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Abstract

Mobile ad hoc networks are frequently modeled by unit disk graphs. We consider
several classical graph theoretic problems on unit disk graphs (Maximum Independent
Set, Minimum Vertex Cover, and Minimum (Connected) Dominating Set), which are
relevant to such networks.

We propose two new notions for unit disk graphs: thickness and density. The thickness
of a graph is the number of disk centers in any width 1 slab. If the thickness of a graph is
bounded, then the considered problems can be solved in polynomial time. We prove this
both indirectly by presenting a relation between unit disk graphs of bounded thickness and
the pathwidth of such graphs, and directly by giving dynamic programming algorithms.
This result implies that the problems are fixed-parameter tractable in the thickness.

We then consider unit disk graphs of bounded density. The density of a graph is the
number of disk centers in any 1-by-1 box. We present a new approximation scheme for
the considered problems, which uses the bounded thickness results mentioned above and
the so called shifting technique. We show that the scheme is an asymptotic FPTAS and
that this result is optimal, in the sense that no FPTAS can exist (unless P=NP). The
scheme for Minimum Connected Dominating Set is the first FPTAS∞ for this problem.
The analysis that is applied can also be used to improve existing results, which among
others implies the existence of an FPTAS∞ for MCDS on planar graphs.

1 Introduction

Mobile ad hoc networks are the next generation in communication networks. Devices can
enter or leave the network anytime, devices can be mobile, and no centralized control points
or base stations are necessary. This flexibility makes mobile ad hoc networks very interesting
for the consumer and military market, but also makes them more complex than many existing
wireless networks (such as GSM). The distinct properties of mobile ad hoc networks have given
rise to various new problems and challenges. These can be very practical (such as message
routing) and theoretical.

This paper focusses on the more theoretical aspects of mobile ad hoc networks and con-
siders a graph model for such networks. As will be shown, a mobile ad hoc network can be
naturally modeled as a so called (unit) disk graph. Each node in such a graph has a disk
around it containing all points reachable by that node. The intersections of these disks then
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2 1 INTRODUCTION

determine the edges of the graph. As these graphs have a nice geometric interpretation, we
may hope that classical graph theoretic problems that are relevant for mobile ad hoc networks
(such as Maximum Independent Set and Minimum (Connected) Dominating Set) are easier to
solve or approximate than they are on general graphs. We show that by making some realistic
assumptions about this geometric interpretation, various new properties and algorithms can
be found, which improve on known results.

1.1 Preliminaries

Unit disk graphs are a special kind of (geometric) intersection graphs. Hence, we first define
these graphs.

Definition 1.1 Let S be a set of geometric objects. Then the graph G = (V,E), where each
vertex corresponds to an object in S and two vertices are connected by an edge if and only if
the two corresponding objects intersect, is called an intersection graph. The graph G is said
to be realized by S.

In this definition, tangent objects are assumed to intersect. We can now formally define (unit)
disk graphs. Denote by ci ∈ R2 the center and by ri the radius of a disk Di.

Definition 1.2 A graph G is a disk graph if and only if there exists a set of disks D =
{Di | i = 1, . . . , n}, such that G is the intersection graph of D. The set of disks is called a
disk representation of G.

A disk graph can be given without its disk representation. In this case, it is assumed each
vertex knows the vertices adjacent to it. However, knowing a disk representation can help to
more efficiently solve problems on disk graphs.

Definition 1.3 A graph G is a unit disk graph if and only if G is a disk graph and the radii
of a set of disks realizing G are equal.

Usually the common radius is 1, but often it is assumed to be 1
2 . Note that any common

radius can be obtained by scaling D appropriately.
We use the following notation.

Notation 1.4 Let G = (V,E) be a disk graph with disk representation D = {Di | i =
1, . . . , n}. For a vertex v ∈ V , we denote the corresponding disk in D by Dv, its center
by cv, and its radius by rv. For a disk center ci of some disk in D, we denote the vertex v ∈ V
corresponding to that disk by v(ci).

Observe that (unit) disk graphs are a good model for mobile ad hoc networks. Each node of
the network corresponds to a disk center and the transmission range of a node corresponds
to the radius of the disk. In a unit disk graph, all nodes are assumed to have the same
transmission range.

We also define the various approximation scheme types considered in this paper.

Definition 1.5 Let P be a maximization (minimization) problem. Then an algorithm A is a

• polynomial-time approximation scheme (PTAS) for P if and only if for any instance x of
P and for any (fixed) ε > 0, A(x, ε) runs in time polynomial in |x| and delivers a feasible
solution with value SOLx,ε, such that SOLx,ε ≥ (1− ε)OPTx (SOLx,ε ≤ (1 + ε)OPTx).
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• fully polynomial-time approximation scheme (FPTAS) for P if and only if for any
instance x of P and for any ε > 0, A(x, ε) runs in time polynomial in |x| and 1

ε
and delivers a feasible solution with value SOLx,ε, such that SOLx,ε ≥ (1 − ε)OPTx

(SOLx,ε ≤ (1 + ε)OPTx).

• asymptotic fully polynomial-time approximation scheme (FPTAS∞) for P if and only
if for any instance x of P and for any ε > 0, A(x, ε) runs in time polynomial in
|x| and 1

ε and delivers a feasible solution with value SOLx,ε. If |x| > cε, then also
SOLx,ε ≥ (1− ε)OPTx (SOLx,ε ≤ (1 + ε)OPTx).

Finally, we define fixed-parameter tractability, following Downey and Fellows [19].

Definition 1.6 Let 〈x, k〉 be an instance of a parameterized problem P , with parameter k ∈ N.
Then P is fixed-parameter tractable (FPT) if and only if there exists an algorithm that
delivers a feasible solution for 〈x, k〉 in running time O(f(k) poly(|x|)) for all x, where f is
an arbitrary function and poly(|x|) is an arbitrary polynomial in |x|.

Note that a fixed-parameter tractable problem can be solved in polynomial time, given any
fixed k.

1.2 Problem definitions

We consider various classical optimization problems on graphs, relevant to (unit) disk graph
models of mobile ad hoc networks.

Definition 1.7 Let G = (V,E) be a graph. A set S ⊆ V is an independent set if and only if
there are no u, v ∈ S, such that (u, v) ∈ E. A set S ⊆ V is a vertex cover if and only if for
each (u, v) ∈ E it holds that u ∈ S or v ∈ S.

Observe that an independent set is the complement of a vertex cover (and vice versa) [22].
Furthermore, we are usually looking for a maximum independent set and a minimum vertex
cover. An independent set is maximum if and only if there is no independent set of greater
size. A similar definition holds for minimum vertex cover.

In the context of mobile ad hoc networks, an independent set of a (unit) disk graph can be
seen as a set of nodes that can transmit simultaneously without signal interferences. Vertex
covers are mostly interesting from a theoretical point of view.

Definition 1.8 Let G = (V,E) be a graph. A set S ⊆ V is a dominating set if and only if
for each vertex v either v ∈ S or there exists a vertex u ∈ S for which (u, v) ∈ E.

Definition 1.9 Let G = (V,E) be a graph. A set S ⊆ V is a connected dominating set if
and only if S is a dominating set and the subgraph of G induced by S (G[S] = (S, (S×S)∩E))
is connected.

A dominating set in a mobile ad hoc network can be seen as a set of emergency transmitters
capable of reaching every node in the network, or as central nodes in node clusters. A
connected dominating set can be used as a backbone for easier and faster communications.
The problem is to find a minimum (connected) dominating set.
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1.3 Previous work

All problems mentioned above are NP-hard for general graphs (see Garey and Johnson [22]).
Since (unit) disk graphs are a restricted class of graphs with a nice geometric interpretation,
one might hope that these problems are better solvable. Unfortunately, Clark, Colbourn, and
Johnson [16] proved these problems to be NP-hard on (unit) disk graphs as well. Therefore,
most research has focussed on approximation algorithms.

For all considered problems on unit disk graphs, simple constant factor approximation
algorithms exist. Minimum Independent Set for instance can be approximated within a factor
of 5 using a simple greedy algorithm [34]. This algorithm simply chooses an arbitrary vertex
to put in the independent set, removes that vertex and its neighbors from the graph and then
repeats. If the leftmost vertex (i.e. the vertex corresponding to the leftmost disk center)
is chosen instead, the algorithm improves to a 3-approximation algorithm [34]. On general
disk graphs, choosing the vertex with the smallest disk radius results in a 5-approximation
algorithm [34]. Marathe et al. [34] have a detailed description of these algorithms. They also
propose constant factor approximation algorithms for Minimum Vertex Cover and Minimum
(Connected) Dominating Set on unit disk graphs. Malesińska [33] gives an approximation
algorithm for Minimum Vertex Cover on general disk graphs.

Agarwal and Mustafa [2] provide a more general approach and consider the intersection
graph of a set S of convex 2D objects. If κ is the size of the maximum independent set of this
graph, their algorithm returns an independent set of size (κ/(2 log(2n/κ)))

1
3 in O(n3 + τ(S))

time, where τ(S) is the time necessary to compute the left- and rightmost point of each object
and test which objects intersect. Clearly, a set of disks is a set of convex 2D objects and hence
their result also holds for (unit) disk graphs.

Several polynomial time approximation schemes exist as well [14, 21, 26, 35, 37, 38]. Most
of these schemes have in common that they use the so called shifting technique. This is
a general technique, independently discovered by Baker [6] and Hochbaum and Maass [25].
The basic idea is the following. A set of regularly spaced separators is used to decompose
the problem into smaller, easier solvable subproblems. The solutions of the subproblems are
merged to form a solution to the global problem. This is repeated for several placements of the
separator set. The best solution over these placements is then selected as an approximation
of the optimum. Moving the separator set can be regarded as shifting the set through the
problem. Hence the name ‘shifting technique’.

Since its discovery, the shifting technique has been used to solve various problems [1, 4,
21, 23, 26, 27, 30]. In the context of (unit) disk graphs, Matsui [35] and Hunt et al. [26]
presented the first PTAS’s using the shifting technique. Matsui gives a PTAS for Maximum
Independent Set on unit disk graphs. Hunt et al. [26] propose a different PTAS for Maximum
Independent Set and use similar ideas to construct a PTAS for Minimum Vertex Cover and
Minimum Dominating Set on unit disk graphs. Erlebach, Jansen, and Seidel [21] extend these
ideas to give a PTAS for Maximum Independent Set and Minimum Vertex Cover on general
disk graphs. Chan [14] presents a PTAS for Maximum Independent Set on the intersection
graph of a set of fat objects. Under the used definition, a set of disks is fat. Hence the
presented scheme is a PTAS for Maximum Independent Set on disk graphs.

Nieberg, Hurink, and Kern [37, 38] give a robust PTAS for Maximum Independent Set
and Nieberg and Hurink [39] a robust PTAS for Minimum Dominating Set on unit disk graphs
for which no disk representation is given. A robust algorithm on unit disk graphs solves the
problem correctly for every unit disk graph. For graphs that are not unit disk graphs, the
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algorithm may either produce the correct output for the problem, or provide a certificate that
the input is not a unit disk graph.

The relation between the fixed-parameter tractability of some problems and the possibility
of creating PTASs and FPTAS∞s exploiting this has been used before, most notably by Baker
[6] for planar graphs. Demaine and Hajiaghayi [18] look at a more general class of graphs,
namely minor-closed graphs of locally bounded treewidth. Hunt et al. [26] consider λ-precision
unit disk graphs in which the distance between any two disk centers is at least λ. We will
discuss these results in more detail in Section 4.

Finally, we consider results for the Minimum Connected Dominating Set. Marathe et al.
[34] present a 10-approximation algorithm. A significant amount of work has been done on
distributed approximation algorithms for minimum connected dominating sets, because of
their practical use as a communication backbone. Wan, Alzoubi, and Frieder [43] present an
O(n log n) message and O(n) time complexity algorithm with approximation factor 8. This
is later improved by Cardei et al. [13] to O(n deg) message complexity, where deg is the
maximum degree of the graph. Butenko et al. [12] demonstrate a heuristic which outperforms
most approximation algorithms in practice. Cheng et al. [15] gave the first known PTAS for
Minimum Connected Dominating Set on unit disk graphs. Demaine and Hajiaghayi [18] use
the same proof-technique to give a PTAS on planar graphs and an almost-PTAS on minor
closed graphs of locally bounded treewidth.

1.4 Organization

This paper is organized as follows. In Section 2, we propose a new notion for unit disk graphs,
called thickness. The thickness of a unit disk graph is the maximum number of disk centers
in a width 1 slab. Given a decomposition of the graph into slabs of bounded thickness, we
show that Maximum Independent Set, Minimum Dominating Set, and Minimum Connected
Dominating Set can be solved optimally in polynomial time. We prove this both directly
by using a slab decomposition, and indirectly by demonstrating a relation between unit disk
graphs of bounded thickness and the pathwidth of such graphs.

In Section 3, these techniques are applied in a new approximation algorithm for the studied
optimization problems. We again introduce a new notion for unit disk graphs, called density,
which is the maximum number of disk centers in a 1-by-1 grid square. We propose a new
approximation scheme for unit disk graphs of bounded density, which improves on existing
algorithms. Then we provide a discussion section to see how these schemes relate to existing
results.

2 Thickness

Throughout this paper, we assume we are given a unit disk graph G = (V,E) with a known
disk representation D = {(ci, ri) | i = 1, . . . , n}. Furthermore, all disks in D are assumed to
have radius 1

2 .
The thickness of a unit disk graph1 is determined by a disk representation of that graph.

To define the thickness of a representation, we first need the notion of a slab decomposition.

1The notion we use differs from existing notions of thickness in graph theory, such as described by Harary
[24] and Eppstein [20].
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Figure 1: An arbitrary set of disks decomposed into slabs. The angle with
the x-axis is α and one slab boundary goes through p. The grey disk center is
on a slab boundary and hence in the right slab (marked with an arrow).

Definition 2.1 Let 0 ≤ α < π be an angle and p an arbitrary point in the plane. Partition
the plane using an infinite set of parallel lines, such that the distance between two neighboring
lines is 1, each line intersects the x-axis at angle α, and (exactly) one line goes through p. The
lines are called slab boundaries, and the area between any two neighboring slab boundaries is
called a slab. The width of each slab is 1.

Observe that the partitioning of the plane imposed by the slabs remains the same after a
rotation of π around p. Hence 0 ≤ α < π is sufficient.

Definition 2.2 Given a partition of the plane into slabs, a disk (ci, ri) is considered to be in
a given slab if its center ci is between the two slab boundaries defining the slab. If a center
lies on a slab boundary, then the disk is considered to belong to the slab to the right of the slab
boundary. The slabs decompose D into mutually exclusive, but collectively exhaustive subsets.
This decomposition is called the slab decomposition s = 〈α, p〉 of D.

See Figure 1 for a visual explanation of this definition.

Definition 2.3 A slab decomposition of a unit disk graph G is the slab decomposition of any
disk representation D of G. Furthermore, let Y1, Y2, . . . , Yb be subsets of V , such that Yj

contains those vertices corresponding to disk centers of D in the j-th non-empty slab of s.

In other words, Y1, . . . , Yb contain the vertices of the b ≤ n non-empty slabs of s. For
convenience, we assume there also exist three ‘dummy’ slabs Y−1, Y0, and Yb+1, which are all
empty. Observe that vertices in Yj (1 ≤ j ≤ b) can only have edges to vertices in Yj−1, Yj , and
Yj+1, as the disks have diameter 1 and slabs have width 1. Also note that Y1 ∪ · · · ∪ Yb = V
and Yj ∩ Yk = ∅ for all 1 ≤ j, k ≤ b (j 6= k).

Using slab decompositions, we can define thickness.
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Definition 2.4 The thickness t(D, s) of a slab decomposition s of D is the maximum number
of disk centers of D in any slab of s. The thickness t(G, s) of a slab decomposition s of a
unit disk graph G with disk representation D is equal to t(D, s).

For example, the thickness of the slab decomposition shown in Figure 1 is 5.
In the above definitions, we have specified a slab decomposition by a tuple 〈α, p〉, where

p is an arbitrary point in the plane. We can however ‘move’ the decomposition to the right
until there is at least one disk center that intersects a slab boundary. Clearly, this move does
not affect the thickness of the decomposition. Hence, for our purposes, we can fully specify a
slab decomposition by a tuple 〈α, cs〉, where cs is the center of a disk in D.

Also note that given a slab decomposition 〈α, cs〉, we can easily obtain an equivalent
decomposition in which the slab boundaries are perpendicular to the x-axis. To ensure the
thickness remains the same, we apply the following transformation matrix to the centers of
all disks.

Tα = rotate(1
2π − α) =

 cos(1
2π − α) − sin(1

2π − α) 0
sin(1

2π − α) cos(1
2π − α) 0

0 0 1

 (1)

We now consider the set of all slab decompositions with some angle α, denoted by sα. Using
the specification proposed above, we derive that sα = {〈α, ci〉 | ci is a disk center in D}.

Definition 2.5 The thickness tα of D is defined as tα(D) = maxs∈sα t(D, s). Futhermore,
let αmin be an angle such that for all angles α, tαmin(D) ≤ tα(D).

The definition of the thickness tα states that it is the maximum thickness of all slab de-
compositions having angle α. Then αmin is the angle for which this maximum thickness is
minimal.

Definition 2.6 Let s∗ = 〈α∗, c∗s〉 be a slab decomposition of D such that for all (other) slab
decompositions s of D, t(D, s∗) ≤ t(D, s). Let t∗ = t(D, s∗).

This definition defines t∗ as the minimum thickness of any slab decomposition of D. An
interesting proposition regarding t∗ and tαmin is the following.

Proposition 2.7 tαmin ≤ 2t∗

Proof: Consider s∗ = 〈α∗, c∗s〉. For a slab decomposition s ∈ sα∗ , any slab of s can overlap
with at most 2 slabs of s∗. Hence t(D, s) ≤ 2t(D, s∗), and thus tα

∗ ≤ 2t∗. The proposition
now follows from the definition of tαmin .

The thickness of a slab decomposition of a graph can be computed in polynomial time. We
simply rotate the slab decomposition and the disk centers such that the slab boundaries are
perpendicular to the x-axis. Furthermore, we translate such that one slab boundary intersects
the origin. Then it is straightforward to count the number of disk centers in each slab. The
minimum thickness t∗ and tα can also be computed in polynomial time by exhaustively
enumerating all relevant positions for a slab decomposition [29].
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2.1 Relation to pathwidth

Given a slab decomposition of minimum thickness, we can prove an upper bound on the
pathwidth of a unit disk graph. For completeness, we first define path decompositions and
pathwidth.

Definition 2.8 (Robertson and Seymour [40]) A path decomposition of a graph G =
(V,E) is a sequence (X1, X2, . . . , Xp) of subsets of V (called bags) such that

1.
⋃

1≤i≤p Xi = V ,

2. for all (v, w) ∈ E, there is an i (1 ≤ i ≤ p) such that v, w ∈ Xi,

3. for all i, j, k with 1 ≤ i < j < k ≤ p: Xi ∩Xk ⊆ Xj.

The width of a path decomposition (X1, X2, . . . , Xp) is max1≤i≤p |Xi| − 1.

Informally, we can rephrase the requirements of a path decomposition as follows: the bags
collectively exhaust V , for each edge e ∈ E there must be a bag that contains both endpoints
of e, and for each vertex v ∈ V , if v ∈ Xi and v ∈ Xk for i < k, then v must also be in Xj for
each j with i < j < k. Each graph G = (V,E) trivially has at least one path decomposition,
namely (V ).

Definition 2.9 The pathwidth of a graph G = (V,E) is the minimum width of any path
decomposition of G.

Now let G again be a unit disk graph with disk representation D.

Lemma 2.10 Given an angle α (0 ≤ α < π), there exists a path decomposition of G of width
at most 2tα − 1 and consisting of at most 2n bags. If no edge (u, v) ∈ E exists for which
|Tα(cu)x − Tα(cv)x| = 1, then there exists a path decomposition for G of width at most tα − 1
and consisting of at most 2n bags.

Proof: Consider a slab of width 1 intersecting the x-axis at angle α. Position the slab such
that it only contains the leftmost disk center cl, i.e. Tα(cl)x is minimal (see Figure 2). Set
X1 = {cl} and j = 2.

Now ‘slide’ the slab to the right (i.e. in direction α− 1
2π) until a disk center ci intersects the

left or right boundary of the slab. If ci intersects the right boundary, set Xj = Xj−1∪{v(ci)}
and j ← j + 1. If ci intersects the left boundary, set Xj = Xj−1\{v(ci)} and j ← j + 1.
If disk centers intersect the right and left boundary simultaneously, we treat disk centers
intersecting the right boundary first. This ensures that for edges of length 1, there will be
an Xj containing both endpoints. We continue sliding the slab to the right until all vertices
have been in the slab, ending with j = p + 1 for some p.

We claim that (X1, . . . , Xp) is a path decomposition of G. Requirements 1 and 2 of
Definition 2.8 are obviously satisfied. Because we slide the slab to the right, insert a vertex
when it intersects the right boundary, and only remove it after it intersects the left boundary
of the slab, the third requirement is also fulfilled. Hence (X1, . . . , Xp) is a path decomposition
of G.

The width of (X1, . . . , Xp) is max1≤j≤p |Xj | − 1. To determine the width, consider a
position of the slab in which its left boundary intersects some disk center ci. Then the size of



2.1 Relation to pathwidth 9

Figure 2: The grey disk center is the leftmost disk center. The slab is posi-
tioned such that it only contains this disk center. The arrow shows the direction
in which to slide the slab.

the corresponding bag Xj at this position of the slab is at most t(D, 〈α, ci〉) plus the number
of disk centers intersecting the right boundary of the slab. Thus the size of Xj is at most
2t(D, 〈α, ci〉). Then

max
1≤j≤p

|Xj | − 1 ≤ max
1≤i≤n

2t(D, 〈α, ci〉)− 1 = 2tα − 1

Hence the width of (X1, . . . , Xp) is at most 2tα − 1. Because each vertex enters and leaves
the bags once, the number of bags is at most 2n.

Note that this analysis is tight. A trivial example in which the width of any path decom-
position is at least 2tα − 1 can be obtained by putting tα disk centers on the left boundary
of the slab, and tα disk centers on the right boundary at distance 1 (see Figure 3). Clearly,
such an example can indeed be constructed and has a clique containing 2tα vertices. Hence
the pathwidth must be at least 2tα − 1.

Now consider the case for which there exists no edge (u, v) ∈ E for which |Tα(cu)x −
Tα(cv)x| = 1. Observe that the example of Figure 3 cannot occur. Furthermore, during the
construction of X1, . . . , Xp, we know that for any disk center intersecting the right boundary,
the corresponding vertex cannot have an edge to a vertex corresponding to a disk center that
intersects the left boundary. Therefore, while sliding the slab to the right, we can treat disk
centers intersecting the left boundary before those intersecting the right boundary, without
violating requirement 2 on path decompositions. It is easy to see that the resulting path
decomposition now has width at most tα − 1 and consists of at most 2n bags.

A corollary of this lemma is that 2tαmin−1 is an upper bound on the pathwidth of G. If αmin

is such that no edge (u, v) ∈ E exists for which |Tαmin(cu)x − Tαmin(cv)x| = 1, then tαmin − 1
is an upper bound on the pathwidth of G.

Using the sliding slab technique proposed above, a path decomposition as indicated in
Lemma 2.10 can be constructed in O(n log n) time [29].
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Figure 3: The two disk centers are repeated tα times at the same position.
This induces a clique of 2tα vertices. Hence the pathwidth of induced graph is
at least 2tα − 1.

2.2 Solving problems

We have shown how to transform an optimum slab decomposition into a path decomposi-
tion. A path decomposition can be used to solve many classical optimization problems on
graphs. This includes, but is not limited to, the problems focussed on in this paper. If the
pathwidth of a graph is pw, then Maximum Independent Set and Minimum Vertex Cover
can be solved in O(2pwn) time, Minimum Dominating Set in O(3pwn) time, and Minimum
Connected Dominating set in O(pwpwn) time [3, 11, 18, 42].

These algorithms, however, are designed for general graphs, and we are considering unit
disk graphs. Therefore there might be more efficient algorithms. In this section, we show that
for unit disk graphs, a slab decomposition can be used to solve the optimization problems
directly, without first creating a path decomposition. This results in less complex and faster
algorithms. To demonstrate the advantages of a slab decomposition of a unit disk graph,
we show how to use it to solve Maximum Independent Set, Minimum Dominating Set and
Minimum Connected Dominating Set optimally.

2.2.1 Maximum Independent Set

To solve optimization problems using a slab decomposition, we will use dynamic programming.
Recall from Definition 2.3 that Yj contains those vertices corresponding to disk centers of D
in the j-th non-empty slab of s. For the maximum independent set problem, we can use the
following ‘subproblem optimality principle’.

Proposition 2.11 For some j (1 ≤ j ≤ b + 1), let Wj be a subset of Yj. If there exists a
maximum independent set IS of Y0 ∪ · · · ∪ Yj such that IS ∩ Yj = Wj, then there exists a
maximum independent set IS′ of Y0∪· · ·∪Yj−1 such that IS′∪Wj = IS and IS′ is independent
of Wj.

Because a vertex in Yj can only have edges to vertices in Yj−1, Yj , or Yj+1, the requirement
in this proposition that IS′ is independent of Wj implies that Wj−1 = IS′ ∩ Yj−1 must be
independent of Wj . This leads to Algorithm 2.1 for computing a maximum independent set
of G.
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1. Set size0(∅) = 0 and solution0(∅) = ∅
2. for j ← 1 to b + 1
3. do for each Wj ⊆ Yj

4. do sizej(Wj) = −∞; solutionj(Wj) = ∅
5. for each Wj−1 ⊆ Yj−1

6. do if Wj ∪Wj−1 is an independent set
7. then if |Wj |+ sizej−1(Wj−1) > sizej(Wj)
8. then sizej(Wj)← |Wj |+ sizej−1(Wj−1)
9. solutionj(Wj)←Wj ∪ solutionj−1(Wj−1)

10. fi
11. fi
12. od
13. od
14. od
15. return (sizeb+1(∅), solutionb+1(∅))

Algorithm 2.1: SlabDecompositionMIS(G, Y1, . . . , Yb)

Lemma 2.12 Algorithm 2.1 computes a maximum independent set of a unit disk graph with
thickness t in O(t222tn) time.

Proof: We prove the lemma by induction on the value of sizej and solutionj . The value
of sizej(Wj) will be the size of a maximum independent set IS of Y0 ∪ · · · ∪ Yj such that
IS ∩ Yj = Wj . This independent set is stored in solutionj(Wj). If no such independent set
exists, then we store sizej(Wj) = −∞ and solutionj(Wj) = ∅. Note that this can occur if and
only if Wj itself is not an independent set. Hence checking if sizej(Wj) = −∞ is equivalent
to checking whether Wj is an independent set.

Trivially, size0 and solution0 are correctly computed by the algorithm. Now inductively
assume that for some j ≥ 1, sizej−1 and solutionj−1 have been correctly computed by the
algorithm. Consider the set Yj and let Wj be an arbitrary subset of Yj . As was already
noted, vertices in Yj can only have edges to vertices in Yj−1, Yj , or Yj+1. So if Wj ∪Wj−1

is an independent set for some Wj−1 ⊆ Yj−1, then clearly Wj ∪ solutionj−1(Wj−1) must be
an independent set for Y0 ∪ · · · ∪ Yj . As the algorithm will remember the subset Wj−1 of
Yj−1 for which Wj ∪ Wj−1 is an independent set and |Wj | + sizej−1(Wj−1) is maximum,
by the subproblem optimality principle (Proposition 2.11), sizej(Wj) and solutionj(Wj) will
be correct for j. Thus by induction, we have proved that sizej and solutionj are correctly
computed.

It is easy to see that sizeb+1(∅) is the size of the maximum independent set of G and
that this set is stored in solutionb+1(∅). Hence the algorithm correctly computes a maximum
independent set of G.

The time bound is easy to prove. Because b ≤ n, the outer for-loop is executed at most
n + 1 times. For each of the at most 2t subsets of Yj and for each of the at most 2t subsets
of Yj−1, the algorithm checks for independence. This can be done in O(t2) time, as each
subset contains at most t vertices. Assuming table look-ups can be done in constant time,
the resulting total running time of the algorithm is O(t222tn).
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Because the complement of a maximum independent set of a graph G is a minimum vertex
cover of G, we immediately have the following corollary.

Corollary 2.13 A minimum vertex cover of a unit disk graph with thickness t can be com-
puted in O(t222tn) time.

2.2.2 Minimum Dominating Set

For the minimum dominating set problem on unit disk graphs we can use a similar approach
as in the previous section. For some set W ⊆ V , we denote the vertices in Yj dominated by
W as Dj(W ). Furthermore, given a dominating set DS, we denote DS restricted to slab j
(DS ∩Yj) by Aj , the vertices in slab j dominated by Aj or Aj−1 (Dj(Aj)∪Dj(Aj−1)) by Bj ,
and the vertices dominated by Aj+1 (Dj(Aj+1)) by Cj . We will always ensure that Aj , Bj ,
and Cj are mutually exclusive, but collectively exhaust Yj .

We will use the following subproblem optimality principle.

Proposition 2.14 For some j (1 ≤ j ≤ b + 1), let Aj , Bj be subsets of Yj (Aj ∩Bj = ∅). If
there exists a minimum dominating set DS ⊆ Y−1 ∪ · · · ∪ Yj for Y−1 ∪ · · · ∪ Yj−1 ∪ Bj such
that DS ∩ Yj = Aj, then there exists a minimum dominating set DS′ ⊆ Y−1 ∪ · · · ∪ Yj−1 with
Aj−1 = DS′∩Yj−1, such that DS′∪Aj = DS, Dj(Aj−1) ⊇ Bj−Dj(Aj), and DS′ dominates
(Y−1 ∪ · · · ∪ Yj−2) ∪ (Yj−1 −Aj−1 −Dj−1(Aj)).

A straightforward implementation would use exhaustive enumeration on both Aj and Bj

(and of course Aj−1). Then the running time would be approximately O(t223tn), which
makes it slower than the algorithm developed in the previous paragraph. To improve on this
naive algorithm, we observe that Proposition 2.14 states that Dj(Aj−1) can be a superset of
Bj−Dj(Aj). This observation can be exploited, such that we can use exhaustive enumeration
on just Aj and Aj−1, followed by a post-processing step with exhaustive enumeration on Aj

and Bj . This is shown in Algorithm 2.2.

Lemma 2.15 Algorithm 2.2 computes a minimum dominating set of a unit disk graph with
thickness t in O(t222tn) time.

Proof: We prove this again by induction on the value of sizej and solutionj . The value of
sizej(Aj , Bj) will be the size of a minimum dominating set DS ⊆ Y−1∪ · · · ∪Yj of Y−1∪ · · · ∪
Yj−1 ∪Bj such that DS ∩Yj = Aj . This dominating set DS is stored in solutionj(Aj , Bj). If
no such dominating set exists, then we store sizej(Aj , Bj) =∞ and solutionj(Aj , Bj) = ∅.

Trivially, size0 and solution0 are correctly computed by the algorithm. Now inductively
assume that for some j ≥ 1, sizej−1 and solutionj−1 have been correctly computed by
the algorithm. Consider the set Yj and let Aj be an arbitrary subset of Yj . Let Aj−1

be an arbitrary subset of Yj−1. Then let Bj = Dj(Aj) ∪ Dj(Aj−1) − Aj and set Cj−1 =
Dj−1(Aj)−Aj−1. Now let Bj−1 = Yj−1−Aj−1−Cj−1 be the remaining vertices of slab j−1.

By induction, sizej−1(Aj−1, Bj−1) must be the size of a minimum dominating set DSj−1 ⊆
Y−1 ∪ · · · ∪ Yj−1 for Y−1 ∪ · · · ∪ Yj−2 ∪Bj−1 with Yj−1 ∩DSj−1 = Aj−1, or it has value ∞. If
sizej−1(Aj−1, Bj−1) has value∞, then by definition no such dominating set exists, and we do
not have to update any data structures. Otherwise, solutionj−1(Aj−1, Bj−1) ∪Aj must be a
dominating set for Y−1∪ · · · ∪Yj−1∪Bj . Hence if sizej−1(Aj−1, Bj−1)+ |Aj | < sizej(Aj , Bj),
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1. Set size0(∅, ∅) = 0 and solution0(∅, ∅) = ∅
2. for j ← 1 to b + 1
3. do for each Aj ⊆ Yj

4. do for each Bj ⊆ Yj −Aj

5. do sizej(Aj , Bj) =∞
6. solutionj(Aj , Bj) = ∅
7. od
8. od
9. for each Aj ⊆ Yj

10. do for each Aj−1 ⊆ Yj−1

11. do Let Bj = Dj(Aj) ∪Dj(Aj−1)−Aj ,
Cj−1 = Dj−1(Aj)−Aj−1, and
Bj−1 = Yj−1 −Aj−1 − Cj−1

12. if sizej−1(Aj−1, Bj−1) 6=∞ and
|Aj |+ sizej−1(Aj−1, Bj−1) < sizej(Aj , Bj)

13. then sizej(Aj , Bj) = |Aj |+ sizej−1(Aj−1, Bj−1)
14. solutionj(Aj , Bj) = Aj ∪ solutionj−1(Aj−1, Bj−1)
15. fi
16. od
17. od
18. for each Aj ⊆ Yj

19. do for each Bj ⊆ Yj −Aj (in order of descending |Bj |)
20. do for each v ∈ Bj

21. do if sizej(Aj , Bj) < sizej(Aj , Bj\{v})
22. then sizej(Aj , Bj\{v})← sizej(Aj , Bj)
23. solutionj(Aj , Bj\{v})← solutionj(Aj , Bj)
24. fi
25. od
26. od
27. od
28. od
29. return (sizeb+1(∅, ∅), solutionb+1(∅, ∅))

Algorithm 2.2: SlabDecompositionMDS(G, Y1, . . . , Yb)
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we found a (smaller) dominating set for Y−1 ∪ · · · ∪ Yj−1 ∪ Bj and can update sizej(Aj , Bj)
and solutionj(Aj , Bj). This ensures we minimize sizej(Aj , Bj).

After we have finished the computation for all subsets Aj−1 of Yj−1, we have a lot of
values of sizej and solutionj . Now consider sizej(Aj , Bj) for some Bj ⊆ Yj − Aj . Using
the observation we made earlier, we deduce that Dj(solutionj(Aj , Bj)) can be a superset of
Bj −Dj(Aj). In other words, it never hurts to dominate more of Yj than just Bj −Dj(Aj),
as long as the size of the dominating set does not increase. This implies that for an arbitrary
set B′

j ⊆ Yj − Aj , sizej(Aj , B
′
j) should have a value if and only if there exists a set Bj ⊇ B′

j

for which a value for sizej(Aj , Bj) has been computed.
Obviously, it would be rather inefficient to enumerate all possible supersets of each B′

j .
Therefore we turn the argument around. If for some Bj ⊆ Yj−Aj , sizej(Aj , Bj) is an improve-
ment over sizej(Aj , Bj\{v}) for some v ∈ Bj , then we rather use solutionj(Aj , Bj) to domi-
nate Y−1∪· · ·∪Yj−1∪Bj\{v}. Hence we update sizej(Aj , Bj\{v}) and solutionj(Aj , Bj\{v}).
To ensure the correctness of the computation, we process the Bj ’s in order of descending |Bj |.

According to the subproblem optimality principle (Proposition 2.14), this must result in
(the size of) a minimum dominating set DS ⊆ Y−1 ∪ · · · ∪ Yj of Y−1 ∪ · · · ∪ Yj−1 ∪ Bj such
that DS ∩ Yj = Aj . This holds for any Aj ⊆ Yj . Thus by induction, we have proved that
sizej and solutionj are correctly computed.

It is easy to see that sizeb+1(∅, ∅) is the size of a minimum dominating set of G and that
this set is stored in solutionb+1(∅, ∅). Hence the algorithm correctly computes a minimum
dominating set of G.

The time bound is easy to prove. Because b ≤ n, the outer for-loop is executed at most
n+1 times. For each of the at most 2t subsets Aj of Yj and for each of the at most 2t subsets
Aj−1 of Yj−1, the algorithm computes the sets of Yj and Yj−1 dominated by Aj and Aj−1.
This can be done in O(t2) time. Hence the first phase of the algorithm costs O(t222tn) time.

For the second phase, we observe there are

t∑
i=0

(
t

i

)
2t−i

possible combinations for Aj ⊆ Yj and Bj ⊆ Yj−Aj . Using the binomial theorem, we deduce

t∑
i=0

(
t

i

)
2t−i =

t∑
i=0

(
t

i

)
2t−i1i = 3t .

For each v ∈ Bj , we might update the values of sizej(Aj , Bj) and solutionj(Aj , Bj). This can
be done in O(t2) time. As 3t ≤ 22t, the second phase of the algorithm costs O(t222tn) time
as well. Assuming table look-ups can be done in constant time, the resulting total running
time of the algorithm is O(t222tn).

2.2.3 Minimum Connected Dominating Set

To solve the minimum connected dominating set problem for unit disk graphs of bounded
thickness, we build on the solution of the minimum dominating set problem. We start again
by looking for a subproblem optimality principle. We observe that the subset of a minimum
connected dominating set on slabs 1 to j is not necessarily connected. Therefore we need to
define another problem, which can be solved slab by slab, but at the end still results in a
minimum connected dominating set.
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The problem we will solve is the minimum partial connected dominating set problem.

Definition 2.16 For each j (1 ≤ j ≤ b + 1), a set pCDSj ⊆ Y−1 ∪ · · · ∪ Yj is a partial
connected dominating set of Y−1 ∪ · · · ∪ Yj−1 ∪ Bj with Bj ⊆ Yj if and only if pCDSj is a
dominating set for Y−1 ∪ · · · ∪ Yj−1 ∪Bj and either C ∩ Yj 6= ∅ for each connected component
C of pCDSj, or j ≥ b and pCDSj is connected.

Note that the definition enforces that pCDSb+1 is a connected dominating set. Because Yb+1

is empty, C ∩ Yj = ∅ for any connected component C of pCDSb+1. Therefore pCDSb+1

must be connected and thus it is a connected dominating set. Vica versa, for any connected
dominating set CDS of G, the set CDS ∩ (Y−1 ∪ · · · ∪ Yj) is a partial connected dominating
set of Y−1 ∪ · · · ∪ Yj−1, for each 1 ≤ j ≤ b + 1.

The minimum partial connected dominating set problem is to compute a partial connected
dominating set for G of minimum size. Observe that this problem is equivalent to computing
a minimum connected dominating set of G. However, because partial connected dominating
sets are less strict, the minimum partial connected dominating set problem can be solved slab
by slab. The important property of a partial connected dominating set pCDSj we will use is
the fact that any connected component of pCDSj intersects the j-th slab. In a slab-by-slab
dynamic programming algorithm, this ensures the constructed set will become a connected
dominating set. However, remembering the connected components of each considered partial
connected dominating set is challenging.

To simplify the exposition of the solution to this challenge, we introduce some new notions.
For each connected component Ci (1 ≤ i ≤ Kj) of a partial connected dominating set, we
denote Ci ∩ Yj by Ai

j and let Aj = A1
j ∪ · · · ∪ A

Kj

j . We observe that the sets A1
j , . . . , A

Kj

j

are mutually exclusive and also not connected to each other. This implies that a connected
component of Aj cannot be ‘distributed’ over two sets Ai

j and Al
j (1 ≤ i < l ≤ Kj). Hence

each set Ai
j must be the union of one or more connected components of Aj . We call Aj =

A1
j ∪ · · · ∪A

Kj

j the front of the partial connected dominating set.
Consider partial connected dominating sets pCDSj and pCDSj−1. They are called com-

patible if and only if pCDSj−1 = pCDSj ∩ (Y−1 ∪ · · · ∪ Yj−1). If pCDSj and pCDSj−1 are
compatible, this implies that each connected component of pCDSj−1 is either still a con-
nected component in pCDSj , or has merged with one or more other connected components
of pCDSj−1 to form a connected component of pCDSj . But then there must be a relation
between the front of pCDSj and the front of pCDSj−1. So let Aj = A1

j ∪ · · · ∪ A
Kj

j and

Aj−1 = A1
j−1 ∪ · · · ∪A

Kj−1

j−1 be the front of respectively pCDSj and pCDSj−1. The two fronts
are called compatible if and only if either j = b+1 and Kj−1 ≤ 1, or j ≤ 1, or j = b, Kj−1 = 1,
and Aj = ∅, or each Ai

j−1 is connected to exactly one Ak
j , with 1 ≤ i ≤ Kj−1 and 1 ≤ k ≤ Kj .

We now give a formal proof of the relation between the compatibility of the fronts and the
compability of the partial connected dominating sets.

Proposition 2.17 The fronts of pCDSj and pCDSj−1 are compatible if pCDSj and pCDSj−1

are compatible.

Proof: Suppose pCDSj and pCDSj−1 are compatible. If j ≤ 1, then the two fronts are
trivially compatible. If j = b + 1, then Yj = ∅ and thus pCDSj = pCDSj−1. Because pCDSj

must be connected, pCDSj−1 must also be connected. This implies that Kj−1 ≤ 1. Hence
the two fronts are compatible.
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If j = b and pCDSj = pCDSj−1, then Aj = ∅. Furthermore, pCDSj must be connected
and thus pCDSj−1 consists of exactly one connected component C. Because pCDSj−1 is a
partial connected dominating set, C ∩ Yj−1 6= ∅. Hence Kj−1 = 1. Therefore the two fronts
are compatible.

If j = b and pCDSj 6= pCDSj−1, then Aj 6= ∅. If pCDSj is connected or C ∩ Yj 6= ∅ for
each connected component C of pCDSj , then each Ai

j−1 is connected to at least one Ak
j , with

1 ≤ i ≤ Kj−1 and 1 ≤ k ≤ Kj .
If j < b, then C ∩ Yj 6= ∅ for each connected component C of pCDSj and thus each Ai

j−1

is connected to at least one Ak
j as well, with 1 ≤ i ≤ Kj−1 and 1 ≤ k ≤ Kj .

Now we note that if an Ai
j−1 connects to Ak

j and Al
j , with 1 ≤ i ≤ Kj−1 and 1 ≤ k <

l ≤ Kj , then Aj would not be a correct front, because Ak
j and Al

j should have been joined.
Therefore each Ai

j−1 is connected to exactly one Ak
j , with 1 ≤ i ≤ Kj−1 and 1 ≤ k ≤ Kj .

Hence the two fronts must be compatible.

Proposition 2.18 Let pCDSj−1 be a partial connected dominating set with front Aj−1 =
A1

j−1∪· · ·∪A
Kj−1

j−1 and let Aj = A1
j ∪· · ·∪A

Kj

j be a possible front compatible with Aj−1. Then
pCDSj = pCDSj−1 ∪ Aj is a partial connected dominating set compatible with pCDSj−1 if
pCDSj is a dominating set for Y−1 ∪ · · · ∪ Yj−1 ∪Bj, for some set Bj ⊆ Yj.

Proof: Suppose pCDSj is a dominating set for Y−1 ∪ · · · ∪ Yj−1 ∪Bj , for some set Bj ⊆ Yj .
If j = b + 1 and Kj−1 ≤ 1, then pCDSj−1 must be connected and Aj = ∅. Hence pCDSj is
a partial connected dominating set. If j ≤ 1, then C ∩ Yj 6= ∅ for each connected component
C of pCDSj is certainly true. So pCDSj is a partial connected dominating set. If j = b,
Kj−1 = 1, and Aj = ∅, then pCDSj−1 is connected. Then pCDSj must also be connected
and thus is a partial connected dominating set. If each Ai

j−1 is connected to exactly one Ak
j ,

with 1 ≤ i ≤ Kj−1 and 1 ≤ k ≤ Kj , then trivially C∩Yj 6= ∅ for each connected component C
of pCDSj . Therefore pCDSj must be a partial connected dominating set. The compatibility
of pCDSj with pCDSj−1 follows straightforwardly.

In a dynamic programming algorithm, we are clearly only interested in compatible partial
connected dominating sets. Hence we can use the following subproblem optimality principle.

Proposition 2.19 For some j (1 ≤ j ≤ b + 1), let Aj = A1
j ∪ · · · ∪ A

Kj

j and Bj be subsets
of Yj (Aj ∩ Bj = ∅). If there exists a minimum partial connected dominating set pCDSj ⊆
Y−1 ∪ · · · ∪ Yj for Y−1 ∪ · · · ∪ Yj−1 ∪ Bj such that (A1

j , . . . , A
Kj

j ) is the front of pCDSj, then
there exists a minimum partial connected dominating set pCDSj−1 ⊆ Y−1 ∪ · · · ∪ Yj−1 with
Aj−1 = A1

j−1 ∪ · · · ∪ A
Kj−1

j−1 the front of pCDSj−1, such that pCDSj−1 ∪ Aj = pCDSj (i.e.
pCDSj and pCDSj−1 are compatible) , Dj(Aj−1) ⊇ Bj −Dj(Aj), and pCDSj−1 dominates
(Y−1 ∪ · · · ∪ Yj−2) ∪ (Yj−1 −Aj−1 −Dj−1(Aj)).

Recall that Dj(S) is the subset of Yj dominated by S.
Proposition 2.17 and Proposition 2.18 have shown that we can use the compatibility of

the fronts to test the compatibility of the partial connected dominating sets themselves. This
observation can be exploited in the dynamic programming algorithm.

As mentioned before, we will adapt the algorithm for Minimum Dominating Set. We
use the same enumeration strategy, but now we also have to consider all possible compatible
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fronts. So given subsets Aj and Aj−1 of respectively Yj and Yj−1, we have to enumerate
all compatible fronts A1

j , . . . , A
Kj

j and A1
j−1, . . . , A

Kj−1

j−1 , such that Aj = A1
j ∪ · · · ∪ A

Kj

j and

Aj−1 = A1
j−1 ∪ · · · ∪ A

Kj−1

j−1 . We already noted that each set Ai
j−1 (Al

j) of a front must be
the union of one or more connected components of Aj−1 (Aj). This reduces to amount of
enumeration work.

A good strategy would be to simply enumerate all possible partitions of the connected
components of Aj and Aj−1.

Definition 2.20 Let S be a finite set. Then S1, . . . , Sp is called a partition of S if and only
if Si ∩ Sj = ∅ for each 1 ≤ i < j ≤ p and

⋃p
i=1 Si = S.

In other words, a partition of S is a decomposition of S into mutually exclusive, but collectively
exhaustive subsets. This is exactly what we need. Unfortunately, the number of possible
partitions of an m-element set is $m, the m-th Bell number (named for E.T. Bell [9, 10]).
Lovász [32] proves that $m is approximately m−1/2[λ(m)]m+1/2eλ(m)−m−1, where λ(m) is
a function such that λ(m) ln λ(m) = m [44]. Hence $m is Θ(( m

log m)m). As |Aj | ≤ t and
|Aj−1| ≤ t, this could imply a running time of O(22t( t

log t)
2tn) for the dynamic programming

algorithm. While this is polynomial if t is O( log n
log log n), the running time is far of the O(t222tn)

algorithms we have seen before.
To reduce the running time, we observe that we are only interested in so called non-crossing

partitions of the connected components of Aj and Aj−1.

Definition 2.21 Let S be a finite set and ≺ a partial ordering on these elements. Then
S1, . . . , Sp is a non-crossing partition of S if and only if S1, . . . , Sp is a partition of S and for
any i, j (1 ≤ i, j ≤ p, i 6= j) and any a, b ∈ Si and c, d ∈ Sj, a ≺ c ≺ b ≺ d is false.

Here we have a finite set of vertices. Given two vertices u, v, we define ≺ such that u ≺ v if
and only if cy

u < cy
v or cy

u = cy
v and cx

u < cx
v . We observe that for any two distinct connected

components C and C ′ of Aj , either u ≺ v for each u ∈ C, v ∈ C ′, or v ≺ u for each
u ∈ C, v ∈ C ′. If this would not be true, C and C ′ would be connected, which contradicts
that C and C ′ are distinct connected components.

Lemma 2.22 Given the above partial ordering ≺, it is sufficient to consider all non-crossing
partitions of the connected components of Aj and Aj−1.

Proof: Figure 4 shows four connected components of Aj . Under the partial ordering ≺,
a ∪ c, b ∪ d would be a crossing partition of these connected components (as shown in the
figure). Then, in any partial connected dominating set of Y−1 ∪ · · · ∪Yj with front a∪ c, b∪ d,
there must be at least one path from a to c and at least one path from b to d. Any pair of
such paths must intersect. Hence the front a ∪ c, b ∪ d is equivalent to the front a ∪ b ∪ c ∪ d,
which is non-crossing. Clearly, this holds for any crossing partition of any four connected
components of Aj . We observe that any partition of three or less connected components can
never be crossing. Therefore it suffices to consider only non-crossing partitions.

Non-crossing partition were first considered by Becker [7, 8]. See Simion [41] for numerous
applications of such partitions. Following Becker [8] and Kreweras [28], the number of non-
crossing partitions of an m-element set is Cm, the m-th Catalan number. It is well known
that Cm is O( 4m

m
√

m
) [45].
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Figure 4: Connected components a, b, c, and d are partitioned in a crossing
manner. Any path between a and c must intersect any path between b and d.

Figure 5: Non-crossing partition a, b of the connected components of Aj−1

induces the non-crossing partition 1, 2, 3 ∪ 4, 5 of the connected components
of Aj . Partition a ∪ b would induce 1, 2 ∪ 3 ∪ 4, 5. Connected components 1
and 5 should never be in the same set of the partition, because they are not
connected with vertices of the partial connected dominating set in slabs −1 to
j.
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Finally, suppose we are given a non-crossing partition A1
j−1, . . . , A

Kj−1

j−1 of the connected
components of Aj−1 as a front for pCDSj−1. Then this partition induces a unique compatible
front of Aj . In the induced partition A1

j , . . . , A
Kj

j , all connected components of Aj connected
to an Ai

j−1 (1 ≤ i ≤ Kj−1) are in the same Al
j , for some 1 ≤ l ≤ Kj , and for each connected

component of Aj not connected to a vertex in Aj−1, there is an Al
j containing just the vertices

of that connected component (see Figure 5). The reverse also holds, i.e. each non-crossing
partition of Aj induces a unique compatible non-crossing partition of Aj−1. We observe that
all relevant non-crossing partitions of Aj−1 will already be stored in the table maintained
by the dynamic programming algorithm. Therefore we do not actually have to explicitely
enumerate all non-crossing partitions, but can simply look them up in the table.

All these observations are used in Algorithm 2.3.

Lemma 2.23 Algorithm 2.3 computes a minimum connected dominating set of a unit disk
graph with thickness t in O(t224tn) time.

Proof: As before, we prove this by induction on the value of sizej and solutionj . The value
of sizej(Aj , Bj , (A1

j , . . . , A
Kj

j )) will be the size of a minimum partial connected dominating set
pCDSj ⊆ Y−1∪· · ·∪Yj , such that pCDSj dominates Y−1∪· · ·∪Yj−1∪Bj , pCDSj ∩Yj = Aj ,
and (A1

j , . . . , A
Kj

j ) is the front of pCDSj . This partial connected dominating set is stored in

solutionj(Aj , Bj , (A1
j , . . . , A

Kj

j )). If such a partial connected dominating set does not exist,

then sizej(Aj , Bj , (A1
j , . . . , A

Kj

j )) =∞ and solutionj(Aj , Bj , (A1
j , . . . , A

Kj

j )) = ∅.
Trivially, size0 and solution0 are correctly computed by the algorithm. Now inductively

assume that for some j ≥ 1, sizej−1 and solutionj−1 have been correctly computed by the
algorithm. Consider the set Yj and let Aj be an arbitrary subset of Yj . Let Aj−1 be an
arbitrary subset of Yj−1.

Next, let (A1
j−1, . . . , A

Kj−1

j−1 ) be an arbitrary, non-crossing partition of the connected com-
ponents of Aj−1. If there is a set Ai

j−1 (1 ≤ i ≤ Kj−1) not connected to a vertex of Aj , then
no partition of Aj can be a compatible front. Therefore we skip to the next non-crossing
partition of Aj−1.

Otherwise, let (A1
j , . . . , A

Kj

j ) be the non-crossing partition of the connected components

of Aj induced by (A1
j−1, . . . , A

Kj−1

j−1 ). Then let Bj = Dj(Aj)∪Dj(Aj−1)−Aj and set Cj−1 =
Dj−1(Aj)−Aj−1. Now let Bj−1 = Yj−1−Aj−1−Cj−1 be the remaining vertices of slab j−1.

By induction, sizej−1(Aj−1, Bj−1, (A1
j−1, . . . , A

Kj−1

j−1 )) must either be the size of a min-
imum partial connected dominating set pCDSj−1 ⊆ Y−1 ∪ · · · ∪ Yj−1, such that pCDSj−1

dominates Y−1 ∪ · · · ∪ Yj−2 ∪ Bj−1, pCDSj−1 ∩ Yj−1 = Aj−1, and (A1
j−1, . . . , A

Kj−1

j−1 ) is the

front of pCDSj−1, or it has value ∞. If sizej−1(Aj−1, Bj−1, (A1
j−1, . . . , A

Kj−1

j−1 )) has value ∞,
then by definition no such partial connected dominating set exists, and we do not have to
update any data structures.

Otherwise, by their construction, the two fronts (A1
j , . . . , A

Kj

j ) and (A1
j−1, . . . , A

Kj−1

j−1 ) are

compatible. Using Proposition 2.18, we know that solutionj−1(Aj−1, Bj−1, (A1
j−1, . . . , A

Kj−1

j−1 ))

∪Aj must be a partial connected dominating set for Y−1∪· · ·∪Yj−1∪Bj with front (A1
j , . . . , A

Kj

j ).

Hence if sizej−1(Aj−1, Bj−1, (A1
j−1, . . . , A

Kj−1

j−1 )) + |Aj | < sizej(Aj , Bj , (A1
j , . . . , A

Kj

j )) or par-

tition (A1
j−1, . . . , A

Kj−1

j−1 ) has not yet been considered for this Aj and Bj , then we update
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1. Set size0(∅, ∅, ∅) = 0 and solution0(∅, ∅, ∅) = ∅
2. for j ← 1 to b + 1
3. do for each Aj ⊆ Yj

4. do for each Aj−1 ⊆ Yj−1

5. do for each possible front (A1
j−1, . . . , A

Kj−1

j−1 )
6. do if there is an Ai

j−1 not connected to a vertex of Aj

7. then skip
8. Let Bj = Dj(Aj) ∪Dj(Aj−1)−Aj ,

Cj−1 = Dj−1(Aj)−Aj−1,
Bj−1 = Yj−1 −Aj−1 − Cj−1, and
(A1

j , . . . , A
Kj

j ) the front induced by (A1
j−1, . . . , A

Kj−1

j−1 )
9. if sizej−1(Aj−1, Bj−1, (A1

j−1, . . . , A
Kj−1

j−1 )) 6=∞ and

|Aj |+ sizej−1(Aj−1, Bj−1, (A1
j−1, . . . , A

Kj−1

j−1 )) <

sizej(Aj , Bj , (A1
j , . . . , A

Kj

j ))
10. then sizej(Aj , Bj , (A1

j , . . . , A
Kj

j )) =
|Aj |+ sizej−1(Aj−1, Bj−1, (A1

j−1, . . . , A
Kj−1

j−1 ))
11. solutionj(Aj , Bj , (A1

j , . . . , A
Kj

j )) =
Aj ∪ solutionj−1(Aj−1, Bj−1, (A1

j−1, . . . , A
Kj−1

j−1 ))
12. fi
13. od
14. od
15. od
16. for each Aj ⊆ Yj

17. do for each Bj ⊆ Yj −Aj (in order of descending |Bj |)
18. do for each possible front (A1

j , . . . , A
Kj

j )
19. do for each v ∈ Bj

20. do if sizej(Aj , Bj , (A1
j , . . . , A

Kj

j )) <

sizej(Aj , Bj\{v}, (A1
j , . . . , A

Kj

j ))
21. then sizej(Aj , Bj\{v}, (A1

j , . . . , A
Kj

j )) =
sizej(Aj , Bj , (A1

j , . . . , A
Kj

j ))
22. solutionj(Aj , Bj\{v}, (A1

j , . . . , A
Kj

j )) =
solutionj(Aj , Bj , (A1

j , . . . , A
Kj

j ))
23. fi
24. od
25. od
26. od
27. od
28. od
29. return (sizeb+1(∅, ∅, ∅), solutionb+1(∅, ∅, ∅))

Algorithm 2.3: SlabDecompositionMpCDS(G, Y1, . . . , Yb)
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sizej(Aj , Bj , (A1
j , . . . , A

Kj

j )) and solutionj(Aj , Bj , (A1
j , . . . , A

Kj

j )).
From the proof of Lemma 2.15, we know that the computed dominating set will indeed

have minimum size for each Aj , Bj , and (A1
j , . . . , A

Kj

j ). Thus, using the subproblem optimal-
ity principle (Proposition 2.19), the algorithm computes (the size of) a minimum partial con-
nected dominating set pCDSj ⊆ Y−1∪· · ·∪Yj , such that pCDSj dominates Y−1∪· · ·∪Yj−1∪Bj ,
pCDSj ∩ Yj = Aj , and (A1

j , . . . , A
Kj

j ) is the front of pCDSj . This holds for each Aj , Bj , and

(A1
j , . . . , A

Kj

j ). Therefore, by induction, we have proved that sizej and solutionj are correctly
computed.

As mentioned earlier, a partial connected dominating set for Y−1∪· · ·∪Yb+1 is a minimum
connected dominating set of G. Thus sizeb+1 will be the size of a minimum connected
dominating set of G and this set is stored in solutionb+1. Hence the algorithm correctly
computes a minimum connected dominating set of G.

Given our preceding discussions, the time bound is relatively easy to prove. Because
b ≤ n, the outer for-loop is executed at most n + 1 times. For each of the at most 2t

subsets Aj of Yj , for each of the at most 2t subsets Aj−1 of Yj−1, and for each of the at most
Ct non-crossing partitions of the connected components of Aj−1, the induced partition of the
connected components of Aj and the sets dominated by Aj and Aj−1 must be computed. This
can be done in O(t2) time. Furthermore, we must check if a partition (A1

j , . . . , A
Kj

j ) of Aj has
been considered before. Using a balanced search tree, this can be done in O(log Ct) = O(t)
time. Since Ct is O( 4t

t
√

t
) and all relevant partitions of Aj−1 are stored in the maintained

table, this part of the algorithm costs O(
√

t24tn) time.
In the post-processing phase, we can also use the partitions of Aj stored in the table.

There are at most 3t combinations of Aj ⊆ Yj and Bj ⊆ Yj −Aj . Given these sets and a non-
crossing partition of Aj , all computations and updates take at most O(t2) time. Therefore
this part requires O(t22(2+log 3)tn) time. Because 2(2+log 3)t ≤ 24t, the total running time of
the algorithm is O(t224tn).

2.2.4 Computational consequences

Consider Lemma 2.12, Corollary 2.13, Lemma 2.15, and Lemma 2.23. We can summarize the
results of this section as follows.

Theorem 2.24 Let G = (V,E) be a unit disk graph with known disk representation D and
minimum thickness t∗. Then Maximum Independent Set, Minimum Vertex Cover, and Min-
imum Dominating Set can be solved in O(t∗222t∗n) time. Minimum Connected Dominating
Set can be solved in O(t∗224t∗n) time.

Because the running times are of the form O(f(t∗) n), we have the following corollary.

Corollary 2.25 Maximum Independent Set, Minimum Vertex Cover, and Minimum (Con-
nected) Dominating Set are fixed parameter tractable (in t∗) for unit disk graphs with a known
disk representation.

Proof: This follows immediately from Theorem 2.24 and Definition 1.6.

Note that the running times also imply that polynomial time algorithms for the problems
exist if t∗ = t∗(n) ≤ c log n for some constant c > 0. As this will become important in the
subsequent section, we formulate this in the following theorem.
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Theorem 2.26 If the minimum thickness t∗ = t∗(n) of a unit disk graph G = (V,E)
with known disk representation D is bounded by c log n for some constant c > 0, then
Maximum Independent Set, Minimum Vertex Cover, and Minimum Dominating Set can
be solved in O(c2n2c+1 log2 n) time. Minimum Connected Dominating Set can be solved in
O(c2n4c+1 log2 n) time.

3 Density

If the thickness of a unit disk graph is large, for instance in the order of
√

n, then the running
time of the algorithms discussed in the previous section becomes non-polynomial.

In these scenarios, we have to resort to approximation algorithms to obtain a polynomial
time algorithm. Therefore we present a new approximation scheme for optimization problems
like Maximum Independent Set on unit disk graphs. This approximation scheme will use the
shifting technique and the algorithms from the previous section as subroutines. We introduce a
new, realistic, and relevant notion for unit disk graphs called density. The new approximation
scheme improves on existing algorithms by focussing on unit disk graphs of bounded density.

Before we describe the new scheme, we introduce the definitions and relevant algorithms
for the notion of density on unit disk graphs2.

3.1 Preliminaries

As in the previous section, we consider unit disk graphs with a known disk representation.
Each disk is assumed to have radius 1

2 . We first define a grid decomposition and describe
the density of such a decomposition. Then we prove that the studied optimization problems
remain NP-hard on unit disk graphs of bounded density.

3.1.1 Definitions

The density of a unit disk graph is related to the thickness of a unit disk graph. Density can
be seen as a two-dimensional generalization of thickness. As such, we begin by defining grid
decompositions, similar to the slab decompositions defined in Section 2.

Definition 3.1 Let 0 ≤ α < 1
2π be an angle and p an arbitrary point in the plane. Partition

the plane using an infinite grid, such that each grid square has width and height 1, the vertical
lines of the grid intersect the x-axis at angle α, and the top-left corner of exactly one grid
square is on p. We call the horizontal and vertical lines defining the grid the horizontal and
vertical grid boundaries. A grid square is the area between two neighboring horizontal and
two neighboring vertical grid boundaries.

Observe that the partitioning of the plane imposed by the grid remains the same after a
rotation of 1

2π around p. Hence 0 ≤ α < 1
2π is sufficient.

Definition 3.2 Given a grid as described above, a disk (ci, ri) is considered to be in a grid
square if its center ci is between the two horizontal and between the two vertical grid boundaries
defining the square. If a center is on a vertical (horizontal) grid boundary, then the disk is

2The notion we use differs from the existing notion of density in graph theory as introduced by Miller and
Vavasis [36].



3.1 Preliminaries 23

Figure 6: An arbitrary set of disks decomposed by a grid. The angle of the
vertical grid boundaries is α and the top-left corner of exactly one grid square
is on p. Note that the grey disk centers are both in the same grid square.

considered to be in the grid square to the right of (below) the boundary. The grid squares
decompose D into mutually disjoint, collectively exhaustive subsets. This decomposition is
called a grid decomposition g = 〈α, p〉 of D. A grid decomposition g of a unit disk graph G
is the grid decomposition of a disk representation of G.

See Figure 6 for a visual explanation of this definition. Using grid decompositions, we can
define density.

Definition 3.3 The density d(D, g) of a grid decomposition g of D is defined as the maximum
number of disk centers of D in any grid square of g. The density of a grid decomposition of
a unit disk graph G is d(G, g) = d(D, g), where D is a disk representation of G.

The density of the grid decomposition in Figure 6 for example is 2.
In the previous section, we refined the specification of thickness by ‘replacing’ the point

p by a disk center in D. Here we can apply a similar trick. Consider a grid decomposition
〈α, p〉. First we move the vertical boundaries to the right, until a vertical boundary intersects
a disk center cv. Then we move the horizontal boundaries down, until a horizontal boundary
intersects a disk center ch. Note that cv could be equal to ch. This move of the grid clearly
does not affect the density of the resulting decomposition. Hence, for our purposes, we can
fully specify a grid decomposition by a three-tuple 〈α, cv, ch〉, where cv and ch are disk centers
in D.

Also note that given a grid decomposition 〈α, cv, ch〉, we can easily obtain an equivalent
decomposition in which the vertical boundaries are perpendicular to the x-axis. To ensure
the density remains the same, we apply transformation matrix Tα (see Equation 1) to the
centers of all disks. For simplicity, we will often use a decomposition where a top-left corner
of a grid square corresponds to the origin. Because cv must be on vertical boundary and ch

must be on a horizontal boundary, (Tα(cv)x, Tα(ch)y) must be the top-left corner of a grid



24 3 DENSITY

square. Hence we set

Tg = translate(−(Tα(cv)x, Tα(ch)y)) · Tα =

 1 0 −Tα(cv)x

0 1 −Tα(ch)y

0 0 1

 · Tα (2)

Clearly, the application of Tg ensures the top-left corner of a grid square is on the origin,
while the density remains the same.

Definition 3.4 Let g∗ = 〈α∗, c∗v, c∗h〉 be a grid decomposition (where c∗v and c∗h are disk centers
in D), such that for all grid decompositions g, d(D, g∗) ≤ d(D, g). Denote d∗ = d(D, g∗).

Observe that d∗ is the minimum density of a grid decomposition of D.
The density of a given grid decomposition and the minimum density can be computed in

polynomial time using similar methods as used when computing (minimum) thickness [29].

3.1.2 Complexity

Maximum Independent Set, Minimum Vertex Cover, and Minimum Dominating Set are NP-
hard for unit disk graphs. This was proved by Clark, Colbourn, and Johnson [16] using a
reduction from the same problems on planar graphs of degree 3 and 4. By adapting their
proof, we are able to prove the following theorem [29].

Theorem 3.5 Maximum Independent Set and Minimum Vertex Cover are NP-hard for unit
disk graphs of density 1. Minimum Dominating Set is NP-hard for unit disk graphs of density
2.

This theorem straightforwardly implies that Maximum Independent Set and Minimum Vertex
Cover are NP-hard for unit disk graphs of arbitrary density and that Minimum Dominating
Set is NP-hard for unit disk graphs of density at least 2.

Minimum Connected Dominating Set was proved NP-hard for unit disk graphs by Licht-
enstein [31] using a reduction from 3SAT. The instances of Connected Dominating Set con-
structed in this proof have density 3. Hence Minimum Connected Dominating Set is NP-hard
for unit disk graphs of density at least 3.

We now prove no FPTAS exists for the considered problems, unless P=NP.

Theorem 3.6 No FPTAS exists for Maximum Independent Set, Minimum Vertex Cover, or
Minimum (Connected) Dominating Set on unit disk graphs of bounded density, unless P=NP.

Proof: We use the notion of a polynomially bounded optimization problem. Ausiello et
al. [5] define an optimization problem to be polynomially bounded if there exists a polyno-
mial p, such that for any instance x of the problem and for any feasible solution SOLx of
x, SOLx ≤ p(|x|). Informally, a problem is polynomially bounded if the size of any feasible
solution is polynomial in the size of the input. Ausiello et al. then prove that no NP-hard
polynomially bounded optimization problem admits an FPTAS, unless P=NP. Clearly, Max-
imum Independent Set, Minimum Vertex Cover, and Minimum (Connected) Dominating Set
are polynomially bounded optimization problems. Furthermore, they are NP-hard on unit
disk graphs of bounded density. Hence no FPTAS can exist unless P=NP.
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3.2 A new approximation scheme

We present a new approximation scheme based on the notion of density introduced in the
previous section. We first describe the general idea of the algorithm, and then show how to
apply it to Maximum Independent Set, Minimum Vertex Cover, and Minimum (Connected)
Dominating Set.

3.2.1 Shifting strip decompositions

Let G = (V,E) be a unit disk graph with known disk representation D, containing disks of
radius 1

2 . Furthermore, let g be some grid decomposition of D with density d = d(D, g) and
let Tg be a transformation matrix as defined in equation 2.

The main idea of the new scheme is to use the shifting technique to decompose the set of
disks into subsets of bounded thickness, and then apply the algorithms described in Section
2.2 to each subset. Recall that the idea behind the shifting technique is to use a set of regularly
spaced separators to decompose the problem into smaller, easier solvable subproblems, and
then combine the solutions of these subproblems to a solution of the global problem. This
is repeated for several placements of the separator set, and the best solution found is then
output as an approximation of the optimum.

In this approximation scheme, the separators will be a set of horizontal lines, which
partition the plane into horizontal strips. The lines are called strip boundaries and are of the
form y = j, where j ∈ Z. The height of a strip is equal to the distance between the two strip
boundaries defining the strip.

Definition 3.7 Consider a strip defined by two horizontal lines y = j and y = l (j < l and
j, l ∈ Z). Then a disk center ci is in the strip if and only if j < Tg(ci)y ≤ l.

The decomposition of the disk centers induced by the strips is called a strip decomposition.
Observe that a strip decomposition also induces a decomposition of the graph, such that each
strip corresponds to the induced subgraph G[V ′] = (V ′, (V ′ × V ′) ∩E), where V ′ ⊆ V is the
set of vertices corresponding to the disk centers in the strip.

Now choose some polynomially bounded function f(n), such that f(n) ≥ d for all n ∈ N.
Then we space the strip boundaries such that the thickness t of the set of disks in each strip
satisfies f(n) ≤ t < f(n)+d. Because the thickness of each strip is between f(n) and f(n)+d,
the strip decomposition consists of at most d n

f(n)e strips. As the density is d, the height of

a strip must be at least f(n)
d (see Figure 7). Such a strip decomposition can be constructed

straightforwardly, as proved in the following lemma.

Lemma 3.8 (van Leeuwen [29]) Given a set of disks D with density d, a set of strip
boundaries such that the thickness t of the set of disks in each strip satisfies f(n) ≤ t < f(n)+d
can be computed in O(n log n) time. The strip boundaries in the returned set are sorted by
y-coordinate.

Using this lemma, we can ensure that the thickness of each strip in the computed strip
decomposition is bounded by f(n) + d. By choosing f(n) appropriately, we can apply the
algorithms of Section 2.2 and solve the considered problem optimally for (the disks of) each
strip in polynomial time. Then we combine the solution for each strip to a solution of the
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Figure 7: A strip decomposition of an arbitrary set of disks. Because the
thickness t of each strip satisfies f(n) ≤ t < f(n) + d, the height of each strip
must be at least f(n)

d .
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Figure 8: The set of disks which remain from the disks in Figure 7 after
removing all disks intersecting a strip boundary. Clearly, the disks in a strip
are independent of the disks in other strips.

global problem. By repeating this for several placements of the strip boundaries, we obtain
an approximation of the optimum.

While the general idea remains the same for each problem, the details differ significantly.
Therefore we describe how this idea can be applied to Maximum Independent Set, Minimum
Vertex Cover, and Minimum (Connected) Dominating Set in the next paragraphs.

3.2.2 Maximum Independent Set

Consider a strip decomposition as described above. We observe that the (disks in the different)
strips are not necessarily independent. Hence the combination of independent sets of each
strip might not be an independent set and thus not a solution to the global problem. Therefore
we remove all disks intersecting a strip boundary. A disk (ci, ri) is considered to intersect a
strip boundary y = j (j ∈ Z) if j − ri ≤ Tg(ci)y < j + ri. The result is a set of independent
subsets of disks (see Figure 8).

Now let k be an integer (0 < k ≤ f(n)
d ). Denote by Da (0 ≤ a ≤ k− 1) the set of mutually

exclusive subsets of D obtained by partitioning D using horizontal strips as described before,
but with the strip boundaries shifted down by a. Observe that each shift can increase the
thickness t of a strip by at most d. Hence, if D0 is the initial decomposition with thickness t
such that f(n) ≤ t < f(n) + d, then Da has strips of thickness at most f(n) + (a + 1)d. As
a ≤ k − 1 ≤ f(n)

d − 1, the thickness of a strip will be at most f(n) + kd ≤ 2f(n).
Because the thickness of every strip is at most 2f(n), we can use Lemma 2.12 to show that
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we can compute a maximum independent set of each strip in O(f(n)224f(n)n) time. Denote the
union of the maximum independent sets thus computed in all strips of Da by ISa. Clearly ISa

is a maximum independent set for Da. Let ISmax be such that |ISmax| = max0≤a≤k−1 |ISa|.

Lemma 3.9 ISmax is at least a (1− 1
k )-approximation of a maximum independent set of D.

Proof: Let IS∗ be a maximum independent set of D. Because the diameter of each disk
in D is 1, no disk can be intersected by a strip boundary for more than one value of a. So if
IS∗a is the set of disks of IS∗ in Da, then

∑k−1
a=0 |IS∗| − |IS∗a| ≤ |IS∗|. But then there must

be a value of a such that |IS∗| − |IS∗a| ≤ |IS∗|/k, and thus |IS∗a| ≥ (1− 1
k )|IS∗|.

Now we observe that, since ISa is a maximum independent set for Da, |ISa| ≥ |IS∗a|. This
holds for any a, but for the value of a for which |IS∗a| ≥ (1− 1

k )|IS∗| in particular. Hence for
this value of a we have

|ISa| ≥ |IS∗a| ≥
(

1− 1
k

)
|IS∗|.

Because |ISmax| = max0≤a≤k−1 |ISa|, we clearly also have |ISmax| ≥ (1− 1
k )|IS∗|.

Observe that theoretically, the best attainable approximation factor is 1 − 1
f(n)

d

= 1 − d
f(n) .

This is because we assume for analytical purposes that the density of each grid square is (close
to) d. In practice however, the density of most grid squares can be (significantly) lower than
d. In this case, the height of a strip may be larger than f(n)

d and larger values of k can be
allowed for the same value of f(n). This can lead to better approximation factors.

Lemma 3.10 ISmax can be computed in O(kn2f(n)24f(n) + kn log n) time.

Proof: For each 0 ≤ a ≤ k − 1, there are two main components in the computation. First
we need to compute Da, and then we must compute a maximum independent set for Da.

As a pre-processing step, we compute a sorted set B ⊆ {y = j | j ∈ Z} of strip boundaries,
such that every strip has thickness between f(n) and f(n)+d. According to Lemma 3.8, this
costs O(n log n) time.

Given B, we can easily compute Da by removing a disk (ci, ri) from D if j−ri ≤ Tg(ci)y +
a < j + ri, for some (y = j) ∈ B. Because B is sorted and |B| ≤ d n

f(n)e ≤ n, we can check in
O(log n) time if a disk must be removed. Thus takes O(n log n) time in total for each Da.

As observed earlier, computing a maximum independent set for each strip can be done
in O(f(n)224f(n)n) time. Thus we spend O(f(n)24f(n)n2) time for all up to n

f(n) strips.
Maintaining the maximum ISa takes no more than O(n) time. This brings the total running
time for all 0 ≤ a ≤ k − 1 to O(kn2f(n)24f(n) + kn log n).

By choosing f(n) appropriately, the running time of the algorithm described above is poly-
nomial in n and k.

Corollary 3.11 If we choose f(n) = 1
4 log n, then ISmax can be computed in time polynomial

in n and k.

Proof: If f(n) = 1
4 log n, then it follows from the previous lemma that the computation of

ISmax takes O(kn3 log n + kn log n), which is O(kn3 log n). This obviously is polynomial in n
and k.
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If we now set k = d1ε e, it is tempting to conclude from Lemma 3.9 and Corollary 3.11 that we
have obtained an FPTAS for the maximum independent set problem. However, this does not
take into account that k can be at most f(n)

d = log n
4d . Hence we get a (1− ε)-approximation,

but with 4d
log n as the lowest possible value of ε for a given n. This means that any value for

ε can be obtained, provided d
f(n) = 4d

log n becomes smaller than any desired value for n large
enough. This is certain to be the case if d = d(n) = o(log n). Therefore we have the following
theorem.

Theorem 3.12 There exists an FPTAS∞ for the maximum independent set problem on unit
disk graphs of bounded density, i.e. of density d = d(n) = o(log n).

3.2.3 Extending to Minimum Vertex Cover and Minimum Dominating Set

For Minimum Vertex Cover and Minimum Dominating Set, we can follow the same approach
as for Maximum Independent Set. There are however some subtle differences between solving
the former two and the latter.

The most important difference is that we should not remove disks intersecting a strip
boundary. Otherwise it could be that the union of the solutions for the strips is not a solution
to the global problem. If we consider Minimum Vertex Cover for example, the edges crossing
a strip boundary would not be covered. To ensure that the combined solutions do form a
solution to the global vertex cover problem, the subset of D for a strip will consist of those
disks that are either completely contained in the strip or intersect a strip boundary. Thus,
given a strip boundary y = j (j ∈ Z), a disk (ci, ri) will be in the strip above the boundary if
j − ri ≤ Tg(ci)y and in the strip below the boundary if Tg(ci)y < j + ri (see Figure 9). Note
that this implies that some disks will be in two strips. Only then can we be certain that all
edges will be covered by a vertex cover.

For Minimum Dominating Set, we must take similar measures. We observe that a dom-
inating set for the disks in a strip can contain any disk outside the strip that intersects a
disk in the strip. Therefore a subset of D for a strip will consist of those disks for which
either the disk center is in the strip or the disk intersects a disk in the strip. Thus, given
a strip boundary y = j (j ∈ Z), a disk (ci, ri) will be in the strip above the boundary if
j − 2ri ≤ Tg(ci)y and in the strip below the boundary if Tg(ci)y < j + 2ri (see Figure 9).

Let f(n) ≥ 2d be some function and let k be an integer (0 < k ≤ f(n)
d ). Denote by Da

(0 ≤ a ≤ k − 1) the set of subsets of D obtained by partitioning D using horizontal strips
as defined above, where the strips have thickness between f(n) and f(n) + d and boundaries
are shifted down by a. After adding disks close to strip boundaries (i.e. within distance 1

2
and 1 from the boundary for respectively Minimum Vertex Cover and Minimum Dominating
Set), we observe that the thickness of each strip in D0 is at most f(n) + 3d. Each shift can
increase the thickness by at most d. Hence the thickness of each subproblem in Da is at most
f(n) + (a + 3)d. Since a ≤ k − 1 ≤ f(n)

d − 1, the thickness of each strip is at most

f(n) +
(

f(n)
d
− 1 + 3

)
d = 2f(n) + 2d ≤ 3f(n).

Therefore, by Corollary 2.13 and Lemma 2.15, we are able to compute a minimum vertex
cover and a minimum dominating set for each strip in Da in O(f(n)226f(n)n) time.
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Figure 9: Above is an arbitrary set of disks and one strip. The dotted lines
are at distance 1 from the strip boundaries. Below and to the left, we show
the disks in the strip for the minimum vertex cover problem. A disk must be
completely contained between the dotted lines to be in the strip. Below and
to the right, we show the disks in the strip for the minimum dominating set
problem. The disk center of a disk must be between the dotted lines for the
disk to be in the strip.
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Denote the union of the vertex covers for the strips of Da by V Sa. Clearly, V Sa is a vertex
cover for D. Let V Smin be such that |V Smin| = min0≤a≤k−1 |V Sa|. Then we can prove the
following approximation factor.

Lemma 3.13 V Smin is at least a (1 + 1
k )-approximation of a minimum vertex cover of D.

Proof: Let V S∗ be a minimum vertex cover of D. Let V S∗a denote the collection of disks
of V S∗ in each of the subsets of D in Da. Observe that some disks can be contained twice
in V S∗a, because of the overlap of the strips at the boundaries. Because the diameter of
each disk is 1, no disk can intersect a strip boundary for more than one value of a. Hence∑k−1

a=0(|V S∗a|−|V S∗|) ≤ |V S∗|. But then there must be a value of a such that |V S∗a|−|V S∗| ≤
|V S∗|/k and thus |V S∗a| ≤ (1 + 1

k )|V S∗|.
Now we observe that, since V Sa is a minimum vertex cover for each of the strips in Da,

|V Sa| ≤ |V S∗a|. This holds for any a, and for the value of a for which |V S∗a| ≤ (1 + 1
k )|V S∗|

in particular. Hence, for this value of a, we have |V Sa| ≤ |V S∗a| ≤ (1 + 1
k )|V S∗|. Then by

definition also |V Smin| ≤ (1 + 1
k )|V S∗|.

For Minimum Dominating Set, we note that if a disk center ci is outside the strip, but
intersects a disk in the strip, v(ci) can only be used as a dominator, and as such does not
need to be dominated. We can easily change Algorithm 2.2 for Minimum Dominating Set on
unit disk graphs of bounded thickness to take this into account. Now let DSa be the union of
the dominating sets for the strips of Da computed by this changed algorithm. Clearly, DSa is
a dominating set for D. Furthermore, let DSmin be such that |DSmin| = min0≤a≤k−1 |DSa|.

Lemma 3.14 DSmin is at least a (1+ 2
k )-approximation of a minimum dominating set of D.

Proof: We observe that no disk (ci, ri) can be within a distance of 2ri = 1 of a strip
boundary for more than two values of a. We can then apply similar arguments as in the proof
of Lemma 3.13 to prove an approximation factor of (1 + 2

k ).

We now consider the running time of both schemes.

Lemma 3.15 V Smin (DSmin) can be computed in O(kn2f(n)26f(n) + kn log n) time.

Proof: We use exactly the same algorithms and arguments as in Lemma 3.10. For Minimum
Vertex Cover and Minimum Dominating Set however, we spend O(f(n)226f(n)n) time for each
strip. This brings the total running time to O(kn2f(n)26f(n) + kn log n) time.

We again choose f(n) appropriately to get a running time polynomial in n and k.

Corollary 3.16 If we choose f(n) = 1
6 log n, then V Smin (DSmin) can be computed in time

polynomial in n and k.

Proof: If f(n) = 1
6 log n, then according to Lemma 3.15, V Smin (DSmin) can be computed

in O(kn3 log n + kn log n), which is O(kn3 log n). This is polynomial in n and k.

We observe that if f(n) = 1
6 log n, then we can obtain a (1 − ε)-approximation with 6d

log n as
the lowest possible value of ε for a given n. As before however, if d = d(n) = o(log n), we
have an FPTAS∞.

Theorem 3.17 There exists an FPTAS∞ for the minimum vertex cover and minimum domi-
nating set problems on unit disk graphs of bounded density, i.e. of density d = d(n) = o(log n).
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3.2.4 Minimum Connected Dominating Set

The minimum connected dominating set problem is a much harder problem than the problems
considered thusfar, because the set of vertices in a solution must not only dominate all vertices
in the graph, but the subgraph induced by the solution vertices must also be connected. Before
we give a description of the algorithm, we prove the property of a (connected) dominating set
that we will exploit in the analysis later on.

Proposition 3.18 Let G = (V,E) be a connected graph and S an arbitrary dominating set
of G. If G[S] has ncc connected components, then there exists a connected dominating set for
G of size at most |S|+ 2ncc − 2.

Proof: We prove this by induction on the number of connected components of G[S]. If
ncc = 1, then G[S] is connected and S is a connected dominating set of size |S|+2ncc−2 = |S|.
So assume ncc > 1 and for any dominating set S′ such that G[S′] has at most ncc−1 connected
components, there exists a connected dominating set of size at most |S′|+ 2ncc − 4. Because
S is a dominating set, there must be two vertices v, w ∈ S such that v and w are in different
connected components of G[S] and there is a path P from v to w in G[V − S ∪ {v, w}]
containing at most two vertices. Then we can construct dominating set S′′ = S ∪P . Observe
that S′′ is a dominating set of G and has at most ncc − 1 connected components. From the
induction hypotheses, we know that there exists a connected dominating set for G of size at
most |S′′|+ 2ncc − 4. This is at most (|S|+ 2) + 2ncc − 4 = |S|+ 2ncc − 2. Using induction,
we prove the proposition.

The FPTAS∞ uses a strip partitioning similar to the one used with the minimum dominating
set problem. There we observed that a dominating set for the disks of a strip can contain
any disk outside the strip that intersects a disk in the strip. Hence we added this extra set
of disks to the disks of a strip. For Minimum Connected Dominating Set, we must add the
extra set of disks to ensure connectivity (see Lemma 3.19). To prove a relation between the
minimum connected dominating set and the computed approximation, we also add the disks
intersecting the extra set (see Lemma 3.20). This implies that we add disks within distance
2 of a strip boundary to the strip. In other words, given a strip boundary y = j (j ∈ Z), a
disk (ci, ri) will be in the strip above the boundary if j− 4ri ≤ Tg(ci)y and in the strip below
the boundary if Tg(ci)y < j + 4ri (see Figure 10).

Now let f(n) ≥ 4d be some function and let k be an integer (3 < k ≤ f(n)
d ). Denote by

Da (0 ≤ a ≤ k − 1) the set of subsets of D obtained by partitioning D as described above,
where the strip boundaries are shifted down by a. We denote the set of disks in the b-th strip
of Da by Db

a (b ∈ Z).
We introduce the following names and notation to denote relevant pieces of a strip. Let

y = j and y = l (j, l ∈ Z, j < l) be the two strip boundaries defining an arbitrary strip in Da.
We call the area between y = l + 1 and y = j − 1 the interior of the strip. The area between
y = l + 2 and y = l + 1 is called the upper exterior and the area between y = j − 1 and
y = j−2 the lower exterior of the strip. The combination of the upper and the lower exterior
of a strip is simply referred to as the exterior. The area between y = l + 1 and y = l − 1 is
called the upper boundary area and the area between y = j − 1 and y = j + 1 is the lower
boundary area. Both boundary areas consist of an upper and a lower part (see Figure 11).

Observe that the thickness of any strip in D0 (including the disks in the boundary area
and the exterior of the strip) is at most f(n) + 5d. Hence the thickness of any strip in Da is
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Figure 10: Above is an arbitrary set of disks and one strip. The dotted lines
are at distance 1 from the strip boundaries, and the dotted-striped lines at
distance 2. Below, we show the disks in the strip for the minimum connected
dominating set problem. The disk center of a disk must be between the dotted-
striped lines for the disk to be in the strip.
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Figure 11: The different pieces of a strip and their names.

at most f(n) + (a + 5)d. Since a ≤ k − 1 ≤ f(n)
d − 1, the thickness of a strip is at most

f(n) +
(

f(n)
d
− 1 + 5

)
d = 2f(n) + 4d ≤ 3f(n).

Using Lemma 2.23 and the fact that the thickness of any strip in Da is at most 3f(n), we can
compute a minimum connected dominating set for each connected component in the interior
of each strip in Da in O(f(n)2 212f(n) n) time. Each such minimum connected dominating set
may use the vertices in the exterior of the strip.

Denote the union of the minimum connected dominating sets of each connected component
in the b-th strip of Da by CDSb

a (b ∈ Z) and let CDSa =
⋃

b∈Z CDSb
a. We claim that CDSa

is a connected dominating set for G.

Lemma 3.19 For each a (0 ≤ a ≤ k − 1), CDSa is a connected dominating set for G.

Proof: Trivially, CDSa is a dominating set for G. It remains to prove the connectivity
of CDSa. So assume CDSa is not connected. Consider an arbitrary pair of vertices v, w ∈
CDSa, such that v and w are in two different connected components X and Y of CDSa and
there is a path P from v to w in G[V − CDSa ∪ {v, w}] containing at most two vertices.
At least one such pair of vertices must exist, because CDSa is a dominating set and (by
assumption) has at least two connected components.

Suppose v and w are in the interior same strip, i.e. v, w ∈ interior(Db
a) for some b ∈ Z. If

P 6⊆ interior(Db
a), then, as P connects v and w and contains at most two vertices, v and w

must be in the boundary area of Db
a and the vertices of P are in the exterior or the boundary

area of Db
a. But then either ({v, w} ∪ P ) ⊆ interior(Db+1

a ) or ({v, w} ∪ P ) ⊆ interior(Db−1
a ).

So without loss of generality, we can also assume that P ⊆ interior(Db
a). Then there must be

a connected component of interior(Db
a) containing v and w (and P ). Because CDSa contains

a connected dominating set for each connected component of interior(Db
a), v and w must be

connected in CDSa. But then X and Y are connected, which is a contradiction.
Therefore v and w must be in the interiors of different, but neighboring strips, i.e. v ∈

interior(Db
a) and (without loss of generality) w ∈ interior(Db−1

a ). This implies that P is in the
shared boundary area of Db

a and Db−1
a and contains exactly two vertices (see Figure 12). Let
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Figure 12: The thick line is the boundary between strips b and b−1. If v and
w are in the interiors of different strips, then P must intersect the boundary
area and consist of exactly two vertices, denoted p0 and p1. Vertex p0 is in the
upper part of the shared boundary area and is thus connected to w.

p0 be the vertex of P in the upper part of the shared boundary area. Observe that p0 and v
are in the same connected component C of interior(Db

a). Because CDSa contains a connected
dominating set for each connected component of interior(Db

a), p0 must be dominated by a
vertex q ∈ Db

a, such that q and v are connected in CDSa.
Since p0 is in the upper part of the shared boundary area, q must be either in the exterior

of Db
a or in the shared boundary area. Either way, q ∈ interior(Db−1

a ). Furthermore, q and
w are in the same connected component of interior(Db−1

a ). As CDSa contains a connected
dominating set of each connected component of interior(Db−1

a ), there must be a vertex r ∈
Db−1

a dominating q, such that r and w are connected in CDSa. But then v and w are
connected in CDSa (via q and r). This is a contradiction. Hence CDSa must be connected
and thus a connected dominating set.

Next we link the size of CDSb
a to the size of the minimum connected dominating set.

Lemma 3.20 Let OPT be a minimum connected dominating set for G. Then for each a
(0 ≤ a ≤ k − 1) and for each strip b, |CDSb

a| ≤ |OPT ∩Db
a|+ 2|OPT ∩ exterior(Db

a)|.

Proof: Let OPT b
a = OPT ∩ Db

a. Clearly, OPT b
a is a dominating set for the interior of

Db
a. However, G[OPT b

a ] may consist of several connected components. We will show that by
adding 2|OPT ∩exterior(Db

a)| vertices, we can connect these components, such that we obtain
a connected dominating set for each connected component in the interior of Db

a, possibly using
vertices in the exterior of Db

a.
Consider some connected component C of Db

a. Because OPT is connected, it must hold
for each connected component X of OPT b

a ∩ C that X ∩ exterior(Db
a) ∩ C 6= ∅. Hence the

number of connected components of OPT b
a ∩ C is at most |OPT ∩ exterior(Db

a) ∩ C|. Since
OPT b

a ∩C is a dominating set for interior(Db
a)∩C, it follows from Proposition 3.18 that there

exists a connected dominating set of size at most |OPT b
a ∩ C| + 2|OPT ∩ exterior(Db

a) ∩ C|
for interior(Db

a) ∩ C. This holds for all connected components of Db
a.

As the connected components of Db
a are mutually exclusive, there exists a connected

dominating set of size at most |OPT b
a |+2|OPT ∩ exterior(Db

a)| for each connected component
in the interior of Db

a. This connected dominating set possibly uses vertices in the exterior of
Db

a. Because CDSb
a is a minimum connected dominating set for the each connected component

in the interior of Db
a, possibly using vertices in the exterior of Db

a, |CDSb
a| ≤ |OPT ∩Db

a| +
2|OPT ∩ exterior(Db

a)|.
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Let CDSmin be such that |CDSmin| = min0≤a≤k−1 |CDSa|. Then we can prove the following
lemma.

Lemma 3.21 CDSmin is at least a (1 + 8
k )-approximation of a minimum connected domi-

nating set of D.

Proof: Let OPT be a minimum connected dominating set of D. Then

k |CDSmin| ≤
∑k−1

a=0 |CDSa|
≤

∑k−1
a=0

∑
b |CDSb

a|
≤

∑k−1
a=0

∑
b |OPT ∩Db

a|+ 2|OPT ∩ exterior(Db
a)|

=
(∑k−1

a=0

∑
b |OPT ∩Db

a|
)

+
(
2

∑k−1
a=0

∑
b |OPT ∩ exterior(Db

a)|
)

.

Observe that no disk can be within distance 2 of a strip boundary for more than four values
of a. Hence

∑k−1
a=0

∑
b |OPT ∩Db

a| ≤ (k +4)|OPT |. Similary, no disk can be in the exterior of
a strip for more than two values of a. Therefore

∑k−1
a=0

∑
b |OPT ∩ exterior(Db

a)| ≤ 2|OPT |.
Then

k |CDSmin| ≤
(∑k−1

a=0

∑
b |OPT ∩Db

a|
)

+
(
2

∑k−1
a=0

∑
b |OPT ∩ exterior(Db

a)|
)

≤ (k + 4)|OPT |+ 2(2|OPT |)
= (k + 8)|OPT |.

Hence |CDSmin| ≤ (1 + 8
k )|OPT |. The lemma follows.

Lemma 3.22 CDSmin can be computed in O(kn2f(n) 212f(n) + kn log n) time.

Proof: We use the same algorithms and arguments as in Lemma 3.10. We spend at most
O(f(n)2 212f(n) n2) time for each strip. Hence the total running time is O(kn2f(n) 212f(n) +
kn log n).

We again choose f(n) appropriately to get a running time polynomial in n and k.

Lemma 3.23 If we choose f(n) = 1
12 log n, then CDSmin can be computed in time polynomial

in n and k.

Proof: If f(n) = 1
12 log n, then according to Lemma 3.22, CDSmin can be computed in

O(kn3 log n + kn log n), which is O(kn3 log n). This is polynomial in n and k.

If f(n) = 1
12 log n, then an obtain a (1 − ε) approximation of the minimum connected dom-

inating set problem with 96d
log n as the lowest possible value of ε for a given n. If however

d = d(n) = o(log n), we have an FPTAS∞.

Theorem 3.24 There exists an FPTAS∞ for the minimum connected dominating set problem
on unit disk graphs of bounded density, i.e. of density d = d(n) = o(log n).

Now we again consider the results by Cheng et al. [15] and Demaine and Hajiaghayi
[18]. The basic idea of their results is to obtain some partitioning of the graph into mutually
exclusive pieces and then apply the shifting technique. For Cheng et al., these pieces are
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squares in the plane, while Demaine and Hajiaghayi use the adjacent layers of a breadth-
first search tree. The essential ingredient in both results is that, to prove a relation between
the minimum connected dominating set restricted to a piece of the graph and the optimum
solution computed by the algorithm for each piece, extra vertices are necessary. Cheng et
al. increase the size of the square by Θ(log n) and Demaine and Hajiaghayi add Θ(log n)
extra layers to each piece. Because of these extra vertices, the algorithm of Cheng et al. has
a running time of O(nO( 1

ε
log 1

ε
)) and Demaine and Hajiaghayi obtain a O(nO( 1

ε
log 1

ε
log log n))

running time for minor-closed graphs of locally bounded treewidth and O(nO( 1
ε
)) for planar

graphs.
What our analysis has shown (in Lemma 3.20), is that this extra log n factor is in fact

unnecessary. We can easily prove lemma’s similar to Lemma 3.19 and 3.20 for minor-closed
graphs of locally bounded treewidth, planar graphs, and general unit disk graphs. Such
lemma’s would provide an instant improvement to the running times of the Cheng et al.
and Demaine and Hajiaghayi algorithms. More importantly, the almost-PTAS for minor-
closed graphs of locally bounded treewidth and the PTAS for planar graphs by Demaine and
Hajiaghayi improve to an FPTAS∞.

4 Discussion

The idea of using a fixed-parameter tractable problem on graphs with a special property
to construct an FPTAS∞ for more general graphs has been considered before. Hunt et
al. [26] consider unit disk graphs of λ-precision, meaning that the distance between any
two disk centers is at least λ. Hunt et al. show that in such a graph, a slab of height k
has bounded treewidth. Using a dynamic programming argument, a tree decomposition of
bounded width can be constructed. Combined with the shifting technique, Hunt et al. give
FPTAS∞s for Maximum Independent Set, Minimum Vertex Cover, and Minimum Dominating
Set. Minimum Connected Dominating Set was not considered. We observe that any unit disk
graph of λ-precision has density Θ( 1

λ2 ). The reverse is not necessarily true. Hence our results
are a generalization of the results by Hunt et al. Furthermore, we have shown that using
a tree decomposition is not necessary, and we can in fact suffice with a much simpler path
decomposition.

Even before the results of Hunt et al., Baker [6] proposed FPTAS∞s for optimization
problems on planar graphs. Baker used the observation that a planar graph can be build
from several k-outerplanar pieces. It is well known that k-outerplanar graphs have treewidth
at most 3k − 1. Hence by applying the shifting technique to obtain k-outerplanar pieces of
a planar graph, an FPTAS∞ can be constructed for Maximum Independent Set, Minimum
Vertex Cover, Minimum Dominating Set, and other problems. Baker did not give a solution
for Minimum Connected Dominating Set.

Demaine and Hajiaghayi [18] recently provided a deep investigation of the connection
between fixed-parameter tractable problems and FPTAS∞s and PTASs. They show that a
whole range of problems (so called bidimensional problems) possessing specific properties can
be solved on minor-closed graphs of locally bounded treewidth. The problems that possess
these properties include Maximum Independent Set, Minimum Vertex Cover, and Minimum
Dominating Set. Demaine and Hajiaghayi give FPTAS∞s for these problems. Because planar
graphs are minor-closed and have locally bounded treewidth, this approach is a generalization
of the results by Baker. In additition to the FPTAS∞s, Demaine and Hajiaghayi also give
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an almost-PTAS for Minimum Connected Dominating Set on minor-closed graphs of locally
bounded treewidth and a PTAS for that problem on planar graphs.

The results of Demaine and Hajiaghayi can unfortunately not be applied to unit disk
graphs of bounded density. As we will show, such graphs have locally bounded treewidth,
but they are not minor-closed.

First we define the notions of locally bounded treewidth and minor-closed graphs.

Definition 4.1 Consider some graph G = (V,E) and let (u, v) ∈ E. If we contract edge
(u, v) ∈ E, we remove u and v from the graph, add a new vertex uv and connect it to all
neighbors of u and v in the original graph. Let G′ be a graph obtained from G by performing
some number of edge contractions. Then G′ is a minor of G.

Definition 4.2 Let C be a class of graphs. Then C is said to be minor-closed if and only if
for each minor G′ of a graph G ∈ C, G′ ∈ C.

A good example of a class of graphs that is minor-closed are the planar graphs.

Definition 4.3 The r-neighborhood of a vertex v ∈ V , denoted by N r(v), is defined as the
set of vertices reachable from v in at most r steps. The local treewidth ltwr(v) of a vertex v is
the treewidth of N r(v). The local treewidth ltwr(G) of a graph G = (V,E) is maxv∈V ltwr(v).
A graph G has locally bounded treewidth if and only if ltwr(G) ≤ f(r), for some function
f(r).

The function f(r) can be arbitrary. There are however several graph classes for which f(r) is
linear in r, i.e. they have linear local treewidth. This includes planar graphs, bounded-genus
graphs, single-crossing-minor-free graphs, and apex-minor-free graphs3 [17]. Note that these
classes are all minor-closed.

We now add another type of graphs to the list and show that unit disk graphs of bounded
density have locally bounded treewidth.

Lemma 4.4 A unit disk graph of bounded density has locally bounded treewidth.

Proof: Consider an arbitrary unit disk graph of bounded density d. Let v be an arbitrary
vertex of that graph. Then all disks in the r-neighborhood of Dv lie within an 2r+1-by-2r+1
square. The number of disks in this square is at most (2r + 1)2d. This implies a bound of
(2r + 1)2d on the treewidth. This bound can be improved by using the sliding slab argument
of Lemma 2.10 on the square. Then we obtain a bound of (2r + 1)d on the pathwidth of the
disks in the square. This implies a bound of (2r + 1)d on the local treewidth.

Hence unit disk graphs of bounded density have linear local treewidth. However, unit disk
graphs of bounded density are not minor-closed.

Lemma 4.5 The K3,2 is not a unit disk graph.

Proof: We prove this by contradiction. So suppose we have some set of unit disks realizing
the K3,2. Denote the three mutually independent disks by A, B, and C, and the other two
disks by X and Y .
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Figure 13: The dotted disks indicate possible positions of disk Y when posi-
tioned on or between lines BX and line AX. Disk X shields Y from intersecting
the third disk C.

Without loss of generality, we consider disk B and assume A is the first disk of {A,C} we
encounter when rotating line BX counter-clockwise around the center of X and C the second
(see Figure 13).

Because X and Y are independent, the distance between their centers must be larger
than 1. If Y is on line BX and on the same side of X as B, then Y cannot intersect A or
C, because B does not intersect A or C. Similarly, if Y is on line AX and on the same side
of X as A, then Y cannot intersect B or C, because A does not intersect B or C. Hence
if Y is between line BX and line AX, Y cannot intersect C. Intuitively, X shields Y from
intersecting C (see Figure 13).

Using similar arguments, we can prove that if Y is positioned on or between AX and CX,
then Y cannot intersect B and if Y is positioned on or between BX and CX, then Y cannot
intersect A. Because the union all the considered areas contains all possible positions for Y ,
we know that Y cannot intersect A, B, and C simultaneously. However, in the K3,2 disk
representation, Y does. This is a contradiction. Therefore there exists no disk representation
realizing the K3,2.

From this proof, the following corollary follows straightforwardly.

Corollary 4.6 The K3,x is not a unit disk graph, for each x ≥ 2.

Using Lemma 4.5, we can prove that the class of unit disk graphs is not minor-closed.

Lemma 4.7 The class of unit disk graphs is not minor closed.

Proof: Construct a K2,2 unit disk graph and connect two non-adjacent disks with a path
P (see Figure 14). This graph has a K3,2 minor, which can be obtained by contracting the
edges on P until P contains only one vertex. However, following Lemma 4.5, the K3,2 is not
in the class of unit disk graphs. Hence the class of unit disk graphs is not minor-closed.

By looking closely at the set of disks in Figure 14, we can observe that this set has density 1.
Therefore the unit disk graphs of bounded density are not minor-closed as well.

Lemma 4.8 The unit disk graphs of bounded density d are not minor-closed, for each d ≥ 1.

Because the unit disk graphs of bounded density are not minor-closed, the results of Demaine
and Hajiaghayi [18] cannot be applied directly to these graphs.

3A single crossing graph can be drawn in the plane with at most one crossing. An apex graph is a graph
where the removal of one vertex leaves a planar graph.
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Figure 14: A disk representation realizing a K2,2 where two non-adjacent
vertices are connected by a path P . The disks of this path are dotted.

5 Conclusion

This paper has shown that Maximum Independent Set, Minimum Vertex Cover, and Minimum
(Connected) Dominating Set on unit disk graphs are fixed-parameter tractable in the thickness
of the graph. Such graphs have pathwidth bounded by the thickness. This allows known
algorithms for path decomposition of bounded width to be applied. Furthermore, we have
given algorithms that work directly on the used slab decompositions. This improves the
running time of the algorithms for unit disk graphs of bounded thickness. In particular for
Minimum Connected Dominating Set, we can improve from O(t2(2t)2tn) to O(t224tn).

We then used these algorithms to construct asymptotic FPTASs for the considered prob-
lems on unit disk graphs. This under the realistic assumption of bounded density. These
results are optimal, in the sense no FPTAS exists for Maximum Independent Set, Minimum
Vertex Cover, or Minimum (Connected) Dominating Set on unit disk graphs of bounded
density (unless P=NP). Furthermore, the schemes are an improvement over existing approxi-
mation algorithms if the density is bounded. The scheme for Minimum Connected Dominating
Set is (to our knowledge) the first asymptotic FPTAS for this problem. The analysis to obtain
this result can be extended to unit disk graphs, planar graphs, and minor-closed graphs of
locally bounded treewidth. Combined with the results from Cheng et al. [15] and Demaine
and Hajiaghayi [18], we can obtain improved time bounds for the existing PTAS on unit disk
graphs and new asymptotic FPTASs for planar graphs and minor-closed graphs of locally
bounded treewidth.

Early results seem to indicate that an asymptotic FPTAS also exists for Maximum Inde-
pendent Set on disk graphs of bounded density. Future work is aimed at strengthening these
results and applying the new schemes to several problems not directly related to mobile ad
hoc networks.
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