shortest path problems (the graph with correlated edges is transformed into a slightly larger graph with

independent edges and thus all our results here immediately carry through.)

Contributions. We start our discussion with the (relatively) simpler mean-risk model, which is equivalent

to minimizing
(

mean + c ·
√

variance
)

. We provide strong results that apply to arbitrary cost distributions

with given means and variances, and achieve essentially the same approximation factor as what is possible

for the underlying deterministic problem. In particular, we provide general-purpose algorithms that use as a

black-box an algorithm for the deterministic problem. We summarize our results for this setting below:

Theorem (See Theorems 1, 5). There is a fully-polynomial approximation scheme for the mean-risk stochas-

tic model, when there is an exact or fully-polynomial approximation algorithm for the underlying determin-

istic problem.

In addition, there is a (1 + ǫ)δ-approximation for the stochastic model running in time polynomial in 1
ǫ ,

when there is an available δ-approximation for the deterministic problem.

A rigorous approximation-algorithmic analysis of the second and third models in the framework, which

involve optimization of the probability tails, necessitates an assumption on the distribution: in the absence

of any knowledge on the distributions, the best one can do is bound the tails, for example using Chernoff or

Chebyshev bounds, and optimize those tail bounds instead—this will yield a conservative overestimate of

the probability of exceeding the budget.

We provide strict approximation results under the commonly assumed Gaussian distributions; we then

show how the same algorithmic techniques can apply to arbitrary distributions using tail bounds. In the

former setting, minimizing the probability tail in the second model is equivalent to maximizing budget−mean√
variance

and we get the following approximations:
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Theorem (See Theorems 1, 6). There is a fully-polynomial approximation scheme for the probability tail

model, when there is an exact or fully-polynomial approximation algorithm for the underlying deterministic

problem.

In addition, when there is an available δ-approximation for the deterministic problem, there is a
√

1 −
[

δ−(1−ǫ2/4)
(2+ǫ)ǫ/4

]

-approximation for the stochastic model running in time polynomial in 1
ǫ .

We remark that the above algorithms find the approximate solution, assuming there is a feasible solution

with expected cost at most the budget, or (1−ǫ) times the budget in the exact and approximate deterministic

settings respectively (in other words, the probability of exceeding the budget is at most 1
2 ). Otherwise, if

a given budget is so small that the probability of exceeding it is greater than 1
2 , we are in a risk-loving,

rather than a risk-averse situation, which would be similar to minimizing a (mean− standard deviation)-
type objective in model (1). In other words, we would prefer solutions with higher variances (for example,

looking for longest paths).

The third (value-at-risk) model under Gaussian distributions is equivalent to the mean-risk model, with

risk-aversion coefficient c = Φ−1(p), where Φ−1(·) is the inverse cumulative distribution function of the

standard normal N(0, 1).
For arbitrary distributions, the third model again reduces to the mean-risk model, but with a more con-

servative risk-aversion coefficient c =
√

p
1−p , as a result of which our algorithms provide an overestimate

of the true error probability of exceeding the budget. Optimizing a tail bound in the second model similarly

provides an overestimate of the true probability, which is again the best one can hope to achieve in the

absence of other distributional information.

Background and Challenges. Our algorithms build on the fact that the model formulations in our frame-

work are all instances of concave minimization, for which it is known that the optimal solution is attained

at an extreme point of the feasible set (see, e.g., [4]). In particular, our objective functions depend only on

the means and variances of feasible solutions. Thus, we can project the feasible set on the plane spanned by

the mean and variance vectors and only consider extreme points on the projection (see Figure 1(a)). This

greatly restricts the number of relevant extreme points. For example, in the case of minimum spanning trees

and matroids there are only polynomially many such extreme points, which can be efficiently enumerated,

hence the corresponding reliable spanning trees and matroids in a stochastic environment can be found with

a straightforward polynomial-time algorithm. However, an arbitrary combinatorial problem would most

likely have too many extreme points even on a two-dimensional projection (for example, shortest paths have

nlog n such points [30]), hence our focus on approximation in this paper.

We can geometrically visualize the objective function in terms of its level sets on the mean-variance

plane. These form parabolas, corresponding to higher objective function values at greater mean and vari-

ance values. The optimal solution is obtained at the lowest parabola touching the projected feasible set. Fig-

ure 1(a) depicts these parabolas and the challenge that arises with concave minimization problems: along the

convex hull boundary of the feasible set, the objective function fluctuates and, in particular, many extreme

points may be local optima and thus local search algorithms would fail to find a good approximation. What

we do instead is follow the objective function levels to guide us into the relevant portion of the feasible set,

as explained below.

Overview of Algorithms and Techniques. [For the case of easy deterministic problems.] The algorithm

constructs a (non-linear) separation oracle for telling us whether, for a given function level set,1 there is a

feasible solution below the level set (with value less than the given function value) or else, whether the entire

1The level set of a function f for value λ is the subset of the domain on which the function equals λ, Lλ = {x | f(x) = λ}.

3



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

µ

τ

FEASIBLE SET

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

mean

va
ria

nc
e

L
(1+ε)λ Lλ 

L
4
 

L
2
 

L
1
 

L
5
 

Figure 1: (a) Level sets of the probability tail objective function and the convex hull of the projected feasible

set on the mean-variance plane. (b) Level sets and approximate separation oracle for the mean-risk objective

on the mean-variance plane.

feasible set is above the given level. Afterwords, a binary search on the optimum objective function value

combined with the separation oracle finds the desired approximate solution.

The separation oracle approximates a given level set curve by inscribing a (partial) polygon in it. Each

side of the polygon induces a linear objective over the feasible set, which we minimize via a black-box call

to the algorithm for the deterministic problem. If the resulting solution is below the current level set (more

precisely, its associated original objective function value is smaller than (1 + ǫ) times the given level), the

separation oracle returns that solution. Else, if after minimizing with respect to all linear segments, we do

not find any solutions below the level set, the separation oracle returns a negative answer that the entire

feasible set is above it.

The subtlety arises in how to construct the polygonal segments to ensure a good and efficient approxima-

tion. To get an efficient algorithm, we need to approximate the level set curves with as few linear segments

as possible. On the other hand, to get a good approximation factor, we need a finer polygon (with more and

smaller sides), which is sandwiched between the desired level set with function value λ and the level set

with function value λ(1 + ǫ) (See Figure 1(b)). In particular, in the worst case when the level sets touch,

as is the case for the probability tail objective, a polygon sandwiched between the two level sets will have

infinitely many sides. We resolve this problem by carefully bounding the optimal solution so that we do

not need all infinitely many linear segments from the polygon, and we prove that it suffices to consider only

polynomially many such segments.

[Hard deterministic problems.] We could use the same algorithm design as above, by appropriately

modifying its analysis and approximation factors, when we have a δ-approximation rather than an exact

algorithm for solving the underlying deterministic problem. It turns out that for this case, a cruder and

simpler algorithm gives the same approximation factor. In particular, all we need to do here is apply the

algorithm for the deterministic problem on a small sequence of linear cost functions of the form mean + k ·
variance, for a geometric progression of coefficients k.

However, even if we know what single choice of k would find the optimal solution, the difficulty is to

translate the approximation given by the deterministic black-box algorithm for the linear function into an

approximation for the original concave function: the two functions have nothing in common (except that

the former is a gradient of the latter at some point), and a priori it is not clear that an approximation of

the former would at all yield a meaningful approximation factor for the original objective. Fortunately, all

objective functions in our framework admit such an approximation (the probability tail objective is again
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more challenging due to the given budget and requires us to know that there is a feasible solution at least a

small distance away from the budget).

Related Work. A rich body of work in stochastic combinatorial optimization focuses on two-stage and

multistage optimization (e.g., [36, 17, 21, 16, 18]). The models there typically look for solutions of minimum

expected cost, and Swamy and Shmoys remark that “it would be interesting to explore stochastic models

that incorporate risk” [39]. There are models that incorporate additional budget constraints [38] or threshold

constraints for specific problems such as knapsack, load balancing and others [8, 13, 23].

At the other end of the spectrum is the paradigm of robust optimization (see survey [5]), which provides

completely reliable (robust) solutions, though this is only possible when the uncertainty is bounded, namely

the random variables have bounded support. Our framework for reliable optimization falls between stochas-

tic optimization, which minimizes expected cost, and robust optimization, which minimizes the maximum

cost. Interestingly, part of our framework (the mean-risk model) arises in robust discrete optimization under

ellipsoidal uncertainty sets [6]. Bertsimas and Sim offer for it pseudopolynomial algorithms, assuming that

the underlying deterministic problem can be solved exactly, in contrast with our fully polynomial approxi-

mation schemes that work with both exact and approximate algorithms for the deterministic problem.

Atamtürk and Narayanan [2] also consider mean-risk minimization in discrete optimization, giving a

characterization in terms of submodular minimization. Our feasible set is an arbitrary subset of the hyper-

cube vertices, on which it is not known how to do submodular minimization. As a curiosity, we mention here

that the mean-risk objective is also supermodular via the Lovász extension [24]. However, supermodular

minimization is even harder and this perspective does not help our problem at hand.

The probability tail objective was previously considered in the special context of stochastic shortest paths

and an exact algorithm was given based on enumerating relevant extreme points from the path polytope [30].

The same type of algorithm extends to arbitrary combinatorial problems and its complexity is polynomial

for minimum spanning trees and matroids. However, in general, it is superpolynomial or exponential, hence

our focus on approximation algorithms in this paper.

A comprehensive survey of models that incorporate risk in continuous settings is provided by Rockafel-

lar [34]. The solution concepts and continuous nature of the problems make this work very different from

ours. Similarly, continuous optimization work with probability (chance) constraints (e.g., [29]) applies for

linear and not discrete optimization problems. Additional related work on the combinatorial optimization

side includes research on multi-criteria optimization (e.g., [32, 1, 35, 40]) and combinatorial optimization

with a ratio of linear objectives [27, 33]. Our models can also be seen as instances of concave discrete

minimization; however, the existing work in this area requires assumptions that do not hold in our frame-

work, such as restrictive properties on the feasible set, strictly positive range of the objective function, or

boundedness/positivity of the objective function gradient [31, 3, 22, 14].

2 An FPTAS for the reliable versions of easy combinatorial problems

In this section, we formally define the models in our reliable stochastic optimization framework and present

a general-purpose FPTAS design for these problems. The FPTAS uses as a black-box an exact algorithm for

the underlying deterministic problem and is based on a geometric analysis of the curvature and approxima-

bility of the level sets of the objective functions.

Suppose we have an arbitrary combinatorial set of feasible solutions F ⊂ {0, 1}n, together with an

oracle for optimizing linear objectives over the set. In addition, we are given nonnegative vectors of means

µ ∈ R
n and variances τ ∈ R

n for the stochastic cost vector W, coming from independent distributions so

that the mean and variance of a solution x ∈ F is µ
T
x and τ

T
x ≥ 0 respectively. We are interested in

finding a feasible solution with optimal cost, where the notion of optimality incorporates risk.
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1. [Mean-risk model] A family of objectives that has been analyzed in continuous optimization settings,

mostly in the context of finance [11, 26], is the family of convex combinations of mean and standard

deviation. Formally, this problem is to:

minimize µ
T
x + c

√
τ Tx (1)

subject to x ∈ F ,

where the constant c parametrizes the degree of the user’s risk aversion.

2. [Probability tail model] An alternative natural model maximizes the probability that the stochastic

solution cost is within a desired budget or threshold t: maximize Pr
(

W
T
x ≤ t

)

subject to x ∈ F .

When the stochastic costs W are Gaussian, subtracting the mean and dividing by the standard devia-

tion transforms the problem into the following equivalent formulation (which is also approximation-

preserving as we show in the extended version):

maximize
t − µ

T
x√

τ Tx

(2)

subject to x ∈ F .

When the stochastic costs W come from arbitrary distributions, the maximum probability is lower-

bounded by
(t−µ

T
x)2

(t−µT
x)2+(τT

x)
(by the one-sided Chebyshev bound, also known as Cantelli’s inequal-

ity [15], Pr(X ≤ E[X] + k
√

V ar(X)) ≥ 1 − 1
1+k2 , with k = t−µ

T
x√

τT
x

). While maximizing a

lower-bound will not yield a strict approximation of the probability tail objective, it is the best one

can achieve in the absence of other distributional information—and our techniques can strictly ap-

proximate this bound as well:

maximize
(t − µ

T
x)2

(t − µTx)2 + τ Tx
(3)

subject to x ∈ F .

3. [Value-at-risk model] Finally, we may wish to minimize the budget t such that the probability of not

exceeding it is at least a given confidence level p:

minimize t (4)

subject to Pr(WT
x ≤ t) ≥ p

x ∈ F .

Depending on whether we have Gaussian or arbitrary distributions, this problem is exactly equivalent

to, or its solution can be upper-bounded using Chebyshev’s bound by the mean-risk model (1) with

c = Φ−1(p) or c =
√

p
1−p (See Ghaoui et al. [12]; more details are provided in the extended version

of this paper).

We can obtain fully-polynomial approximation schemes (FPTAS) for all models above, with the same

FPTAS template, which we explain below. All models are instances of concave minimization (equivalently,

convex maximization) over x ∈ F . Our algorithms make black-box calls to an exact algorithm (sometimes

referred to as the linear oracle) for solving the underlying deterministic (linear) problem:

minimize w
T
x (5)

subject to x ∈ F ,
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for a carefully chosen small set of linear objectives w ≥ 0. We remark that in general such a set may not even

exist; for example, the necessary number of linear objectives may be large or even infinite if the objective

function has unbounded gradient (as is the case in the second model above). From a complexity perspective,

minimizing a concave function over some feasible set may be hard to approximate even if minimizing a

linear function over the same set can be done in polynomial time [22].

Thanks to the form of the objective functions, they can all be projected onto the mean-variance plane

span(µ, τ ) and can be thought of as functions on two dimensions. In that plane, the projected level sets

of the objective functions are parabolas. We construct an approximate separation oracle, which tells us

whether for a given function value λ there is a feasible solution below the (1 − ǫ)λ-level set or else if

the entire feasible set is above the λ-level set. We do this by inscribing a (partial) polygon between these

two level sets. Geometrically, the optimal polygon choice (with fewest sides) is such that its vertices are

on one level set and its sides are tangent to the other, as shown in Figure 1(b). The FPTAS template for

a maximization problem is described more formally in Figure 3 in the Appendix (it is analogous for a

minimization problem).

Theorem 1. There is an oracle fully-polynomial time approximation scheme for all problems in the reli-

able stochastic framework above, which uses as a black-box an exact algorithm for solving the underlying

deterministic problem (5).

In the rest of this section we prove this theorem. The crux of the proof is in establishing that the

approximate separation oracle can be constructed from polynomially many linear segments, as described

in the following main technical lemma. (The Lemma is stated for a stochastic maximization problem as in

Eq. (2); the analogous statement holds for a stochastic minimization problem as in Eq. (1).) The argument

for how the theorem follows from the Lemma is provided in the extended version.

Lemma 2 (Approximate Separation Oracle). Suppose we have an exact algorithm for solving the deter-

ministic problem (5). Then, we can construct an oracle which solves the following approximate separation

problem: given a level λ and ǫ ∈ (0, 1), the oracle returns

1. A solution x ∈ F with f(x) ≥ (1 − ǫ)λ, or

2. An answer that f(x) < λ for all x ∈ F ,

and the number of linear oracle calls it makes is polynomial in 1
ǫ and the size of the input.

The proof-construction of the Approximate Separation Oracle from Lemma 2 follows from a series of

lemmas about bounding the size and number of the linear segments that approximate a level set and comprise

the separation oracle. Since the level sets and their position with respect to each other is different for the

different objectives, the actual computations of the size and number of linear segments differs. For lack of

space we provide the proof for the probability tail formulation (2), which is more subtle due to the budget

threshold and the fact the level sets are tangent to each other. The proofs for the remaining objectives are

analogous.

Consider the lower level sets Lλ = {z | f(z) ≤ λ} of the objective function f(m, s) = t−m√
s

, where

m, s ∈ R. Denote Lλ = {z | f(z) = λ}. We will prove that any level set boundary can be approximated by

a small number of linear segments. The main work here involves deriving a condition for a linear segment

with endpoints on Lλ, to have objective function values within (1 − ǫ) of λ.

Lemma 3. Consider the points (m1, s1), (m2, s2) ∈ Lλ with s1 > s2 > 0. The segment connecting these

two points is contained in the level set region Lλ\Lλ(1−ǫ) whenever s2 ≥ (1 − ǫ)4s1, for every ǫ ∈ (0, 1)
(See Fig. 2(a)).
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Figure 2: (a) The objective value along a segment is not too far from the objective value at the endpoints

of the segment, provided s1 and s2 are not too far. λ and λ(1 − ǫ) are the objective function values along

the parabolic level sets. (b) Applying the approximate linear oracle on the optimal linear objective gives

an approximate value b to the optimal linear objective value b∗. The challenge is to relate the linear oracle

approximation factor b
b∗ to an approximation guarantee λ

λ∗ for the original nonlinear objective.

Proof. Any point on the segment [(m1, s1), (m2, s2)] can be written as a convex combination of its end-

points, (αm1 + (1 − α)m2, αs1 + (1 − α)s2), where α ∈ [0, 1]. Consider the function h(α) = f(αm1 +
(1 − α)m2, αs1 + (1 − α)s2). We have,

h(α) =
t − αm1 − (1 − α)m2

√

αs1 + (1 − α)s2

=
t − α(m1 − m2) − m2

√

α(s1 − s2) + s2

We want to find the point on the segment with smallest objective value, so we minimize with respect to α.

h′(α) =
α(m2 − m1)(s1 − s2) + 2(m2 − m1)s2 − (t − m2)(s1 − s2)

2[α(s1 − s2) + s2]3/2
.

Setting the derivative to 0 is equivalent to setting the numerator above to 0, thus we get:

αmin =
(t − m2)(s1 − s2) − 2(m2 − m1)s2

(m2 − m1)(s1 − s2)
=

t − m2

m2 − m1
− 2s2

s1 − s2
.

Note that the denominator of h′(α) is positive and its numerator is linear in α, with a positive slope, therefore

the derivative is negative for α < αmin and positive otherwise, so αmin is indeed a global minimum as

desired.

It remains to verify that h(αmin) ≥ (1− ǫ)λ. Note that t−mi = λ
√

si for i = 1, 2 since (mi, si) ∈ Lλ

and consequently, m2 − m1 = λ(
√

s1 −
√

s2). We use this in the following expansion of h(αmin).

h(αmin) =
t + αmin(m2 − m1) − m2

√

αmin(s1 − s2) + s2

=
t + ( t−m2

m2−m1
− 2s2

s1−s2
)(m2 − m1) − m2

√

( t−m2

m2−m1
− 2s2

s1−s2
)(s1 − s2) + s2

=
t + t − m2 − 2s2

m2−m1

s1−s2
− m2

√

(t − m2)
s1−s2

m2−m1
− 2s2 + s2

=
2(t − m2) − 2s2

λ(
√

s1−
√

s2)
s1−s2

√

λ
√

s2
s1−s2

λ(
√

s1−
√

s2)
− s2

= 2λ
(s1s2)

1/4

√
s1 +

√
s2

.
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We need to show that when the ratio s1/s2 is sufficiently close to 1, h(αmin) ≥ (1− ǫ)λ, or equivalently

2(s1s2)
1/4

√
s1 +

√
s2

≥ 1 − ǫ ⇔ 2(s1s2)
1/4 ≥ (1 − ǫ)(s

1/2
1 + s

1/2
2 )

⇔ (1 − ǫ)
(s1

s2

)1/2
− 2

(s1

s2

)1/4
+ (1 − ǫ) ≤ 0 (6)

The minimum of the last quadratic function above is attained at
(

s1

s2

)1/4
= 1

1−ǫ and we can check that at

this minimum the quadratic function is indeed negative:

(1 − ǫ)
( 1

1 − ǫ

)2
− 2

( 1

1 − ǫ

)

+ (1 − ǫ) = (1 − ǫ) − 1

1 − ǫ
< 0,

for all 0 < ǫ < 1. The inequality (6) is satisfied at s1

s2
= 1, therefore it holds for all

(

s1

s2

)

∈ [1, 1
(1−ǫ)4 ].

Hence, a sufficient condition for h(αmin) ≤ (1 − ǫ)λ is s2 ≥ (1 − ǫ)4s1, and we are done.

Using Lemma 3, we next show that any level set Lλ can be approximated within a multiplicative factor

of (1 − ǫ) via a small number of segments. Let smin and smax be a lower and upper bound respectively for

the variance of the optimal solution. For example, take smin to be the smallest positive coordinate of the

variance vector, and smax the variance of the feasible solution with smallest mean.

Lemma 4. The level set Lλ = {(m, s) ∈ R
2 | t−m√

s
= λ} can be approximated within a factor of (1− ǫ) by

⌈

1
4 log

(

smax

smin

)

/ log 1
1−ǫ

⌉

linear segments.

Proof. By definition of smin and smax, the variance of the optimal solution ranges from smin to smax. By

Lemma 3, the segments connecting the points on Lλ with variances smax, smax(1−ǫ)4, smax(1−ǫ)8, ..., smin

all lie in the level set region Lλ\Lλ(1−ǫ), that is they underestimate and approximate the level set Lλ within

a factor of (1 − ǫ). The number of these segments is ⌈1
4 log

(

smax

smin

)

/ log 1
1−ǫ⌉.

The above lemma yields the approximate separation oracle for the level set Lλ and the feasible set F , by

applying the black-box algorithm for the deterministic problem to cost vectors aµ+τ , for all possible slopes

(−a) of the segments approximating the level set. This concludes the proof-construction for the separation

oracle in Lemma 2.

3 Approximating the reliable versions of hard combinatorial problems

In this section, we show that a δ-approximate oracle to the deterministic problem (5), also called the linear

oracle, can be used to construct efficient approximation algorithms for the reliable stochastic models. As in

the approximative analysis for easy combinatorial problems, we first check whether the optimal solution has

zero variance and if not, proceed with the algorithm and analysis below.

We can use the same approximation algorithm template that constructs a separation oracle as in the

previous section, but it turns out that a cruder algorithm which simply tests a geometric progression of

mean-variance tradeoffs provides the same approximation guarantees. The main technical challenge in the

algorithm analysis is that even if we know the optimal mean-variance tradeoff to query from the black-box

algorithm for the deterministic problem, it is not obvious and not intuitive what approximation factor one

can get for the reliable objectives from the δ-approximation factor for the deterministic one.

We obtain a very strong result for the relatively simpler mean-risk objective—we can get essentially the

same approximation factor as the available one for the deterministic problem:

9



Theorem 5. Suppose we have a δ-approximation oracle for solving the deterministic combinatorial prob-

lem (5). The mean-risk model (1) can be approximated to a multiplicative factor of δ(1 + ǫ) by calling the

oracle for the deterministic problem polynomially many times in the input size and 1
ǫ .

We can also get the following approximation for the probability tail formulation (2):

Theorem 6. Suppose we have a δ-approximation oracle for solving the deterministic combinatorial prob-

lem (5). The probability tail model (2) has a

√

1 −
[

δ−(1−ǫ2/4)
(2+ǫ)ǫ/4

]

-approximation algorithm that calls the

algorithm for the deterministic problem polynomially many times in 1
ǫ and the input size, assuming the

optimal solution to (2) satisfies µ
T
x
∗ ≤ (1 − ǫ)t.

The high-level analysis for these approximation algorithms is the same; it differs in the computation of

the approximation factors. For lack of space, we only offer an overview of the proof of Theorem 6; the

remaining details for both theorems are in the extended version.

We first prove several geometric lemmas that enable us to derive the approximation factor. The first

lemma is key for the transition from approximating a linear objective (by the algorithm for the deterministic

problem) to approximating the probability tail objective. See Figure 2(b) for visualizing the notation.

Lemma 7 (Geometric lemma). Consider two objective function values λ∗ > λ and points (m∗, s∗) ∈ Lλ∗ ,

(m, s) ∈ Lλ with positive coordinates, such that the tangents to the points at the corresponding level sets

are parallel. Then, the y-intercepts b∗, b of the two tangent lines satisfy

b − b∗ = s∗
[

1 −
( λ

λ∗

)2]

.

The next lemma shows that if we know the optimal linear objective to use with the available δ-approximate

algorithm for the deterministic problem (5), then we can approximate the optimal solution well.

Lemma 8 (Optimal Linear Objective Lemma). Suppose we have a δ-approximate linear oracle for opti-

mizing over the feasible set F and suppose that the optimal solution satisfies µ
T
x
∗ ≤ (1 − ǫ)t. If we can

guess the slope of the tangent to the corresponding level set at the optimal point x
∗, then we can find a

√

1 − δ 2−ǫ
ǫ -approximate solution to the nonconvex problem (2).

In particular, setting ǫ =
√

δ gives a (1 −
√

δ)-approximate solution.

Next, we prove a geometric lemma that will be needed to analyze the approximation factor we get when

applying the linear oracle on an approximately optimal slope.

Lemma 9. Consider the level set Lλ and points (m∗, s∗) and (m, s) on it, at which the tangents to Lλ have

slopes −a and −a(1+ ξ) respectively. Let the y-intercepts of the tangent line at (m, s) and the line parallel

to it through (m∗, s∗) be b1 and b respectively. Then b
b1

≤ 1
1−ξ2 .

We now show that we get a good approximation even when we use an approximately optimal linear

objective with our linear oracle.

Lemma 10. Suppose that we use an approximately optimal linear objective with a δ-approximate linear

oracle for solving the probability tail model (2). In particular, suppose the linear objective (slope) that we

use is within (1 + ξ) of the slope of the tangent at the optimal solution. Then this will give a solution to the

probability tail model (2) with value at least

√

1 −
[

δ
1−ξ2 − 1

]

2−ǫ
ǫ times the optimal, provided the optimal

solution satisfies µ
T
x
∗ ≤ (1 − ǫ)t.
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Consequently, we can approximate the optimal solution by applying the approximate linear oracle on a

small number of appropriately chosen linear functions and picking the best resulting solution, as explained

in the proof of Theorem 6 in the extended version.

When δ = 1, that is when we can solve the underlying linear problem exactly in polynomial time, the

above algorithm gives an approximation factor of
√

1
1+ǫ/2 , or equivalently 1− ǫ′, where ǫ = 2[ 1

(1−ǫ′)2
− 1].

While this algorithm is still an oracle-fully polynomial time approximation scheme, it gives a bi-criteria

approximation: it requires that there is a small gap between the mean of the optimal solution and the budget

t so it is weaker than our previous algorithm, which had no such requirement. This is expected since,

of course, this algorithm is cruder, simply taking a geometric progression of linear functions rather than

tailoring the black-box algorithm calls for the deterministic problem to the objective function value that it is

searching for, as in the approximate separation oracle that the FPTAS from the previous section is based on.

4 Conclusion

We have presented a framework for reliable stochastic combinatorial optimization that includes mean-risk

minimization and models involving the probability tail of the stochastic cost of a solution. Our algorithms are

independent of the feasible set structure and use solutions for the underlying linear (deterministic) problems

as oracles for solving the corresponding stochastic models. As such, they apply to very general combinato-

rial settings for which exact or approximate linear oracles are available.

Our primary motivation for this work was to design an approximation algorithm for finding the most

reliable route in a network with uncertain edge delays (in the sense that the route maximizes the probability

of arriving on time under a given deadline), which consequently extended to the rich class of problems and

reliability models considered here. An implementation of our approximation algorithm in the context of

reliable routes reveals that they are also very practical: for example, they achieve 99.9%-accuracy with only

up to 6 iterations of an algorithm for the deterministic problem.

In future work, it would be interesting to extend our offline stochastic models to online models, as has

previously been done with offline linear to online linear problems [20, 19]. It would be also useful to con-

sider adaptive stochastic reliability models, building on the framework of multistage stochastic optimization.
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Appendix

Problem: Maximize f(x) over x ∈ F .

Output: Solution x
′ such that f(x′) ≥ (1 − ǫ)fmax(x)

Algorithm:

1. For appropriate lower and upper bounds of f(·), denoted fl and fu respectively, apply ap-

proximate separation oracle below with ǫ′ = 1−
√

1 − ǫ successively on the function values

fu, (1 − ǫ′)fu, (1 − ǫ′)2fu, ... until we find a value, for which the separation oracle returns a

feasible solution x
′.

2. Run the available black-box algorithm for the deterministic problem on subset of elements

with zero mean, to find the smallest-variance solution among the solutions with mean zero.

Compare with the solution above and return the solution with better objective function value.

Approximate Separation Oracle.

Input: Function value λ, approximation factor ǫ′ > 0; black-box access to algorithm for minimizing

linear functions over x ∈ F .

Output:

(a) A solution x
′ ∈ F with f(x′) ≥ (1 − ǫ′)λ, or

(b) An answer that f(x) < λ for all x ∈ F .

Algorithm:

1. Inscribe a polygon between the level sets corresponding to function values λ and (1 − ǫ′)λ.

2. For each side of the polygon, minimize the induced linear objective.

3. If a resulting solution x
′ satisfies f(x′) ≥ (1 − ǫ)λ, return x

′. Else return that f(x) < λ for

all x ∈ F .

Figure 3: FPTAS template for solving reliable stochastic models.
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