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Abstract trajectory of the parameters will converge to the full pos-

terior distribution. Langevin dynamics requires all data to

The stochastic gradient Langevin dynamics
(SGLD) algorithm is appealing for large scale
Bayesian learning. The SGLD algorithm
seamlessly transit stochastic optimization and
Bayesian posterior sampling. However, solid
theories, such as convergence proof, have not
been developed. We theoretically analyze the
SGLD algorithm with constant stepsize in two
ways. First, we show by using the Fokker-Planck
equation that the probability distribution of ran-
dom variables generated by the SGLD algorithm
converges to the Bayesian posterior. Second, we
analyze the convergence of the SGLD algorithm
by using the b process, which reveals that the
SGLD algorithm does not strongly but weakly
converges. This result indicates that the SGLD

update model parameters.

The SGLD algorithm applies stochastic approximation
to Langevin dynamics, i.e., its updates are processed
by mini-batches.  With the original SGLD algorithm
(Welling & Teh, 2011), the step sizes are annealed to zero
at a certain rate. However, this stepsize condition slows
mixing rate. After a sufficient burn-in period, the stepsizes
are much smaller, thus, the trajectory of the parameters can
be local. Ahn et al. Z012 extended the SGLD algorithm
so that for large stepsizes it will sample from an approx-
imate normal distribution of the posterior. Petterson and
Teh 013 proposed an SGLD algorithm on a probability
simplex space.

Contributions : In this paper, we theoretically analyze the

SGLD algorithm with constant stepsize in two ways.

(1) We show that the probability distribution of random
variables generated by the SGLD algorithm converges to
the Bayesian posterior by using the Fokker-Planck (FP)
equation.

(2) We analyze the convergence of the SGLD algorithm by
Bayesian learning is one of the most important fields in mausing the 16 process, which reveals that the SGLD algo-
chine learning. It captures uncertainty and avoids overfit/ithm does not strongly but weakly converges.

ting. The stochastic gradient Langevin dynamics (SGLD)

algorithm Welling & Teh, 2011) is appealing for large-
scale Bayesian learning. It is constructed by the combi
nation of Robbins-Monro type stochastic approximation
(H.Robbins & S.Monrp1951) and Langevin dynamics.

algorithm can be an approximation method for
posterior averaging.

1. Introduction

The SGLD algorithm is regarded as a discretization ap-
proximation of a stochastic differential equation corre-
sponding to the FP equation of the Bayesian posterior.
Therefore, by analyzing the discretization error of the
Stochastic approximation such as stochastic gradient déSGLD algorithm, we can analyze the convergence of the
scent is one of the most successful techniques in large scafeGLD algorithm. To the best of our knowledge, these are
machine learning. It processes mini-batches of data at eadhe first theoretical analyses of the SGLD algorithm.

iteration and update model parameters. Langevin dynamic§oe that our theoretical analysis is based on the one-
injects noise into model parameters in such a way that thgimensional EP equation andliprocess for simplicity

Proceedings of the?1** International Conference on Machine (mainly for simple notations). Our analysis can be easily

Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- €xtended by using multi-dimensional FP equation add It
right 2014 by the author(s). process.
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2. Stochastic Gradient Langevin Dynamics
(SGLD)

Letx;., be adata set;.,, = (z1, 22, -
erative modep(x;.,|0) =

, T, ) With a gen-
[T, p(z;]0) parameterized by dom variables generated by the SGLD algorithm. We find

4. Analysis of SGLD Algorithm by using FP
Equation

We analyze the probability density function (pdf) of ran-

6 with prior p(#). The aim of Bayesian learning is to com- that under the assumption which is often used in stochas-
pute the posteriop(f|x1.,,) and the predictive distribution tic approximation fields, its stationary distribution is the
for a new data point/ p(z*|0)p(0|x1.,)d6. Bayesian posterior as is the case in the ordinary Langevin

We use the notatiofl, for the partial derivatives with re- dynamics. Thatis, the stochastic noise can be ignored.

spect tod.

The SGLD algorithm \elling & Teh, 2011) contains the
following update equation:

We analyze the following SGLD with constant step size
041 = 0y + g L(0y) + V214, m ~ N(0,¢).  (8)
(1) For theoretical use, we represent Eg) iy using stochas-

tic noise¢;, which is a well-known technique in stochastic
approximation fields.

6 ~
Orp1 =0 + iaeL(‘gt) + 1, me ~ N(0,€),

Z 0 log p(;|0;), (2)

e Orr1 = 0; + €(0gL(6:) + &) + V2n:, ©)
wheresS; is a set of samples randomly selected from,,

o L(60:) = Dglog p(0:) +

ISI

e; is the step size, and¥ (0, ¢;) is a Gaussian distribution L(0) = log p(0) + Z log p(z;10), (10)
with mean0 and variance;. The step size decreases to- i=1
wards zero at rates satisfying & =0p i(et) — OgL(6y),
Z€t = 00, Zef < 0. 3) |S | Z log p(x;]60;) Zlogp (24]0:) (12)
t=1 t=1 1€St

Typically, the step size is formulated gs= 7o/(7 + t)"

/ Note that the expectation over sampling Sgtdenoted by
with r € (0.5,1].

ESt [gt]’ is
]ESt [gt] =0.

The stochastic noise is typically assumed to be a white
noise or Martingale difference noise, i.&..and¢; (s # t)
are independent. Moreover, we assume that

3. Review of Fokker-Planck (FP) Equation (12)
Let ¢(t,0) be the probability density function @fat time
t. Suppose that

lim U(6) = oo, (4)

6] =00 Es, [6f] < oo, (13)

which means thaf exp(—U(G))dH < Q. for some integef > 2.

The FP equatiorRisken & Frank1984 Daum 1994 isa  Let ¢(¢,6) be the pdf off at timet and,(6) be the char-
partial differential equation which describes the time evo-acteristic function of(¢, 9) defined by

lution of the probability density function given by

Deq(t,0) = 09 (9pU (0)q(t,0)) + ga(t.0).  (5) ¢ (s) = /exp(i89)q(t,0)d¢9. (14)
Let ¢(6) be the stationary distribution qft¢, 6). Then, itis o _ )
known thatg(6) satisfies The characteristic function et; is, from Eq.12),
0) x e -U(9)). 6 . > 21
48) o< exp (~U0)) O Blexpliset)] =B |3 <zsest>€] = > LEEise)’
The derivation is as follows. As — oo, ¢(t,0) — ¢(0), =0 =0
i.e.,lim; 0 O¢q(t,0) = 0, and =14 0(). (15)

96 (9eU (0)q(0))) + D5a(6) = 0
<0p[0pU (0)q(0)) + Doq(0)] =0
<0pq(0)[0pU (0) + 9g log q(0)] = )

Thus, we have

AU (0) + 9y logq(8) = 0 < U(6) + logq(0)

The characteristic function @ + €0y L(0;) + €&; is
/exp(ise +isedp L(0)) (1 + O(€?))q(t, 0)do

— Const.. = /exp(is@ + isedyL(0))q(t,0)do + 0(62) (16)



Approximation Analysis of Stochastic Gradient Langevin Dynamics

The characteristic function af 21, is exp(—es?) because
Ne ~ N(O, 6).

Here, we rewrited; 1 asb;. . for theoretical use. There-

fore, the characteristic function 6f (= 6;1) is
Drte(s)
= /exp (is0 + iseDgL(0) — €s?) q(t, 0)dO + O(€?).
17
Usingexp(z) = 1 + = + O(z?),
Drte(s) — du(s)
= / exp(isf) [exp (isedyL(0) — es?) — 1] q(t,0)do

+0(€),

= / exp(isf) [isedgL(0) — es® + O(e?)] q(t, 6)db,
+0(€%),

- / explist) [iscds L(0) — ¢s”] q(t,0)d0 + O(E).
(18)

Thus,
¢t+6 (3) - ¢t (3)

€

= (=is) [ exp(ist)3n(~L(6)a(t, 0)d0

+ (—is)? /exp(is@)q(t7 8)do + O(e),
19)

Let F be the Fourier transform defined by, for an integrable

function f,
FU@IE) = <= [ 1) expise)ds
F@N0) = @) = <= [ FU@)) exp(—isa)as.

and the Fourier transform of the derivatives of thil order

fO(x)is

F(fO)(s) = (—is) (F(f)(s)- (20)

Therefore,

Prre(s) — Pu(s)

2me
= (~is)F0p(~L(0))q(t, 0) + (—is)*Fq(t.0) + O(c),
= F9(0e(—L(9))q(t,0)) + Fga(t, 0) + O(e).

By usingF ~1¢(s) = v2mq(t, ),

q(t+¢€,0)—q(t,0)

€

= 9p(06(—L(0))q(t,0)) + I3q(t,0) + O(e).  (22)
Therefore,
3tq(t, 0) — l% q(t + €, 92 - Q(tv 9)’
= 99(9p(—L(0))q(t,0)) + 7q(t,0),  (23)

which means that the probability density functio@p§en-

erated by the SGLD algorithm also follows the FP equation
(5).

When we usé/(0) = —L(0) in Eq. 6), we haveg(6) =
p(0]@:n).

5. Review of It Process

We found in the previous section that the random variables

generated by the SGLD algorithm can be samples from
the Bayesian posterior when— 0. That is, the SGLD
algorithm is considered to be the discretization approxi-
mation of the stochastic differential equation. Therefore,
our interest is its discretization error. In this section, we
review the 16 process which we use to analyze the dis-
cretization error of the SGLD algorithm in the next section.
Our analysis is based on the basic theories of the stochastic
differential equationGard 1988 Kloeden & Platen1992
Carlsson et a]2010.

5.1. Wiener Process

W (t) represents the one-dimensional Wiener process, also
known as the Brownian motion , which has the following
properties:

1. with probability one, the mapping — W (t) is con-
tinuous and¥ (0) = 0,

2. if we devide[0,T] as0 =ty < t1 < tg < -+ <
ty = T, then the incrementd W, = W(t;) —
W (tk—1) (k=1,---,N) are independent, and

3. forallt > s, theincrementV (t)— W (s) has a normal
distribution with

E[W ()] = 0, E[(W(t) - W(s))’] =t —s. (24)

The Gaussian injective noises of the SGLD algorithm cor-
responds to the incrementsglV,, of the Wiener process.
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5.2. Itd Process

The stochastic process = { X (¢) }+>o that solves

X(1)

X(O)+/0 a(s,X(s))ds—i—/O b(X(s),s)dW (s)
(25)

is called the 1 process I€0, 1944. «a(t,X(¢t)) and
b(t, X (t)) are the drift and diffusion function, respectively.
The stochastic differential equation form of thé firocess
is

dX (t) = a(t, X (£))dt + b(t, X (£))dW (t).  (26)

It has a unique solution if the coefficientsand b are
Lipschitz-continuous functions of linear growth.

The first integral in Eq. Z5) is an ordinary integral along
paths. The second integral in EQ5 is the Ito stochastic
integral defined by

m—1

> 9(0(t) AW, (27)

k=0

= lim
Atmax—0

/0 9(0(5)dW (s)

where we dividd0,t]into0 =ty < t; <to < -+ <ty =
t, Atmax = maxk(tkH — tk> and AW, W(tk+1) —
W (t). The mode of convergence is in mean square.

A basic property of the & stochastic integral used in this
paper is

e[ [ nawis] <o

wheref : [0,7] x Q@ — R is the 16 integrable and inde-
pendent of the incrementSiVy.

(28)

5.3. 1td Formula

The It formula is one of the most important tools id It
process. Intuitively, the &t formula corresponds to a chain

rule in the stochastic process. To explain this, we first ex-

plain the case of the ordinary differential equation

d
%X(t) =a(t, X(t)).
Let & be a function ofX ().

evolution of the functiork as

(29)

The chain rule derives the

%h(t,X(t)) _ d)fhft) a)?(t)h(t,X(t))
= a(t, X(t))a%h(t, X(t)). (30)
By defining a linear operataf, = adx, we have
dh(t, X (t)) = Loh(t, X (t))dt, (31)
whereLoh(t, X (t) = a(t, X (t))0Oxh(t, X (t)). (32)

In the stochastic differential equation, we have the follow-
ing formula.

Theorem 1 (Itd Formula (t6, 1944). X (t¢) satisfies the
stochastic differential equation

dX (1) = a(t, X (£))dt + b(t, X(£))dW (t).  (33)

Leth(t, X (t)) be a given bounded function @ ((0, co) x
R). Then,h(t, X(t)) satisfies the stochastic differential
equation
dh(t, X(t)) = L1h(t, X (t))dt + Lo2h(t, X (t))dW (2),
(34)

whereL; and L, are linear operators defined by

L1 =0, +adx + %zﬂa%(, Ly =0bdx. (35)

5.4. Basic Theorems

We introduce three theorems for thé firocess. These are
used in the next section.

Assumption 1. Suppose that

Lipschitz condition: there exists constarit> 0 such that
la(t,z) — a(t,y)| + b(t, ) + b(t,y)| < Clz —y|. (36)

Linear growth condition: there exists constafit> 0 such
that

la(t, 2)]” + [b(t, 2)]* < C*(1 +|2*).  (37)

There exists constadt > 0 such that

la(s,xz) — a(t,x)| + |b(s,z) — b(t,z)| < C(1+ |z|)|s — t\%.
(38)

Theorem 2(Theorem 4.5.4 ofKloeden & Platen1992).
Suppose thaE[| X (0)|?] < oo for some integed > 1.
Then

E[|X (£)[*] < (1 + E[|X(0)]*]) exp(D1(t — to)),
E[|X (t) — X (to)]*]
< Da(1+E[IX(0)[*])(t — to) exp(D1(t — to)),

fort € [to, T], whereT < oo, D1 = 2((2¢+1)C? and D,
is a positive constant depending only Qi andT" — .

Theorem 3 (Gronwall inequality (Lemma 4.5.1 of
(Kloeden & Platen1992)). Leta, §: [to,T] — R be in-
tegrable with

t
0<a(t)<BE)+G | a(s)ds, to <t<T,

to

whereG > 0. Then

alt) <BE)+G | exp(G(t—s))B(s)ds, to <t <T.

to
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Theorem 4(Feynman-Kac Formuldynman1948 Kac, 6.2. Convergence in Stochastic Differential Equation

1948 1951)). Suppose that;, b and g are smooth and - . .
bounded functions. LeX be the solution of the stochas- M the stochastic differential equation, we have the follow-

tic differential equation ing two definitions of convergence: strong and weak.

Definition 1 (Strong and Weak Convergencd)et N be
dX(t) = a(t, X(t))dt + b(t, X (1))dW (¢), an integerN > 0 and X be a stochastic process. We say
and letu(t, z) = E[g(X(T))| X (t) = «]. that a time discrete approximatioli o, over time interval

0, T] with step size\t = T /N
Thenu is the solution of the Kolmogorov backward equa—[ } P /

tion converges strongly t& (7') at timeT if
ou  Ou 1,0* lim E[|X(T) — Xai(T)]] =0, (44)
{ E—f—aaiz—f—ib @U—O, t<T ) (39) At—0
u(T,z) = g() and converges weakly t§ (7") at timeT' if, for any contin-

) ) ~ uous differentiable and polynomial growth functibn
6. Analysis of SGLD Method by using 1D B
Process lim |E[A(X(T))] — E[h(Xa:(T))]| = 0. (45)

At—0

We analyze the discretization error of the SGLD algorithm .
from two aspects: strong error and weak error, which corl" the nextsection, we analyze the strong and weak conver-

respond to strong convergence and weak convergence, réénce of the SGLD algorithm.
spectively. We show that the SGLD algorithm does not
converge in terms of strong convergence but converges if-3- Strong and Weak Convergence of SGLD

terms of weak convergence. Assumption 2. We assume that

6.1. Problem Setting Initialize condition:9(0) = #(0) and is bounded.
For theoretical use, we introduce a virtual time lige=  iPSchitz condition:
to < t; <--- <ty =T, touse the b process, wherg, 00 — al6 < OO0+ — 0 46
denotes the:-th update time of the SGLD algorithm, i.e., |a(6(t)) = a(0(s))] < C1]0(2) (s)1; (46)
6, is thek-th sample, andV denotes the total number of [6(6(2)) — b(8(s))[ < Co[6(t) —6(s)]. (47)
updates, i.e., the total number of samples. The time interva}linear growth condition:
is constant, i.e.fy —ty—1 = ¢ (k = 1,---,N). From '
e = T/N, T indicates a parameter to determinia terms la(0())]? + [b(B())|> < C2(1+16()[?), (48)
of the implementation of the SGLD algorithm. N
Leta(#) = 9y L(0). Note that since.(-) does not depend andcy, .-+, C do not depend on.
on timet, a(-) does not depend an Leta(6) = 9y L(6). First we have
We consider the following & process Theorem 5(Strong error)
T T ~ 21 2
6(T) — 6(0) :/ a(0(t))dt +/ b(O())dW (t). E[[0(T) —0(T)FF] = O(e + max E[|,, [7]). ~ (49)
0 0
(40)

The proof is given in AppendiA. Theorem5 indicates
Let  be a random variable generated by the SGLD algothe pathwise error of the SGLD algorithm is affected by
rithm. The SGLD update is represented as stochastic nois€. This also shows that the SGLD algo-
- - - - rithm does not converge in terms of strong converge. Note
O(tr) = 0(tk—1) = a(0(tr—1))e + b(0(tx—1))mk,  (41)  that if max, E[|&:, |?] = 0, the order of convergence is the

Nk ~ N(0,€),b(0(tp_1)) = V2. (42)  same as ordinary Langevin dynamics.
For deriving more general results, we do not restiicy ~ N€Xt, we can show that
constant in this paper. Theorem 6 (Weak error)
By using stochastic noisg, _,, we can rewrite Eq.41) as IE[R(0(T))] — E[h(é(T))]\ = O(e), (50)

0(tr) = 0(tr—1) = (a(0(tk—1)) + e Je + 0(0(tk—1))Mk- for any continuous differentiable and polynomial growth
(43)  functionh.
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The proof is given in AppendiB. Theorenb indicates the  The It formula applied t&Z (¢)? shows, fort,_; <t < ty,
statistics error of the SGLD algorithm is not affected by ) )
stochastic nois€. This also shows that the SGLD algo- Z(tr)” = Z(tk-1)

rithm converges in terms of weak converge and the order b B - 1 - )

of convergence is the same as ordinary Langevin dynam-— /t (a—a)(6(1))(0(t) = 6(2)) + 5((b—)(8(1)))"dt

ics. s

Theorem5 is a positive property of the SGLD algorithm +/t 2(b = )(0(1)(0(t) — 6(2))dW (¢). (54)
k-1

because the expectation of some functitjh(6)] is more
important for Bayesian learning. One example is Baye
predictive distribution, i.e.h(8) = p(x*|#). When calcu-
lating some statistics, the SGLD algorithm can be an alter-
native to ordinary Langevin dynamics.

SSince the expectation of thedltintegral is zero (see
Eq.@9)), i.e., the second integral of Ech4) is

E / 2(b— B)(0())(0(t) — B())aW (1)| =0, (55)

th—1

7. Conclusion

. ) . take the expectation df (¢;)?,
We theoretically analyzed the SGLD algorithm with a con- P (t)

stant stepsizein two ways: using the Fokker-Planck equa- E[Z(tk)Q] — E[Z(tk_1)2]
tion and 16 process. These results show the following te .
properties of the SGLD algorithm. = / E[2(a —a)(0(t))(0(t) — 6(t))]dt
te—1
e As stepsize — 0, the stationary distribution of ran- 1/”‘ g 2
dom variables generated by the SGLD algorithm con- * 2 Ji_, E[((b = b)(O(£))) et (56)

verges to the Bayesian posterior.
Since generallRzy < (z + )2,
e Stochastic noise negatively affects the SGLD algo- _

rithm in a mean of strong convergence but does not  E[2(a —a)(0(t))(0(t) — 6(t))]
affect in a mean of weak convergence. < E[((a — a)(0(t)) + (0(t) — 6(1)))?]
~ 2 eNE
These properties suggest that if we use the SGLD algorithm < Efl(a —a)(0@®))I"] + E[l6(t) — 6(t)[7]- (57)
as a posterior averaging method, e.g., Bayesian prediction, _ _
it can be an alternative to ordinary Langevin dynamics.  Using stochastic nois¢ we have

A. Proof of Theorem5

= |(a(6(t)) — a(b(tx—1))|?
Consider the stochastic differential equation4d)( = |(a(6(1)) — a(0(tk—1)) — (@(0(tx—1)) — a(B(tx—1)))I?
d6(t) = a(0(t))dt + b(O()dW (1), 0 <t <T. (51) e
< a(0(t)) = a(@(ts—))* + [€e_, I*- (58)

For theoretical use, fan,_1 < t¢ < t;, define
~ By the Lipschitz condition,

a(0(t)) = a(0(tr-1)), b(0(1)) = b(0(tx-1))  (52) a(6(8)) — a(Ete_)P

and the stochastic differential equation 1) < |a(8(t)) — al0(te_1)) + a(B(tr_1)) — a(é(tk,l))|2
do(t) = a(0(t))dt + b(O())dW (t), tr—1 <t < t. < a(0(t) — a(@(tx-1))* + |a(0(tk-1)) — a(0(tx—1))[*
< CRI0() = 0(tk—1)|* + [0(tk—1) — O(tx—1) ),

and the same fa(b(6(t)) — b(0(tr—1))[?.

From Theoren?, for t;,_; <t < ty,

) E[|0(t) = 0(tx-1)P]

(a—a)(0(t)) = a(0(t)) —a(0(t)) = a(6(t)) — a(0(tr)), < D1+ E[|0(t0) P])(t = t—1) exp(D1(t — t-1)),

(b= b)(8(1)) = b(8(1)) — b(B(t)) = b(B(t)) — b(B(11)). < Do (1 +E[|0(to)*)(t — ti-1) exp(D1 (T — to)).

LetZ(t) = 0(t) — 0(t) fort_y <t < t, i.e.,
dZ(t) = (a — a)(0(t))dt + (b — b)(0(t))dW (t), (53)

where, fort;,_; <t < ty,
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This means that there is a constdn depending only on
D,, Dy, T andf(0), i.e.,

E[6(t) — 0(te-1)I*] < Ds(t — tr—1)

= Dy(1 + E[|0(t0)]?]) exp(D1T).
Therefore, we have

(59)

whereDs

E[Z(t)?] — E[Z(tk-1)]
< / (O O EIOW) — 0t 1)
o < Dy(t — ty_1) by (59)
+E[[0(te—1) — O(tk—1)|*]}
=E[|Z(tx-1)"]
+E[|&,_, 7] + E[16(t) — 6(t)[*]dt.

: /tk (CF + CO{Ds(t — to—1) + E[| Z(te—1) "]}

— 0(t)|*)dt.
[1Z(tk—1)|*]e
+EljE, [Pl + / " R[6() - (1)t
o (60)

+E[&,_,I’] + E[|6(t)
< (C? +C3D3e® + (C? + CHE

That s,
E[Z(t1)?]
< (L+ FOE[Z(ty-1)°] + Foe?
+Bllr s Ple+ | E[l0() — 0(t) dt,
(61)
C? + C3 andF, =

whereF; = (C} +C3)Ds

The Gronwall inequality (TheoreB) can be applied as fol-

lows.
E[Z(ty)?] < 5(t,€1)+/tk E[Z(t)?]dt, (62)

where letE[|¢;]2] = maxy, E[|&;, , |?] andB(tx—1) =
Fle)E[Z(tkfl)Q} + F262 + E[‘§t|2]€

Then,

(1+

E[Z(t)?] < Blts_1) + / " explty — £)B(te_1)dt,

= B(tx—1) exp(e). (63)

Moreover, lety = (1 + Fie)exp(e) andB(tg) = Fae? +
E[|&:|%]e, i.e., 63) is

E[Z(tk)*] < VE[Z(tk—1)°] + B(to) exp(e).  (64)

Iterating Eq. 64) with E[Z(t)?] = 0 leads to

2 1N
BLZ(tv)] < St exn() (). (69)
Here, note thalV = T'/e. Moreover, as — 0,
v = (1+ Fie)ee — et (66)
and, by the I'Hospital formula,
ee’ € -1
1—v *67(1+F1e)_>1+F1. ©7)
Therefore,
(1= _ T T, eef
Bto)es (T2 ) = (Fae + EIGPD(1 2 7)1
(68)
and, by using Egqs66) and 67), as— 0,
5 5 efitl _q
<
E[Z(tn)%] < (Fae +EIGPT 5 (69)
That is,
E[6(T) — 8(T)|*) = E[|Z(tw)I?] = O(e + E[I&[]).

B. Proof of Theorem6

Let

u(t, &) = E[(O(T)|0(1) = 6. (70)
Then, we have[h(6(T))] = E[L(6(T))|6(0) = 0(0)] =
u(0,0(0)) andE[R(6(T))] = E[R(6(T))|0(T) = 0(T)] =

u(T,0(T)).
By using the Feynman-Kac formula (Theoref)( u(t, ¢)
satisfies

8u au 5 0%u
(% 2b8¢>2 0,t<T,

(T ¢) = h(e).

The I formula applied tau(t, 6(t)) shows, fort;,_; <t <
2%

(71)
(72)

du(t,6(t)) = <8u radvy 15282“> (t,0(t))dt

dp 27 Op?
i b%@, (£))dW (1)
w B 2U ~
@ <(a - a)%b - %(b2 - bz)gqjg> (¢, 0(¢))dt
-ou

+ ba—(b(t LO(8)dW (1),
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where, fort,_1 <t < tg, Let
ou o\ s du(t, ¢) TP ~ ou
a%(t,ﬂ(t)) = a(0(t)) 9 L_ém, (74) p(t,0(t)) = (a(O(tr-1)) — a(ﬁ(t)))%(t ,0(1), (83)
a%(t7 5(1) = a(B(te_1)) 6ug¢;¢) o (75) forti_1 <t <t and, by the ib formula,
- - op _9p  1:,0%\, =
bg—;(t,ﬂ(t)) b(i()) 8ug;¢) L " (76) dp(t,6(1)) = ( : tise T3y ¢2) (t.0(t))dt
=0(t
> 0p
pOu s s [“)u(t,qb)‘ + b(9 (t, 0(t)dW (t). (84)
b(%(ta@( ) = b(0(ts,_,)) e (77) ¢
Since
Evaluate the integral fror to 7', notingd(0) = 6(0), ;9p ;00 B
u(T,0(T)) — u(0,6(0)) = E[ 500 ()} _E{ 50 ))] —,—z[dz(t)] -
Ty o ou 1 ) =
| (@-of i@ -nTE) eioe o <i<n
T ~ ~
+ /0 a%t,a(t))dvv(t). 7y ELCIO]_, [dn(tdgm]
Take the expectation and use that the expected value of the _ dp 30 1:50%p 7]
Itd integral is zero, i.e., =E K +a a¢ b2 8¢2) (t G(t))} . (89
T ou, - thus, by using Weierstrass theorem, there exists a constant
E l/o ba?ﬁ(t’ O(t))dW(t)] =0 (79) C > 0 such that
and dE[p(t,0(t))]
E[u(T, 6(1))] ~ E[u(0,6(0)) e
T _ ou, =
= ; E (a—a)agb(t,e(t))} dt e )
1 7 0? i 9 = a— v €.
_+]€ 2E;%bz__g)a%g@,9@»}dt )  E|ot0)] E[( >a¢<te<>ﬂ < Cre. (87)
By (41) and ¢3), Similarly, we have
&(é(tk—l)) = a(é(tk—l)) + gtk—1' (81) E |:(5 — bz)azu( é( )):| < C’ke, fortp_1 <t < tyg.
O?
Thus,
E {(d _ a)%(t é(t))} Therefore, usin@max = maxy, Cy,
[ - Ou ] IE[R(6(T))] — E[A(8(T))]]
= B[00 = a0 55 (00 = [B[u(T, (1)) ~ Efu(0, 0(0))]
[~ ~ ou ., - T
=E |(a(0(tk-1)) + &y — a(9(t)))%(t, 9(75))] < / Crnaxedt = TCraxe (88)
- _ 0
:E<aam4»fa@@»§ytﬂx
E|E Ou iy Gt
+E |Eslé, ] 87)( ,0(t))
=0
ou

— E | (a(0(tx—1) — ald())) o <tm»] (82)

99
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