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We develop new algorithmic approaches to compute provably near-optimal policies for multi-period stochastic

lot-sizing inventory models with positive lead times, general demand distributions and dynamic forecast

updates. The policies that are developed have worst-case performance guarantees of 3 and typically perform

very close to optimal in extensive computational experiments. The newly proposed algorithms employ a

novel randomized decision rule and depart from the previous work of Levi et al. (2007). We believe that

these new algorithmic and performance analysis techniques could be used in designing provably near-optimal

randomized algorithms for other stochastic inventory control models, and more generally in other multistage

stochastic control problems.
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1. Introduction

In this paper, we develop new provably near-optimal algorithms for stochastic inventory control

models with fixed costs, general demand distributions and dynamic forecast updates. Fixed costs

arise in many real-life scenarios, and reflect the fact that ordering, production and transportation

in large quantities lead to economies of scales. Specifically, we study several general variants of the

classical stochastic lot-sizing problem. Finding optimal policies in these settings is often computa-

tionally intractable. Instead, we develop new algorithmic approaches that yield a 3-approximation,

i.e., they have a worst-case performance guarantee of 3. This implies that the algorithms are guar-

anteed to have expected cost at most three times the optimal expected cost, regardless of the input

instance.
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Our contributions. The new algorithmic and performance analysis approaches that are devel-

oped in this paper depart from the previous work of Levi et al. (2007), and provide multi-fold

contributions to the study of stochastic inventory control as well as more generally to the design and

analysis of randomized algorithms. The paper extends the recent stream of work to develop cost-

balancing algorithmic techniques for computationally challenging multi-period stochastic inventory

control problems. This stream of work has been initiated by Levi et al. (2007) and subsequent

work ( Levi et al. (2005, 2008a, 2007, 2008c)), which primarily studied stochastic inventory control

problems with no fixed costs. The conceptual idea underlying cost-balancing based algorithms is a

repeated attempt to balance opposing costs, for example, in models without fixed ordering cost one

seeks to balance the cost of over-ordering (holding cost) and the cost of under-ordering (backlogging

cost) based on the notion of marginal cost accounting schemes ( Levi et al. (2005, 2007, 2008c))

(see also the discussion in Section 4.1).

The existence of fixed costs adds a third nonlinear component to the cost, and makes the cost

balancing more subtle. Levi et al. (2007) did study a very special case of the model studied in this

paper, in which orders arrive instantaneously and demand in each period is known deterministically

at the beginning the period before the ordering decision is made. They proposed the triple-balancing

policy that aims to balance the fixed ordering cost, the holding cost and the backlogging cost over

each time interval between consecutive orders. Their policy is a 3-approximation. However, the

algorithm and the worst-case analysis can be applied effectively only to models, in which there is no

lag, commonly called lead time, from when an order is placed until it arrives. In fact, in models with

positive lead times the assumption in Levi et al. (2007) is equivalent to knowing deterministically

the cumulative demand over the lead time. This is clearly a very restrictive assumption, since in

many scenarios forecasting the demand over the lead time is the major challenge. Moreover, in

Section 3, we show that if this assumption does not hold, the triple-balancing policy can perform

arbitrarily worse than an optimal policy. This stands in contrast to most of the analytical work

done on inventory models with backlogged demand, for which the extensions from models with no

lead time to models with positive lead time are often immediate.
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To address the nonlinearity induced by the fixed costs, a novel randomized decision rule is

employed to balance the expected fixed ordering costs, holding costs and backlogging costs, in each

period. In particular, the order quantity in each period is decided based on a carefully designed

randomized rule that chooses among various possible order quantities with carefully chosen prob-

abilities. To the best of our knowledge, this is the first randomized policy proposed for stochastic

inventory control policies. Levi et al. (2007) used a straightforward randomized rule for the model

with no fixed costs, but merely as a ‘rounding’ technique to address the constraint to order in

integer quantities. Unlike the triple-balancing policy that balances the costs over intervals, the

newly randomized policy balances the costs in each period. Like the triple-balancing policy, the

randomized cost-balancing policy proposed in this paper has a worst-case guarantee of 3, but this

holds under very general assumptions, i.e., general demand distributions and positive lead times .

The worst-case performance analysis of the randomized policy employs several fundamental new

ideas that depart from the previous work of Levi et al. (2007). Like the previous work, the analysis

is based on an amortization of the cost incurred by the balancing policy against the cost of an

optimal policy. However, all of the previous work is entirely based on sample-path arguments. In

contrast, the analysis in this paper is based on more subtle averaging arguments. We believe that

the new algorithmic and analysis techniques developed in this paper will turn out to be effective

in the design of provably near-optimal algorithms for other stochastic inventory control problems.

Our proposed randomized policies can be parameterized to create a broader class of policies.

A simulation based optimization is used to find the ‘best’ parameters for a given instance of the

problem. This preserves the same worst-case guarantees. Moreover, relatively extensive computa-

tional experiments that we conducted indicate that it typically leads to near-optimal policies that

perform empirically within few percentages of optimal, significantly better than the worst-case

performance guarantees.

In addition, the work in this paper contributes to the body of work on randomized algorithms.

The last two decades have witnessed a tremendous growth in the area of randomized algorithms.

During this period, randomized algorithms went from being a tool in computational number theory
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to finding widespread applications in other fields, such as data structures, geometric algorithms,

graph algorithms, number theory, enumeration, parallel algorithms, approximation algorithms and

online algorithms. Part of the reason why randomized algorithms are attractive is the fact that

they are usually conceptually simple and computationally fast. Randomized decision rules have

been used extensively to obtain approximation algorithms with worst-case guarantees for many

deterministic NP-hard optimization problems, including several examples of deterministic inventory

management problems (see for example, Teo and Bertsimas (1996), Levi et al. (2008b)). In addition,

randomized decision rules are very common in the field of online algorithms (see Borodin and

El-Yaniv (1998)), in which they are used to obtain algorithms with competitive ratios. However,

in spite of the increasing use of randomized algorithms, there have been relatively few successful

attempts to incorporate randomized decision rules to obtain algorithms for multistage stochastic

control problems. Rust (1997) proposed random versions of successive approximations and multi-

grid algorithms for computing approximate solutions to Markovian decision problems. Prandini

et al. (1999) designed a randomized algorithm to obtain an estimate of the probability of aircraft

conflict. Bouchard et al. (2005) studied a maturity randomization technique for approximating

optimal control problems to price American put options. Shmoys and Talwar (2008) proposed

a randomized 4-approximation algorithm of the a priori Traveling Salesman Problem. Shmoys

and Swamy (2006) gave a fully polynomial randomized approximation scheme for solving 2-stage

stochastic integer optimization problems. However, the techniques developed in this paper are

different and we believe they have a promising potential to apply in other multistage stochastic

optimization models.

Literature review. The dominant paradigm in most of the existing literature has been to

formulate stochastic inventory control problems (including the models studied in this paper) using

a dynamic programming framework. This approach turned out to be effective in characterizing the

structure of optimal policies. For many of these models, it can be shown that state-dependent (s,S)

policies are optimal. The ordering decision in each period is driven by two thresholds. Specifically,

an order is placed if and only if the inventory level falls below the threshold s. In addition, if an order



Levi and Shi: Approximation Algorithms for the Stochastic Lot-sizing Problem with Order Lead Times
Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 5

is placed the inventory level is brought up to the threshold S. The thresholds s and S are determined

based on the state of the system at the beginning of the period. Scarf (1960) and Veinott (1966)

have established the optimality of (s,S) policies in models with independent demands. Cheng and

Sethi (1997) have extended the optimality proof to exogenous Markov-modulated demands that

capture cycles and seasonality to some extent. Gallego and Özer (2001) have shown that (s,S)

policies are optimal under advance demand information, a demand model that allows correlation

and forecast updates.

Unfortunately, the rather simple forms of these optimal policies do not usually lead to efficient

algorithms for computing the optimal policies. There are very few cases, in which there are efficient

algorithms to compute the optimal policies. Federgruen and Zipkin (1984) proposed an algorithm

to compute the optimal stationary (s,S) policy in a model with infinite horizon and independent

and identically distributed demands. Federgruen and Zheng (1991) described a simple and effi-

cient algorithm to compute the infinite horizon optimal policy in a continuous-review system with

demand that is generated by a renewal process. (In this setting, (s,S) policies are equivalent to

(R,Q) policies, in which one places an order of Q units, whenever the inventory level drops below

R.) For other more complex variants of the model, there are currently no known exact algorithms,

but only heuristics. Bollapragada and Morton (1999) proposed a simple myopic policy, assuming

that the demands in different periods have the same form of distribution function with the same

coefficient of variation but with different means. Gavirneni (2001) designed an efficient heuristic to

compute (s,S) policies for nonstationary and capacitated model. Song and Zipkin (1993) consid-

ered uncapacitated models with exogenous Markov-modulated Poisson demand. They developed an

algorithm to compute the optimal (s,S) policy using a modified value iteration approach. However,

they impose strong assumptions on the structure and the size of the state space of the underlying

Markov process. Gallego and Özer (2001) and Özer and Wei (2004) considered uncapacitated and

capacitated inventory models with advance demand information, respectively. They proposed back-

ward induction algorithms to numerically solve problems with a relatively short planning horizon,

and conducted computational experiments to study the impact of advance demand information
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on the optimal policy. (In the computational experiments in Section 5, we have applied the newly

proposed policies to the instances they considered.) Guan and Miller (2008b) proposed an exact

and polynomial-time algorithm for the uncapacitated stochastic economic lot-sizing problem if

the stochastic programming scenario tree is polynomially representable. Guan and Miller (2008a)

extended these algorithms to allow backlogging. Huang and Küçükyavuz (2008) considered similar

problems with random lead times. These models allow stochastic and correlated demands. The

main limitation comes from the fact that the number of nodes in the stochastic programming sce-

nario tree (the size of input) is likely to be exponentially large in the size of the planning horizon.

To the best of our knowledge, all of the existing heuristics and algorithms, either lack any perfor-

mance guarantees or can be applied under restrictive assumptions on the demand distributions or

the input size.

Structure of this paper. The remainder of the paper is organized as follows: In Section 2, we

present the model formulation. Section 3 reviews the triple-balancing policy proposed by Levi et al.

(2007). We provide a bad example in which the triple-balancing policy fails to work under general

demand assumptions. In section 4, we propose what is called randomized cost-balancing policy that

makes use of order randomization. We show that the policy has a worst-case performance guarantee

of 3 under general demand assumptions. Section 5 is devoted to the numerical experiments tested

for our newly-proposed policies. The parameterized policies are computationally efficient and near-

optimal under advance demand information by Gallego and Özer (2001).

2. The Periodic-Review Stochastic Lot-Sizing Inventory Control Problem

In this section, we provide the mathematical formulation of the periodic-review stochastic lot-sizing

inventory control problem. We consider a finite planning horizon of T periods indexed t= 1, . . . , T .

The demands over these periods are random variables, denoted by D1, . . . ,DT , and the goal is to

coordinate a sequence of orders over the planning horizon to satisfy these demands with minimum

cost. As a general convention, from now on we will refer to a random variable and its realization

using capital and lower case letters, respectively. Script font is used to denote sets.
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In each period t = 1, . . . , T , four types of costs are incurred, a per-unit ordering cost ct for

ordering any number of units at the beginning of period t, a per-unit holding cost ht for holding

excess inventory from period t to t+1, a per-unit backlogging penalty bt that is incurred for each

unsatisfied unit of demand at the end of period t, and a fixed ordering cost K that is incurred in

each period with strictly positive ordering quantity. (Our model can allow nonstationary Kt, i.e.,

αKt+1 ≤ Kt with discount factor α.) Unsatisfied units of demand are usually called backorders.

Each unit of unsatisfied demand incurs a per-unit backlogging penalty cost bt in each period t until

it is satisfied. In addition, we consider a model with a lead time of L periods between the time an

order is placed and the time at which it actually arrives. We assume that the lead time is a known

integer L. Following the discussion in Levi et al. (2007), we assume without loss of generality that

the discount factor α= 1, and that ct = 0 and ht, bt ≥ 0, for each t.

At the beginning of each period s, we observe what is called an information set denoted by fs.

The information set fs contains all of the information that is available at the beginning of time

period s. More specifically, the information set fs consists of the realized demands d1, . . . , ds−1

over the interval [1, s), and possibly some exogenous information denoted by (w1, . . . ,ws). The

information set fs in period s is one specific realization in the set of all possible realizations of

the random vector Fs = (D1, . . . ,Ds−1,W1, . . . ,Ws). The set of all possible realizations is denoted

by Fs. The observed information set fs induces a given conditional joint distribution of the future

demands (Ds, . . . ,DT ). For ease of notation, Dt will always denote the random demand in period

t according to the conditional joint distribution in some period s≤ t, where it will be clear from

the context to which period s it refers. The index t will be used to denote a general time period,

and s will always refer to the current period. The only assumption on the demands is that for each

s= 1, . . . , T , and each fs ∈ Fs, the conditional expectation E[Dt | fs] is well defined and finite for

each period t≥ s. In particular, we allow non-stationary and correlation between the demands in

different periods.

The goal is to find an ordering policy that minimizes the overall expected discounted fixed

ordering cost, holding cost and backlogging cost. We consider only policies that are nonanticipatory,
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i.e., at time s, the information that a feasible policy can use consists only of fs and the current

inventory level. The superscripts PL and OPT will be used to refer to a given feasible policy PL

and an optimal policy, respectively.

Given a feasible policy PL, the dynamics of the system are described using the following notation.

Let D[s,t] denote the cumulative demand over the interval [s, t], i.e., D[s,t] =
∑t

j=s
Dj .In addition,

let NIt denote the net inventory at the end of period t. Thus, NI+t = max(NIt,0) and NI−t =

max(−NIt,0) are inventory on hand and backlog quantities in period t, respectively. Since there

is a lead time of L periods, one also considers the inventory position of the system, which is the

sum of all outstanding orders plus the current net inventory. Let Xt be the inventory position at

the beginning of period t before the order in period t is placed, i.e., Xt :=NIt−1 +
∑t−1

j=t−L
Qj (for

t= 1, . . . , T ), where Qj denotes the number of units ordered in period j. Similarly, let Yt be the

inventory position after the order in period t is placed, i.e., Yt = Xt + Qt. Note that for every

possible policy PL, once the information set ft ∈Ft is given, the values nit−1, xt and yt are known,

where these are the realizations of NIt−1, Xt and Yt, respectively. At the end of each period t,

the costs incurred are htNI+t holding cost and btNI−t backlogging cost. In addition, if the order

quantity Qt > 0, then the fixed ordering cost K is incurred. Thus, the total cost of a feasible policy

PL is

C (PL) =
T
∑

t=1

(

htNI
+,PL
t + btNI

−,PL
t +K ·1(QPL

t > 0)
)

. (1)

3. Triple-Balancing Policy -Bad Example

In this section, we briefly discuss the triple-balancing policy proposed by Levi et al. (2007) for

a special case of the stochastic lot-sizing problem. The discussion sheds light on the limitation

of this policy, and motivates the newly proposed randomized cost-balancing policy discussed in

section 5. Levi et al. (2007) considered a model in which in each period t= 1, . . . , T , conditioning

on some information set ft ∈ Ft, the conditional distribution of future demands (Dt, . . . ,DT ) is

such that the demand Dt is known deterministically (i.e., with probability one). This implies that

the order in period t is placed after the demand in that period is already known. The underlying
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assumption here is that at the beginning of period t, our forecast for the demand in that period

is sufficiently accurate, so that we can assume forecast to be given deterministically. A primary

example is make-to-order systems. However, this assumption does not hold if there is a positive

lead time and one considers Dt+L instead.

3.1. Description of the policy

First we briefly discuss the original triple-balancing policy in Levi et al. (2007), denoted by TB.

This policy is based on the following two rules.

(I) When to order. At the beginning of period t, let s be the last period in which an order

is placed before t. An order is placed in period t if and only if by not placing it in period t, the

cumulative backlogging cost over the interval (s, t] will exceed K. Once a new order is placed, s

is updated to be equal to t. Observe that since, at the beginning of each period t, the conditional

joint distribution of future demands is such that Dt is known deterministically, this procedure is

well-defined. Notice that an optimal policy will never incur any backlogging costs in a period when

an order is placed, since the cumulative backlog quantities are known prior to placing the order.

(II) How much to order. Suppose that an order is placed in period t < T . Focus on the

holding cost incurred by the units ordered in period t over the interval [t, T ]. The order is set to the

maximum quantity qTB
t , such that the conditional expected marginal holding cost incurred does

not exceed K. (The exact definition of marginal holding cost is provided in Section 4.1.)

Worst-case Analysis. The analysis in Levi et al. (2007) showed that the triple-balancing

policy has a worst-case performance guarantee of 3. In particular, one can show that, for each time

interval between two consecutive orders of the triple-balancing policy, the expected cost incurred

by an optimal policy over that interval is at least one-third of the expected cost incurred by the

triple-balancing policy over the same interval. However, this is only valid under the restrictive

assumptions of no lead times and period demand known at the beginning of the period.

If the period demand is not known at the beginning of the period (or there is a positive lead time),

then (I) above is enforced on expectation. It turns out that this policy can perform arbitrarily
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bad compared to an optimal policy and does not have a worst-case performance guarantee where

the assumptions are dropped. As a result this policy may not be applicable in more general and

realistic settings. The example that shows this fact is discussed in section 3.2.

3.2. A bad example

The triple-balancing policy can be applied in general settings and one might hope to obtain a worst-

case performance guarantee in general. However, the following example shows that such guarantee

fails to exist in general. Consider the following instance with infinite horizon T =∞, let ht = h= 0,

bt = b= 1, ∀t∈Z
+, L= 1 and K ∈Z

+, and

Dt =

{

λK with probability 1
λ
− ǫ

λK

0 otherwise
, (2)

where ǫ is a positive number satisfying 0< ǫ<K. Moreover, the demand drops to 0 in all periods

after the first positive demand. Note that the per-unit holding cost is h= 0, and therefore there

is no penalty for holding extra units in the inventory. The optimal policy orders λK units at

the beginning of period 1. The demand λK will eventually come in some period with probability

1. Thus, the optimal cost incurs fixed ordering K only. However, if no demand has arrived, the

cumulative backlogging cost is 0, and the expected backlogging cost upon not ordering is K − ǫ.

This implies that the policy does not place any orders before the positive demand λK occurs.

Thus, the policy incurs a cost of K + λK. If we let λ→∞, the cost ratio goes to ∞, indicating

that the triple-balancing policy can perform arbitrarily bad compared to the optimal cost, and

does not admit a worst-case guarantee. This example illustrates that the policy fails to make a

good ordering decision, when there is a potential impulse in demand with a positive but small

probability. Thus, the policy may incur potentially a very high backlogging cost.

4. Randomized Cost-Balancing Policy

One of the difficulties in the stochastic lot-sizing problem is the need to balance the nonlinear fixed

ordering cost against the backlogging cost that may have large spikes because of the variability

of the demands. The new policy we propose aims to strike a better balance between these costs
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by randomization. The policy is called randomized cost-balancing policy. To strike this balance the

policy employs randomized decision rules. That is, in each period, the decision whether to order

and how much to order is based on a suitably chosen randomized decision rule; the policy chooses

among various order quantities with certain respective probabilities. Before the description of the

new policy, we briefly discuss a marginal cost accounting scheme that is used to employ the policy.

This cost accounting scheme was introduced by Levi et al. (2007).

4.1. Marginal Cost Accounting Scheme

Following Levi et al. (2007), we next describe an alternative cost accounting scheme that is called

marginal cost accounting scheme. Unlike (1) that decomposes the cost by periods, the main idea

underlying this approach is to decompose the cost by decisions. That is, the decision in period

t is associated with all costs that, after that decision is made, become unaffected by any future

decision, and are only affected by future demands. This may include costs in subsequent periods.

Focus first on the holding costs and assume, without loss of generality, that units in inventory

are consumed on a first-ordered first-consumed basis. This implies that the overall holding cost of

the qs units ordered in period s (i.e., the holding cost they incur over the entire horizon [s,T ]) is a

function only of future demands, and is unaffected by any future decisions. Specifically, the total

marginal holding cost associated with the decision to order qs units in period s is defined to be

∑T

j=s+L
hj

(

qs − (D[s,j] −xs)
+
)+

. Note that at the time the order qs is made, the inventory position

xs is already known and indeed the marginal holding cost is just a function of future demands.

In addition, once the order in period s is determined, the backlogging cost a lead time ahead in

period s+ L, i.e., bs+L

(

D[s,s+L] − (xs + qs)
)+

, is also affected only by the future demands. This

leads to a marginal cost accounting scheme. For each feasible policy PL, let HPL
t be the holding

cost incurred by the QPL
t units ordered in period t (for t= 1, . . . , T ) over the interval [t, T ], and let

ΠPL
t be the backlogging cost associated with period t, i.e., the cost incurred a lead time ahead in

period t+L (t= 1−L, . . . , T −L). That is,

HPL
t = Ht(Q

PL
t ) =

T
∑

j=t+L

hj

(

QPL
t − (D[t,j] −Xt)

+
)+

,
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ΠPL
t = Πt(Q

PL
t ) = bt+L

(

D[t,t+L] − (Xt +QPL
t )
)+

.

Let C (PL) be again the cost of the policy PL. Clearly, we have

C (PL) =
0
∑

t=1−L

ΠPL
t +H(−∞,0] +

T−L
∑

t=1

(

K ·1(QPL
t > 0)+HPL

t +ΠPL
t

)

, (3)

where H(−∞,0] denotes the total expected holding cost incurred by units ordered before period 1.

We note that the first two expressions
∑0

t=1−L
ΠPL

t and H(−∞,0] are not affected by any decision

(i.e., they are the same for any feasible policy and each realization of the demands) and, therefore,

we will omit them. Since they are nonnegative, this will not affect our approximation results. Also,

observe that without loss of generality, we can assume that QPL
t =HPL

t = 0 for any policy PL in

each period t = T − L+ 1, . . . , T , since nothing ordered in these periods can be used within the

given planning horizon. We now can write the effective cost of a policy PL as

C (PL) =
T−L
∑

t=1

(

K ·1(QPL
t > 0)+HPL

t +ΠPL
t

)

. (4)

4.2. Description of the policy

To describe the new policy, we modify the definition of the information set ft to also include

the randomized decisions of the randomized balancing policy up to period t− 1. Thus, given the

information set ft, the inventory position at the beginning of period t is known. However, the order

quantity in period t is still unknown because the policy randomizes among various order quantities.

We denote the randomized cost-balancing policy by RB. The decision in each period, whether to

order and how much to order, is based on the following quantities.

• Compute the balancing quantity q̂t that balances the conditional expected marginal holding

cost incurred by the units ordered against the conditional expected backlogging cost in period

t+L. That is, q̂t solves

E
[

HRB
t (q̂t) | ft

]

=E
[

ΠRB
t (q̂t) | ft

]

, (5)

where HRB
t and ΠRB

t are defined as in Section 4.1, respectively. Let θt = θt(ft),E[HRB
t (q̂t) | ft] =

E[ΠRB
t (q̂t) | ft] denote the balancing cost. The solution to (5) is unique and can be computed

efficiently via bi-section search (Levi et al. (2007)).
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• Compute the holding-cost-K quantity q̃t that solves E[HRB
t (q̃t) | ft] =K, i.e., q̃t is the order

quantity that brings the conditional expected marginal holding cost to K. Note that q̃t can be

computed readily since E[HRB
t (·) | ft] is monotonically increasing.

• Compute E[ΠRB
t (q̃t) | ft], i.e., the resulting conditional expected backlogging cost in period

t+L if one orders the holding-cost-K quantity q̃t units in period t.

• Compute E[ΠRB
t (0) | ft], i.e., the conditional expected backlogging cost in period t+L resulting

from not ordering in period t.

Based on the above quantities computed, the following randomized rule is used in each period

t. Let Pt denote our ordering probability which is a priori random. With the observed information

set ft, the ordering probability pt = Pt | ft in period t is defined differently in the two cases below.

Case (I)

If the balancing cost exceeds K, i.e., θt ≥K, the RB policy orders the balancing quantity qRB
t = q̂t

with probability pt = 1. The intuition is that when θt ≥K, the fixed ordering costK is less dominant

compared to marginal holding and backlogging costs. Moreover, if the RB policy does not place

an order, the conditional expected backlogging cost is potentially large. Thus, it is worthwhile to

order the balancing quantity qRB
t = q̂t with probability pt = 1.

Case (II)

If the balancing cost is less than K, i.e., θt <K, the RB policy orders the holding-cost-K quantity

(i.e., qRB
t = q̃t) with probability pt and nothing with probability 1− pt. That is,

qRB
t =

{

q̃t, with probability pt
0, with probability 1− pt

. (6)

The probability pt is computed by solving the following equation

ptK = pt ·E[ΠRB
t (q̃t) | ft] + (1− pt) ·E[ΠRB

t (0) | ft]. (7)

The underlying reason behind the choice of this particular randomization in (7) is that the policy

perfectly balances the three types of costs, namely, the marginal holding cost, the marginal back-

logging cost and the fixed ordering cost associated with the period t. In particular, since we order
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the holding-cost-K quantity with probability pt and nothing with probability 1−pt, the conditional

expected marginal holding cost in this case is

E[HRB
t (qRB

t ) | ft] = ptE[HRB
t (q̃t) | ft] + (1− pt)E[HRB

t (0) | ft] = ptK. (8)

By the construction of pt in Equation (7), the conditional expected backlogging cost is

E[ΠRB
t (qRB

t ) | ft] = ptE[ΠRB
t (q̃t) | ft] + (1− pt)E[ΠRB

t (0) | ft] = ptK. (9)

Since pt is the ordering probability in Case (II), the expected fixed ordering cost is ptK. It can be

shown that Equation (7) has the following solution,

0≤ pt =
E[ΠRB

t (0) | ft]

K −E[ΠRB
t (q̃t) | ft] +E[ΠRB

t (0) | ft]
< 1. (10)

The inequalities in Equation (10) follows from the fact that θt <K and q̃t > q̂t, which implies that

E[ΠRB
t (q̃t) | ft] < E[ΠRB

t (q̂t) | ft] = θt < K. Figure 1 illustrates how the RB policy computes the

ordering probability pt in Case (II) where θt <K.

This concludes the description of the RB policy. In the next section, we shall show that the RB

policy has an expected worst-case performance guarantee of 3.

Figure 1 A graphical depiction of how the RB policy computes the probability of ordering pt when the balancing

cost θ is below the fixed ordering cost K (Case (II)).
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4.3. Worst-case analysis

To obtain a 3-approximation, one wishes to show that on expectation the cost of an optimal policy

can ‘pay’ for at least one-third of the expected cost of the randomized cost-balancing policy. The

periods are decomposed into subsets in which we will define explicitly. For certain well-behaved

subsets, we want to show that the holding and backlogging costs incurred by an optimal policy

can ‘pay’ for one-third of the cost incurred by the RB policy. The difficulty arises in analyzing the

remaining subset of problematic periods, for which it is not a priori clear how to ‘pay’ for their cost.

These problematic periods are further partitioned into intervals defined by each two consecutive

orders placed by the optimal policy. It can be shown that the total expected cost incurred by

the RB policy in problematic periods within each interval, does not exceed 3K. This implies that

the fixed ordering cost incurred by an optimal policy can ‘pay’ on expectation one-third of the

cost incurred by the randomized cost-balancing policy in problematic periods. Next we discuss the

details of this approach, and we defer all proofs to Electronic Companion for ease of presentation.

Let ZRB
t be a random variable defined as

ZRB
t :=E[HRB

t (QRB
t ) | Ft] =E[ΠRB

t (QRB
t ) | Ft]. (11)

Note that ZRB
t is a random variable that is realized with the information set in period t. Observe

that by the construction of the RB policy, the random variable ZRB
t is well-defined since the

expected marginal holding costs and the expected marginal backlogging costs are always balanced.

That is, the conditional expected marginal holding cost is always equal to the conditional expected

backlogging cost. In the following lemma we show that the expected cost of the RB policy can be

upper bounded using the ZRB
t variables defined in (11).

Lemma 1. Let C (RB) be the total cost incurred by the RB policy. Then we have,

E[C (RB)]≤ 3 ·
T−L
∑

t=1

E[ZRB
t ]. (12)

To complete the worst-case analysis, we would like to show that the expected cost of an optimal

policy denoted by OPT is at least
∑T−L

t=1 E[ZRB
t ]. This will be done by amortizing the cost of OPT
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against the cost of the RB policy. In particular, we shall show that on expectation OPT pays for

a large fraction of the cost of the RB policy. In the subsequent analysis, we will use a random

partition of periods t= {1,2, . . . T −L} to the following sets:

The set T1H , {t : Θt ≥K and Y OPT
t >Y RB

t } consists of periods in which the balancing cost Θt

exceeds K and the optimal policy had higher inventory position than that of the RB policy after

ordering (recall that if Θt ≥K then the RB policy orders the balancing quantity with probability

1 and the value Y RB
t is known deterministically (i.e., realized) with Ft).

The set T1Π , {t : Θt ≥K and Y OPT
t ≤ Y RB

t } consists of periods in which the balancing cost

exceeds K and the inventory position of the optimal policy does not exceed that of the RB policy

after ordering (see the comment above regarding T1H).

The set T2H ,

{

t : Θt <K and Y OPT
t ≥XRB

t + Q̃RB
t

}

consists of periods in which the balancing

cost is less than K and, in such periods, the inventory position of the RB policy after ordering

would be either XRB
t if no order was placed, or XRB

t + Q̃RB
t if the holding-cost-K quantity is

ordered, depending on the randomized decision of the RB policy. However, the inventory position

of OPT after ordering exceeds even XRB
t + Q̃RB

t . (Note again that the quantity Q̃RB
t is known

deterministically (i.e., realized) with Ft.)

Analogous to T2H , the set T2Π , {t : Θt <K and XRB
t ≥ Y OPT

t } consists of periods in which the

inventory position of OPT after ordering is below XRB
t .

The set T2M ,

{

t : Θt <K and XRB
t <Y OPT

t <XRB
t + Q̃RB

t

}

consists of periods in which the bal-

ancing cost is less than K and the inventory position of OPT after ordering is within (XRB
t ,XRB

t +

Q̃RB
t ). Thus, whether the RB policy or OPT has more inventory depends on whether the RB

policy placed an order.

Note that the sets (T1H − T2M) are disjoint and the union makes a complete set. Conditioning

on ft, it is already known which part of the partition period t belongs.

Next we will show that the total holding cost incurred by OPT is higher than the marginal

holding cost incurred by the RB policy in periods that belong to T1H

⋃

T2H , and that the total
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backlogging cost incurred by OPT is higher than the backlogging cost incurred by the RB policy

associated with periods within T1Π

⋃

T2Π.

Lemma 2. The overall holding cost and backlogging cost incurred by OPT are denoted by HOPT

and ΠOPT , respectively. Then we have, with probability 1,

HOPT ≥
∑

t

HRB
t ·1(t∈T1H

⋃

T2H), ΠOPT ≥
∑

t

ΠRB
t ·1(t∈T1Π

⋃

T2Π). (13)

Note that the periods in the set T2M introduce some uncertainties in the relation between the

inventory positions after ordering of the RB policy and OPT . Thus, we are unable to carry out an

analysis similar to Lemma 2. For this reason, we call T2M a problematic set of periods. Naturally,

we also define the non-problematic set of periods to be TN =T1H

⋃

T1Π

⋃

T2Π

⋃

T2H . The analysis

of the problematic periods in the set T2M will be done in two steps. In the first step, we will

conceptually create a bank account A that will be used to pay some of the cost of the RB policy in

these problematic periods. In particular, for each period t∈T2M , we borrow an amount of ZRB
t from

the bank account. Thus, the total amount of borrowing from the bank is given by A=
∑

t∈T2M
ZRB

t ,

and so E[A] =E [
∑

t
ZRB

t ·1(t∈T2M)].

The following lemma shows that, with the borrowed amount A from the bank, the overall holding

cost and backlogging cost incurred by OPT exceed
∑T−L

t=1 E[ZRB
t ]. The next step will be to show

that E[A] is at most the expected fixed ordering cost incurred by OPT . That is,

E[A]≤E

[

T−L
∑

t=1

K ·1(QOPT
t > 0)

]

. (14)

Lemma 3. The expected holding cost and backlogging cost incurred by OPT plus the expected

amount borrowed from the bank account A are at least
∑T−L

t=1 E[ZRB
t ]. That is, the following inequal-

ity holds

E
[(

HOPT +ΠOPT
)

+A
]

≥

T−L
∑

t=1

E[ZRB
t ]. (15)

By Lemmas 1 and 3, the overall holding and backlogging costs incurred by OPT , plus the

borrowed amount A from the bank, account on expectation for one-third of the overall expected

costs incurred by the RB policy. To complete the worst-case analysis, we will show in Lemma 4 that
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the expected amount borrowed from the bank account does not exceed the expected fixed ordering

cost incurred by OPT , i.e., E
[

∑T−L

t=1 K ·1(QOPT
t > 0)

]

. We will highlight the key steps involved in

proving this lemma. We decompose the problematic periods in the set T2M into intervals between

ordering points of OPT , and we want to show that, for each such interval, the fixed ordering cost K

incurred by OPT will cover the expected amount borrowed from the bank in periods that belong

to set T2M . Conditioning on f−

T (the entire evoluation of the system excluding the randomized

decisions of the RB policy), we construct a decision tree based on the randomized decisions of the

RB policy. We then show that, by a tree traversal argument and Lemma 5, the expected borrowing

from the problematic nodes (which belong to the set T2M) within an interval between ordering

points of OPT does not exceed K.

Lemma 4. The following inequality holds

E [A]≤E

[

T−L
∑

t=1

K ·1(QOPT
t > 0)

]

. (16)

In other words, the expected borrowing E[A] is less than the total expected fixed ordering cost

incurred by OPT .

Lemma 5. Let {pl}
∞

l=1 satisfy the condition 0≤ pl ≤ 1 for all l. Then the following inequality holds,

p21 +
∞
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

≤ 1. (17)

As an immediate consequence of Lemmas 3 and 4, we obtain the following lemma and theorem.

Lemma 6. Let C (OPT ) be the total cost incurred by the cost-balancing policy RB. Then we have,

E[C (OPT )]≥
T−L
∑

t=1

E[ZRB
t ]. (18)

Theorem 1. For each instance of the stochastic lot-sizing problem, the expected cost of the ran-

domized cost-balancing policy RB is at most three times the expected cost of an optimal policy

OPT , i.e.,
E[C (RB)]≤ 3 ·E[C (OPT )]. (19)
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It should be noted that our analysis remains valid for nonstationary Kt (i.e., αKt+1 ≤Kt as is

commonly assumed in the literature). Again, without loss of generality, assume that the discount

factor α= 1. One can show that, similar to (16), the expected borrowing

E [A]≤E

[

T−L
∑

t=1

Kt ·1(Q
OPT
t > 0)

]

. (20)

The idea is that the expected borrowing of the RB policy from the problematic nodes within an

interval between ordering points of OPT does not exceed Kt with the assumption of decreasing

fixed ordering cost. The rest of arguments readily carries through.

5. Numerical Experiments

The randomized cost-balancing policies described above can be parameterized to obtain general

classes of policies, respectively. The worst-case analysis discussed above can then be viewed as

choosing parameter values that perform well against any possible instance. In contrast, find the

‘best’ parameter values, for each given instance. This gives rise to policies that have at least the same

worst-case performance guarantees, but are likely to work better empirically, since we can refine the

parameters according to the specific instance being solved. Using simulation based optimization,

we have implemented this approach and tested the empirical performance of the resulting policies.

The policies were tested under the model of advanced demand information proposed by Gallego

and Özer (2001) and Özer and Wei (2004). To the best of our knowledge, these are the few papers

that report computational results (by brute-force backward induction algorithm) on the stochastic

lot-sizing problem with correlated demands.

5.1. Parameterized policies.

We describe a class of parameterized policies involving parameters β, γ and η where β controls

the holding-cost-βK quantity, γ controls the ratio of marginal holding costs and backlogging costs

and η controls the level of expected backlogging cost resulting from not ordering.

• The balancing quantity q̂t that solves E[HRB
t (q̂t) | ft] = γ ·E[ΠRB

t (q̂t) | ft] := θt.

• The holding-cost-βK quantity q̃t that solves E[HRB
t (q̃t) | ft] = β ·K.
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• Compute E[ΠRB
t (q̃t) | ft], and η ·E[ΠRB

t (0) | ft].

(I) If θt ≥ β ·K, the RB policy orders qRB
t = q̂t with probability pt = 1 in period t.

(II) If θt <β ·K, the RB policy orders qRB
t = q̃t with probability pt and order nothing with proba-

bility 1−pt in period t, where the probability pt =
η ·E[ΠRB

t (0) | ft]

β ·K −E[ΠRB
t (q̃t) | ft] + η ·E[ΠRB

t (0) | ft]
.

Since T is relatively small, we also introduce an end-of-horizon rule. Suppose we are in period t,

we estimate the total expected cumulative backlogging cost (assuming no orders are placed) over

the interval [t, T ]. If this amount is less than K, we do not order in period t.

5.2. Experiment Design

Under advance information model, the demand vector in each period t is observed as Dt =

(Dt,t, . . . ,Dt,t+N) where Dt,s represents order placed by customers during period t for future peri-

ods s ∈ {t, . . . , t+N} and N is the length of the information horizon over which we have advance

demand information. Note that Dt is a random vector and is realized only at the end of period t.

At the beginning of period t, the demand to prevail in a future period s (s≥ t) can be divided into

two parts: the observed demand vector
∑t−1

r=s−N
Dr,s and the unobserved demand vector

∑s

r=t
Dr,s.

As a result, this introduces a correlation between period demands (however the conditional joint

distribution of the future demands is known in each period t). The state space of the proposed

dynamic programming formulation contains the inventory position and the observed demand vec-

tor which explodes exponentially with the length of the information horizon N when N >L+ 2.

Gallego and Özer (2001) verified some structural properties of the dynamic program via numerical

studies for a number of small instances. The experiments that we performed expand their numeri-

cal studies by incorporating non-zero lead times as well as longer planning horizons. Following the

methodology of Aviv and Federgruen (2001), we generated a total of 90 instances to test the qual-

ity of the randomized-balancing heuristics compared to the optimal cost. The instances we used

have the following combination of parameters: T = 12,15, L= 0,1,2, N = L+2, K = 0,5,50,100,

h = 1,2,3,6, p = 1,3,6,9 and (Dt,t,Dt,t+1,Dt,t+2) are modeled by Poisson random variables with

mean λ0, λ1, λ2.
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5.3. Algorithmic complexity

We describe the procedures of finding the optimal parameters for a specific instance of the problem.

First, assume that there exists a positive constant U such that the optimal parameters β∗, γ∗, η∗

are upper bounded by U . In addition, we discretize U with some step-size ∆, i.e., β,γ, η ∈ [0,U ]

can only take values as integer multiples of ∆. Then we conduct an exhaustive search on a cube of

U ×U ×U for the parameters β, γ and η. In our numerical studies, U = 10 and ∆= 0.1 are chosen

to be the upper bound and the resolution for discretization, respectively. The algorithm runs on

every point on this cube, simulates the cost of each parameterized policy and returns the best

possible (β∗, γ∗, η∗) that minimize the cost. Secondly, assume that there exists a positive constant

Û that serves an upper bound on the balancing and hold-cost-K quantities. For each t= 1, . . . , T ,

the complexity for evaluating marginal holding cost is O(T ) and the complexity for carrying out

bisection search is O(log Û). The algorithm runs in O(T 2 log Û), for each set of parameters (β, γ,

η). Hence, the algorithm that returns both the optimal parameters and the lowest cost runs in

O(U 3∆−3T 2 log Û) ≈ O(T 2) since U 3∆−3 log Û is some positive constant. For all tested instances

with T = 12, the average CPU time per test instance on a Pentium 1.58GHz PC is 233s. In contrast,

the dynamic programming algorithm takes 1840s on average per test instance.

5.4. Numerical results

The numerical results with (T,L) = (12,0), (T,L) = (12,2) and (T,L) = (15,0) are tabulated in

Table EC.1, Table EC.2 and Table EC.3, respectively (refer to Electronic Companion). The (∗) in

both tables indicates that the designated parameters can take arbitrary numbers without affecting

the optimal values of the parameterized policy. It is observed that (β∗, η∗) = (∗,∗) in all instances

where K = 0, since the holding-cost-β∗K quantity is trivially 0 and therefore the algorithm only

considers the balancing quantities. In some instances where K is relatively large and the holding-

cost-β∗K quantity is near-optimal, it is observed that γ∗ = (∗) implying that the algorithm only

orders the holding-cost-β∗K quantities. For the rest of instances, the algorithm uses both the

balancing quantity and the holding-cost-K quantity.
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In the case where L = 0, on average the parameterized RB policy performs within 4.6% and

always within 7% of the optimal cost for T = 12,15. The numerical results show that the per-

formance of the parameterized RB policy is insensitive to the planning horizon T . Moreover, the

optimal parameters in the parameterized RB policy are intuitive: β controls the quantity of each

order; γ controls the ratio in which the marginal holding cost is balanced against the marginal

backlogging cost; η controls the weight put on the do-nothing backlogging cost resulted from not

ordering. The optimal η∗ = 9 coincides with the ratio of p to h, which implies that more weight

should be put on backlogging cost so that the ordering probability can be increased. The optimal

γ∗ = 2 suggests that the marginal holding cost should be twice the backlogging cost. The optimal β∗

is close to 1 when K is large, implying that using the holding-cost-K quantity is near optimal. The

unparameterized RB policy (i.e., (β,γ, η) = (1,1,1)) performs on average within 27% and always

within 50% error of optimal cost, which is significantly better than the theoretical worst-case per-

formance guarantee of 3. The cost ratio is observed to be decreasing in the magnitude of fixed

ordering cost K. In the case where L= 2, the parameterized RB policy performs on average within

10% and always within 16% error of the optimal cost. The optimal parameters are similar to those

in L= 0. The deviation from the optimal cost is resulted from stocking more inventory units by

the RB policy, as the lead time induces more uncertainty in future demands. The unparameterized

RB policy performs within 50% (on average 29%) error of optimal cost. It is also noted that the

average CPU time of running the RB policy is insensitive to the planning horizon T .
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Electronic Companion

EC.1. Proofs of Technical Lemmas and Theorems

LEMMA 1. Let C (RB) be the total cost incurred by the RB policy. Then we have,

E[C (RB)]≤ 3 ·
T−L
∑

t=1

E[ZRB
t ]. (EC.1)

Proof of Lemma 1. Using the marginal cost accounting in Equation (4) and standard arguments

of conditional expectations, we express

E[C (RB)] =
T−L
∑

t=1

E[HRB
t (QRB

t )+ΠRB
t (QRB

t )+K ·1(QRB
t > 0)] (EC.2)

=
T−L
∑

t=1

E
[

E[HRB
t (QRB

t )+ΠRB
t (QRB

t )+K ·1(QRB
t > 0) | Ft]

]

=
T−L
∑

t=1

E[2ZRB
t +PtK]≤ 3

T−L
∑

t=1

E[ZRB
t ].

The third equality follows directly from (11). To establish the first inequality in (EC.2) above, we

shall show that Zt ≥ PtK almost surely. That is, for each ft ∈ Ft, zt ≥ ptK. Given any information

set ft, all the quantities xt, θt, ψt, φt and pt defined above are known deterministically. We split

the analysis into two cases:

1. If θt ≥K, then qRB
t = q̂t (the balancing quantity) with probability pt = 1 implying zt = θt ≥K.

The claim follows.

2. If θt <K, then qRB
t = q̃t (the holding-cost-K quantity) with probability pt and q

RB
t = 0 with

1− pt. Thus, by Equations (8) and (9), we have zt = ptK, and the claim follows.

This concludes the proof of the lemma. �

LEMMA 2. The overall holding cost and backlogging cost incurred by OPT are denoted by HOPT

and ΠOPT , respectively. Then we have, with probability 1,

HOPT ≥
∑

t

HRB
t ·1(t∈T1H

⋃

T2H), ΠOPT ≥
∑

t

ΠRB
t ·1(t∈T1Π

⋃

T2Π). (EC.3)

Proof of Lemma 2. The proof is identical to Lemmas 4.2 and 4.3 in Levi et al. (2007). �

ec1
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LEMMA 3. The expected holding cost and backlogging cost incurred by OPT plus the expected amount

borrowed from the bank account A are at least
∑T−L

t=1 E[ZRB
t ]. That is, The following inequality

holds

E
[(

HOPT +ΠOPT
)

+A
]

≥

T−L
∑

t=1

E[ZRB
t ]. (EC.4)

Proof of Lemma 3. Using linearity of expectation, it suffices to show

E
[

HOPT +ΠOPT
]

≥

T−L
∑

t=1

E
[

1(t∈TN) ·Z
RB
t

]

. (EC.5)

Using Lemma 2 and standard arguments of condition expectations, we have

E[HOPT ] ≥ E

[

∑

t

HRB
t ·1(t∈T1H

⋃

T2H)

]

(EC.6)

= E

[

E

[

∑

t

HRB
t ·1(t∈T1H

⋃

T2H) | Ft

]]

= E

[

∑

t

ZRB
t ·1(t∈T1H

⋃

T2H)

]

.

Similarly, we also have

E[ΠOPT ] ≥ E

[

∑

t

ZRB
t ·1(t∈T1Π

⋃

T2Π)

]

. (EC.7)

Equation (EC.5) follows from summing up Equations (EC.6) and (EC.7). �

LEMMA 4. The following inequality holds

E [A]≤E

[

T−L
∑

t=1

K ·1(QOPT
t > 0)

]

. (EC.8)

In other words, the expected borrowing E[A] is less than the total expected fixed ordering cost

incurred by OPT .

Proof of Lemma 4. First we define the reduced information set f−

t to be the information up to

period t excluding the randomized decisions of the RB policy over [1, t−1]. In particular, given the

entire evolution of demand f−

T , the sequence of orders placed by OPT is known deterministically.

Let 1≤ t1 < t2 < . . . < tn ≤ T −L be the periods in which OPT placed n= n | f−

T orders sequentially.

Let t0 = 0 and tn+1 = T −L+1. We shall show that there are no problematic periods within (t0, t1)

and that, for each i= 1, . . . n, the expected borrowing within the interval [ti, ti+1) does not exceed

K. That is,
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(t0, t1)
⋂

T2M = ∅, (EC.9)

E





∑

t∈[ti,ti+1)
⋂

T2M

ZRB
t | f−

T



 ≤ K. (EC.10)

It is important to note that f−

T does not include the randomized decisions of the RB policy.

Thus, the set T2M is still random and so is the amount borrowed from the bank. In particular,

the expectation in Equation (EC.10) is taken with respect to the randomized decisions of the RB

policy. Equations (EC.10) and (EC.9) imply that, for each f−

T ,

E





∑

t∈T2M

ZRB
t | f−

T



≤K ·n | f−

T =K ·n, (EC.11)

and therefore

E[A]≤K ·E[N ] =E

[

T−L
∑

t=1

K ·1(QOPT
t > 0)

]

. (EC.12)

Thus, it suffices to prove Equations (EC.10) and (EC.9). Figure EC.1 gives a graphical interpre-

tation of Equation (EC.10), i.e., we want to show that the fixed ordering cost K incurred by OPT

in period ti will cover the expected amount borrowed from the bank in periods that belong to set

T2M within the interval [ti, ti+1).

Figure EC.1 Decomposition of the problematic periods in the set T2M into intervals between ordering points of

OPT

Proof of Equation (EC.9). We first show that Equation (EC.9) holds. Recall the definition T2M =
{

t : Θt <K and XRB
t <Y OPT

t ≤XRB
t + Q̃RB

t

}

. Since at the beginning of the planning horizon, it

is assumed that every feasible policy will have the same initial inventory position, it follows that

if period t is in T2M , OPT must have placed an order and overtaken the inventory position of the

RB policy. (The two policies face the same sequence of demands.) However, (t0, t1) denotes the set

of periods in which OPT has not placed any order yet. Thus, the intersection of these two sets is

empty.
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Proof of Equation (EC.10). Next we show that Equation (EC.10) holds. Recall that f−

T denotes

an entire evolution of the system excluding the randomized decisions of the RB policy. Given the

entire evolution of demands f−

T , construct a decision tree based on the randomized decisions of the

RB policy. The root node corresponding to period 1 contains the information set f1 = f−

1 ∈ f−

T .

The tree is built in layers, each corresponding to a period, where the number of nodes in layer

t is 2t−1 numbered l = 1, . . . ,2t−1. In particular, a node l in period (layer) t corresponds to some

information set ft ∈ Ft which includes the realized reduced information set f−

t ⊆ f−

T , and the

realized randomized decisions up to period t− 1 of the RB policy. Therefore it is known whether

under this state period t belongs to the set T2M or not.

The edges in the tree represent the different (randomized) decisions that the RB policy may

make with their respective probabilities. Each path from the root to a specific node corresponds to

a sequence of realized randomized ordering decisions made by the RB policy. For example, consider

again some node l in period (layer) t in which the RB policy will order q̃RB
tl units with probability

ptl and nothing with probability 1 − ptl; then the node l in period t (denoted by tl) will have

two edges to two children nodes in the next period t+ 1 each containing its distinctive ordering

information. Conceptually one can think about the decision tree as a collection of independent

coins, each corresponding to a node in the tree. The coin corresponding to node l at layer (period)

t has probability of success (ordering) ptl.

Next we partition the nodes in the tree into problematic nodes (pn nodes), i.e., nodes that

correspond to a pair (t, ft) for which t∈T2M , and non-problematic nodes (nn nodes). An example

of a general decision tree is illustrated in Figure EC.2.

Focus now on a specific time interval [ti, ti+1). Suppose we have constructed the tree from period

1 to T ; the number of nodes and paths are clearly finite (possibly exponential). Let the set G to be

the set of all possible outcomes of the randomized decisions in all nodes in layers within the interval

[1, ti − 1] and in all the nn nodes within the interval [1, T ]. In particular, each g ∈ G corresponds

to a specific set of outcomes in all nodes in layers (periods) within the interval [1, ti − 1] and in

all the nn nodes in the tree. Using the terminology of coins proposed before, g corresponds to the



e-companion to Levi and Shi: Approximation Algorithms for the Stochastic Lot-sizing Problem with Order Lead Times ec5

Figure EC.2 An example of a general decision tree

outcome of the respective subset of coins corresponding to all nodes within [1, ti − 1] and all nn

nodes within [1, T ].

Conditioning on some g ∈ G induces a path from the root of the tree (in period 1) up to the

earliest pn node, say j, where j corresponds to the period (layer) of that node. Here we abuse the

notation ignoring the index of the node within layer j. (Namely, the exact value will be je for some

e.) It is straightforward to see that j ≥ ti. If j falls outside the interval [ti, ti+1), i.e., j ≥ ti+1, it

follows that there are no pn nodes within the interval [ti, ti+1), and there is no borrowing over the

interval. Assume now that j falls within the interval [ti, ti+1) (j can possibly be in period (layer)

ti). We will show that the expected borrowing does not exceed K. That is,

E





∑

s∈[j,ti+1)
⋃

T2M

ZRB
s | f−

T , g



≤K. (EC.13)

The proof of Equation (EC.10) will then follow.

Recall that node j corresponds to some information set fj ∈Fj . It follows that the starting inven-

tory position xRB
j and the corresponding holding-cost-K quantity q̃RB

j are known deterministically.

Conditioning on g, the only uncertainty in the evolution of the system depends on the randomized

decisions made in pn nodes within [j, ti+1). Consider the sub-tree induced by conditioning on g. The
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Figure EC.3 An example of a decision subtree: focus on the interval [ti, ti+1) and some g ∈ G , j is the earliest

period in which a problematic node (pn) occurs. According to g, there are two possible outcomes

whenever a problematic node (pn) is reached, and there is only one possible outcome whenever a

non-problematic node (nn) is reached. If a problematic node (pn) orders, there will not be further

borrowing until the next order of OPT in period ti+1.

non-problematic nodes (nn nodes) in the sub-tree have only one outgoing edge that corresponds to

the decision (order/no-order) specified by g to that node. The problematic nodes (pn nodes) have

two outgoing edges corresponding to the order/no-order decisions, respectively. (Recall that g does

not specify the decisions in these nodes.) Moreover, each pn node s∈ [j, ti+1) is associated with the

probability ps of ordering. (We again abuse the notation introduced before and omit the index e

of the node within the layer/period.) An example of a decision subtree specified by some g ∈ G is

illustrated in Figure EC.3. Any sequence of randomized outcomes corresponding to the decisions

in the pn nodes induces a path of evolution of the system. The resulting cumulative borrowing

from the bank account A, corresponding to this path, is equal to K times the sum of probabilities

associated with the pn nodes in this path. (For each pn node s in the path, the borrowing is equal

to psK = zs.)

Next we claim that the sub-tree defined above includes at most one pn node in each layer (period).
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This follows from the fact that any path between two pn nodes r, s such that j ≤ r < s < ti+1 in

the tree includes only no-ordering edges of pn nodes. To see why the latter is true, observe that

if an order is placed by the RB policy in a pn node, the resulting inventory position of the RB

policy is higher than OPT . Since both policies face the same sequence of demands, the RB policy

will not have higher inventory position than OPT at least until the next order placed by OPT .

This excludes the existence of pn nodes in subsequent periods until OPT places another order, i.e.,

beyond period ti+1 − 1.

In light of the latter observation, we re-number all the pn nodes in the sub-tree as 1,2, . . . ,M

(where 1 corresponds to j, specified before). Moreover, it follows that the probability to arrive at

node m = 1, . . . ,M and borrow pmK is equal to
∏m−1

s=1 (1− ps). (This probability corresponds to

no-ordering decisions in all the pn nodes prior to m.) The total expected borrowing is then

K ·

{

p21 +
M
∑

m=2

{(

m−1
∏

s=1

(1− ps)

)

pm

(

m
∑

k=1

pk

)}}

. (EC.14)

Observe that the probability to borrow exactly K ·
∑m

k=1 pk is equal to
(

∏m−1

s=1 (1− ps)
)

pm. More-

over, we have already shown that the expression in (EC.14) is bounded above by K (see Lemma

5). This concludes the proof of the lemma. �

LEMMA 5. Let {pl}
∞

l=1 satisfy the condition 0≤ pl ≤ 1 for all l. Then the following inequality holds,

p21 +
∞
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

≤ 1. (EC.15)

Proof of Lemma 5. We construct an increasing sequence {am} where

am = p21 +
m
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

. (EC.16)

For each m, if we replace pm by 1, we get

ām = p21 +
m−1
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

+

(

m−1
∏

s=1

(1− ps)

)(

1+
m−1
∑

k=1

pk

)

, (EC.17)

such that am ≤ ām. Next we will show by induction that ām ≤ 1 for all m from which the proof of
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the lemma follows. It is straightforward to verify ā1, ā2 ≤ 1. Assume that ām ≤ 1 for some m∈Z
+,

we will show that ām+1 ≤ 1.

ām+1 = p21 +
m
∑

l=2

{(

l−1
∏

s=1

(1− ps)

)

pl

(

l
∑

k=1

pk

)}

+

(

m
∏

s=1

(1− ps)

)(

1+
m
∑

k=1

pk

)

(EC.18)

= am−1 +

(

m−1
∏

s=1

(1− ps)

)

pm

(

m
∑

k=1

pk

)

+

(

m
∏

s=1

(1− ps)

)(

1+
m
∑

k=1

pk

)

= am−1 +

(

m−1
∏

s=1

(1− ps)

)[(

1+
m
∑

k=1

pk

)

(1− pm)+ pm

m
∑

k=1

pk

]

= am−1 +

(

m−1
∏

s=1

(1− ps)

)(

1+
m−1
∑

k=1

pk

)

= ām ≤ 1.

Hence the claim follows by induction. �

EC.2. Performance of the proposed algorithms

The first two columns specify the test instances, namely, fixed ordering cost K, per-unit holding

cost h, per-unit backlogging cost p and demand rate vector λ. The third column shows the cost

incurred by the optimal policy. The fourth column shows the optimal parameters of parametrized

RB policy. The fifth column shows the cost incurred by the parameterized RB policy. The sixth

column shows the cost ratio of the parameterized RB policy to the optimal policy. The seventh

column shows the cost of unparameterized RB policy (i.e., the original policy without parameter

optimization). The eighth columns shows the cost ratio of the unparameterized RB policy to the

optimal policy.
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Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (λ0, λ1, λ2) OPT (β∗, γ∗, η∗) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 46.85 (*,2,*) 49.18 1.0497 58.30 1.2444
(0,1,9) (4,1,2) 46.39 (*,2,*) 49.30 1.0627 55.24 1.1908
(0,1,9) (4,1,1) 46.20 (*,2,*) 47.81 1.0348 54.26 1.1745
(0,1,9) (3,1,2) 41.02 (*,2,*) 41.41 1.0095 49.40 1.2043
(0,1,9) (2,1,3) 32.88 (*,2,*) 34.42 1.0468 41.51 1.2625
(0,1,9) (1,1,4) 24.74 (*,2,*) 26.40 1.0671 31.40 1.2692

(5,1,9) (4,1,1) 102.66 (0.2,2,9) 108.28 1.0547 135.37 1.3186
(5,1,9) (1,1,4) 86.47 (0.2,2,9) 90.70 1.0489 128.70 1.4884

(5,1,1) (4,1,1) 71.35 (0.4,1,1) 75.42 1.0570 84.13 1.1791

(100,1,9) (5,1,0) 427.81 (0.9,*,9) 451.68 1.0558 605.10 1.4144
(100,1,9) (4,1,1) 424.81 (0.9,*,9) 449.65 1.0585 601.29 1.4154
(100,1,9) (3,1,2) 421.76 (0.9,*,9) 443.12 1.0506 595.10 1.4110
(100,1,9) (2,1,3) 418.63 (0.9,*,9) 443.64 1.0597 611.48 1.4607
(100,1,9) (1,1,4) 415.49 (0.8,*,9) 437.36 1.0526 618.36 1.4883
(100,1,9) (0,1,5) 412.29 (0.8,*,9) 435.65 1.0567 593.88 1.4404

Table EC.1 Numerical results with lead time L= 0 and finite horizon T = 12.

Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (λ0, λ1, λ2) OPT (β∗, γ∗, η∗) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 93.81 (*,2,*) 98.32 1.0481 120.14 1.2807
(0,1,9) (4,1,2) 88.27 (*,2,*) 94.25 1.0677 108.24 1.2262
(0,1,9) (4,1,1) 85.48 (*,2,*) 90.21 1.0553 93.97 1.0993
(0,1,9) (3,1,2) 80.04 (*,2,*) 89.73 1.1211 90.40 1.1294
(0,1,9) (2,1,3) 73.98 (*,1.5,*) 84.42 1.1411 90.99 1.2625
(0,1,9) (1,1,4) 70.96 (*,1.5,*) 81.40 1.1471 87.60 1.2345

(5,1,9) (4,1,1) 137.66 (0.2,2,9) 153.97 1.1185 161.10 1.1703
(5,1,9) (1,1,4) 121.47 (0.2,2,9) 140.26 1.1525 148.47 1.2223

(5,1,1) (4,1,1) 78.18 (0.4,1,1) 90.42 1.1566 97.47 1.2467

(100,1,9) (5,1,0) 434.30 (0.9,*,9) 479.03 1.1030 614.17 1.4142
(100,1,9) (4,1,1) 431.87 (0.9,*,9) 466.33 1.0798 611.96 1.4170
(100,1,9) (3,1,2) 429.41 (0.9,*,9) 453.24 1.0555 551.00 1.2832
(100,1,9) (2,1,3) 426.86 (0.9,*,9) 451.17 1.0570 644.13 1.5090
(100,1,9) (1,1,4) 424.25 (0.9,*,9) 466.43 1.0994 623.56 1.4698
(100,1,9) (0,1,5) 421.56 (0.9,*,9) 461.65 1.0951 595.40 1.4124

Table EC.2 Numerical results with lead time L= 2 and finite horizon T = 12.
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Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (λ0, λ1, λ2) OPT (β∗, γ∗, η∗) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 57.71 (*,2,*) 58.23 1.0090 61.92 1.0730
(0,1,9) (4,1,2) 57.71 (*,2,*) 58.36 1.0113 60.94 1.0560
(0,1,9) (4,1,1) 57.71 (*,2,*) 58.30 1.0102 60.38 1.0463
(0,1,9) (3,1,2) 50.19 (*,2,*) 51.49 1.0259 53.62 1.0683
(0,1,9) (2,1,3) 41.27 (*,2,*) 41.96 1.0167 43.63 1.0572
(0,1,9) (1,1,4) 30.55 (*,2,*) 30.88 1.0108 31.66 1.0363

(5,1,9) (4,1,1) 128.17 (0.2,2,9) 133.91 1.0448 166.10 1.2959
(5,1,9) (1,1,4) 101.70 (0.2,2,9) 107.34 1.0555 148.85 1.4636

(5,1,1) (4,1,1) 86.07 (0.4,1,1) 90.51 1.0516 104.24 1.2111

(100,1,9) (5,1,0) 535.14 (1.1,*,9) 566.23 1.0581 663.61 1.2401
(100,1,9) (4,1,1) 533.51 (1.1,*,9) 570.65 1.0696 659.29 1.2358
(100,1,9) (3,1,2) 529.77 (1.1,*,9) 566.09 1.0686 682.76 1.2888
(100,1,9) (2,1,3) 523.94 (1.1,*,9) 555.57 1.0604 729.15 1.3917
(100,1,9) (1,1,4) 520.03 (1.0,*,9) 550.36 1.0583 744.45 1.4316
(100,1,9) (0,1,5) 516.05 (1.0,*,9) 550.65 1.0670 711.22 1.3782

Table EC.3 Numerical results with lead time L= 0 and finite horizon T = 15.
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