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Abstract

The stochastic gradient Langevin dynamics
(SGLD) algorithm is appealing for large scale
Bayesian learning. The SGLD algorithm
seamlessly transit stochastic optimization and
Bayesian posterior sampling. However, solid
theories, such as convergence proof, have not
been developed. We theoretically analyze the
SGLD algorithm with constant stepsize in two
ways. First, we show by using the Fokker-Planck
equation that the probability distribution of ran-
dom variables generated by the SGLD algorithm
converges to the Bayesian posterior. Second, we
analyze the convergence of the SGLD algorithm
by using the It̂o process, which reveals that the
SGLD algorithm does not strongly but weakly
converges. This result indicates that the SGLD
algorithm can be an approximation method for
posterior averaging.

1. Introduction

Bayesian learning is one of the most important fields in ma-
chine learning. It captures uncertainty and avoids overfit-
ting. The stochastic gradient Langevin dynamics (SGLD)
algorithm (Welling & Teh, 2011) is appealing for large-
scale Bayesian learning. It is constructed by the combi-
nation of Robbins-Monro type stochastic approximation
(H.Robbins & S.Monro, 1951) and Langevin dynamics.

Stochastic approximation such as stochastic gradient de-
scent is one of the most successful techniques in large scale
machine learning. It processes mini-batches of data at each
iteration and update model parameters. Langevin dynamics
injects noise into model parameters in such a way that the
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trajectory of the parameters will converge to the full pos-
terior distribution. Langevin dynamics requires all data to
update model parameters.

The SGLD algorithm applies stochastic approximation
to Langevin dynamics, i.e., its updates are processed
by mini-batches. With the original SGLD algorithm
(Welling & Teh, 2011), the step sizes are annealed to zero
at a certain rate. However, this stepsize condition slows
mixing rate. After a sufficient burn-in period, the stepsizes
are much smaller, thus, the trajectory of the parameters can
be local. Ahn et al. (2012) extended the SGLD algorithm
so that for large stepsizes it will sample from an approx-
imate normal distribution of the posterior. Petterson and
Teh (2013) proposed an SGLD algorithm on a probability
simplex space.

Contributions : In this paper, we theoretically analyze the
SGLD algorithm with constant stepsize in two ways.
(1) We show that the probability distribution of random
variables generated by the SGLD algorithm converges to
the Bayesian posterior by using the Fokker-Planck (FP)
equation.
(2) We analyze the convergence of the SGLD algorithm by
using the It̂o process, which reveals that the SGLD algo-
rithm does not strongly but weakly converges.

The SGLD algorithm is regarded as a discretization ap-
proximation of a stochastic differential equation corre-
sponding to the FP equation of the Bayesian posterior.
Therefore, by analyzing the discretization error of the
SGLD algorithm, we can analyze the convergence of the
SGLD algorithm. To the best of our knowledge, these are
the first theoretical analyses of the SGLD algorithm.

Note that our theoretical analysis is based on the one-
dimensional FP equation and Itô process for simplicity
(mainly for simple notations). Our analysis can be easily
extended by using multi-dimensional FP equation and Itô
process.
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2. Stochastic Gradient Langevin Dynamics
(SGLD)

Letx1:n be a data setx1:n = (x1, x2, · · · , xn) with a gen-
erative modelp(x1:n|θ) =

∏n
i=1 p(xi|θ) parameterized by

θ with prior p(θ). The aim of Bayesian learning is to com-
pute the posteriorp(θ|x1:n) and the predictive distribution
for a new data point,

∫
p(x∗|θ)p(θ|x1:n)dθ.

We use the notation∂θ for the partial derivatives with re-
spect toθ.

The SGLD algorithm (Welling & Teh, 2011) contains the
following update equation:

θt+1 = θt +
ϵt
2
∂θL̃(θt) + ηt, ηt ∼ N(0, ϵt), (1)

∂θL̃(θt) = ∂θ log p(θt) +
n

|St|
∑
i∈St

∂θ log p(xi|θt), (2)

whereSt is a set of samples randomly selected fromx1:n,
ϵt is the step size, andN(0, ϵt) is a Gaussian distribution
with mean0 and varianceϵt. The step size decreases to-
wards zero at rates satisfying

∞∑
t=1

ϵt = ∞,

∞∑
t=1

ϵ2t < ∞. (3)

Typically, the step size is formulated asϵt = τ0/(τ1 + t)r

with r ∈ (0.5, 1].

3. Review of Fokker-Planck (FP) Equation

Let q(t, θ) be the probability density function ofθ at time
t. Suppose that

lim
|θ|→∞

U(θ) = ∞, (4)

which means that
∫
exp(−U(θ))dθ < ∞.

The FP equation (Risken & Frank, 1984; Daum, 1994) is a
partial differential equation which describes the time evo-
lution of the probability density function given by

∂tq(t, θ) = ∂θ(∂θU(θ)q(t, θ)) + ∂2
θq(t, θ). (5)

Let q(θ) be the stationary distribution ofq(t, θ). Then, it is
known thatq(θ) satisfies

q(θ) ∝ exp (−U(θ)) . (6)

The derivation is as follows. Ast → ∞, q(t, θ) → q(θ),
i.e., limt→0 ∂tq(t, θ) = 0, and

∂θ(∂θU(θ)q(θ))) + ∂2
θq(θ) = 0

⇔∂θ[∂θU(θ)q(θ)) + ∂θq(θ)] = 0

⇔∂θq(θ)[∂θU(θ) + ∂θ log q(θ)] = 0. (7)

Thus, we have

∂θU(θ) + ∂θ log q(θ) = 0 ⇔ U(θ) + log q(θ) = Const..

4. Analysis of SGLD Algorithm by using FP
Equation

We analyze the probability density function (pdf) of ran-
dom variables generated by the SGLD algorithm. We find
that under the assumption which is often used in stochas-
tic approximation fields, its stationary distribution is the
Bayesian posterior as is the case in the ordinary Langevin
dynamics. That is, the stochastic noise can be ignored.

We analyze the following SGLD with constant step sizeϵ.

θt+1 = θt + ϵ∂θL̃(θt) +
√
2ηt, ηt ∼ N(0, ϵ). (8)

For theoretical use, we represent Eq. (8) by using stochas-
tic noiseξt, which is a well-known technique in stochastic
approximation fields.

θt+1 = θt + ϵ(∂θL(θt) + ξt) +
√
2ηt, (9)

L(θ) = log p(θ) +

n∑
i=1

log p(xi|θ), (10)

ξt = ∂θL̃(θt)− ∂θL(θt),

=
n

|St|
∑
i∈St

log p(xi|θt)−
n∑

i=1

log p(xi|θt) (11)

Note that the expectation over sampling setSt, denoted by
ESt [ξt], is

ESt [ξt] = 0. (12)

The stochastic noise is typically assumed to be a white
noise or Martingale difference noise, i.e.,ξt andξs (s ̸= t)
are independent. Moreover, we assume that

ESt [ξ
ℓ
t ] < ∞, (13)

for some integerℓ ≥ 2.

Let q(t, θ) be the pdf ofθ at timet andϕt(θ) be the char-
acteristic function ofq(t, θ) defined by

ϕt(s) =

∫
exp(isθ)q(t, θ)dθ. (14)

The characteristic function ofϵξt is, from Eq.(12),

E[exp(isϵξt)] = E

[ ∞∑
ℓ=0

1

ℓ!
(isϵξt)

ℓ

]
=

∞∑
ℓ=0

1

ℓ!
E[ξℓt ](isϵ)ℓ,

= 1 +O(ϵ2). (15)

The characteristic function ofθt + ϵ∂θL(θt) + ϵξt is∫
exp(isθ + isϵ∂θL(θ))(1 +O(ϵ2))q(t, θ)dθ

=

∫
exp(isθ + isϵ∂θL(θ))q(t, θ)dθ +O(ϵ2) (16)
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The characteristic function of
√
2ηt is exp(−ϵs2) because

ηt ∼ N(0, ϵ).

Here, we rewriteθt+1 asθt+ϵ for theoretical use. There-
fore, the characteristic function ofθt+ϵ(= θt+1) is

ϕt+ϵ(s)

=

∫
exp

(
isθ + isϵ∂θL(θ)− ϵs2

)
q(t, θ)dθ +O(ϵ2).

(17)

Usingexp(x) = 1 + x+O(x2),

ϕt+ϵ(s)− ϕt(s)

=

∫
exp(isθ)

[
exp

(
isϵ∂θL(θ)− ϵs2

)
− 1

]
q(t, θ)dθ

+O(ϵ2),

=

∫
exp(isθ)

[
isϵ∂θL(θ)− ϵs2 +O(ϵ2)

]
q(t, θ)dθ,

+O(ϵ2),

=

∫
exp(isθ)

[
isϵ∂θL(θ)− ϵs2

]
q(t, θ)dθ +O(ϵ2).

(18)

Thus,

ϕt+ϵ(s)− ϕt(s)

ϵ

= (−is)

∫
exp(isθ)∂θ(−L(θ))q(t, θ)dθ

+ (−is)2
∫

exp(isθ)q(t, θ)dθ +O(ϵ),

(19)

LetF be the Fourier transform defined by, for an integrable
functionf ,

F [f(x)](s) =
1√
2π

∫
f(x) exp(isx)dx,

F−1[f(x)](s) = f(x) =
1√
2π

∫
F [f(x)](s) exp(−isx)ds.

and the Fourier transform of the derivatives of theℓ-th order
f (ℓ)(x) is

F(f (ℓ))(s) = (−is)ℓ(F(f))(s). (20)

Therefore,

ϕt+ϵ(s)− ϕt(s)√
2πϵ

= (−is)F∂θ(−L(θ))q(t, θ) + (−is)2Fq(t, θ) +O(ϵ),

= F∂θ(∂θ(−L(θ))q(t, θ)) + F∂2
θq(t, θ) +O(ϵ).

(21)

By usingF−1ϕt(s) =
√
2πq(t, θ),

q(t+ ϵ, θ)− q(t, θ)

ϵ

= ∂θ(∂θ(−L(θ))q(t, θ)) + ∂2
θq(t, θ) +O(ϵ). (22)

Therefore,

∂tq(t, θ) = lim
ϵ→0

q(t+ ϵ, θ)− q(t, θ)

ϵ
,

= ∂θ(∂θ(−L(θ))q(t, θ)) + ∂2
θq(t, θ), (23)

which means that the probability density function ofθt gen-
erated by the SGLD algorithm also follows the FP equation
(5).

When we useU(θ) = −L(θ) in Eq. (6), we haveq(θ) =
p(θ|x1:n).

5. Review of Itô Process

We found in the previous section that the random variables
generated by the SGLD algorithm can be samples from
the Bayesian posterior whenϵ → 0. That is, the SGLD
algorithm is considered to be the discretization approxi-
mation of the stochastic differential equation. Therefore,
our interest is its discretization error. In this section, we
review the It̂o process which we use to analyze the dis-
cretization error of the SGLD algorithm in the next section.
Our analysis is based on the basic theories of the stochastic
differential equation (Gard, 1988; Kloeden & Platen, 1992;
Carlsson et al., 2010).

5.1. Wiener Process

W (t) represents the one-dimensional Wiener process, also
known as the Brownian motion , which has the following
properties:

1. with probability one, the mappingt → W (t) is con-
tinuous andW (0) = 0,

2. if we devide[0, T ] as0 = t0 < t1 < t2 < · · · <
tN = T , then the increments∆Wk = W (tk) −
W (tk−1) (k = 1, · · · , N) are independent, and

3. for all t > s, the incrementW (t)−W (s) has a normal
distribution with

E[W (t)] = 0, E[(W (t)−W (s))2] = t− s. (24)

The Gaussian injective noises of the SGLD algorithm cor-
responds to the increments∆Wk of the Wiener process.
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5.2. Itô Process

The stochastic processX = {X(t)}t≥0 that solves

X(t) = X(0) +

∫ t

0

a(s,X(s))ds+

∫ t

0

b(X(s), s)dW (s)

(25)

is called the It̂o process (Itô, 1944). a(t,X(t)) and
b(t,X(t)) are the drift and diffusion function, respectively.
The stochastic differential equation form of the Itô process
is

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t). (26)

It has a unique solution if the coefficientsa and b are
Lipschitz-continuous functions of linear growth.

The first integral in Eq. (25) is an ordinary integral along
paths. The second integral in Eq. (25) is the Ito stochastic
integral defined by∫ t

0

g(θ(s))dW (s) = lim
∆tmax→0

m−1∑
k=0

g(θ(tk))∆Wk, (27)

where we divide[0, t] into 0 = t0 < t1 < t2 < · · · < tm =
t, ∆tmax = maxk(tk+1 − tk) and∆Wk = W (tk+1) −
W (tk). The mode of convergence is in mean square.

A basic property of the It̂o stochastic integral used in this
paper is

E
[∫ t

0

f(s, ·)dW (s)

]
= 0, (28)

wheref : [0, T ] × Ω → R is the It̂o integrable and inde-
pendent of the increments∆Wk.

5.3. Itô Formula

The Itô formula is one of the most important tools in Itô
process. Intuitively, the Itô formula corresponds to a chain
rule in the stochastic process. To explain this, we first ex-
plain the case of the ordinary differential equation

d

dt
X(t) = a(t,X(t)). (29)

Let h be a function ofX(t). The chain rule derives the
evolution of the functionh as

d

dt
h(t,X(t)) =

dX(t)

dt

∂

∂X(t)
h(t,X(t))

= a(t,X(t))
∂

∂X
h(t,X(t)). (30)

By defining a linear operatorL0 = a∂X , we have

dh(t,X(t)) = L0h(t,X(t))dt, (31)

whereL0h(t,X(t) = a(t,X(t))∂Xh(t,X(t)). (32)

In the stochastic differential equation, we have the follow-
ing formula.

Theorem 1 (Itô Formula (Itô, 1944)). X(t) satisfies the
stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t). (33)

Leth(t,X(t)) be a given bounded function inC2((0,∞)×
R). Then,h(t,X(t)) satisfies the stochastic differential
equation

dh(t,X(t)) = L1h(t,X(t))dt+ L2h(t,X(t))dW (t),
(34)

whereL1 andL2 are linear operators defined by

L1 = ∂t + a∂X +
1

2
b2∂2

X , L2 = b∂X . (35)

5.4. Basic Theorems

We introduce three theorems for the Itô process. These are
used in the next section.

Assumption 1. Suppose that

Lipschitz condition: there exists constantC > 0 such that

|a(t, x)− a(t, y)|+ |b(t, x) + b(t, y)| ≤ C|x− y|. (36)

Linear growth condition: there exists constantC > 0 such
that

|a(t, x)|2 + |b(t, x)|2 ≤ C2(1 + |x|2). (37)

There exists constantC > 0 such that

|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ C(1 + |x|)|s− t| 12 .
(38)

Theorem 2 (Theorem 4.5.4 of (Kloeden & Platen, 1992)).
Suppose thatE[|X(0)|2ℓ] < ∞ for some integerℓ ≥ 1.
Then

E[|X(t)|2ℓ] ≤ (1 + E[|X(0)|2ℓ]) exp(D1(t− t0)),

E[|X(t)−X(t0)|2ℓ]
≤ D2(1 + E[|X(0)|2ℓ])(t− t0) exp(D1(t− t0)),

for t ∈ [t0, T ], whereT < ∞, D1 = 2ℓ(2ℓ+1)C2 andD2

is a positive constant depending only onℓ, C andT − t0.

Theorem 3 (Gronwall inequality (Lemma 4.5.1 of
(Kloeden & Platen, 1992))). Letα, β: [t0, T ] → R be in-
tegrable with

0 ≤ α(t) ≤ β(t) +G

∫ t

t0

α(s)ds, t0 ≤ t ≤ T,

whereG > 0. Then

α(t) ≤ β(t) +G

∫ t

t0

exp(G(t− s))β(s)ds, t0 ≤ t ≤ T.
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Theorem 4(Feynman-Kac Formula (Feynman, 1948; Kac,
1948; 1951)). Suppose thata, b and g are smooth and
bounded functions. LetX be the solution of the stochas-
tic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t),

and letu(t, x) = E[g(X(T ))|X(t) = x].

Thenu is the solution of the Kolmogorov backward equa-
tion  ∂u

∂t
+ a

∂u

∂x
+

1

2
b2

∂2

∂x2
u = 0, t < T

u(T, x) = g(x)
. (39)

6. Analysis of SGLD Method by using It̂o
Process

We analyze the discretization error of the SGLD algorithm
from two aspects: strong error and weak error, which cor-
respond to strong convergence and weak convergence, re-
spectively. We show that the SGLD algorithm does not
converge in terms of strong convergence but converges in
terms of weak convergence.

6.1. Problem Setting

For theoretical use, we introduce a virtual time line,0 =
t0 < t1 < · · · < tN = T , to use the It̂o process, wheretk
denotes thek-th update time of the SGLD algorithm, i.e.,
θtk is thek-th sample, andN denotes the total number of
updates, i.e., the total number of samples. The time interval
is constant, i.e.,tk − tk−1 = ϵ (k = 1, · · · , N). From
ϵ = T/N , T indicates a parameter to determineϵ in terms
of the implementation of the SGLD algorithm.

Let a(θ) = ∂θL(θ). Note that sinceL(·) does not depend
on timet, a(·) does not depend ont. Let ã(θ) = ∂θL̃(θ).

We consider the following It̂o process

θ(T )− θ(0) =

∫ T

0

a(θ(t))dt+

∫ T

0

b(θ(t))dW (t).

(40)

Let θ̃ be a random variable generated by the SGLD algo-
rithm. The SGLD update is represented as

θ̃(tk)− θ̃(tk−1) = ã(θ̃(tk−1))ϵ+ b(θ̃(tk−1))ηk, (41)

ηk ∼ N(0, ϵ), b(θ̄(tk−1)) =
√
2. (42)

For deriving more general results, we do not restrictb(·)
constant in this paper.

By using stochastic noiseξtk−1
, we can rewrite Eq. (41) as

θ̃(tk)− θ̃(tk−1) = (a(θ̃(tk−1)) + ξtk−1
)ϵ+ b(θ̃(tk−1))ηk.

(43)

6.2. Convergence in Stochastic Differential Equation

In the stochastic differential equation, we have the follow-
ing two definitions of convergence: strong and weak.

Definition 1 (Strong and Weak Convergence). Let N be
an integerN > 0 andX be a stochastic process. We say
that a time discrete approximation̄X∆t over time interval
[0, T ] with step size∆t = T/N

converges strongly toX(T ) at timeT if

lim
∆t→0

E[|X(T )− X̄∆t(T )|] = 0, (44)

and converges weakly toX(T ) at timeT if, for any contin-
uous differentiable and polynomial growth functionh,

lim
∆t→0

|E[h(X(T ))]− E[h(X̄∆t(T ))]| = 0. (45)

In the next section, we analyze the strong and weak conver-
gence of the SGLD algorithm.

6.3. Strong and Weak Convergence of SGLD

Assumption 2. We assume that

Initialize condition: θ̃(0) = θ(0) and is bounded.

Lipschitz condition:

|a(θ(t))− a(θ(s))| ≤ C1|θ(t)− θ(s)|, (46)

|b(θ(t))− b(θ(s))| ≤ C2|θ(t)− θ(s)|. (47)

Linear growth condition:

|a(θ(t))|2 + |b(θ(t))|2 ≤ C2
3 (1 + |θ(t)|2), (48)

andC1, · · · , C3 do not depend onϵ.

First, we have

Theorem 5(Strong error).

E[|θ(T )− θ̃(T )|2] = O(ϵ+max
k

E[|ξtk |2]). (49)

The proof is given in AppendixA. Theorem5 indicates
the pathwise error of the SGLD algorithm is affected by
stochastic noiseξ. This also shows that the SGLD algo-
rithm does not converge in terms of strong converge. Note
that if maxk E[|ξtk |2] = 0, the order of convergence is the
same as ordinary Langevin dynamics.

Next, we can show that

Theorem 6(Weak error).

|E[h(θ(T ))]− E[h(θ̃(T ))]| = O(ϵ), (50)

for any continuous differentiable and polynomial growth
functionh.
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The proof is given in AppendixB. Theorem6 indicates the
statistics error of the SGLD algorithm is not affected by
stochastic noiseξ. This also shows that the SGLD algo-
rithm converges in terms of weak converge and the order
of convergence is the same as ordinary Langevin dynam-
ics.

Theorem5 is a positive property of the SGLD algorithm
because the expectation of some functionE[h(θ)] is more
important for Bayesian learning. One example is Bayes
predictive distribution, i.e.,h(θ) = p(x∗|θ). When calcu-
lating some statistics, the SGLD algorithm can be an alter-
native to ordinary Langevin dynamics.

7. Conclusion

We theoretically analyzed the SGLD algorithm with a con-
stant stepsizeϵ in two ways: using the Fokker-Planck equa-
tion and It̂o process. These results show the following
properties of the SGLD algorithm.

• As stepsizeϵ → 0, the stationary distribution of ran-
dom variables generated by the SGLD algorithm con-
verges to the Bayesian posterior.

• Stochastic noise negatively affects the SGLD algo-
rithm in a mean of strong convergence but does not
affect in a mean of weak convergence.

These properties suggest that if we use the SGLD algorithm
as a posterior averaging method, e.g., Bayesian prediction,
it can be an alternative to ordinary Langevin dynamics.

A. Proof of Theorem 5

Consider the stochastic differential equation of (40)

dθ(t) = a(θ(t))dt+ b(θ(t))dW (t), 0 ≤ t ≤ T. (51)

For theoretical use, fortk−1 ≤ t < tk, define

ã(θ(t)) = ã(θ̃(tk−1)), b̃(θ(t)) = b(θ̃(tk−1)) (52)

and the stochastic differential equation of (41)

dθ̃(t) = ã(θ(t))dt+ b̃(θ(t))dW (t), tk−1 ≤ t < tk.

LetZ(t) = θ(t)− θ̃(t) for tk−1 ≤ t < tk, i.e.,

dZ(t) = (a− ã)(θ(t))dt+ (b− b̃)(θ(t))dW (t), (53)

where, fortk−1 ≤ t < tk,

(a− ã)(θ(t)) = a(θ(t))− ã(θ(t)) = a(θ(t))− ã(θ̃(tk)),

(b− b̃)(θ(t)) = b(θ(t))− b̃(θ(t)) = b(θ(t))− b(θ̃(tk)).

The Itô formula applied toZ(t)2 shows, fortk−1 ≤ t < tk,

Z(tk)
2 − Z(tk−1)

2

=

∫ tk

tk−1

2(a− ã)(θ(t))(θ(t)− θ̃(t)) +
1

2
((b− b̃)(θ(t)))2dt

+

∫ tk

tk−1

2(b− b̃)(θ(t))(θ(t)− θ̃(t))dW (t). (54)

Since the expectation of the Itô integral is zero (see
Eq.(28)), i.e., the second integral of Eq. (54) is

E

[∫ tk

tk−1

2(b− b̃)(θ(t))(θ(t)− θ̃(t))dW (t)

]
= 0, (55)

take the expectation ofZ(tk)
2,

E[Z(tk)
2]− E[Z(tk−1)

2]

=

∫ tk

tk−1

E[2(a− ã)(θ(t))(θ(t)− θ̃(t))]dt

+
1

2

∫ tk

tk−1

E[((b− b̃)(θ(t)))2]dt. (56)

Since generally2xy ≤ (x+ y)2,

E[2(a− ã)(θ(t))(θ(t)− θ̃(t))]

≤ E[((a− ã)(θ(t)) + (θ(t)− θ̃(t)))2]

≤ E[|(a− ã)(θ(t))|2] + E[|θ(t)− θ̃(t)|2]. (57)

Using stochastic noiseξ, we have

|(a− ã)(θ(t))|2

= |(a(θ(t))− ã(θ̃(tk−1))|2

= |(a(θ(t))− a(θ̃(tk−1))− (ã(θ̃(tk−1))− a(θ̃(tk−1))︸ ︷︷ ︸
=ξtk−1

)|2

≤ |a(θ(t))− a(θ̃(tk−1))|2 + |ξtk−1
|2. (58)

By the Lipschitz condition,

|a(θ(t))− a(θ̃(tk−1))|2

≤ |a(θ(t))− a(θ(tk−1)) + a(θ(tk−1))− a(θ̃(tk−1))|2

≤ |a(θ(t))− a(θ(tk−1))|2 + |a(θ(tk−1))− a(θ̃(tk−1))|2

≤ C2
1 [|θ(t)− θ(tk−1)|2 + |θ(tk−1)− θ̃(tk−1)|2],

and the same for|(b(θ(t))− b̃(θ(tk−1))|2.

From Theorem2, for tk−1 ≤ t < tk,

E[|θ(t)− θ(tk−1)|2]
≤ D2(1 + E[|θ(t0)|2])(t− tk−1) exp(D1(t− tk−1)),

≤ D2(1 + E[|θ(t0)|2])(t− tk−1) exp(D1(T − t0)).
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This means that there is a constantD3 depending only on
D1, D2, T andθ(0), i.e.,

E[|θ(t)− θ(tk−1)|2] ≤ D3(t− tk−1) (59)

whereD3 = D2(1 + E[|θ(t0)|2]) exp(D1T ).

Therefore, we have

E[Z(tk)
2]− E[Z(tk−1)

2]

≤
∫ tk

tk−1

(C2
1 + C2

2 ){ E[|θ(t)− θ(tk−1)|2]︸ ︷︷ ︸
≤ D3(t− tk−1) by (59)

+ E[|θ(tk−1)− θ̃(tk−1)|2]︸ ︷︷ ︸
= E[|Z(tk−1)|2]

}

+ E[|ξtk−1
|2] + E[|θ(t)− θ̃(t)|2]dt.

≤
∫ tk

tk−1

(C2
1 + C2

2 ){D3(t− tk−1) + E[|Z(tk−1)|2]}

+ E[|ξtk−1
|2] + E[|θ(t)− θ̃(t)|2]dt.

≤ (C2
1 + C2

2 )D3ϵ
2 + (C2

1 + C2
2 )E[|Z(tk−1)|2]ϵ

+ E[|ξtk−1
|2]ϵ+

∫ tk

tk−1

E[|θ(t)− θ̃(t)|2]dt.

(60)

That is,

E[Z(tk)
2]

≤ (1 + F1ϵ)E[Z(tk−1)
2] + F2ϵ

2

+ E[|ξtk−1
|2]ϵ+

∫ tk

tk−1

E[|θ(t)− θ̃(t)|2]dt,

(61)

whereF1 = C2
1 + C2

2 andF2 = (C2
1 + C2

2 )D3

The Gronwall inequality (Theorem3) can be applied as fol-
lows.

E[Z(tk)
2] ≤ β(tk−1) +

∫ tk

tk−1

E[Z(t)2]dt, (62)

where letE[|ξt|2] = maxk E[|ξtk−1
|2] andβ(tk−1) = (1+

F1ϵ)E[Z(tk−1)
2] + F2ϵ

2 + E[|ξt|2]ϵ.

Then,

E[Z(tk)
2] ≤ β(tk−1) +

∫ tk

tk−1

exp(tk − t)β(tk−1)dt,

= β(tk−1) exp(ϵ). (63)

Moreover, letγ = (1 + F1ϵ) exp(ϵ) andβ(t0) = F2ϵ
2 +

E[|ξt|2]ϵ, i.e., (63) is

E[Z(tk)
2] ≤ γE[Z(tk−1)

2] + β(t0) exp(ϵ). (64)

Iterating Eq. (64) with E[Z(t0)
2] = 0 leads to

E[Z(tN )2] ≤ β(t0) exp(ϵ)

(
1− γN

1− r

)
. (65)

Here, note thatN = T/ϵ. Moreover, asϵ → 0,

γ
1
ϵ = (1 + F1ϵ)

1
ϵ e → eF1+1, (66)

and, by the l’Hospital formula,

ϵeϵ

1− γ
=

ϵ

e−ϵ − (1 + F1ϵ)
→ −1

1 + F1
. (67)

Therefore,

β(t0)e
ϵ

(
1− γN

1− r

)
= (F2ϵ+ E[|ξt|2])(1− γ

T
ϵ )

ϵeϵ

1− γ
,

(68)

and, by using Eqs. (66) and (67), as→ 0,

E[Z(tN )2] ≤ (F2ϵ+ E[|ξt|2]
eF1+1 − 1

F1 + 1
. (69)

That is,

E[|θ(T )− θ̃(T )|2] = E[|Z(tN )|2] = O(ϵ+ E[|ξt|2]).

B. Proof of Theorem6

Let

u(t, ϕ) = E[h(θ(T ))|θ(t) = ϕ]. (70)

Then, we haveE[h(θ(T ))] = E[h(θ(T ))|θ(0) = θ(0)] =
u(0, θ(0)) andE[h(θ̃(T ))] = E[h(θ(T ))|θ(T ) = θ̃(T )] =
u(T, θ̃(T )).

By using the Feynman-Kac formula (Theorem (4)), u(t, ϕ)
satisfies

∂u

∂t
+ a

∂u

∂ϕ
+

1

2
b2

∂2u

∂ϕ2
= 0, t < T, (71)

u(T, ϕ) = h(ϕ). (72)

The Itô formula applied tou(t, θ̃(t)) shows, fortk−1 ≤ t <
tk,

du(t, θ̃(t)) =

(
∂u

∂t
+ ã

∂u

∂ϕ
+

1

2
b̃2

∂2u

∂ϕ2

)
(t, θ̃(t))dt

+ b̃
∂u

∂ϕ
(t, θ̃(t))dW (t)

(71)
=

(
(ã− a)

∂u

∂ϕ
+

1

2
(b̃2 − b2)

∂2u

∂ϕ2

)
(t, θ̃(t))dt

+ b̃
∂u

∂ϕ
(t, θ̃(t))dW (t), (73)
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where, fortk−1 ≤ t < tk,

a
∂u

∂ϕ
(t, θ̃(t)) = a(θ̃(t))

∂u(t, ϕ)

∂ϕ

∣∣∣∣
ϕ=θ̃(t)

, (74)

ã
∂u

∂ϕ
(t, θ̃(t)) = ã(θ̃(tk−1))

∂u(t, ϕ)

∂ϕ

∣∣∣∣
ϕ=θ̃(t)

, (75)

b
∂u

∂ϕ
(t, θ̃(t)) = b(θ̃(t))

∂u(t, ϕ)

∂ϕ

∣∣∣∣
ϕ=θ̃(t)

, (76)

b̃
∂u

∂ϕ
(t, θ̃(t)) = b(θ̃(ttk−1

))
∂u(t, ϕ)

∂ϕ

∣∣∣∣
ϕ=θ̃(t)

. (77)

Evaluate the integral from0 to T , notingθ̃(0) = θ(0),

u(T, θ̃(T ))− u(0, θ(0)) =∫ T

0

(
(ã− a)

∂u

∂ϕ
+

1

2
(b̃2 − b2)

∂2u

∂ϕ2

)
(t, θ̃(t))dt

+

∫ T

0

b̃
∂u

∂ϕ
(t, θ̃(t))dW (t). (78)

Take the expectation and use that the expected value of the
Itô integral is zero, i.e.,

E

[∫ T

0

b̃
∂u

∂ϕ
(t, θ̃(t))dW (t)

]
= 0 (79)

and

E[u(T, θ̃(T ))]− E[u(0, θ(0))]

=

∫ T

0

E
[
(ã− a)

∂u

∂ϕ
(t, θ̃(t))

]
dt

+

∫ T

0

1

2
E
[
(b̃2 − b2)

∂2u

∂ϕ2
(t, θ̃(t))

]
dt. (80)

By (41) and (43),

ã(θ̃(tk−1)) = a(θ̃(tk−1)) + ξtk−1
. (81)

Thus,

E
[
(ã− a)

∂u

∂ϕ
(t, θ̃(t))

]
= E

[
(ã(θ̃(tk−1))− a(θ̃(t)))

∂u

∂ϕ
(t, θ̃(t))

]
= E

[
(a(θ̃(tk−1)) + ξtk−1

− a(θ̃(t)))
∂u

∂ϕ
(t, θ̃(t))

]
= E

[
(a(θ̃(tk−1))− a(θ̃(t)))

∂u

∂ϕ
(t, θ̃(t))

]

+ E

ES [ξtk−1
]︸ ︷︷ ︸

=0

∂u

∂ϕ
(t, θ̃(t))


= E

[
(a(θ̃(tk−1))− a(θ̃(t)))

∂u

∂ϕ
(t, θ̃(t))

]
. (82)

Let

ρ(t, θ̃(t)) = (a(θ̃(tk−1))− a(θ̃(t)))
∂u

∂ϕ
(t, θ̃(t)), (83)

for tk−1 ≤ t < tk and, by the It̂o formula,

dρ(t, θ̃(t)) =

(
∂ρ

∂t
+ ã

∂ρ

∂ϕ
+

1

2
b̃2

∂2ρ

∂ϕ2

)
(t, θ̃(t))dt

+ b̃
∂ρ

∂ϕ
(t, θ̃(t))dW (t). (84)

Since

E
[
b̃
∂ρ

∂ϕ
(t, θ̃(t))dW (t)

]
= E

[
b̃
∂ρ

∂ϕ
(t, θ̃(t))

]
E [dW (t)]︸ ︷︷ ︸

=0

= 0,

for tk−1 ≤ t < tk,

dE[ρ(t, θ̃(t))]
dt

= E

[
dρ(t, θ̃(t))

dt

]

= E
[(

∂ρ

∂t
+ ã

∂ρ

∂ϕ
+

1

2
b̃2

∂2ρ

∂ϕ2

)
(t, θ̃(t))

]
, (85)

thus, by using Weierstrass theorem, there exists a constant
Ck > 0 such that∣∣∣∣∣dE[ρ(t, θ̃(t))]dt

∣∣∣∣∣ ≤ Ck, for tk−1 ≤ t < tk, (86)

i.e.,

E
[
ρ(t, θ̃(t))

]
= E

[
(ã− a)

∂u

∂ϕ
(t, θ̃(t))

]
≤ Ckϵ. (87)

Similarly, we have

E
[
(b̃2 − b2)

∂2u

∂ϕ2
(t, θ̃(t))

]
≤ Ckϵ, for tk−1 ≤ t < tk.

Therefore, usingCmax = maxk Ck,

|E[h(θ̃(T ))]− E[h(θ(T ))]|
= |E[u(T, θ̃(T ))]− E[u(0, θ(0))]|

≤
∫ T

0

Cmaxϵdt = TCmaxϵ (88)
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