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Abstract

The problem of covering edges and vertices in a graph �or in a hypergraph�
was motivated by a problem arising in the context of component assembly
problem� The problem is� given a graph and a clique size k� �nd the minimum
number of k�cliques such that all edges and vertices of the graph are covered
by �included in� the cliques� This paper provides a collection of approximation
algorithms for various clique sizes with proven worst�case bounds� The problem
has a natural extension to hypergraphs� for which we consider one particular
class� The k�clique covering problem can be formulated as a Set Covering
problem� It is shown that the algorithms we design� that exploit the structure of
this special Set Covering problem� have better performance than those derived
from direct applications of general purpose algorithms for the Set Covering�
In particular� these special classes of Set Covering problems can be solved
with better worst�case bounds and�or complexity than if treated as general Set
Covering problems�
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� Introduction

The problem of k�clique covering �CCk� is de�ned on a graph �or a hypergraph�
and a given clique size k� The aim is to use the least number of cliques � or subsets
of k vertices � so that each vertex and each edge is contained in at least one such
clique� When all edges are covered then also all vertices incident to these edges are
covered� so the issue of covering vertices in addition to edges is of interest only in
graphs with isolated vertices�

The k�clique covering problem�s objective value di	ers from the clique covering

number of a graph �frequently used in literature related to perfect graphs� in that
the clique covering number of a graph is a partitioning of the edges of the graph
into a minimum number of complete subgraphs� Hence for each clique used in the
clique covering number problem� all edges of the clique are present in the graph�
As such� each edge must belong to exactly one clique in the cover� In our problem�
each clique covers all edges contained in it� Contrary to the clique covering number�
not every edge of the clique must be present in the graph� Furthermore� an edge
may be covered by more than one clique�

One problem addressed in the literature that is related to the 
�clique covering
problem is the partitioning of a graph into triangles� The feasibility decision problem
� whether the edges of a graph can be partitioned into triangles � was proved NP�
complete by Holyer ���
� Therefore �nding the minimum number of triangles to
cover the edges of a graph is NP�hard�

A general de�nition of the �CCk� problem for hypergraphs is as follows� A
hypergraph H � �V� F � is de�ned by a vertex set V � f�� ���� ng and a hyperedge
set F � �V � A clique of size k in a hypergraph H is a subset of vertices K � V such
that the hyperedges representing all subsets of K exist in H and jKj � k� In the
case jf j � �� for all f � F � each hyperedge is an edge containing a pair of vertices�
and the hypergraph is a graph� The k�Clique Covering �CCk� problem is to �nd
the minimum number of cliques of size no more than k such that all hyperedges of
H are covered by �included in� the cliques�

The k�clique covering problem can be viewed as a special case of the Set Covering
problem� In this context� approximation algorithms that apply to the Set Covering
problem are also applicable to the k�clique covering problem� The drawback of using
the set covering problem is that the input to the Set Covering problem includes all
possible subsets of size k and hence is exponential in k� We propose an approach
that exploits the special structure of the clique covering problem and delivers better
worst case bounds than the ones using the set covering�

The main results in this paper are approximation algorithms for the problem
�CCk� on graphs and on a class of hypergraphs� We present approximation algo�
rithms based on the formulation of the problem as a Set Covering problem and
algorithms speci�cally derived for the clique cover problem� The latter algorithms
have better worst�case performance� Consequently� these classes of Set Covering
problems can be solved with better worst�case bounds and�or complexity than if
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treated as general Set Covering problems�
The �CCk� problem has many practical applications in �exible manufacturing

systems and component assembly in the semiconductor industry� In ��
� Gold�
schmidt et al� provide a detailed description of some related applications�

In related literature� Tang and Denardo ���
 developed a branch�and�bound
procedure for solving the �CCk� problem� The lower bound is generated by a so
called sweeping procedure and it can be arbitrarily bad� Several heuristic procedures
have been proposed and tested for generating feasible solutions� These heuristics are
similar to bin packing heuristics in that they select a starting seed hyperedge for a
new bin �clique� and sequentially �ll it according to some precedence rule� Tang and
Denardo ���
� and Whitney and Gaul ��

 propose di	erent rules for selecting next
hyperedge to add to the current clique� In these papers� no analysis and worst�case
bounds have been provided for the heuristic solutions�

Let zH and z� be respectively the number of cliques derived by an approximation
algorithm and the minimum number of cliques of a �CCk� instance� An algorithm
is a ��approximation algorithm if� for any family of instances of the problem� zH �
�z� � o�z��� We call � the worst case bound of the algorithm� and the algorithm a
�� approximation algorithm�

Our results include approximation algorithms for the following cases� For the
triangle covering problem� the 
�clique covering� we present two approximation algo�
rithms with worst case bounds of ��� and ��� respectively� For the ��clique covering
our algorithm is a ��

�� approximation algorithm� For the general k�clique covering

we describe an algorithm that is a �k� � k
k�� �� approximation algorithm� For this

case the greedy heuristic for Set Covering gives a bound of H�
�k
�

�
� � � log k with

running time O�nk�� H�d� is a Harmonic series de�ned as H�d� �
Pd

j�����j�� The
Harmonic series is asymptotically equal to the natural logarithm of d �plus the Eu�
ler constant�� For the problem on hypergraphs� when each hyperedge to be covered
is of size k � �� we describe two approximation algorithms and demonstrate that
they compare favorably with algorithms derived from setting the problem as a Set
Covering problem�

In Section �� we discuss the reduction of the k�Clique Covering problem to
the Set Covering problem� Once reduced to the Set Covering problem� the greedy
heuristic ��
 for Set Covering becomes applicable� Throughout this paper� we refer
to the greedy heuristic as greedy� For a Set Covering problem on a hypergraph
with n vertices and with m elements to be covered� elements that are edges and
vertices in a graph or hyperedges in a hypergraph� the greedy is a minfk log �� logmg�
approximation algorithm of complexity O�

�n
k

�
min�k�� m���

Section 
�� includes the approximation algorithms for graphs with clique sizes

 or �� Section 
�� contains two approximation algorithms for solving the problem
on hypergraphs in which each hyperedge has exactly �k� �� vertices�

Table � summarizes the results of section 
� Case �k� q� denotes an instance for
which each hyperedge has cardinality q and case �k�� q� an instance for which a






Algorithm Case Running time �

H� �
�� �� O�m���� ���
H� O�m� ���

H� ���� �� O�m� ��


H� �k�� �� O�m� k
� � k

k��

H� �k� k � �� O�m�k� H�k� � �
�

H� O�m����
l
k
�

m

Table �� ��approximation algorithms

hyperedge consists of at most q vertices�
In section � we conclude with some future research directions�

� Reduction to the Set Covering Problem

The Set Covering problem �SC� is de�ned for a universal set of m elements� I �
f� � � �mg� and a collection of p sets Si � I � i � � � � �p� The problem is to �nd a
smallest cardinality collection of sets� the union of which is I �

Not only is the Set Covering problem NP�hard� but it was recently established
that an approximation algorithm for the problem with better than logarithmic
bound is impossible� unless all NP problems are solvable in subexponential time
����
� � a fairly unlikely prospect�

The Set Covering problem may be generalized to a problem of covering sets
with sets� as opposed to covering elements with sets� A set S is said to be covered
by a set �S if S � �S� The �CCk� is a class of instances of covering sets with sets
when the covering sets Si are cliques of size k and the elements are vertices and
edges �hyperedges� of a graph �hypergraph�� As such it is a special case of the Set
Covering problem with all sets of �xed size k� As noted before� this Set Covering
problem is NP�hard since covering edges with minimum number of triangles is a
special case�

The �CCk� has shorter input representation than the Set Covering� Let the
k�clique covering problem be de�ned on a hypergraph with n vertices� Since any
subset of k vertices must be considered as a potential clique� p �

�n
k

�
sets are listed

as part of the input� On the other hand� for the input of �CCk� only the size limit�
k� is speci�ed in addition to the graph �or hypergraph��

In order to reduce �CCk� to �SC�� we consider the union of the hyperedges �that
are sets of vertices� as the universal set� Any subset of vertices of size k can be
potentially used in a cover� So all such subsets are enumerated and for each one
we list all the hyperedges and vertices that are contained in such a subset� This
creates a Set Covering problem with the number of sets p equal to

�n
k

�
� where n

is the number of vertices in the graph� and the number of elements equal to the
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number of hyperedges and isolated vertices� m�
There are two known approximation algorithms available for �SC�� One bounds

the worst�case error by the maximum number of sets that an element belongs to�
���
� The other is the greedy with worst�case error bound equal to the Harmonic
series H�d�� where d is the largest set size ���� ��� �
� The running time of the greedy
is O�n logn�� where n is the number of sets� With the recent result of Lund and
Yanakakis� ���
� the greedy is� up to a constant factor� a best possible approximation
algorithm for the Set Covering problem� as it cannot be improved unless all NP
problems are in DTIME�npoly �logn	
� The greedy is also ideally suited to the input
of �CCk� as the largest set size is the maximum number of hyperedges covered by a
k�clique� �k� Consequently� this reduction makes a H��k��approximation algorithm
readily available� There are

�n
k

�
potential covering sets� It takes O�mk� to identify

the hyperedges covered by a k�clique� At each iteration� we scan the list of cliques for
the one that covers the most hyperedges� At each iteration� at least one hyperedge
gets covered and thus removed� So the greedy iterates at most m times� Therefore�
the running time of the greedy on an instance of �CCk� is O�

�n
k

�
m�k��

In a companion paper� ��
� we demonstrated an improvement to the greedy called
the modi�ed greedy heuristic or simply the modi�ed greedy� The modi�ed greedy is
a H�d� � �

� �approximation algorithm� Its running time is O�n logn � m���� on a
general set covering problem with n sets and m elements and it follows that its
running time on an instance of �CCk� is O�

�n
k

�
m � m����� This improvement is

achieved by solving� in addition to the greedy procedure� also a matching problem
in a graph� The modi�ed greedy is useful for instances of Set Covering with largest
set size being bounded by a small value� such as the clique covering problem�

The other approximation algorithms described here have either faster running
times or better bounds� or both� for various special cases�

� Approximation Algorithms

In this section� we present approximation algorithms for the k�clique covering prob�
lem� We �rst examine the �CCk� problem on graphs for the cases k � 
 and
k � �� and then for arbitrary k� We then describe two approximation algorithms
for covering a hypergraph with hyperedges all of size �k � �� with k�cliques�

For the clique covering problem on graphs� all vertices that are not isolated get
covered when all edges are covered� Only isolated vertices may require additional
cliques to be covered� For simplicity sake� we are going to present the algorithms
for covering edges only� and comment separately about the adjustments required
to cover isolated vertices as well� In all cases this adjustment does not modify the
worst�case bound�

We use the common notation for a graph G � �V�E�� jV j � n and jEj � m� In
case G has isolated vertices� m denotes the number of edges and isolated vertices�
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��� Covering Graphs with k�Cliques

The ��clique covering problem on a graph is trivially solvable� Each edge is covered
by a separate clique and the isolated vertices are covered two per clique� For k � 
�
the problem is NP�hard� To see this� notice that the number of triangles required
to cover the edges of the graph is at least

�
m
�

�
� When m is a multiple of 
� this

is achievable only if the edges of G can be partitioned into triangles� Recognizing
whether a graph has a partition into triangles was shown to be NP�complete by
Holyer ���
�

The rest of this section is organized as follows� We �rst analyze the cases k � 

and k � �� For the case k � 
� we provide two algorithms� a ����approximation
algorithm called �H�� and a ����approximation algorithm called �H��� with running
times O�m���� and O�m� respectively� While �H�� has better worst�case bound�
�H�� has faster running time� These are the �rst known approximation algorithms
for covering a graph with triangles� For the case of k � �� we present a ��
�
approximation algorithm� �H��� with running time O�m�� In the last subsection�
we describe approximation algorithms for arbitrary k�

����� The Triangle Covering Problem

Both algorithms presented here are adaptations of the greedy approach�
Algorithm �H�� runs in two phases� In the �rst phase� a maximal number of

edge�disjoint triangles of G are covered� To �nd a maximal number of edge�disjoint
triangles� we use the procedure by Itai and Rodeh ���
 for determining whether
a graph contains a triangle� The complexity of this procedure is O�m����� We
adapt it to �nd a maximal number of edge�disjoint triangles without increasing the
complexity� The edges of these edge�disjoint triangles are covered and deleted from
the graph�

In phase � there is no remaining triangle in the graph� It is possible to solve the

�clique covering problem in a triangle�free graph in linear time� In a graph that
contains no triangles� each covering triangle covers either a ��chain �two adjacent
edges� or a single edge� It is known ����
� that if the number of edges m of a
connected graph is even� then one can cover the edges with exactly m�� ��chains�
Masuyama and Ibaraki ���
 provide a linear time algorithm for solving this problem
optimally� If a connected component of the triangle�free graph has an odd number of
edges� then exactly one triangle is necessary to cover a single edge of the component
while all others cover ��chains� We call a triangle covering a single edge a ��triangle�

Note that if the input graph G does not contain triangles or if the triangles are
edge disjoint� then the problem can be solved optimally in O�m���� time�

The algorithm is given below�

Algorithm �H���

Input� Graph G � �V�E��
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Phase �� Find a maximal collection of edge�disjoint triangles T � Set TH �
T � Let ET be the edges of T � E � E nET �

Phase �� While G � �V�E� contains a non trivial component Gi � �Vi� Ei��
do

Cover Ei with a set Ti of
j
jEij
�

k
��chains and possibly a ��triangle �if jEij

is odd�� Set TH � TH 	 Ti� and E � E nEi�

end

Output TH �

End of �H���

In case graph G contains a set of isolated vertices to be covered� the following
adjustment is applied to �H��� At the termination of phase �� we assign isolated
vertices� one for each ��triangle� In phase 
� the remaining isolated vertices are
covered three per triangle� with possibly one or two vertices in the last triangle
used� TH includes these additional triangles covering the isolated vertices�

Lemma � The complexity of algorithm �H�� is O�m�����

Proof� Phase � of the algorithm requires a maximal collection of edge�disjoint trian�
gles� The algorithm of Itai and Rodeh �nds a triangle� if one exists� by constructing
a breadth��rst�search tree and inspecting the non�tree edges� That procedure runs
in O�m����� We use this procedure and whenever a triangle is identi�ed� its edges
are removed from the graph and the data structure is updated in constant time� The
procedure is then continued with no backtracking required� It is therefore possible
to �nd a maximal collection of triangles with the same complexity as for �nding a
single triangle�

In phase �� we �nd a maximum packing of ��chains in a triangle�free graph
G� This can be done in linear time by using the following procedure� which is an
adaptation of the one by Masuyama and Ibaraki ���
� The procedure is presented for
one connected component of G� Gi � �Vi� Ei�� Consider any spanning tree in that
component� All non�tree edges are appended to the tree� each with a new vertex
assigned to one of its endpoints� This creates a tree on jEij edges and jEij � �
nodes� The tree is suspended from any node� say �� called the root node� While
the tree contains more than one edge� consider any pair of leaf nodes that share
the same parent node and cover the two edges incident to these leaf nodes with a
��chain� Remove these two edges from the tree� If no such pair exists� then there
is a node of degree � adjacent to a leaf node� The two edges incident to that node
are packed in a ��chain and removed from the tree� This operation is repeated until
the tree contains at most one edge� The collection of ��chains thus created forms a
maximum packing�
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If a single edge remains in the tree it is covered in phase � by a ��triangle�
The complexity of identifying a maximum packing is linear as can be shown by
a straightforward inductive argument� The total number of triangles required to
cover each component Gi is djEij��e�

The complexity of algorithm �H�� is therefore dominated by phase � and is
O�m���� as stated�

We claim that algorithm �H�� is a ����approximation algorithm�

Theorem � The number of triangles delivered by �H��� jTH j� is at most ��� times

the smallest number of triangles covering the graph�

Proof� Let zH denote the number of triangles found by the heuristic� Let T � denote
a triangle�covering of G of minimum cardinality z�� Note that in our context� a
triangle is de�ned as a graph � � �V
� E
�� with at most three vertices and at
most three edges� A triangle with three edges is called a proper triangle� Without
loss of generality we may assume that for each edge e � E there is exactly one
triangle � � T � for which e � E
�

Let the graph remaining at the end of phase � be G� � �V �� E��� Let s denote
the number of components in G� with an odd number of edges� Let W denote the
set of isolated vertices in the original graph G�
Case � � Assume that s � jW j�
Then zH � jEj�jE�j

� � jE�j�s
� �

l
jW j�s

�

m
� where� for i � �� �� 
� the i�th term results

from phase i of the heuristic� Obviously we have

z� 

� jEj� jW j




�
�

as any triangle in T � contains at most three edges from E� at most three vertices
from W � or one edge from E and one vertex from W � Similarly�

z� 
 jE�j� s

�
�

� jW j � s




�
�

as any triangle contains at most two edges from E�� one edge from E� and one vertex
from W � or at most three vertices from W � At least s triangles contain one edge
from E�� Combining the bounds we �nd�

zH �
jEj � jE�j



�
jE�j� s

�
�

� jW j � s




�

�

� jEj� jW j



�
�
jE�j� s

�
�

�




� jW j � s




�
�

��
jEj� jW j



�
� jEj� jW j




�
� � �

�




� jW j � s




�
� jW j � s



�

� �z� � �




�



Note that equality holds only in the special case that jW j � s � �� jEj and jW j are
multiples of 
� and both bounds on z� are binding� For z� � � it is easily veri�ed
that zH � �

�z
�� For z� 
 � we have zH � �z���

� � �
�z

��
Case � � Assume that s � jW j�
Then �zH � �jEj� jE�j� 
s�
In order to give an upper bound on this expression we derive three inequalities� Let
si denote the number of components in E � with exactly i edges� Then s� s�� s��
s�� s� is the number of components with an odd number of at least � edges� Hence
��s� s� � s� � s� � s�� � jE�j � s� � 
s� � �s� � �s� which is rearranged to

�s � �s� � �s� � �s� � �s� � jE �j � � ���

The following two inequalities represent di	erent lower bounds on the minimum
number of triangles in a triangle cover� The �rst one is by counting degrees� A

vertex v of degree ��v� must occur in at least
l
�
���v�

m
triangles� De�ne �V � V to

be the set of vertices v of even degree for which there exists at least one triangle
� � T � such that v � V
 and ��e � E
� e � v� � �� Such a vertex v � �V appears
in at least �

���v� � � triangles� Note that W � �V � These considerations lead to the
following�

�z� 

X


�T �

X
v�V�

� �
X
v�V

X

�T �� V��v

�


 �jW j�
X

v�V� ��v	odd

���v� � �� �
X

v�V n
V � ��v	even

��v� �
X

v�
V nW

���v� � ��

Here the �rst inequality uses the fact that a triangle contains at most three vertices�
and the second one exploits the degrees of vertices� The result is reformulated as

�z� 
 �jW j� �jEj�
X

v � ��v	odd

� �
X

v�
V nW

� ���

In phase � of the heuristic the parity of the degrees of the vertices does not change
as only proper triangles are deleted from the graph� So odd degree vertices in G are
odd degree vertices in G�� Note that in G� each component of size � or 
 contains at
least two vertices of odd degree� Hence these components give a total contribution
of �s� � �s� in the third term of inequality ���� A component of size � or � that
contains an odd�degree vertex� must contain at least two of these� and so it also
gives a contribution of � in the third term of ���� If a component has only vertices
of even degree� and at least one of these is in �E� then such a component contributes
at least � in the fourth term in ���� It follows that components of size � or � that
do not contribute � to ��� can only have vertices of even degree� and none of these
vertices can belong to �V �

The second lower bound on z� is derived by counting triangles in T � around each
component in G�� Let� for i � �� �� �� T �

i denote the set of triangles in T � that cover

�



i edges of E �� For a component C of G�� with vertex set V �C� and edge set E�C��
and for i � �� �� let T �

i �C� denote the set of triangles � � T �� with jE�C��E
j � i�
Note that jE�C�j� jT �

� �C�j� �jT �
��C�j� Furthermore note that a triangle in T � can

share edges with at most one component of G�� as these components are pairwise
vertex disjoint�

A triangle � � T �
� with V
 � fa� b� cg� is assigned to components Ca� Cb� Cc� for

one third each� where Cx denotes the component containing x�
A triangle � � T �

� is assigned completely to the component it shares two edges
with�

A triangle � � T �
� sharing one edge with component C is completely assigned

to C� if jT �
� �C�j � �� On the other hand� if jT �

� �C�j � �� then � is assigned to
C for a fraction of ��

�� � and to C � for the remaining �
�� � where C� is the component

containing the third vertex of �� �Note that C� may be equal to C� and it is also
possible that C� contains an isolated vertex� or that C� does not exist� In the latter
cases� the fraction �

�� is considered lost��
Let z��C� denote the total number of triangles assigned to C� Then z� 
P
z��C�� where the sum is taken over all components C in G�� We estimate the

value of z��C� by distinguishing between the following cases�

�A
 If jT �
� �C�j � �� then jE�C�j is even and z��C� 
 jT �

� �C�j � �
� jE�C�j�

�B
 If jT �
� �C�j � �� then jE�C�j is odd and z��C� 
 � � jT �

� �C�j � �
��jE�C�j� ���

�C
 If jT �
� �C�j � �� and jE�C�j is even� then z��C� 
 jT �

� �C�j � ��
�� jT �

� �C�j �
�
��jE�C�j � jT �

� �C�j� � ��
�� jT �

� �C�j � �
� jE�C�j�

�D
 If jT �
� �C�j � �� and jE�C�j is odd� then z��C� 
 jT �

� �C�j � ��
�� jT �

� �C�j �
�
��jE�C�j � jT �

� �C�j� � ��
�� jT �

� �C�j � �
��jE�C�j� �� � �

� � as jT �
� �C�j 
 
�

Let D� and D� denote the set of components C of size � and �� respectively� for
which the premise of �D
 applies� that is� for which jT �

� �C�j � � and jE�C�j is odd�
Let B� denote the set of components C of size �� for which jT �

� �C�j � �� V �C��
�V � 
� and ��v� is even� for all v � V �C�� Such a component C forms a ��cycle�
and each vertex in C has degree two in each triangle of T � in which it appears�
Moreover� E�T �

� �C���E�C� � fa� bg and E�T �
� �C���E�C� � fc� dg with � distinct

edges a� b� c� d which form a ��cycle� Let Ta denote the proper triangle containing
edge a found by the heuristic in phase �� Let the other two edges in Ta be fa�� a��g�
By symmetry between a and b we may assume w�l�o�g� that a� and a�� are not in
E�T ��C��� If a� or a�� is in E�T �

� �� then we have z��C� 
 
� �
� � If not� then they must

both belong to E�T �
� �C��� for some other component C�� But then jT �

� �C��j � �� and
so C has been assigned at least �� �

�� �
�
� of a triangle� Again we �nd z��C� 
 
� �

� �
We conclude that z��C� 
 
 � �

� � �
��jE�C�j� �� � �

� � for each C � B� 	D��
Let B� denote the set of components C of size �� for which jT �

� �C�j � �� V �C��
�V � 
� and ��v� is even� for all v � V �C�� Such a component C must be a ��
cycle� Let a be any edge from E�T �

� �C�� n E�C�� and let Ta denote the proper

��
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Figure �� Illustration of the worst�case bound for Algorithm �H���

triangle containing edge a found by the heuristic in phase �� Let the other two
edges in Ta be fa�� a��g� If a� and a�� have both ends in V �C�� then one of them
is in E�T �

� �� If one of a�� a�� is in E�T �
� �� then C has been assigned at least �

� of a
T �
� �triangle� so z��C� 
 � � �

� � It is easily veri�ed that if the above does not apply�
then E�T �

� �C��nE�C� contains an edge a� for which both edges a� and a�� are not in
E�T �

� �	E�T ��C��� Hence they both belong to E�T �
� �C��� for some other component

C�� We procede as in the case for B� and �nd that z��C� 
 �� �
� � �

��jE�C�j���� �
� �

for C � B� 	D��
Combining these results we �nd

�z� 

X
C

�z��C� 
 jE �j� s �
X

C�B��D�

�



�

X
C�B��D�

�



�
�

Taking a linear combination of the three inequalities� with weight ��� for inequality
���� weight � for inequality ���� and weight ��� for inequality �
� we �nd�

�zH � �jEj� jE�j� 
s

� ���� ��s� �s� � �s� � �s� � �s� � jE�j� �

���� ��jW j� �jEj�
X

v���v	 odd

� �
X

v�
V nW

�� �

���� �jE�j� s �
X

C�B��D�

�



�

X
C�B��D�

�



�

� ���� � � ���� �z� � ���� �z� � ���z�

which concludes our proof�

Figure � illustrates the tightness of the bound of algorithm �H��� Stars within
triangles indicate an optimal covering� H �s within triangles indicate the triangles
selected in phase �� Five more triangles are needed in phase � to cover the peripheral
edges�

��



We now propose an alternative algorithm �H��� that runs in linear time� and
delivers a solution that is at most ��� times the optimum� �H�� should be selected
when running time is an important consideration�

Algorithm �H���

Input� Graph G � �V�E�� TH � 
�
Phase �� For each non trivial component Gi � �Vi� Ei� of G � �V�E� with
jEij � 
 modulo �� do

Select a vertex v � Vi� and �nd a vertex w � Vi at maximum distance
from v� If there is a proper triangle � containing w� set TH � TH 	 �
and E � E nE
�

end

Phase �� While G � �V�E� contains a non trivial component Gi � �Vi� Ei��
do

cover Ei with a set Ti of
j
jEij
�

k
��chains and possibly a ��triangle �if jEij

is odd�� Set TH � TH 	 Ti and E � E nEi�

end

Output TH �

End of �H���

In case the input graph contains a set of isolated vertices to be covered� the
same adjustment applied to �H�� is applied to �H���

Theorem � �H�� is a linear time ����approximation algorithm�

Proof� Phase � of algorithm �H�� is linear in m since it requires for each component
one breadth��rst search starting from vertex v and one starting from w� Phase � is
identical to phase � of algorithm �H�� and its running time is likewise linear �see
the proof of lemma ���

In case there are no isolated vertices it su�ces to prove the bound of ��� for
each non�trivial component of G� The reason is that no triangle in any optimal
cover can cover edges from di	erent components of G� Hence� assume without loss
of generality� that the input graph G is connected� Let zH � jTH j and z� be
respectively the number of cliques used by algorithm �H�� and the optimal number
of cliques used to cover the edges and vertices of G� Then

zH �

� jEj� �

�

�
and z� 


� jEj



�
�

��



It follows that

zH � jEj� �

�
�




�

jEj



�
�

�
� 


�

� jEj



�
�

�

�
� 


�
z� �

�

�

Note that if jEj �� �k � 
� then equality can not hold throughout� and so we �nd
zH � ���z�� In case jEj � �k� 
� phase � of the algorithm tries to detect a triangle

containing a vertex w� If such a triangle is not found� then we know that z� 
 jEj
� ���

and again equality does not hold throughout� In the case that a triangle is detected�
its edges are deleted from E� Note that the resulting graph is still connected� Hence
the heuristic will �nd in phase � a number of triangles equal to jEj��

� � As a result

zH � � � �
�
jEj��j

� � �
�
jEj
� � which settles this case�

Next we consider the case that there are isolated vertices to be covered� Let W
be the set of isolated vertices� and let s be the number of odd components in graph
G� at the start of phase �� Obviously� if jW j � s� then the heuristic �nds the same
number of triangles as without the isolated vertices� It follows immediately that
again zH � ���z�� We only need consider the case that jW j 
 s � �� Let t and u

denote the number of components in graph G for which the number of edges is �
modulo 
� and � modulo 
� respectively� Let E denote the set of edges of G at start
of phase �� and E� the set of edges at start of phase �� Then the bound for z� can
be sharpened to

z� 
 jEj � jE�j



�
jE�j� �t � u



�
jW j � t




Similar to the proof for Theorem � we derive

zH �
jEj � jE�j



�
jE�j� s

�
�

� jW j � s




�

� jEj � jE�j
�

�
jE�j� s

�
�

� jW j � s




�

� jEj � jE�j
�

�
jE�j� s

�
�
jW j � s

�
�

�

�

�
jEj � jE�j

�
�
jE�j� jW j� t � u

�
�

�� t� u

�

� 


�
z� �

�� t� u

�

For t � u 
 � this settles the proof� For t � u � � equality can hold throughout
only when jEj � jE�j and jW j are multiples of 
� z� � �jEj�jW j��
 and jW j�s � ��
Hence each component can be partitioned into triangles� But then a contradiction
follows from the fact that s �� �� so there must be a component of odd size �k � 
�
for which the algorithm fails to �nd a triangle in phase ��

The bound is tight as is shown by taking as input a graph the components of
which are the union of an even number of triangles� See �gure � for an example�
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Figure �� Illustration of the worst�case bound for Algorithm �H���

One might think that the following post�processing of phase � of algorithm �H��
could improve the outcome� consider the ��chains of phase �� one by one� If there is
an edge which forms a triangle with the two edges of the ��chain under consideration�
one covers this edge together with the ��chain and deletes it from its own ��chain�
At the end of this post�processing� one eliminates the ��chains which are now empty�
i�e� the ones the two edges of which have been deleted� The example in �gure �
shows that the bound is not improved by applying this post�processing procedure�

����� The ��clique Covering

Here we consider the problem of covering the edges and isolated vertices of a
graph with ��cliques� We present a linear time ��
�approximation algorithm� al�
gorithm �H���

An alternative approximation algorithm is the modi�ed greedy applied to the
problem presented as Set Covering problem� The worst�case bound of the modi�ed

greedy in this case is ��
�� �see ��
� which is better than �

� � The running time of the
modi�ed greedy is O�n� logn�� where n is the number of vertices of the graph� which
is worse than the running time of algorithm �H��� O�m��

Algorithm �H�� runs in two phases� In the �rst phase we cover a maximal
number of edges with ��cliques such that each ��clique covers at least 
 edges� In
the second phase� the remaining edges and the isolated vertices W � V � are covered
optimally with a minimum number of ��cliques�

An iteration of phase � consists of covering a connected subgraph induced on �

��



vertices by a ��clique and then of deleting the covered edges� Phase � proceeds until
no connected component of G has more than 
 vertices� At the end of phase �� all
isolated vertices in V nW are deleted�

At the beginning of phase �� the connected components of G� G�� G�� � � � � Gs�
are either triangles� isolated vertices of W � single edges� or ��chains �two adjacent
edges�� The single edges are covered two per ��clique �if the number of isolated
edges is odd� then the extra edge is covered alone� and each ��chain or triangle is
covered by its own ��clique�

The algorithm is given below�

Algorithm �H���

Input� Graph G � �V�E��

Set CH � 
�
Phase ��

Do until no connected component of G � �V�E� has more than three
vertices�

Find a connected subgraph on � vertices� C�

Set CH � CH 	 C� Let EC be the edge set of C� Set E � E nEC �

enddo

Phase �� Let T be the set of triangles and ��chains of G� Set CH � CH	T�
Let CF be the set of ��cliques required to cover the set F of isolated edges
of G �two per ��clique�� Set CH � CH 	 CF �

Output CH �

End of �H���

In the case the input graph contains a set of isolated vertices to be covered� the
following adjustment is applied to �H��� At the termination of phase �� we assign
isolated vertices� one for each triangle or ��chain in T � two for a single�edge clique�
The remaining isolated vertices are covered � per clique with possibly �� � or 

vertices in the last clique used� We append these additional cliques to the set CH �

The complexity and worst�case performance of algorithm �H�� are given by the
next theorem�

Theorem � �H�� is a linear time ��
�approximation algorithm�

Proof� Phase � can be implemented using a linear time depth��rst�search technique�
Phase � scans through the remaining edges once� The assignment of isolated vertices
will take linear time as well� Thus� the complexity of the algorithm is linear in the
number of edges and isolated vertices� O�m��
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Figure 
� Illustration of the worst�case bound for the clique size ��

Let z� be the optimal number of ��cliques and �z� be the total number of ��
cliques used during phase �� Because at least 
 edges are covered by each ��clique
used in phase �� the total number of edges covered during phase � is at least 
�z��
Also� no more than � edges can be covered by a ��clique� Therefore� the number
of elements which remain to be covered during phase � is at most �� � 
��z��

The number of ��cliques used during phase � is at most minf
l
�����	z�

�

m
� z�g� The

�rst term follows from the fact that a phase � ��clique covers at least two edges�
The second term is because the remaining edges and isolated vertices are covered
optimally and therefore must use at most z� ��cliques� Hence� the total number of
��cliques used by the approximation algorithm is at most

zH � �z� � minf
�

��� 
��z�

�

�
� z�g

� minf��� ��z�

�
�

�

�
� �� � ��z�g

� �



z� �

�



�

The last inequality is derived by setting ����	z�

� � �
� � �� � ��z��

��



An example in �gure 
 illustrates the tightness of the bound� In this example�
there are �� edges forming � cliques of size �� The optimal solution is z� � �� By
applying algorithm �H��� edges are covered in the order as labeled in the graph�
Numbers associated with each edge indicate which clique the corresponding edge
belongs to� Algorithm �H�� uses �� cliques with the �rst � cliques containing 

edges each� the next � cliques containing � edges each and the last clique containing
only one edge� Thus the ratio zH

z� is ��
� � �

� �

����� k�Clique Covering in a Graph

We extend our discussion to the general clique size� k� for the graph G � �V�E��
For this case the greedy for Set Covering gives a bound of H�

�k
�

�
� � � logk with

running time O�nk�� and the modi�ed greedy ��
 improves the bound to H�
�k
�

�
�� �

� �
In this section� we present a linear time ��� � �

k���k�approximation algorithm �H��
for the k�clique covering problem� Although the quality of bound is worse than that
derived from the Set Covering representation of the problem� the running time is
signi�cantly reduced�

Algorithm �H�� �nds a cover with star�shaped components� Phase � of �H��
�nds a sequence of vertices and edges� such that each edge and each vertex occur
once� and such that all edges in the sequence between consecutive vertices vi and
vi�� are incident with vi� The isolated vertices are appended at the end of this
sequence� In phase � the sequence is broken into batches of size at most k��� Such
a batch of k�� edges and vertices induces a graph on at most k vertices� and forms
a clique� The algorithm is stated as follows�

Algorithm �H���

Input� Graph G � �V�E��

Phase �� Set SEQ � 
� �V � V � �E � E 

while �V �� 
 do begin

Select a vertex v � �V  

Set SEQ � � SEQ �fvg � 

repeat

Find a vertex u � V n �V such that �u� v� � �E  

Set SEQ � � SEQ �fu� vg� 
�E � �E n f�u� v�g 

until no such u can be found 
�V � �V n fvg 

end�

Let SEQ � S�� S�� � � � � SN � where N � jEj� jV j�

��



Phase �� Set CH � 
� �k � � 

while �k � N do begin

Let C denote the component with vertex set V �C� � S
k��	 � � �	S
k�k��
and edge set E�C� � fS
k��� � � � � S
k�k��g � E 

CH � CH 	 C 
�k � �k � k � � 

end�

Output zH � jCH j as the number of cliques used by the algorithm 

End of �H���

The complexity and a bound on the worst�case performance of algorithm �H��
are given in the following theorem�

Theorem � �H�� is a linear time �k� � k
k����approximation algorithm�

Proof� Phase � can be realized in linear time by a simple breadth��rst�search�
Phase � is obviously linear in the length of the sequence� O�m��

Let zH be the number of cliques used for covering edges by heuristic �H�� and
let z� be the number used by an optimal clique covering� Let w denote the number
of isolated vertices� let V denote the set of non�isolated vertices and E the set of
edges� Then

zH �

� jEj� jV j� w

k � �

�

and

kz� 
 w �
X
v�V

�
��v�

k � �

�
�

as each vertex v of degree ��v� occurs in at least
l
��v	
k��

m
cliques� The latter number

is bounded from below by w � �jEj
k�� � and also by w � jV j� It follows that

zH � jEj� jV j� w

k � �
� �

� �

�
kz� �

�

k � �
kz� � �

Note that for k � �� this gives zH�z� � �
�k� and for increasing k� the bound goes to

�
�k�

The bound is tight as can be seen by taking as input a graph consisting of N
k�cliques� Each clique has k�k��	

� edges and k vertices� The algorithm partitions

these edges and vertices in
l
N�k� � k

k���
m

batches of size k��� whereas the optimal

cover uses N cliques�

��



��� k�Clique Covering of Hyperedges of Size k � �

In this section� we consider the k�clique covering problem for hypergraphs that have
all hyperedges of size k � �� Following the notation introduced earlier� this is the
case �k� k � ��� This problem is a Set Covering problem with all sets of size � k�
This is because at most k hyperedges of size k� � each �t in a clique on k vertices�

The complexity of applying the greedy or the modi�ed greedy to this Set Covering
problem is !�nk� since the number of sets to be considered is

�n
k

�
� The purpose of

algorithm �H�� is to select a small collection of O�m�� sets to be considered�
Let the hyperedges to be covered be fE�� ���� Emg� Two hyperedges �elements�

Ei� Ej are called a spanning pair if jEi 	 Ej j � k� Any k�clique containing more
than one hyperedge must have a spanning pair�

Algorithm �H���

Input� V  E � fE�� ���� Emg�
Phase �� f Generate a collection of spanning pairs g
Set S � E f Include all singletons in the covering sets g
for all pairs Ei� Ej � E do

if jEi 	 Ej j � k then

S � S 	 fEi 	 Ejg fInclude all spanning pairsg
Phase ��

Apply modi�ed greedy to the Set Covering problem with a collection of sets
S and a collection of elements fE�� ���� Emg 

End of �H���

Theorem 	 �H�� is an �H�k� � �
���approximation algorithm with running time

O�m�k � m�����

Proof� Algorithm �H�� reduces the computational complexity of the greedy Set
Covering heuristic by limiting the number of covering sets� The Set Covering matrix
developed in phase � has at most

�m
�

�
� m columns and m rows� To check if a

hyperedge is covered by a set� we need to scan the hyperedge�s vertex set which
takes O�k� time� Since the modi�ed greedy applied in phase � takes only O�m����
��
� the overall running time of �H�� is O��

�m
�

�
� m�k � m���� � O�m�k � m�����

As observed earlier� any clique containing more than one hyperedge must have
a spanning pair� The algorithm �H�� has included all spanning pairs together with
singleton sets Ei� i � �� ���� m in the collection of sets S� Thus all possible covering
sets are accounted for in solving the set covering problem� Therefore� using the
modi�ed greedy for this reduced problem is the same as for the original problem�

��



the worst�case bound is then H�k�� �
� �

Now we provide another heuristic �H�� based on graph matching� This algorithm
has better complexity than �H�� if k �

p
m� but its bound quality is not as good�

Algorithm �H���

Step �� Construct the following undirected graph G � �V�E�� Each vertex
represents a hyperedge Two vertices i and j are connected by an edge if
and only if the corresponding hyperedges i and j form a spanning pair�

Step �� Find a maximum cardinality matching in G�

Step �� Put each pair of hyperedges corresponding to the end vertices of a
matching edge obtained in step � in a single clique� Put the remaining
unmatched vertices �hyperedges� in separate cliques� Output the collec�
tion of cliques CH �

End of �H���

The following theorem gives the worst�case bound of algorithm �H���

Theorem 
 Algorithm �H�� is a
l
k
�

m
�approximation algorithm with running time

O�m�����

Proof� Since for two hyperedges to be packed together� their corresponding vertices
must be connected by an edge in G� It su�ces to prove the bound for any connected
component of G� so assume that G is connected�

Let ti be the number of hyperedges packed in the ith clique of the optimal
solution� These ti hyperedges must form a ti�clique in G� There exists a feasible

matching with
j
ti
�

k
edges in each of these ti�cliques� If ti is odd� then the number of

sets required to cover these nodes is less than or equal to
l
ti
�

m
� Hence step 
 results

in a collection of
Pz�

i��

l
ti
�

m
cliques� Let zH � jCH j and z� be the optimal number

of cliques�

Since ti � k� zH �Pz�

i��

l
ti
�

m
� z�

l
k
�

m
�

The complexity of the algorithm �H�� is dominated by step � for �nding a
maximum matching� The complexity of step � is O�m�������
� Therefore the overall
running time is O�m�����

Figure � illustrates the tightness of the bound of theorem �� The four hyperedges
on the left side can be packed in one clique of size �� The same holds for the three
hyperedges on the right side� Therefore the optimal number of cliques is �� The
maximum matching obtained by the heuristic are the three bold edges of the �gure�
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Figure �� Illustration of the worst�case bound for �k� ���hyperedges and cliques of
size k

The last hyperedge �fa� b� cg� has to be packed in a clique by itself� It follows that
the number of cliques used by the heuristic is �� which is k�� times the optimal
number of cliques�

� Concluding Remarks

In this paper� we introduced the problem of covering the edges of a hypergraph by
k�cliques �CCk�� The problem is shown to be NP�hard and we describe a number
of approximation algorithms� We identify the link between the �CCk� problem
and the Set Covering problem� The approximation algorithms described here are
the �rst such algorithms for the k�clique covering problem� We describe a range
of approximation algorithms applicable to various subclasses of the problem� with
several algorithms for the same subclass o	ering a trade�o	 between algorithm�s
running time and quality of approximate solution�

One natural generalization of this problem is the case where each clique has a
di	erent weight� If the occurrence of such weighted case is practical� then there
is a need for extending the results to the weighted case� Indeed� the Set Covering
heuristic presented is immediately extendible� but such is not the case for every
heuristic presented and analyzed�

��



Our study still leaves open the challenging task of coming up with optimal
solutions to the �CCk� problem� We believe that our approximation approach will
prove instrumental and useful in algorithms that derive such optimal solutions�
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