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Abstract. Given a graph G = (V, E) and positive integral vertex
weights w : V → N, the max-coloring problem seeks to find a proper ver-
tex coloring of G whose color classes C1, C2, . . . , Ck, minimize∑k

i=1
maxv∈Ciw(v). The problem arises in scheduling conflicting jobs

in batches and in minimizing buffer size in dedicated memory managers.
In this paper we present three approximation algorithms and one

inapproximability result for the max-coloring problem. We show that if
for a class of graphs G, the classical problem of finding a proper vertex
coloring with fewest colors has a c-approximation, then for that class G
of graphs, max-coloring has a 4c-approximation algorithm. As a conse-
quence, we obtain a 4-approximation algorithm to solve max-coloring on
perfect graphs, and well-known subclasses such as chordal graphs, and
permutation graphs. We also obtain constant-factor algorithms for max-
coloring on classes of graphs such as circle graphs, circular arc graphs,
and unit disk graphs, which are not perfect, but do have a constant-
factor approximation for the usual coloring problem. As far as we know,
these are the first constant-factor algorithms for all of these classes of
graphs. For bipartite graphs we present an approximation algorithm and
a matching inapproximability result. Our approximation algorithm re-
turns a coloring whose weight is within 8

7
times the optimal. We then

show that for any ε > 0, it is impossible to approximate max-coloring
on bipartite graphs to within a factor of ( 8

7
− ε) unless P = NP . Thus

our approximation algorithm yields an optimum approximation factor.
Finally, we also present an exact sub-exponential algorithm and a PTAS
for max-coloring on trees.

1 Introduction

The max-coloring problem takes as input a vertex-weighted graph G = (V,E)
with weight function w : V → N. The problem requires that we find a proper
vertex coloring of G whose color classes C1, C2, . . . , Ck, minimize the sum of the
weights of the heaviest vertices in the color classes, that is,

∑k
i=1 maxv∈Ci

w(v).
When all the weights are one, this problem reduces to the classical problem of
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finding a proper vertex coloring of a graph using fewest possible colors. For any
color class C of G, we will use weight(C) to denote max{w(v) | v ∈ C}. The
weight of a coloring C1, C2, . . . , Ck is then

∑k
i=1 weight(Ci).

The max-coloring problem arises in two distinct applications. In one applica-
tion the max-coloring problem models the problem of minimizing the total buffer
size needed for memory management in wireless protocol stacks like GPRS or 3G
[7] and in digital signal processing applications [2]. In general, programs that run
with stringent memory or timing constraints use a dedicated memory manager
that provides better performance than the general purpose memory management
of the operating system. The most commonly used memory manager design for
this purpose is the segregated buffer pool. The problem of minimizing the total
size of the buffer pool corresponds to the max-coloring problem.

A second application of max-coloring arises in the scheduling of jobs with
conflicts in a multiprocessor environment. In systems in which jobs require ex-
clusive access to certain resources, a fundamental problem is of scheduling jobs
onto processors such that jobs requiring access to the same resource are not
scheduled together. The problem of scheduling jobs in conflict to processors can
be modeled as a graph coloring problem. When jobs have different processing
times, this is modeled as a generalized coloring problem on vertex weighted
graphs. One such generalization that models the problem of scheduling conflict-
ing jobs in batches to minimize the makespan or the time to complete all the
jobs in the system corresponds to the max-coloring problem.

Our Results. Although graph coloring is hopelessly hard to approximate on gen-
eral graphs, the underlying conflict graphs that arise in applications have more
structure, and this structure can be exploited to obtain efficient exact or ap-
proximation algorithms for max-coloring. However, the max-coloring problem
is hard even on instances where the coloring problem can be solved in polyno-
mial time. In [7], the authors prove that max-coloring is NP-hard on interval
graphs, even though there is a simple greedy algorithm for the usual coloring
problem [1]. [7] also presents a 2-approximation for the max-coloring problem
on interval graphs. For other classes of graphs, very little seems to be known
about how to solve the max-coloring problem efficiently, either exactly or ap-
proximately. In this paper we present three approximation algorithms and one
inapproximability result. We show that for any hereditary1 class of graphs G, if
the usual vertex coloring problem has a c-approximation, then max-coloring has
a 4c-approximation on G. One implication is that there is a 4-approximation al-
gorithm to solve max-coloring on perfect graphs. For bipartite graphs we present
an approximation algorithm and a matching inapproximability result. Our ap-
proximation algorithm always returns a coloring whose weight is within 8

7 times
the optimal and following this we show that for any ε > 0, it is impossible to
approximate max-coloring on bipartite graphs to with a factor of (8

7 − ε) unless

1 A class G of graphs is hereditary, if for any G ∈ G, every induced subgraph of G is
also in G.
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P = NP . Thus our approximation algorithm yields an optimum approximation
factor. Finally, we also present an exact sub-exponential algorithm and a PTAS
for trees. The max-coloring problem on trees was also studied by Guan and Zhu
[3] where the authors present a polynomial time algorithm that finds an optimal
max-coloring of a given tree, that uses exactly r colors for a fixed constant r.

2 Max-coloring Trees

The max-coloring problem has turned out to be surprisingly difficult even for
trees. Though we believe that the problem can be solved in polynomial time,
the two best algorithms we have are (i) a sub-exponential exact algorithm and
(ii) a PTAS. We present these in this section. Our first observation is on the
distribution of weights of color classes in an optimal max-coloring of bipartite
graphs.

Lemma 1. Let G be a bipartite graph. Let {C1, C2, . . . , Ck} be an optimal max-
coloring of G with wi = weight(Ci) and w1 ≥ w2 ≥ · · · ≥ wk. Then, we have
that wi ≥

∑k
j=i+1 wj, i = 1, · · · , k − 1.

Proof. If wi <
∑k

j=i+1 wj , then the subgraph induced by vertices in ∪k
j=iCj can

be colored with two colors with weight at most 2wi. This coloring has weight
less than the weight of {C1, C2, . . . , Ck}, a contradiction. ��

Corollary 1. Let G be a bipartite graph. Let {C1, · · · , Ck} be an optimal max-
coloring of G with wi = weight(Ci) and w1 ≥ w2 ≥ · · · ≥ wk, we have that
wi

2 ≥ wi+2, for i = 1, · · · , k − 2, and hence, w1 ≥ 2�(i−1)/2� · wi.

Since the weights of the color classes decrease rapidly, we can expect that the
max-color number of a tree may not be too high. Let χmc(G) denote the max-
color number of a graph G, the minimum number of colors required in a minimum
cost max-coloring. We now state three upper bounds on χmc.

Lemma 2. Let T be an n-vertex tree with maximum degree ∆. Let W denote the
ratio of the weight of the heaviest vertex to the weight of the least heavy vertex.
Then, (i) χmc(T ) ≤ ∆ + 1, (ii) χmc(T ) ≤ �log2 n	 + 1, and (iii) χmc(T ) ≤
�log2 W 	 + 1.

Proof. Let k = χmc(T ) and let {C1, · · · , Ck} be the color classes in an optimal
max-coloring of T . Let wi = weight(Ci) and without loss of generality assume
that w1 ≥ w2 ≥ · · · ≥ wk.

(i) Suppose χmc(T ) > ∆ + 1. For each vertex v in Ck, we can find a color class
Ci, i < k such that v is not adjacent to any vertex in Ci. We can thus move
each vertex in Ck to a lower color class thus decreasing the coloring weight, a
contradiction. Note that this upper bound holds in general for any graph G.
(ii) For each i > 1, we can assume without loss of generality that every vertex
v ∈ Ci has a neighbor in Cj , for every j < i.
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For each vertex v ∈ C1, let T (v) denote the rooted tree with one vertex,
namely v. For each v ∈ Ci, i > 1, define T (v) as the tree rooted at v, such that
(i) the children of v in T (v) are exactly the neighbors of v in T belonging to color
classes C1, C2, . . . , Ci−1, and (ii) for each child u of v, the subtree of T (v) rooted
at u is simply T (u). For each i, 1 ≤ i ≤ k, let Si = min{|T (v)| | v ∈ Ci}. In other
words, Si is the size of a smallest tree T (v) rooted at a vertex v in Ci. Then,

S1 = 1

Si ≥
i−1∑

j=1

Sj + 1, for each i > 1

This implies that Si ≥ 2i−1, 1 ≤ i ≤ k. Using the fact that Sk ≤ n, we get
χmc = k ≤ 
log2 n� + 1.
(iii) Let � = min{t ∈ N | for all v ∈ V (T ), w(v) ≥ w1/2t}. Therefore, � =
�log2 W 	. Recall that W is the ratio of the weights of the heaviest vertex to the
lightest vertex. Consider the collection of disjoint intervals I = {I0, I1, . . . , I�−1},
where Ii = [ w1

2i+1 , w1
2i ), for i = 1, . . . , � − 1 and let I0 = [w1

2 , w1]. Because of the
choice of �, for each vertex v ∈ V (T ), w(v) belongs to exactly one interval Ij .
Let Vj = {v ∈ V (T ) | w(v) ∈ Ij}, j = 0, 1, . . . , � − 1. We say that a vertex
v contributes to a color class Ci if v ∈ Ci, and w(v) = max{w(u) | u ∈ Ci}.
The contribution of an interval Ij is the maximum number of vertices in Vj that
contribute to distinct color classes.

Corollary 1 tells us that wi ≥ 2 · wi+2 for i = 1, · · · k − 2. This immediately
implies that no interval Ij , j = 1, 2, . . . , � − 1 has a contribution of more than
two. Now suppose that intervals Ii1 , Ii2 , . . . , Iit

, 0 ≤ i1 < i2 < · · · < it ≤ � − 1,
is the sequence of all intervals in I, each of whose contribution is two. We now
claim that for any pair of consecutive intervals Ip, p = ij and Iq, q = ij+1,
where j < t, there is an interval in {Ip+1, Ip+2, . . . , Iq−1} with contribution zero.
If we can show this claim, then we can charge the “extra” contribution of each
Iij

to an interval between Iij
and Iij+1 , whose contribution is zero. Since there

are � intervals and since the contribution of Iit
is at most two, there is a total

contribution of at most �+1, implying that there are at most �+1 color classes.
We prove the above claim by contradiction, assuming that the contribution

of every interval in {Ip+1, Ip+2, . . . , Iq−1} is one. Let {xp, xp+1, . . . , xq}∪{yp, yq}
be vertices such that (i) for each j = p, p + 1, . . . , q, xj ∈ Vj and xj contributes
to some color class and (ii) for each j ∈ {p, q}, yj ∈ Vj and xj and yj contribute
to distinct color classes. Since xj ∈ Vj , w(xj) ≥ w1

2j+1 , j = p, p + 1, . . . , q. Also,
since yq ∈ Vq, w(yq) ≥ w1

2q+1 . Therefore,
q∑

j=p

w(xj) + w(yq) ≥
q∑

j=p

w1

2j+1
+

w1

2q+1

= w1
2q−p+1 − 1

2q+1
+

w1

2q+1

=
w1

2p
> w(yp)

This contradicts Lemma 1 and proves the claim. ��
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There are simple examples that show that the bounds in Lemma 2 are all
tight [6].

Since the number of colors are at most �log n	 + 1, this immediately gives
a simple sub-exponential time algorithm. Try all �log n	 + 1 possible colors for
each vertex, and return a feasible coloring of minimum weight. This algorithm
runs in O(nlog n+1) time.

Now we show that if the given tree has a constant number of distinct vertex
weights, we can find an optimal max-coloring in polynomial time. We deal with
the case of constant number of distinct weights via the solution to a problem
called FEASIBLE k-COLORING.
FEASIBLE k-COLORING

INPUT: A tree T with weight function w : V → N, and a positive integer
sequence (W1,W2, · · · ,Wk) of positive integers, satisfying W1 ≥ W2 ≥ · · · ≥ Wk.
OUTPUT: Either a coloring of the tree into color classes A1, · · · , Ak, such that
for all v ∈ Ai, w(v) ≤ Wi or if such a coloring does not exist, a report that no
such feasible coloring exists.

There is a simple dynamic programming algorithm for solving FEASIBLE
k-COLORING on trees in O(nk) time [6].

The main idea underlying our PTAS is the reduction of the number of distinct
weights of the vertices down to a constant. We then pick candidates for the
weights of the color classes and for each such choice, using the algorithm for
FEASIBLE k-COLORING, we test if there is a legal coloring of the tree with the
chosen weights for the color classes.

We are given a tree T , with weight function w : V → N and an ε > 0.
Let c > 0 be an integer such that (2 log c + 3)/c ≤ ε, and let α = (W − 1)/c
where W is the maximum weight of any vertex. Let I1, I2, · · · , Ic be a partition
of the range [1,W ), where Ii = [1 + (i − 1)α, 1 + i · α), 1 ≤ i ≤ c. Let T ′

be a tree that is identical to T , except in its vertex weights. The tree T ′ has
vertex weights w′ : V → N defined by the rule: for any v ∈ V , if w(v) ∈ Ij

then w′(v) = 1 + (j − 1) · α and if w(v) = W , then w′(v) = W . In other words,
except for vertices with maximum weight W , all other vertices have their weights
“rounded” down. As a result T ′ has c+1 distinct vertex weights. Now let OPT ′

denote the weight of an optimal max-coloring of T ′ and let C′ = C ′
1, C

′
2, . . . , C

′
k

be the color classes corresponding to OPT ′. Since the weights of vertices have
fallen in going from T to T ′, clearly OPT ′ ≤ OPT . If we use the coloring C′ for
T , we get a coloring whose weight is at most OPT ′+kα. Substituting (W −1)/c
for α and noting that W ≤ OPT ′, we obtain that weight of C′ used as a coloring
for T ′ is at most (1+ k

c )OPT ′ We now show that given the distribution of vertex
weights of T ′, k = O(log c). If k = 2 we are done, so assume that k ≥ 3. To
see this first observe that the weights of last three color classes C ′

k, C ′
k−1, and

C ′
k−2 cannot all be identical, by Lemma 1. Also, observe that the possible vertex

weights of T ′ are 1, 1 + α, 1 + 2α, . . .. Therefore, weight(C ′
k−2) ≥ 1 + α. From

Corollary 1, we obtain

1 + α ≤ weight(C ′
k−2) ≤

W

2�(k−3)/2� .
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Solving this for k yields k ≤ 2 log2(c) + 3. Therefore, by our choice of c, we have

k

c
≤ 2 log2(c) + 3

c
≤ ε.

Thus (1 + ε)OPT ′ is an upper bound on the weight of C′ used as a coloring for
T . Since OPT ′ ≤ OPT , we see that the weight of C ′ used as a coloring for T is
at most (1 + ε)OPT .

To construct OPT ′ in polynomial time, for each k = 1, . . . , 2�log2 c	 + 3, we
generate all O(ck) possible sequences of weights and call algorithm FEASIBLE
k-COLORING for each subsequence and pick the coloring with the minimum
weight. This gives OPT ′. Each solution to FEASIBLE k-COLORING takes O(nk)
time, and we have O(ck) sequences, for k = 1, . . . , 2�log2 c	 + 3. Using the fact
that (2 log2 c+3)/c ≤ ε, a little bit of algebra yields a running time that is linear
in n and exponential in 1/ε.

3 Max-coloring Bipartite Graphs

This section presents an 8
7 -approximation algorithm for the max-coloring prob-

lem on bipartite graphs, followed by a hardness of approximation result that
shows that for any ε > 0, there is no (8

7 − ε)-approximation algorithm unless
P = NP . Thus our approximation algorithm produces an optimal approxima-
tion ratio.

One feature of our approximation algorithm is that it uses at most 4 colors,
even though though an optimal max-coloring of an n-vertex bipartite graph may
need a Ω(n) colors [6]. Our PTAS for the max-coloring problem on trees relied
on the fact that the FEASIBLE k-COLORING problem on trees can be solved in
polynomial time for any k. However, FEASIBLE k-COLORING is NP-complete for
bipartite graphs for k ≥ 3 [5]. This has forced us to use a different approach for
bipartite graphs. Another difference between max-coloring on trees and max-
coloring on bipartite graphs is that in contrast to the O(log n) upper bound on
the number of colors used by an optimal max-coloring for an n-vertex tree, there
are simple examples of n-vertex bipartite graphs G with χmc(G) ≥ n/2 [6].

Our (8
7 − ε)-hardness result for max-coloring bipartite graphs is via a gap

introducing reduction from the PRE-COLORING EXTENSION problem [5].

3.1 An 8
7
-Approximation Algorithm

First note that since bipartite graphs are 2-colorable, Lemma 1 holds and hence
if an optimal max-coloring of a bipartite graph uses a large number of colors,
the contribution of all but the first few color classes must be quite small. We
can use this to our advantage and develop an algorithm that tries to find a
good approximation to the weights of the first few color classes. We run three
algorithms, A2, A3, and A4, that use 2, 3 and 4 colors respectively. The color
classes produced by algorithm Ai, 2 ≤ i ≤ 4, are denoted {Ai

1, A
i
2, · · ·}, and

the weights of the corresponding color classes are denoted {ai
1, a

i
2, · · ·}. We start

with a description of algorithm A2.
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Algorithm A2(G, w)
1. For each connected component Gi of G do
2. Color Gi with colors 1 and 2, such that a vertex

with maximum weight is colored 1.

The fact that A2 is a 2-approximation immediately follows from the fact
that weight(A2) ≤ 2w1, and w1 ≤ OPT . We encode this result in the following
lemma.

Lemma 3. weight(A2) ≤ 2w1

In an optimum coloring, the weight of the first color class, w1 is fixed. By using
more colors, OPT may gain an advantage because it can then push heavy vertices
into lower color classes. We now introduce algorithm A3 which constructs a 3-
coloring of G such that the weight of the second color class is minimized.

Algorithm A3(G, w)
1. Let S be a maximal independent set of G picked

by examining vertices in non-increasing weight order.
2. Use Algorithm A2 to color G \ S.
3. Rename colors 1 and 2, as colors 2 and 3 respectively.
4. Color S with color 1.

Lemma 4. weight(A3) ≤ w1 + 2w2.

Proof. In algorithm A3, a3
1 = w1. Since S is a maximal independent set selected

in non-increasing weight order, the weight of the second color class of OPT, w2

cannot be smaller than the weight of any vertex in G \S. Hence, w2 ≥ a3
2. Since

a3
3 ≤ a3

2, it follows that weight(A3) = a3
1+a3

2+a3
3 ≤ w1+w2+w2 = w1+2w2. ��

The greedy strategy employed by algorithm A3 in selecting the first color class
causes a3

2 to be no larger than w2. However, it might cause a3
3 to be significantly

larger than w3. We rectify this situation by introducing algorithm A4 that uses
four colors to color G.

Algorithm A4(G, w)
1. For all w∗ such that there is a u ∈ V , with w(u) = w∗ do

2. Partition the vertices of G into two parts
P1 = {v ∈ V | w(v) > w∗}, and
P2 = {v ∈ V | w(v) ≤ w∗}.

3. Use algorithm A2 to color P2.
4. Rename colors 1 and 2 as 3 and 4 respectively.
5. Use algorithm A2 to color P1.

6. Return the coloring with minimum weight, over all choices of w∗.
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Lemma 5. weight(A4) < w1 + w2 + 2w3

Proof. Since the weight of every vertex in G is used for the threshold w∗, in
some iteration of A4, w∗ = w3. At this point, A4 partitions the vertex set such
that P1 = {v | w(v) > w3} and P2 = {v | w(v) ≤ w3}. In this iteration, A4

colors P1 with weight at most w1 + w2, and colors P2 with weight at most 2w3.
Since A4 returns the coloring with minimum weight, over all choices of w∗, it
follows that weight(A4) ≤ w1 + w2 + 2w3. ��

The final algorithm, which we call Bipartite Max-Color runs A2, A3, A4, and
returns the minimum weight coloring.

Theorem 1. Algorithm Bipartite Max-Color is a 8
7 -approximation for the

max-coloring problem on bipartite graphs.

Proof. Let w(B) denote the weight of the coloring produced by algorithm
Bipartite Max-Color. From Lemmas 3, 4, and 5, we know that w(B) ≤ 2w1,
w(B) ≤ w1 + 2w2, w(B) ≤ w1 + w2 + 2w3. Now, multiplying the first inequality
by 1, the second inequality by 2, the third inequality by 4 and adding, we get

7 · w(B) ≤ 8 · (w1 + w2 + w3) ≤ 8 · OPT ��

3.2 An (8
7

− ε)-Hardness Reduction

We now show that the 8/7-approximation produced by the above algorithm is
optimal. We do this by showing a matching hardness result via a reduction from
the PRE-COLORING EXTENSION problem on bipartite graphs. The PRE-COLORING
EXTENSION problem for general graphs is defined below.
PRE-COLORING EXTENSION

INPUT: A graph G = (V,E), with r ≥ χ(G), a subset P ⊆ V , and a proper
assignment c : P → {1, · · · , r} of colors to vertices in P .
QUESTION: Is there an extension of the proper vertex coloring of P to a
proper vertex coloring of G, using colors from {1, · · · , r}?
In [5], Kratochvil proved that PRE-COLORING EXTENSION is NP-complete for pla-
nar bipartite graphs even when the color bound r = 3. We now show a simple
gap introducing reduction from PRE-COLORING EXTENSION on bipartite graphs
with r = 3 to max-coloring on bipartite graphs.

Theorem 2. For any ε > 0, there is no (8/7 − ε)-approximation algorithm for
max-coloring on bipartite graphs, unless P=NP.

Proof. The reduction is from PRE-COLORING EXTENSION. Let the given instance
of PRE-COLORING EXTENSION consist of a bipartite graph G = (V1, V2, E), a
subset P ⊆ V1∪V2, and a proper assignment c : P → {1, 2, 3} of colors to vertices
in P . We transform G into a vertex-weighted bipartite graph G′ = (V ′

1 , V ′
2 , E′)

as follows. Add four new vertices, x1, x2, y1, and y2 to G. Let X = {x1, x2},
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Y = {y1, y2}, V ′
1 = V1 ∪ X, and V ′

2 = V2 ∪ Y . To each vertex v ∈ P , assign
a weight w(v) using the rule: w(v) = 23−i if c(v) = i, for each i ∈ {1, 2, 3}. If
v ∈ (V1∪V2)−P , set w(v) = 1. The new vertices are assigned weights as follows:
w(x1) = w(y1) = 4 and w(x2) = w(y2) = 2. The edge set E′ of G′ contains some
additional edges between the new vertices and the old.

E′ = E ∪ {{xi, y}|y ∈ P ∩ V ′
2 , and w(y) < w(xi)} ∪

{{yi, x}|x ∈ P ∩ V ′
1 and w(x) < w(yi)} ∪ {{x1, y2}} ∪ {{x2, y1}}.

This completes the description of G′.
Now suppose that the coloring of P can be extended to a proper 3-coloring

c : V1 ∪ V2 → {1, 2, 3} of G. Start with the coloring c and extend this to a
proper vertex coloring of G′ by assigning colors to the new vertices as follows:
c(x1) = c(y1) = 1 and c(x2) = x(y2) = 2. Observe that this indeed produces a
proper coloring of G′. To see that the weight of this coloring on G′ has weight
at most 7, note that the weight of the coloring in G′ restricted to the vertices of
G is at most 7, and since the coloring above of the vertices {x1, x2, y1, y2} does
not increase this cost, we are done.

Now suppose that G does not have a pre-coloring extension. We show by
contradiction that in this case G′ does not have a proper vertex coloring of
weight less than 8. So suppose that there is a proper vertex coloring c′ : V ′

1∪V ′
2 →

{1, 2, . . .} of weight less than 8. Without loss of generality, assume that in this
coloring, the color classes are labeled in non-increasing order of their weight.
Therefore, all vertices of weight 4 are in color class 1. This includes vertices x1

and y1 and this forces all vertices of weight 2 to be excluded from color class
1. Since color class 1 has weight 4, to prevent the total weight of the coloring
from reaching 8, all vertices of weight 2 have to be included in color class 2. This
includes vertices x2 and y2, and so this color class is also non-empty. Therefore
the total weight of color classes 1 and 2 is 6. Since c′ is a coloring of G′ of weight
less than 8, it must be the case that color class k, for each k ≥ 4, is empty. This
means that c′ is a 3-coloring of G′. Furthermore, it is a 3-coloring of G that
respects the pre-coloring of P . This contradicts the assumption that G has no
pre-coloring extension and therefore we have that any proper vertex coloring of
G′ has weight at least 8.

If for some ε > 0, there were an ( 8
7 − ε)-approximation algorithm for max-

coloring bipartite graphs, then using the above polynomial time transformation
from G to G′, we could distinguish between positive and negative instances of
PRE-COLORING EXTENSION on bipartite graphs with r = 3. This is not possible
unless P = NP . ��

4 Max-coloring on Arbitrary Graphs

Let G be a hereditary class of graphs for which the minimum vertex coloring
problem has a c-approximation. In other words, there is a polynomial time algo-
rithm A that takes a graph G ∈ G as input and returns a proper vertex coloring
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of G using at most c·χ(G) colors. In this section, we present an 4c-approximation
algorithm, that we call GeomFit, for the max-coloring problem on the class of
graphs G. The algorithm is inspired by the algorithm of Halldórsson, et. al. [4] for
sum-coloring interval and comparability graphs. GeomFit will repeatedly use A
as a black box to obtain “good” vertex colorings of portions of the input graph.
For ease of exposition, below we describe GeomFit assuming that c = 1.

GeomFit(G, w)
1. Let i = 0, li = 0
2. While G �= ∅ do

3. Set ci = 2i

4. Let Gi = mkc(G, ci)
5. Color Gi optimally using colors li + 1, · · · , li + ci

6. Set li+1 = li + ci, i = i + 1.
7. Set G = G \ Gi.

8. End While

A round of the algorithm corresponds to an iteration of the while loop. Sup-
pose that each round is labeled with the value of i at the beginning of that round.
For some integer t > 0, suppose that the algorithm executes rounds 0, 1, · · · , t−1,
after which the graph is entirely colored. In each round i, 0 ≤ i < t, the algorithm
calls the subroutine mkc(G, ci), that returns a maximal ci-colorable subgraph of
G, obtained by examining vertices in non-increasing order of weight. Here G is
the subgraph of the input graph induced by the not yet colored vertices and
ci = 2i. When called, the subroutine mkc(G, ci) starts with an empty set S and
processes each vertex v of G, in non-increasing order of weight. The subroutine
tests if G[S ∪ {v}] is ci-colorable or not and if it is, it adds v to S, and proceeds
to the next vertex in G. To perform this test, mkc(G, ci) calls the algorithm A
that returns a minimum vertex coloring of G.

Lemma 6. If GeomFit uses t rounds to color G, then χ(G) > ct−2.

Proof. In round t− 2, the algorithm picks a maximal ct−2 colorable subgraph of
G. If G were ct−2-colorable, then all of it would have been picked up in round
t − 2 or earlier. Since we used one more round to color G, it must mean that
χ(G) > ct−2. ��
Without loss of generality, suppose that OPT uses numbers 1, 2, . . . for colors
such that color classes are numbered in non-increasing order of weight. Now
observe that color classes created in round i by GeomFit are all heavier than color
classes created in round i + 1. Without loss of generality, assume that the color
classes created in each round of GeomFit are numbered in non-increasing order
of weight. Let colorOPT (v) denote the color assigned to vertex v in OPT , Now
using the color classes of OPT we define a pairwise disjoint collection of vertex
subsets of G, {V0, · · · , Vt−1}, where Vi = {v ∈ G|ci−1 < colorOPT (v) ≤ ci},
i = 0, · · · , t− 1. For the definition to make sense, we assume that c−1 = 0. Since
Vt−1 contains vertices colored ct−2 + 1, ct−2 + 2, . . . , ct−1 by OPT , from Lemma
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6, it follows that Vt−1 �= ∅. Now we state and prove a critical inequality that
follows from the greedy choice of a subgraph in each round of GeomFit. Let Wi

denote the weight of color class ci−1 + 1 in OPT . Note that color class ci−1 + 1
is a subset of Vi and by our labeling convention, it is a heaviest color class in Vi.
Similarly, let Ri denote the weight of color class li +1 created by GeomFit. Note
that this is a heaviest color class created in round i be GeomFit. Also note that
li =

∑i−1
j=0 cj = ci − 1 and therefore color class li + 1 is simply color class ci.

Lemma 7. Ri ≤ Wi, for i = 0, 1, · · · , t − 1.

Proof. Since R0 and W0 are equal to the maximum weight vertex in G, the
lemma holds for i = 0. By the greedy choice employed in selecting G0, we ensure
that for any other independent set S of G, the maximum weight of a vertex in
G \ S is at least as large as the maximum weight vertex in G \G0. This ensures
that R1 ≤ W1. By the same reasoning, since in round i− 1, we greedily select a
maximal ci−1 colorable subgraph of OPT , and V1∪V2∪· · ·Vi−1 is ci−1 colorable,
it follows that Ri ≤ Wi. ��

Theorem 3. Let G be a hereditary class of graphs on which the minimum vertex
coloring problem can be solved in polynomial time. Algorithm GeomFit is a 4-
approximation algorithm for the max-coloring problem on G.

Proof. The weight of the max-coloring produced by GeomFit is bounded above by

weight(GeomFit) ≤
t−1∑

i=0

ci · Ri ≤
t−1∑

i=0

ci · Wi

The first inequality follows from the fact that in each round i, GeomFit uses at
most ci colors and a heaviest color class in round i has weight Ri. The second
inequality follows from Lemma 7.

We obtain a lower bound on OPT as follows. The set V0 contains one color
class and this has weight W0. Now consider a set Vi, 1 ≤ i ≤ t − 2. It contains
one color class of weight Wi and the remaining color classes have weight at
least Wi+1. Recall that Vi has color classes labeled ci−1 + 1, ci−1 + 2, . . . , ci and
therefore weight(Vi) ≥ Wi + (ci−1 − 1)Wi+1.

OPT ≥
t−1∑

i=0

weight(Vi) ≥ W0 +
t−2∑

i=1

(Wi + (ci−1 − 1)Wi+1) + Wt−1

= W0 + W1 +
t−3∑

i=0

ciWi+2.

Therefore, 4 · OPT ≥ 4W0 + 4W1 +
∑t−3

i=0 4ciWi+2 = 4W0 + 4W1 +
∑t−1

i=2 ciWi.
This lower bound on 4·OPT is larger than the upper bound on weight(GeomFit)
above. Therefore, weight(GeomFit) ≤ 4 · OPT . ��
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Now suppose that G is a heriditary class of graphs that has a c-approximation
algorithm A for the minimum vertex coloring problem. A 4c-approximation algo-
rithm for max-coloring on graphs in G is obtained by modifying GeomFit slightly.
In Step (4), the algorithm computes a maximal 
c · ci�-colorable subgraph. Cor-
respondingly, in Step (5), Gi is colored using colors li + 1, · · · , li + 
c · ci�. The
analysis of this modified GeomFit proceeds in a manner similar to the c = 1 case.
For details, see [6].

Theorem 4. Let G be a hereditary class of graphs on which the minimum vertex
coloring problem has a c-approximation algorithm. Algorithm GeomFit is a 4c-
approximation algorithm for the max-coloring problem on G.

The choice of ci = 2i in GeomFit gave us an approximation factor of 4c. This
approximation factor can be improved to 3.5c by running GeomFit twice, once by
setting ci = 2i, and once by setting ci = 
1.5×2i� and returning the coloring with
smaller weight. More generally, setting ci = 
αqi�, where α is chosen uniformly
at random from a certain range and q is an appropriately chosen constant, may
yield a furthur improvement in the approximation ratio.
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