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Abstract. We consider the question of whether and in what sense, Wardrop equilibria pro-
vide a good approximation for Nash equilibria in atomic unsplittable congestion games
with a large number of small players. We examine two different definitions of small play-
ers. In the first setting, we consider games in which each player’s weight is small. We prove
that when the number of players goes to infinity and their weights to zero, the random
flows in all (mixed) Nash equilibria for the finite games converge in distribution to the set
of Wardrop equilibria of the corresponding nonatomic limit game. In the second setting,
we consider an increasing number of players with a unit weight that participate in the
game with a decreasingly small probability. In this case, the Nash equilibrium flows con-
verge in total variation toward Poisson random variables whose expected values are War-
drop equilibria of a different nonatomic game with suitably defined costs. The latter can be
viewed as symmetric equilibria in a Poisson game in the sense of Myerson, establishing a
plausible connection between the Wardrop model for routing games and the stochastic
fluctuations observed in real traffic. In both settings, we provide explicit approximation
bounds, and we study the convergence of the price of anarchy. Beyond the case of conges-
tion games, we prove a general result on the convergence of large games with random
players toward Poisson games.

Funding: R. Cominetti gratefully acknowledges the support of Proyecto Anillo [Grant ANID/PIA/
ACT192094]. M. Scarsini’s work was partially supported by the Gruppo Nazionale per l’Analisi
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support from the European Cooperation in Science and Technology [Action European Network
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1. Introduction
Nonatomic congestion games were introduced by Wardrop [63] as a model for traffic networks with many drivers,
in which each single agent has a negligible impact on congestion. The model is stated in terms of continuous
flows, which are easier to analyze compared with a discrete model with a finite but large number of players. The
heuristic justification is that a continuous flow model is a natural approximation to a game with many players,
each one having a negligible weight. Although this argument is intuitive and plausible, the question of whether
nonatomic games are the limit of atomic games is only formally addressed in special cases, mainly for atomic
splittable games with homogeneous players as in Haurie and Marcotte [29].

Motivated by applications such as road traffic and telecommunications, it is also important to consider the
issue of approximating unsplittable routing games. In them, players must route a given load over a single path,
which can be chosen either deterministically or at random using a mixed strategy. We consider the more general
class of atomic unsplittable congestion games (not necessarily routing games) and allow for heterogeneous players.
The main question we address is whether Nash equilibria (NE) for these games are well-approximated by a
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Wardrop equilibrium of a limiting nonatomic congestion game. A convergence result provides a stronger sup-
port for Wardrop’s model as an approximation for large games with many small players, especially if we can
estimate the distance between the corresponding equilibrium solutions.

In a weighted congestion game, there is a finite number of players who are characterized by a type and a weight.
The type determines the set of feasible strategies for the player, and the weight determines the player’s impact
on the costs. Moreover, there is a finite set of resources, and each strategy corresponds to a subset of these resour-
ces. Players of a given type have the same set of available strategies. A strategy profile for all players induces a
flow on each strategy equal to the total weight of players choosing it as well as a load on each resource equal to
the total weight of players using that resource as part of their strategy. The cost of using a resource is a weakly
increasing function of its load, and the cost of a strategy is additive over its resources. This defines a finite cost-
minimization game. As shown by Rosenthal [53], every congestion game in which all the players have the same
weight admits a potential and has equilibria in pure strategies. With heterogeneous weights, only mixed equili-
bria are guaranteed to exist (Nash [46]).

As a special case of congestion games, a routing game features a finite directed network whose edges represent
the resources. The origin–destination (OD) pairs encode the types, and the corresponding origin–destination
paths provide the strategies. To illustrate, consider a routing game over a simple network composed of two par-
allel edges with the same strictly increasing cost function c( · ) as shown in Figure 1, and suppose that there are n
players who need to choose an edge to route an identical weight of w ≡ d=n. Here, d denotes the total weight or
demand. In a symmetric equilibrium, every player randomizes by choosing each route with probability 1/2.
Consequently, the number of players on each route is distributed as a Binomial(n, 1=2) random variable. The total
load on each edge is, therefore, d/n times a Binomial(n, 1=2) and converges in distribution to d=2, which is pre-
cisely the Wardrop equilibrium for a total demand of d units of flow. Note that, already in this simple example,
there is a multitude of other equilibria for which n1 and n2 players, respectively, choose the upper and lower
edges for sure (with n1,n2 ≤ n=2), and the remaining players (if any) randomize appropriately so as to equalize
the expected cost of both routes. This includes the special case of a pure equilibrium in which half of the players
take each route, up to one unit if n is odd. As the number of players n tends to infinity, all these different equili-
bria converge to the unique Wardrop equilibrium with a (d=2,d=2) split of the flow.

In real networks, players are confronted to make decisions while facing multiple sources of uncertainty. In par-
ticular, even if the population of potential drivers might be known, the subset of drivers that are actually on the
road at any given time is random. In fact, the contribution of an additional car to congestion is small but not neg-
ligible, and the congestion experienced by an agent depends basically on how many drivers are on the road at
the same time. To that point, Angelidakis et al. [3] and Cominetti et al. [17] study Bernoulli congestion games in
which players participate with an independent probability. If we focus on a small time interval, the probability
that any given player participates in the game during that interval emerges naturally as a small parameter. Moti-
vated by this model, we ask the question whether a congestion game with a large but random number of players
and small participation probabilities can be approximated by a nonatomic congestion game. To address this
question, we study the convergence of the Nash equilibria for a sequence of Bernoulli games toward the War-
drop equilibria of some nonatomic game. Taking the limit in this setting yields a different limit game in which
the random loads on the resources converge to a family of Poisson random variables, whose expected values can
be again characterized as Wardrop equilibria of a suitably defined nonatomic game or, alternatively, as an equili-
brium of a Poisson game in the sense of Myerson [43]. This establishes a novel and precise connection between
the Wardrop model and Poisson games. To provide some insight, consider again the parallel-edge example of
Figure 1 except that now each of the n players has a unit weight but is present in the game with a small probabil-
ity d/n. In this case, the effective demand is a random variable Dn ~ Binomial(n,d=n), which converges as n→∞
to a random variable D ~ Poisson(d). Also, in a symmetric equilibrium in which each player choses an edge

Figure 1. (Color online) Parallel edge network.
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uniformly at random, the load on each route is distributed as a Binomial(n,d=(2n)) and converges to a Poisson(d=2),
whose expected value is again d=2. We show that this convergence holds for all Nash equilibria and for general con-
gestion games with an increasing number of heterogenous players who are active with different vanishing
probabilities.

Note that, in both cases—vanishing weights and vanishing probabilities—the equilibria of the nonatomic limit
games characterize the expected values of the random loads. However, in the Poisson regime, the resource loads
remain random in the limit, whereas in the Wardrop limit these random loads converge to a constant. The fact
that the Poisson limit retains some variability makes it more suitable to model the traffic flows observed in real
networks. As a matter of fact, real traffic flows exhibit stochastic fluctuations that are empirically confirmed to be
close to Poisson distributions, at least under moderate congestion conditions. As an illustration, Figure 2 shows
the histograms of traffic counts over three consecutive 10-minute intervals, observed every Thursday during two
years on a specific road segment in Dublin. The red curves give the expected counts for Poisson distributions
with the same mean. These histograms reveal a persistent day-to-day variability of traffic flows so that a model
predicting a random distribution is one step closer to reality compared with the point estimates provided by the
Wardrop equilibrium. Our results establish a theoretically sound connection between the Wardrop and Poisson
equilibria, which, combined, seem to provide a more sensible model for the traffic flows observed in real
networks.

1.1. Our Contribution
After introducing the relevant classes of congestion games in Section 2, Section 3 deals with nonatomic approxi-
mations of weighted atomic congestion games. Under mild and natural conditions, we show that Nash equilibria
in a sequence of weighted congestion games converge to a Wardrop equilibrium of a limiting nonatomic game.
More precisely, if the number of players grows to infinity and their weights tend to zero in a way that the aggre-
gate demands converge, then, for any sequence of mixed equilibria in the finite games, the random variables that
represent the resource loads converge in distribution to a (deterministic) Wardrop equilibrium for a nonatomic
limit game. We stress that players are not assumed to be symmetric and that they may have different weights
and strategy sets. As long as their weights converge to zero, the random resource loads converge in distribution
to some constants, which are precisely a Wardrop equilibrium for the limit game. This provides a strong support
to Wardrop’s model as a sensible approximation for large unsplittable congestion games with many small
players.

Section 4 focuses on approximations of Bernoulli congestion games. It considers sequences of Bayesian Nash
equilibria for Bernoulli congestion games when the participation probability of players tends to zero and estab-
lishes the convergence of the resource loads toward a family of Poisson variables whose expected values are
Wardrop equilibria of another nonatomic game with suitably defined costs. In Section 5, we unveil the connec-
tion between this nonatomic limit game and a Poisson game in the sense of Myerson [43], namely, the Wardrop
equilibria are in one-to-one correspondence with the equilibria of an associated Poisson game with countably
many players and demands distributed as Poisson random variables. We stress that Poisson games were origi-
nally introduced axiomatically and not as a limit of a sequence of finite games. We close this gap by proving a
general result on convergence of sequences of games with Bernoulli players (not necessarily congestion games)
toward Poisson games. This constitutes a novel alternative justification for Poisson games.

Figure 2. (Color online) Traffic counts. Dublin 2017–2018, Thursday 7:00–7:30 a.m. Data from Transport Infrastructure Ireland,
https://www.tii.ie/roads-tolling/operations-and-maintenance/traffic-count-data/.
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In Section 6, we derive nonasymptotic bounds for the distance between the distributions of the equilibrium
loads in the finite games and the Wardrop and Poisson counterparts. These bounds provide explicit estimates for
using these simpler models to approximate the equilibria in the finite games. Finally, in Section 7, we turn to
investigate the convergence of the price of anarchy (PoA) and the price of stability (PoS)—as measures of the
inefficiency of equilibria—for sequences of weighted congestion games and Bernoulli congestion games.

In summary, the main contributions of this paper are the following:
a. A formal statement and proof of the fact that Nash equilibria of weighted atomic unsplittable congestion

games converge to Wardrop equilibria of nonatomic congestion games as the weights of all players vanish. This is
achieved under very weak conditions and holds even when weights are different (in that case, pure Nash equilibria
(PNE) may not exist).

b. A formal statement and proof of the fact that, as the participation probability of each player vanishes, the ran-
dom loads in Bayesian Nash equilibria of Bernoulli congestion games converge to Poisson random variables whose
expectations are Wardrop equilibria of a suitably defined nonatomic congestion game. Again, this is achieved
under weak conditions; for instance, the participation probability of different players may differ.

c. A connection between Poisson andWardrop equilibria for congestion games and a formal asymptotic justifica-
tion of Poisson games as limits of Bernoulli games.

d. Nonasymptotic bounds for the distance between the equilibria in weighted and Bernoulli congestion games to
the correspondingWardrop and Poisson equilibria.

e. A proof of the convergence of the PoA and PoS for sequences of weighted and Bernoulli congestion games.

1.2. Related Literature
Convergence of weighted congestion games toward nonatomic games has been considered before, mainly for
the case in which players can split their weight over the available strategies. Haurie andMarcotte [29] are the first
to study such convergence issues. In a setting of atomic routing games with splittable flows and elastic demands,
they prove that, when players on each OD pair are identically replicated n times, in the limit when n grows, the
splittable equilibria converge toward Wardrop equilibria. More recently, Jacquot and Wan [30] consider splitta-
ble routing on parallel networks with heterogenous players, and Jacquot and Wan [31] study the approximation
of nonatomic aggregative games by a sequence of finite splittable games. Also, the relation between Nash equili-
bria and a Wardrop-like notion of equilibrium in aggregative games with finitely many players is studied by Pac-
cagnan et al. [50].

We are not aware of any results on convergence of equilibria for unsplittable weighted congestion games. The
closest is Milchtaich [38] who studies limits of finite crowding games with an increasing number of players n with
identical weights 1=n, that is, unweighted congestion games with singleton strategies and type-dependent costs.
Considering pure equilibria only, he establishes the convergence of the per-type aggregate strategy loads toward
an equilibrium of a large crowding game. In another related result, Sandholm [57] proves that infinite potential
games can be obtained as limits of finite potential games. His results are related to ours because every
unweighted congestion game is a potential game (Rosenthal [53]), and conversely, every finite potential game is
isomorphic to an unweighted congestion game (Monderer and Shapley [41]). The difference is that, here, we con-
sider the more general class of weighted congestion games, which, in general, do not have a potential structure.
Moreover, Sandholm [57] studies only the convergence of the potential functions and does not address the con-
vergence of equilibria. We also mention Feldman et al. [22], who establish asymptotic upper bounds for the PoA
in unsplittable games when the number n of players increases and their weight is 1=n. Their results are based on
the so-called (λ,µ)-smoothness in the large, which provides upper bounds for the PoA but, again, without address-
ing the convergence of equilibria. In a similar vein, Chen et al. [15] consider nonatomic congestion games as lim-
its of atomic unsplittable games in order to define altruism and to investigate its impact on the price of anarchy.

In the present paper, we consider unsplittable weighted congestion games and present approximation results
for the flows themselves, which is a stronger statement and, therefore, technically harder to accomplish. In fact,
whereas equilibria for splittable congestion games (as well as pure equilibria in the unsplittable case) are conven-
iently described in terms of flows and loads that live in the same finite dimensional space as Wardrop equilibria,
in the unsplittable case with equilibria in mixed strategies, these flows and loads become random so that limits
must be properly understood in terms of convergence of random variables. This can be used later to derive the
convergence of aggregate metrics, such as the PoA.

Besides routing games, auctions are another class of games in which there is significant previous work on
asymptotic properties when the number of players becomes large. Satterthwaite and Williams [58] and Rusti-
chini et al. [56] study the efficiency loss in markets as the number of bidders grows. Caserta and de Vries [14],
Lambert and Shoham [34], Blumrosen and Holenstein [9], and Fibich and Gavious [23] use asymptotic analysis
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to understand the convergence of revenue in various auction settings. As in our work, several of these references
compute equilibria or approximate equilibria as the auctions become larger and use those characterizations to
derive limiting results. Although convergence might appear natural at first sight, some asymptotic results are
fragile and only hold under carefully stated assumptions. For instance, Roberts and Postlewaite [52] show that
the gain from deviating from competitive behavior in an exchange economy does not need to diminish as the
number of agents in the economy goes to infinity. Also, Swinkels [61] and Feldman et al. [22] show that the ineffi-
ciency in auctions does not need to disappear in the limit with a large number of objects and players.

Several older papers consider the stochastic aspects of traffic, both theoretically and empirically, including the
role of the Poisson distribution for modeling it (see, e.g., Adams [1], Breiman [11, 12], Buckley [13], Mayne [36],
Miller [40], Oliver [49]). More recently, various authors study congestion games with stochastic features, focusing
on the efficiency of equilibria under incomplete information. For instance, Gairing et al. [25] study the ineffi-
ciency of equilibria for congestion games in which the weight of a player is private information. Looking at the
cost uncertainty, Nikolova and Stier-Moses [47] and Piliouras et al. [51] consider players’ risk attitudes in nona-
tomic and atomic cases, respectively. Roughgarden [55] shows that whenever player types are independent, the
inefficiency bounds for complete information games extend to Bayesian Nash equilibria of the incomplete infor-
mation game. Wang et al. [62] and Correa et al. [18] look at similar questions for nonatomic routing games. This
trend does not only include congestion games: Stidham [60] studies the efficiency of some classical queueing
models on various networks, whereas Hassin et al. [28] examine a queueing model with heterogeneous agents
and study how the inefficiency of equilibria varies with the intensity function. Closer to our results on Bernoulli
games, Angelidakis et al. [3] consider congestion games with stochastic players who are risk-averse, restricting
their attention to the case of parallel edges. In the same spirit, Cominetti et al. [17] study Bernoulli congestion
games in which each player i takes part in the game independently with probability pi and find sharp bounds for
the PoA as a function of the maximum pi.

Games with a random number of players are introduced by Myerson [42–45] with the main goal of analyzing
elections with a large number of voters. In his seminal paper, Myerson [43] shows that the case in which the
number of players has a Poisson distribution is of particular relevance, being the only case in which an environ-
mental equivalence holds, that is, the belief of a player of any type about the type profile of the other active play-
ers coincides with the belief of an external game theorist. Myerson [44] deals with large Poisson games in which
the parameter of the Poisson distribution diverges. His approach differs from ours in the sense that he starts
with a Poisson distribution, axiomatically justified, and lets the expectation of this distribution go to infinity. In
our case, we start with a finite number of players and let their number diverge in such a way that, in the limit,
we get a Poisson distribution but not necessarily with a large parameter. Our derivation of Poisson games as lim-
its of finite Bernoulli games seems to be new. The asymptotic approach we take to Poisson games is based on
results from Poisson approximation theory. In probability, results about this topic abound. For an overview of
this literature, we refer the reader to the books and surveys by Barbour et al. [6], Barbour and Chen [4], and
Novak [48].

Several other papers study the properties of games with a random number of players and Poisson games in
particular. Among them, Milchtaich [39] provides a sophisticated analysis of general games with population
uncertainty. De Sinopoli and Pimienta [19], De Sinopoli et al. [20], and Meroni and Pimienta [37] deal with vari-
ous properties of equilibria in Poisson games, such as stability and existence of equilibria in undominated strat-
egies. Other papers apply Poisson games in different settings, not necessarily related to elections. Lim and
Matros [35] study contests with finitely many players in which each player takes part in the game independently
with the same probability, whereas Du and Gong [21] use a Poisson game to model parking congestion and pro-
pose a decentralized and coordinated online parking mechanism to reduce congestion. Let us finally mention
Kordonis and Papavassilopoulos [32] and Bernhard and Deschamps [8], who study dynamic games in which
players arrive at random over time.

1.3. Organization of the Paper
The paper is organized as follows. Section 2 describes the different versions of the congestion games that we
study and introduces the basic notation. Sections 3 and 4 study the convergence of sequences of weighted and
Bernoulli congestion games, respectively. Section 5 examines Poisson games in greater generality and focuses on
convergence to them. Section 6 provides the nonasymptotic bounds on the rate of convergence of the finite con-
gestion games to their limits, followed by Section 7 in which we present convergence results for the PoA and
PoS. Section 8 presents some conclusions and possible directions for future work. Appendices A and B include
auxiliary results and proofs used in Sections 6 and 7, respectively, whereas Appendix C provides a short summary
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of known results on Poisson approximations for sums of Bernoulli random variables that are used to derive our
results. Finally, Appendix D contains a glossary of notations for ease of reference.

2. Congestion Games: Definitions and Notations
This section introduces the basic models of congestion games and the variations that are studied in this paper.
Informally, a congestion game is played over a set of resources whose costs depend on the mass of players using
the resource. Each player chooses a subset of resources among the allowed subsets, seeking to achieve the mini-
mum possible cost. Throughout this paper, we consider a finite set of resources E, where each e ∈ E is associated
with a weakly increasing continuous cost function ce : R+ → R+. We also fix a finite set of types T, where each
type t ∈T is associated with a set of feasible actionsSt ⊆ 2E, which describes the pure strategies.

To name a standard example of a congestion game, routing games capture the topology of a network structure.
These games are defined over the set of edges of a finite graph, encoded by E, and the set of OD pairs, encoded
byT. The set of actionsSt contains the feasible paths for the OD pair representing type t, and the costs ce( · ) rep-
resent the delays when traversing an edge e.

The structural objects

G � (E, (ce)e∈E,T, (St)t∈T) (1)

are the same in all the congestion games considered hereafter, and the only differences are in how we describe
the set of players and their behavior. In the nonatomic framework, players are considered to be infinitesimally
small, and the model is stated in terms of the aggregate mass of players that use each strategy and resource. In
contrast, for weighted congestion games as well as for Bernoulli congestion games, we have a finite set of players
who behave strategically. The rest of this section describes these three different models precisely.

As a guide for the notation used in the sequel, we write �(St) for the simplex of all probability distributions
over the strategy set St. We use capital letters for random variables and lowercase for their expected values. For
instance, Xe represents a random load on a resource e ∈ E with expected value xe � E[Xe], and we add a hat x̂e
when referring to an equilibrium.

2.1. Nonatomic Congestion Games
A nonatomic congestion game Γ∞ is given by a pair (G,d), where G stands for the structural objects of the game
as in (1), and d � (dt)t∈T is a vector of demands with dt ≥ 0 representing the aggregate demand of type t. The total
demand is given by the sum over all types dtot �∑

t∈Tdt.
Each demand dt is split over the corresponding strategiesSt and induces loads on the resources. Specifically, a

strategy flow vector y :� (yt,s)t∈T,s∈St
and a resource load vector x :� (xe)e∈E are called feasible if they satisfy the fol-

lowing constraints:

∀t ∈T, dt �
∑
s∈St

yt,s with yt,s ≥ 0, and ∀e ∈ E, xe �
∑
t∈T

∑
s∈St

yt,s1{e∈s}: (2)

The set of such feasible flow–load pairs (y,x) is denoted by F(d). Note that the resource loads x are uniquely
defined by the strategy flows y but not vice versa. Nevertheless, instead of only considering strategy flows, we
refer to flow–load pairs because some concepts are easier to express in terms of flows, whereas others are defined
in terms of loads. The notation and nomenclature are inspired by routing games, and most of our examples are
of this type because they are intuitive and well-studied. However, we use these terms in the more general setting
of congestion games even when there is no network structure of resources and strategies.

A Wardrop equilibrium is defined as a feasible flow–load pair (ŷ, x̂) ∈F(d) for which the prevailing cost of all
used strategies is minimal or, mathematically,

∀t ∈T, ∀s, s′ ∈St ŷt,s > 0⇒∑
e∈s

ce(̂xe) ≤
∑
e∈s′

ce(̂xe): (3)

Because only strategies with minimum cost are used, all the strategies used by any given type have the same
cost, and as a consequence, any strategy flow decomposition of x̂ yields an equilibrium. The set of Wardrop equi-
libria of the nonatomic game Γ∞ is denoted byWE(Γ∞).

2.2. Weighted Congestion Games
A weighted congestion game is defined as a tuple ΓW � (G, (wi, ti)i∈N), where N is a finite set of players and each
player i ∈N has a weight wi ∈ R+ and a type ti ∈T that determines the player’s strategy set Sti . Our use of the
term “type” slightly differs from what is common in game theory, in which a type is a random variable
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associated to each player, whose distribution is common knowledge but whose realization is private information.
Here, the players’ types are deterministic, and the type of each player is common knowledge.

The aggregate demand for each type t and the total demand are given by

dt �
∑
i:ti�t

wi, and dtot �
∑
t∈T

dt �
∑
i∈N

wi: (4)

Let s � (σi)i∈N be a mixed strategy profile, in which σi ∈�(Sti) represents the mixed strategy used by player
i ∈N, and let Σ :� ×i∈N�(Sti) be the set of mixed strategy profiles. Call Es the expectation with respect to the
product probability measure Ps :� ×i∈Nσi over the set of pure strategy profiles S � ×i∈NSti . If Si is the random
strategy of player i, whose distribution is σi, then the probability that player i uses a given resource e is

σi,e :� Ps(e ∈ Si) �
∑
s∈Sti

σi(s)1{e∈s}: (5)

Accordingly, the strategy flows Yt,s and the resource loads Xe become random variables

Yt,s �
∑
i:ti�t

wi1{Si�s} and Xe �
∑
i∈N

wi1{e∈Si}, (6)

given by the random realizations of Si. Their expected values are

yt,s :� Es[Yt,s] �
∑
i:ti�t

wiσi(s) and xe :� Es[Xe] �
∑
i∈N

wiσi,e:

A straightforward calculation shows that the pair (y,x) satisfies (2) so that (y,x) ∈F(d).
To take the perspective of a fixed player i, we assume the player already selected resource e and define the con-

ditional load

Xi,e :� wi +
∑
j≠i

wj1{e∈Sj}: (7)

Using this, the expected cost of player i conditional on the player using the resource e is

Es[ce(Xe) | e ∈ Si] � Es[ce(Xi,e)]:
A strategy profile ŝ ∈ Σ is a mixed Nash equilibrium if

∀i ∈N, ∀s, s′ ∈Sti σ̂i(s) > 0⇒∑
e∈s

Eŝ[ce(Xi,e)] ≤
∑
e∈s′

Eŝ[ce(Xi,e)]:

The set of mixed Nash equilibria of ΓW is denoted byMNE(ΓW).
When all the players have the same weight wi ≡ w, Rosenthal [53] proves that ΓW is a potential game, and as a

consequence, pure Nash equilibria are guaranteed to exist (see also Monderer and Shapley [41]). Also, Fotakis
et al. [24] show that every weighted congestion game with affine costs admits an exact potential. Conversely,
Harks et al. [27] prove that, if C is a class of cost functions such that every weighted congestion game with costs
in C admits a potential, then C only contains affine functions. Existence of pure equilibria in weighted congestion
games is further studied by Harks and Klimm [26]. Beyond these cases, one can only guarantee the existence of
equilibria in mixed strategies (Nash [46]).

2.3. Bernoulli Congestion Games
In a weighted congestion game, the randomness arises only from the players’ mixed strategies. In this section,
we add another stochastic element: players may not be present in the game. A Bernoulli congestion game is a
congestion game in which each player i ∈N has a unit weight wi ≡ 1 but takes part in the game only with some
probability ui ∈ (0, 1] and otherwise remains inactive and incurs no cost. The participation events, assumed to be
independent, are encoded in random variables Ui ~ Bernoulli(ui), which indicate whether player i ∈N is active
or not. A Bernoulli congestion game is denoted by ΓB � (G, (ui, ti)i∈N).

The framework is similar to a weighted congestion game in which the wi’s are replaced by random weights
Ui ∈ {0, 1} with expected value ui so that the per-type demands become the random variables Dt �∑

i:ti�tUi with
expected values dt � E[Dt] �∑

i:ti�tui. The formulas are, therefore, very similar with wi replaced by Ui or by ui
when taking expectations. Nevertheless, later we see that the two classes of games behave quite differently in
some respects.

Let s � (σi)i∈N ∈ Σ be a profile of mixed strategies. We assume that each player chooses a mixed strategy
before the actual realization of these random variables so that no player knows for sure who is present in the
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game. Now, randomness is induced by both the random participation and these mixed strategies. This is
described by a discrete probability space (Ω, 2Ω,Ps), where Ω � {0, 1}N ×S with S � ×i∈NSti as before, and Ps

is now the probability measure induced by s and by the random participation of players; that is, for v ∈ {0, 1}N
and s ∈S, we have

Ps(v, s) �∏
i∈N

Pi(ωi)σi(si),

with Pi(1) � ui and Pi(0) � 1− ui. The corresponding expectation operator is denoted by Es.
As before, 1{e∈Si} is a Bernoulli random variable indicating whether the random strategy Si includes resource e

with (5) still in place. Additionally, let Ui,e �Ui1{e∈Si} indicate whether player i is active and chooses resource e,
for which we have Es[Ui,e] � ui σi,e. Then, the total number of active players of type t ∈T using strategy s ∈St

and the total load on resource e ∈ E are now the random variables

Yt,s �
∑
i:ti�t

Ui 1{Si�s}, and Xe �
∑
i∈N

Ui,e: (8)

The expected strategy flows and resource loads are

yt,s :� Es[Yt,s] �
∑
i:ti�t

ui σi(s), and xe :� Es[Xe] �
∑
i∈N

ui σi,e: (9)

Once again, the pair (y,x) satisfies (2) so that (y,x) ∈F(d).
When Ui,e � 1, conditional on player i selecting resource e ∈ E, its load is Xi,e � 1+Zi,e, where Zi,e represents the

number of other players using that resource, that is,

Zi,e �
∑
j≠i

Uj,e: (10)

Then, the conditional expected cost for player i ∈N when using this resource is

Es[ce(Xe) |Ui,e � 1] � Es[ce(Xi,e)] � Es[ce(1+Zi,e)]: (11)

Note that, in this setting, all players have unit weight so that the resource loads are integer-valued, and therefore,
the costs ce : N∗ → R+ need only be defined over the positive integers N∗ � N\{0}.

A strategy profile ŝ ∈ Σ is a BayesianNash equilibrium if

∀i ∈N, ∀s, s′ ∈Sti σ̂i(s) > 0⇒∑
e∈s

Eŝ[ce(1+Zi,e)] ≤
∑
e∈s′

Eŝ[ce(1+Zi,e)]:

The set of all Bayesian Nash equilibria of ΓB is denoted by BNE(ΓB).
Remark 1. Cominetti et al. [17, proposition 3.3] show that ΓB is a potential game, which drives the class of Ber-
noulli congestion games apart from the class of weighted congestion games, which admit a potential only in spe-
cial cases. In particular, a Bernoulli congestion game always has equilibria in pure strategies. However, here we
consider both pure and mixed equilibria.

3. Convergence of Weighted Congestion Games
Now that we laid out the gameswe are considering, we proceed to study the convergence ofweighted to nonatomic
congestion games when the number of players increases and their weights decrease. The only stochastic element
appearing in this section is the fact that players randomize by consideringmixed strategies. Undermild and natural
conditions, we prove that the equilibrium resource loads converge in distribution to constants. These constants are
equal to the resource loads prevailing under aWardrop equilibrium of the corresponding nonatomic game.

We consider a sequence of weighted congestion games

ΓnW � (G, (wn
i , t

n
i )i∈Nn )

in which the elements that vary over the sequence are the set Nn of players, their weights wn
i , and their types tni .

We study if and how the equilibria for this sequence converge. All the notations in Section 2.2 remain in place by
simply adding the superscript n. We assume that the number of players goes to infinity and the sequence of
weights goes to zero in such a way that the aggregate demand for each type converges. In other words, as there
are more players, no player becomes dominant, and the demands remain bounded. This is captured by the
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following asymptotic behavior as n→∞:

|Nn| →∞, (12a)
wn :�max

i∈Nn
wn

i → 0, (12b)

dnt :�
∑
i:tni �t

wn
i → dt: (12c)

Under these conditions, the random loads at equilibrium for the sequence of games ΓnW converge in distribution
to the loads of a Wardrop equilibrium of the corresponding nonatomic limit game.

Theorem 1. Let ΓnW be a sequence of weighted congestion games satisfying the assumptions in (12), and let ŝn ∈MNE(ΓnW)
be an arbitrary sequence of mixed Nash equilibria. Then, the corresponding sequence of expected flow–load pairs (ŷn, x̂n) is
bounded and every accumulation point (ŷ, x̂) is a Wardrop equilibrium of the nonatomic congestion game Γ∞ � (G, (dt)t∈T).
Furthermore, along every convergent subsequence, the random flow–load pairs (Yn,Xn) converge in distribution toward (ŷ, x̂).
Proof. As for every mixed strategy profile, the expected flow–load pair (ŷn, x̂n) belongs to F(dn) so that we have
(2), adding the superscript n to all the terms involved. Because dnt → dt, it follows from (2) that the sequence
(ŷn, x̂n) is bounded, and then, passing to the limit in these equations, we conclude that every accumulation point
(ŷ, x̂) belongs toF(d).

Now, take a convergent subsequence and, for simplicity, rename it so that the full sequence converges
(ŷn, x̂n) → (ŷ, x̂). From (6), we get

Varŝn[Xn
e ] � Varŝn

∑
i∈Nn

wn
i 1{e∈Sni }

[ ]
� ∑

i∈Nn

(wn
i )2σ̂n

i,e(1− σ̂
n
i,e) ≤

1
4

∑
i∈Nn

(wn
i )2:

It can be shown similarly that

Varŝn[Yn
t,s] ≤

1
4

∑
i∈Nn

(wn
i )2:

Conditions (12), in turn, imply ∑
i∈Nn

(wn
i )2 ≤ wn

∑
i∈Nn

wn
i � wn

∑
t∈T

dnt → 0,

so that Varŝn[Yn
t,s] → 0 and Varŝn[Xn

e ] → 0, from which convergence in distribution follows.
It remains to show that (ŷ, x̂) is a Wardrop equilibrium; that is, we need to establish (3). If ŷt,s > 0, then for n

large enough, we have ŷnt,s > 0, and there exists some player i ∈Nn of type tni � t with σ̂
n
i (s) > 0. Note that i

actually depends on n, so we should write in. For the sake of simplicity, we omit the superscript. The equilibrium
condition in ΓnW implies that, for each alternative strategy s′ ∈St and for this player i,∑

e∈s
Eŝn[ce(Xn

i,e)] ≤
∑
e∈s′

Eŝn[ce(Xn
i,e)]: (13)

Because |Xn
i,e −Xn

e | ≤ wn
i ≤ wn → 0, it follows that Xn

i,e → x̂e in distribution. Moreover, the loads Xn
e ≥ 0 are bounded

above by the total demands dntot �∑
t∈Tdnt , which converge to dtot �∑

t∈Tdt so that both Xn
e and Xn

i,e are uniformly
bounded. It follows that Eŝn[ce(Xn

i,e)] → ce(̂xe), and letting n→∞ in (13), we obtain (3) as required. w

Example 1. We illustrate the previous result on the Wheatstone network shown in Figure 3. There is a single OD
pair and n ≥ 2 identical players, each one with weight wi ≡ 1=n so that the total demand is dtot � 1. For each n,
there is a unique symmetric pure Nash equilibrium in which all players take the zigzag path e1, e3, e5 and pay a
cost equal to two. For n � 2, we also have a pure equilibrium in which one player takes the upper path, whereas
the other takes the lower path, and they both pay 3/2. For n ≥ 3, the only mixed equilibrium (modulo permuta-
tion of the players) is when n – 1 players take the zigzag path and the last player mixes in any possible way over
the three paths. In the limit when n→∞, all these equilibria converge to the Wardrop equilibrium of the corre-
sponding nonatomic game with a unit flow over the zigzag path.

For games with strictly increasing costs ce( · ), the Wardrop equilibrium loads x̂e are unique, which yields the
following direct consequence.

Corollary 1. Suppose that the resource costs ce( · ) are strictly increasing. Then, for every sequence ΓnW of weighted conges-
tion games satisfying (2) and each ŝn ∈MNE(ΓnW), the random loads Xn

e converge in distribution to the unique Wardrop
equilibrium loads x̂e of the nonatomic limit game Γ∞ � (G, (dt)t∈T).
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As a complement to these results, in Section 6.1, we derive explicit bounds on the approximation and rate of
convergence under additional conditions on the costs. Also, in Section 7 we prove that the PoA for the sequence
of weighted congestion games ΓnW converges to the PoA of the limit game Γ∞.

4. Convergence of Bernoulli Congestion Games
In this section, we study the convergence of Bernoulli congestion games to nonatomic games when the number
of players increases and their participation probabilities decrease. We show that the equilibrium flows and loads
converge in total variation toward Poisson random variables whose expected values are a Wardrop equilibrium
of a corresponding nonatomic game with suitably defined cost functions. Nevertheless, we highlight that our
results prove also that the distributions of the random loads converge.

We proceed to study the convergence of Bayesian Nash equilibria ŝn ∈ BNE(ΓnB) for a sequence of Bernoulli
congestion games

ΓnB � (G, (uni , tni )i∈Nn ):
The elements that vary over this sequence are the setNn of players, their participation probabilities uni , and their
types tni as well as the underlying probability spaces encoding the random participation of players and their
mixed strategies. We assume that the number of players goes to infinity while the sequence of participation prob-
abilities goes to zero in such a way that the aggregate expected demand for each type converges. This is captured
by the following asymptotic behavior as n→∞:

|Nn| →∞, (14a)
un :�max

i∈Nn
uni → 0, (14b)

dnt :�
∑
i:tni �t

uni → dt: (14c)

Our analysis is based on results on Poisson approximations for sums of Bernoulli random variables. In particular,
under (14), the per-type random demands Dn

t �∑
i:tni �tU

n
i are known to converge in total variation to a Poisson

variable Dt ~ Poisson(dt) (see, e.g., Adell and Lekuona [2, corollary 3.1]). We recall that a sequence of probability
measures Qn on N converges in total variation to the probability measure Qwhenever ρTV(Qn,Q) → 0, where

ρTV(Qn,Q) :� sup
A⊂N

|Qn(A) −Q(A)| � 1
2

∑
k∈N

|Qn(k) −Q(k)|: (15)

Similarly, a sequence of integer-valued random variables Tn converges in total variation to T if their distributions
satisfy ρTV(L(Tn),L(T)) → 0. Convergence in total variation is stronger than convergence in distribution—
which was the concept used in Section 3—and is suitable for situations in which the limit distribution is discrete.
Appendix C collects further results on Poisson approximations that are used in our subsequent analysis.

Proposition 1. Let ΓnB be a sequence of Bernoulli congestion games satisfying the conditions in (14) and sn an arbitrary
sequence of mixed strategy profiles. Let Yn

t,s and Xn
e be the random flows and loads given by (8) with Ui �Un

i , ti � tni , and
Si � Sni drawn independently at random according to σni , and let (yn,xn) be the vector of expected flows and loads. Then,

a. The sequence (yn ,xn)n∈N is bounded, and each accumulation point (y,x) belongs toF(d).

Figure 3. (Color online) Wheatstone network.
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b. Along any convergent subsequence of (yn,xn), the random flows Yn
t,s and loads Xn

e converge in total variation to Yt,s ~
Poisson(yt,s) and Xe ~ Poisson(xe), respectively.

c. The limit Poisson variables (Yt,s)t∈T,s∈St
are independent.

Proof.
a. Because the expected demands dnt are convergent, this follows directly from (9), which in this case, reads

dnt �
∑
s∈St

ynt,s, and xne �
∑
t∈T

∑
s∈St

ynt,s1{e∈s}:

b. Take a convergent subsequence and for simplicity rename it to be the full sequence (yn,xn) → (y,x). Consider-
ing a Poisson variable Vn

e ~ Poisson(xne ) and using Theorem C.1(a), we have

ρTV(L(Xn
e ),L(Vn

e )) ≤ un,

so that, using the triangle inequality and (C.1), we conclude

ρTV(L(Xn
e ),L(Xe)) ≤ un + |xne − xe| → 0: (16)

A similar argument shows that Yn
t,s converges in total variation to Yt,s.

c. Consider the joint moment-generating functionMn of the random variables Yn
t,s,

Mn(l) � Esn exp
∑
t∈T

∑
s∈St

λt,sYn
t,s

( )[ ]
,

where l � (λt,s)t∈T,s∈St
. Using the fact that

Yn
t,s �

∑
i:tni �t

Un
i 1{Sni �s},

withUn
i 1{sni �s} independent across players and types (although not across strategies), we have

Mn(l) � Esn exp
∑
t∈T

∑
s∈St

∑
i:tni �t

λt,sUn
i 1{Sni �s}

( )[ ]

�∏
t∈T

∏
i:tni �t

Esn exp Un
i

∑
s∈St

λt,s1{Sni �s}

( )[ ]

�∏
t∈T

∏
i:tni �t

1− uni + uni Esn exp
∑
s∈St

λt,s1{Sni �s}

( )[ ]( )

�∏
t∈T

∏
i:tni �t

1− uni + uni
∑
s∈St

σni (s)exp (λt,s)
( )

:

Taking logarithms and using the fact that ln (1+ y) � y+O(y2), it follows that

lnMn(l) �∑
t∈T

∑
i:tni �t

ln 1+ uni
∑
s∈St

σni (s)[exp (λt,s) − 1]
( )

�∑
t∈T

∑
i:tni �t

∑
s∈St

uni σ
n
i (s)[exp λt,s

( )− 1] +O((uni )2)
( )

�∑
t∈T

∑
s∈St

ynt,s[exp (λt,s) − 1] + ∑
i∈Nn

O((uni )2)

In view of the conditions in (14), the sum
∑

i∈NnO((uni )2) converges to zero, and therefore,

lim
n→∞Mn(l) �∏

t∈T

∏
s∈St

exp (yt,s[exp (λt,s) − 1]),

which is the moment-generating function of a family of independent Poisson random variables with parameters
yt,s. w

Remark 2. Even if the strategy flows Yt,s are independent, in general, the resource loads Xe are not. For instance,
in a trivial network with a single OD pair connected by a unique path, all the edges carry exactly the same load.
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With these preliminary facts, we proceed to introduce the nonatomic congestion game Γ̆
∞
that characterizes the

limit of the sequence ΓnB. Recall that the costs ce : N
∗ → R+ in Bernoulli games are only defined over the positive inte-

gers. The game Γ̆
∞ � (G˘, (dt)t∈T) is given by the limiting demands dt and the auxiliary costs c̆e : R+ → R+

⋃ {+∞},
where c̆e(x) is defined for x ≥ 0 by taking a random variableX ~ Poisson(x) and setting

c̆e(x) :� E[ce(1+X)]: (17)

Notice that, similar to (11), the +1 is because a player must account for the player’s own presence on the resource.
To ensure that these expected costs are well-defined and smooth, we impose the following mild condition:

∃ν ∈ N and dmax > dtot with E[|Δ2ce(1 + V)|] ≤ ν for all e ∈ E and V ~ Poisson(dmax), (18)

where Δ2ce(k) � ce(k+ 2) − 2ce(k+ 1) + ce(k). This condition holds in particular for costs with subexponential
growth ce(k) ≤ b exp (ak) for some a,b ≥ 0, which include all polynomials. The condition fails for fast growing
functions such as ce(k) � k! or ce(k) � exp (exp (k)). The following result summarizes the main consequences of
(18).

Lemma 1. Assume (18) and let

ζ :� (edmax − 1)ν +max
e∈E (ce(2) − ce(1)), (19)

Λ(u) :� ν dmax

2
ueu

(1 − u)2 + u ζ: (20)

Then, the costs c̆e( · ) are finite and of class C2 on [0,dmax] with 0 ≤ c̆′e(x) ≤ ζ for all x ∈ [0,dmax]. Moreover, let ΓB be a Ber-
noulli congestion game with dtot ≤ dmax and let u �maxi∈Nui. Let Xe be the random loads in a mixed strategy profile s,
and Zi,e � Xe −Ui,e be the loads excluding player i. Then, the expected values xe � Es[Xe] and zi,e � Es[Zi,e] satisfy
|zi,e − xe| � Es[Ui,e] ≤ u, and we have

|Eŝ[ce(1+Zi,e)] − c̆e(xe)| ≤ Λ(u): (21)

Proof. The smoothness and the bound 0 ≤ c̆′e(x) ≤ ζ for the auxiliary costs follow directly from Proposition C.2(b)
and Corollary C.1(a). In particular, c̆e( · ) is ζ-Lipschitz, and then (21) follows by using a triangle inequality and
Theorem C.1(b). w

With all these preliminaries, we are ready to prove the convergence of equilibria for Bernoulli congestion
games.

Theorem 2. Let ΓnB be a sequence of Bernoulli congestion games satisfying (14) and (18), and let ŝn ∈ BNE(ΓnB) be an arbi-
trary sequence of Bayesian Nash equilibria. Then, the corresponding sequence of expected flow–load pairs (ŷn, x̂n) is bounded
and every accumulation point (ŷ, x̂) is a Wardrop equilibrium for the nonatomic congestion game Γ̆

∞
. Furthermore, along

every such convergent subsequence, the random flows Yn
t,s and loads Xn

e converge in total variation to Poisson limits Yt,s ~
Poisson(̂yt,s) and Xe ~ Poisson(̂xe), where the variables Yt,s are independent.

Proof. From Proposition 1, we have that (ŷn, x̂n) is bounded and also that, along any convergent subsequence,
Yn
t,s and Xn

e converge in total variation to Poisson limits Yt,s ~ Poisson(̂yt,s) and Xe ~ Poisson(̂xe) with Yt,s inde-
pendent. It remains to show that every accumulation point is a Wardrop equilibrium for Γ̆

∞
. Take a convergent

subsequence and rename it to be the full sequence (ŷn, x̂n) → (ŷ, x̂). We must prove that, for each type t and each
pair of strategies s, s′ inSt, we have

ŷt,s > 0⇒∑
e∈s

c̆e (̂xe) ≤
∑
e∈s′

c̆e (̂xe): (22)

A strict inequality ŷt,s > 0 implies that, for all n large enough, we have ŷnt,s > 0, and there must be a player i � in of
type tni � t with σ̂

n
i (s) > 0. The equilibrium condition in ΓnB implies that, for each alternative strategy s′ ∈St for

player i, we have ∑
e∈s

Eŝn[ce(1+Zn
i,e)] ≤

∑
e∈s′

Eŝn[ce(1+Zn
i,e)]: (23)
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Using Lemma 1, we get

|Eŝn[ce(1 + Zn
i,e)] − c̆e(xne )| ≤ Λ(un) → 0,

and because xne → x̂e, it follows that Eŝn[ce(1+Zn
i,e)] → c̆e (̂xe). Thus, letting n→∞ in (23), we obtain (22) as

required. w

Example 2. Consider a sequence (ΓnB)n∈N of games played on the Wheatstone network in Figure 3 with n identical
players and ui ≡ u � 1=n so that the total expected demand is dtot � 1. Notice that the conditional expected cost of
a player i ∈N when using e1 or e5 equals 1+ u(x− 1), where x is the number of players using the edge. It follows
that the zigzag path (e1, e3, e5) is strictly dominated by a linear combination of the upper and lower paths, and no
player uses the zigzag path. This is in sharp contrast with the weighted congestion games described in Example
1, in which all but one player chose the zigzag path. This difference is explained by the fact that each player has a
unit weight and a significant impact on the costs.

For an even number of players n � 2k, there is a unique PNE (modulo permutations of players), in which half
of the players choose the upper path and the other half take the lower path. In this equilibrium, the expected cost
for each player is (2:5n− 1)=n2. When n � 2k+ 1 is odd, there is an NE in which each edge gets k players for sure,
and the last player randomizes arbitrarily between these two paths. For all n, there is also a symmetric mixed
equilibrium in which every player mixes with q � 1/2 between the upper and lower paths, and the expected cost
of each player is (5n− 1)=(2n2). In general, one can prove that every mixed Nash equilibrium is of the form where
k1 players take the upper path, k2 players take the lower path, and the remaining k3 � n− k1 − k2 players, with
k3 − 1 > |k2 − k1|, randomize between these two paths with exactly the same probabilities (q, 1− q) with q �
1
2 (1+ k2−k1

k3−1 ) so as to equalize their costs. As n→∞, all these equilibria converge to the Wardrop equilibrium of a
nonatomic game where the costs of e1 and e5 become c̆(x) � 1+ x. In this Wardrop equilibrium, half of the
demand goes on the upper path and the remaining half on the lower path.

Under a mild additional condition, the equilibrium loads of the nonatomic limit game are unique, and every
sequence of equilibria converges. The following is a direct consequence of Theorem 2 and the strict monotonicity
of c̆e( · ) established in Corollary C.1(b).

Corollary 2. Let ce : N∗ → N be weakly increasing and nonconstant and assume that conditions (18) hold. Then, the
extended functions c̆e( · ) are strictly increasing, and the loads x̂e are the same in every Wardrop equilibrium for Γ̆

∞
. More-

over, for every sequence ΓnB of Bernoulli congestion games satisfying the conditions in (14) and every sequence
ŝn ∈ BNE(ΓnB), the random loads Xn

e converge in total variation to a random variable Xe ~ Poisson(̂xe).
Theorem 2 and its Corollary 2 provide one of our main results. They show that the equilibrium flows in Ber-

noulli congestion games converge in total variation toward Poisson variables whose expected values coincide
with the Wardrop equilibria of an auxiliary nonatomic game Γ̆

∞
. In Section 5, we supplement this result by

showing that the limit game Γ̆
∞
can be interpreted as a Poisson game in the sense of Myerson [43] and the equili-

bria of such Poisson games can similarly be determined by means of a Wardrop equilibrium of Γ̆
∞
. This provides

a novel justification for Poisson games as well as an alternative interpretation of Wardrop equilibria.
In addition to these results, Section 6.2 presents explicit bounds for the approximation and rate of convergence

of the distributions of the resource loads, and Section 7 shows that the PoA for the sequence of Bernoulli conges-
tion games ΓnB converges to the PoA in the nonatomic limit Γ̆

∞
.

5. Poisson Games
In this section, we expose the connection between the nonatomic game Γ̆

∞
obtained in Section 4 as a limit of Ber-

noulli congestion games and Poisson games in the sense of Myerson [43]. We first formally introduce Myerson’s
framework and Poisson games and conclude that Poisson congestion games arise naturally as a limit of Bernoulli
congestion games (which is essentially proved in Theorem 2), and the equilibria of the Poisson game coincide
with the Wardrop equilibria of the nonatomic game. This is a novel justification for Wardrop’s model and shows
that equilibria in Poisson congestion games can be calculated from the solution of a related Wardrop equilibrium.
Later, we consider more general games with bounded costs and establish the convergence of sequences of games
with Bernoulli players toward Poisson games, providing a microfoundation for Poisson games.
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5.1. Games with Population Uncertainty
Games with population uncertainty are introduced by Myerson [43] as a model for situations in which players
do not know exactly which players participate in the game but share an awareness of the number and type of
players that might be present. These games are described by a finite set of types T and a joint probability distri-
bution µ over NT that characterizes the random number of players of each type N � (Nt)t∈T that take part in the
game.1 Each player of type t ∈T has a corresponding strategy set St and a cost C(Y−t; t, s) that depends on the
chosen action s ∈St and on the strategy flows Y−t induced by the actions of the other players as described subse-
quently. Altogether, a game with population uncertainty is defined by the tuple ΓP � (T,µ, (St)t∈T,C).

Because players cannot distinguish the specific identities of the other players and only know the joint probabil-
ity distribution µ according to which N � (Nt)t∈T is drawn, they are treated symmetrically by assuming that all
players of type t adopt the same mixed strategy σt ∈�(St), which only depends on their type. The measure µ
and the strategy profile s � (σt)t∈T determine the distribution of the strategy flows Y � (Yt,s)t∈T,s∈St

, where Yt,s is
the number of players of type t that choose the action s. Indeed, conditionally on the event Nt � n̄t, the flows Yt �
(Yt,s)s∈St

for type t ∈T are distributed across strategies as independent multinomials Yt ~Multinomial(n̄t,σt).
Hence, for each n � (nt,s)t∈T,s∈St

the distribution of Y is given by

Pµ,s(Y � n) � µ(n̄)∏
t∈T

n̄t!
∏
s∈St

σt(s)nt,s
nt,s!

( )
, (24)

where n̄ :� (n̄t)t∈T with n̄t :�∑
s∈Stnt,s.

Now, in order to determine the expected cost for a generic player of type t who is active in the game, we need
the conditional distribution assessed by such a player for the strategy flows Y−t induced by the other players. To
this end, let N−t � (N−t

t′ )t′∈T be the random vector giving the number of players for each type, excluding this
active player of type t. As argued by Myerson [42, 43] (see also Milchtaich [39]), the posterior distribution of N−t
can be identified with the Palm distribution of µ viewed as a finite point process, that is,

µ(n̄ | t) :� Pµ,s(N−t � n̄) � (n̄t + 1)µ(n̄ + dt)
Eµ[Nt] ,

where n̄ + dt denotes the vector n̄ with n̄t replaced by n̄t + 1. Accordingly, the posterior distribution of the strat-
egy flows Y−t � (Y−t

t′,s)t′∈T,s∈St′ induced by the remaining players is given by (24) with µ(n̄) replaced by µ(n̄ | t).
The expected cost for a player of type t is computed according to this posterior distribution, and an equilibrium
is then defined as a family of type-dependent mixed strategies ŝ � (̂σt)t∈T with σ̂t ∈�(St) such that

∀t ∈T, ∀s, s′ ∈St σ̂t(s) > 0⇒ Eµ,ŝ[C(Y−t; t, s)] ≤ Eµ,ŝ[C(Y−t; t, s′)]: (25)

In order for the expectations to be well-defined, Myerson [43] assumes the functions C( · ; t, s) to be bounded. For
congestion games, this requires the costs ce( · ) to be bounded. Fortunately, this can be relaxed, and we only
require the much weaker condition in (18). Later, when considering more general Poisson games, we go back to
Myerson’s assumptions.

Remark 3. The Bernoulli congestion games in Section 2.3 fall in the framework of games with population uncer-
tainty in which Nt �∑

i:ti�tUi is the sum of independent nonhomogeneous Bernoulli random variables. However,
we consider not only strategies defined by the player’s type, but also asymmetric equilibria in which players
choose their strategies individually.

Example 3. Consider the game ΓnB on the Wheatstone network of Figure 3 in Example 2. Recall that there are n
players—all of the same type t—and each one is present with probability 1=n. Assume that all players play a
mixed strategy in which, with probability 1/2, they choose the upper path and with probability 1/2 they choose
the lower path. Let Y � (Y1,Y2,Y3) denote the random vector that gives the number of players on the paths
s1 � (e1, e4), s2 � (e1, e3, e5), and s3 � (e2, e5), respectively. Then, Y1,Y3 ~ Binomial(n, (2n)−1) and Y2 ≡ 0, whereas the
corresponding posterior distributions are Y−t

1 ,Y−t
3 ~ Binomial(n− 1, (2n− 2)−1) and Y−t

2 ≡ 0.

5.2. Poisson Games
An important subclass of games with population uncertainty is obtained when the Nts are independent Poisson
variables Nt ~ Poisson(dt)with dt > 0, that is,

µ(n̄) � P(Nt � n̄t, ∀t ∈T) �∏
t∈T

e−dt
(dt)n̄ t

n̄t!
: (26)
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It is not difficult to see that such Poisson games are characterized by the fact that the posteriors µ( · | t) coincide
with µ for every t ∈T. Moreover, in this case, the loads Yt,s are also independent with Yt,s ~ Poisson(dtσt(s)). In
fact, as shown in Myerson [43, theorem 1], in a game with population uncertainty, the variables Yt,s are inde-
pendent if and only if the game is Poisson.

It turns out that the nonatomic game Γ̆
∞
in Section 4, obtained as a limit of a sequence of Bernoulli congestion

games, can be interpreted as a Poisson game defined by the costs

C(Y−t; t, s) �∑
e∈s

ce(1+X−t
e ), X−t

e � ∑
t′∈T

∑
s∈St′

Y−t
t′,s1{e∈s}: (27)

We state this observation in the following result.

Theorem 3. Let s be a strategy profile in the Poisson game defined by the costs in (27) and the demands given in (26) with
dt > 0 satisfying (18). Define (y,x) as yt,s � dtσt(s) and xe �∑

t∈T
∑

s∈St yt,s1{e∈s}. Then, s is an equilibrium in the Poisson
game if and only if (y,x) is a Wardrop equilibrium for the nonatomic game Γ̆

∞
in Section 4.

Proof. It suffices to note that the posterior distribution of Y−t is Poisson with independent components and
expected values Eµ,s[Y−t

t′,s] � yt′,s so that X−t
e ~ Poisson(xe). Then, taking expectation, we get precisely

Eµ,s[C(Y−t; t, s)] �∑
e∈s

E[ce(1+X−t
e )] �∑

e∈s
c̆e(xe), (28)

where c̆e( · ) is defined as in (17). w

Note that the costs in (27) depend on the strategy flows Y−t only through the aggregate resource loads X−t
e ,

whereas Myerson [43] considers more general cost functions C(Y−t; t, s). However, as already mentioned, Myer-
son requires costs to be bounded to ensure that their expected values are well-defined, whereas for congestion
games, this boundedness can be relaxed and replaced by the conditions in (18).

5.3. Convergence of Bernoulli Games with Bounded Costs
As mentioned in the introduction, Myerson [43] introduces Poisson games axiomatically. The following variation
of Theorem 2 provides a justification for Poisson games as limits of a sequence of finite games with population
uncertainty of Bernoulli type. The result goes beyond the separable cost structure (27) of congestion games,
allowing the cost of a player to depend on the player’s type and action and the full vector of strategy flows. To
compensate, the costs are required to be bounded.

Consider a finite set of types T with strategy sets St for t ∈T and a sequence of games Γn with finitely many
players i ∈Nn with types tni and probabilities uni of being active. Let Un

i be Bernoulli random variables with
P(Un

i � 1) � uni , and let player i choose Sni ∈Stni at random using a mixed strategy σni . Let Y
n be the random vector

of strategy flows Yn
t,s �∑

j:tnj �tUj1{Snj �s}, and define Y−i,n similarly by excluding player i. The expected cost of an

action s ∈Stni for player i is given by Eŝn[C(Y−i,n; tni , s)]. A Nash equilibrium ŝn is defined as usual by the condi-
tion

∀i ∈Nn, ∀s, s′ ∈Stni σ̂
n
i (s) > 0⇒ Eŝn[C(Y−i,n; tni , s)] ≤ Eŝn[C(Y−i,n; tni , s

′)]:

Theorem 4. Consider a sequence of games Γn as before with bounded cost functions C( · ; t, s) and assume the conditions in
(14) with dt > 0. Then, for every sequence ŝn of Nash equilibria, the expected loads ynt,s � Eŝn[Yn

t,s] are bounded, and each
accumulation point ŷ � (̂yt,s)t∈T,s∈St

corresponds to an equilibrium ŝ in the Poisson game by setting σ̂t(s) � ŷt,s=dt for all
s ∈St.

Proof. The boundedness of the expected strategy loads ynt,s follows from
∑

s∈Sty
n
t,s � dnt → dt. Take a convergent

subsequence and rename it so that yn → ŷ, and define ŝ as in the statement. If σ̂t(s) > 0 for some s ∈St, then
ŷt,s > 0 so that, for all n large, we have ynt,s > 0 and there must be a player in ∈Nn with type t and σ̂

n
in(s) > 0. The

equilibrium condition for in implies that

∀s′ ∈St Eŝn[C(Y−in,n; t, s)] ≤ Eŝn[C(Y−in,n; t, s′)]: (29)

As in Proposition 1, it follows that the variables Y−in,n converge in total variation and, hence, in distribution, to a
random vector Y with independent Poisson components Yt,s ~ Poisson(̂yt,s). Letting n→∞ in (29), we obtain
(25), from which the result follows. w
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Remark 4. Theorem 4 remains valid when some of the demands converge to zero dnt → dt � 0 by considering the
Poisson game restricted to the nontrivial types with dt > 0.

Remark 5. Despite their similarity, Theorems 2 and 4 are independent, and neither one follows from the other. In
fact, Theorem 4 allows for more general forms of the costs as long as they are bounded, whereas Theorem 2 can
handle unbounded costs provided that they have the specific additive structure in (27) and under the conditions
in (18).

6. Approximation Bounds and Rates of Convergence
In this section, we establish nonasymptotic bounds for the distance between the distribution of the edge loads at
equilibrium in the finite games and the loads in the corresponding Wardrop and Poisson games. These bounds
provide quantitative estimates on how well a Wardrop or Poisson equilibrium approximates the equilibrium of
the finite game. We highlight that these results require the costs to have derivatives bounded away from zero.

As in previous sections, we analyze separately the case of weighted and Bernoulli congestion games. In both
settings, we exploit estimates for the distance between Wardrop equilibria in nonatomic games with different
demands as well as between exact and approximate equilibria. Recall that an ε-approximate Wardrop equili-
brium (y,x) ∈F(d), or ε-Wardrop equilibrium, is defined exactly like a Wardrop equilibrium up to an additive
error:

∀t ∈T, ∀s, s′ ∈St yt,s > 0⇒∑
e∈s

ce(xe) ≤
∑
e∈s′

ce(xe) + ε: (30)

Proposition 2. Let (ŷ, x̂) be a Wardrop equilibrium for a nonatomic congestion game Γ∞ with dtot ≤ dmax. Suppose that
there exists some constant c′min > 0 such that

∀e ∈ E, ∀x ∈ [0,dmax] c′min ≤ c′e(x),
and let Ξ � 

2C=c′min

√
with C ≥∑

e∈sce(dmax) for all strategies s ∈⋃
t∈TSt.

a. If (y,x) ∈F(d) is an ε-approximate Wardrop equilibrium, then ‖x− x̂‖2 ≤

εdmax=c′min

√
.

b. If (ŷ′, x̂′) is a Wardrop equilibrium for perturbed demands d′ with d′tot ≤ dmax, then ‖x̂′ − x̂‖2 ≤ Ξ · ‖d′ − d‖1
√

.

Proof. See Appendix A. w

6.1. Weighted Congestion Games
Theorem 1 shows that the random loads Xn

e in the finite weighted congestion games converge in distribution to
the Wardrop equilibrium loads x̂e. Under additional assumptions that call for lower and upper bounds on the
derivatives of the cost functions, we can find nonasymptotic estimates for the rate of convergence.

We first show that any mixed Nash equilibrium of a weighted congestion game ΓW is close to a Wardrop equi-
librium in a nonatomic game Γ∞ with the same aggregate demands. The distance depends—in a way that the
theorem makes precise—on the topology of the instance, on the cost functions, and on the magnitude of the
weights.

Theorem 5. Let ΓW be a weighted congestion game with aggregate demands (dt)t∈T given by (4) with dtot ≤ dmax. Assume
that there exist constants c′max ≥ c′min > 0 such that

∀e ∈ E, ∀x ∈ [0,dmax], c′min ≤ c′e(x) ≤ c′max

and suppose in addition that the derivatives c′e( · ) are L-Lipschitz continuous for some L ≥ 0. Define θ � 
dmax=4

√ +
κdmax(2c′max + Ldmax=4)=c′min

√
with κ ≥ |s| for all strategies s ∈⋃

t∈TSt. Let Xe be the random load in a mixed Nash equi-
librium ŝ ∈MNE(ΓW) and x̂e the unique resource load in the Wardrop equilibrium for the nonatomic game Γ∞ �
(G, (dt)t∈T) with the same aggregate demands as ΓW. Letting w �maxi∈Nwi, we have

‖Xe − x̂e‖L2 ≤ θ · 
w

√
: (31)

As a reminder, the L2 norm is defined as ‖X‖L2 �

E[X2]√

.

Proof. See Appendix A. w

An unfortunate feature of the estimate (31) is the presence of the lower bound c′min in the coefficient θ. In par-
ticular, for fixed demands, the left-hand side of (31) remains bounded, whereas the bound on the right diverges
as c′min → 0 so that this estimate is not always tight. However, for arbitrary demands, the following example

Cominetti et al.: Convergence of Atomic Congestion Games
16 Mathematics of Operations Research, Articles in Advance, pp. 1–28, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
7.

12
0.

12
7.

19
5]

 o
n 

11
 O

ct
ob

er
 2

02
2,

 a
t 0

1:
20

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



shows that the discrepancy between the equilibrium loads in a weighted atomic game and in the Wardrop equili-
brium can be arbitrarily large when c′min is small, and both the right- and left-hand sides of (31) tend to infinity
although at different rates. Although this example was constructed to illustrate the dependence on c′min, the
upper bound parameter θ depends on various other parameters. A full study of the rate of convergence in rela-
tion to each of them is a topic for future research.

Example 4. Consider the network in Figure 4 with demands d1, d2 from two different origins and a common des-
tination. Let v and z denote the fractions of the demands sent over the central path.

Equalizing the costs of the central and outer paths, we get the linear system

(1 + 2β)̂v + ẑ � βd1
v̂ + (1 + 2β)̂z � βd2,

(32)

whose solution is a Wardrop equilibrium provided that v̂ ≥ 0 and ẑ ≥ 0. Similarly, for an atomic unsplittable
game with weights wi ≡ w and demands d1 � n1w, d2 � n2w, integer multiples of w, we have that v � k1w and z �
k2w with k1,k2 ∈ N\{0} represent a pure Nash equilibrium if and only if

(1+ 2β)v+ z � βd1 + ε1
x+ (1+ 2β)z � βd2 + ε2

with ε1,ε2 ∈ [−(1+ β)w,βw]: (33)

In particular, for ε1 � 0 and ε2 � −(1+ β)w with 1=β ∈ N, it follows from (33) that the demands d1 � w[2k1 + (k1 +
k2)=β] and d2 � w[2k2 + 1+ (k1 + k2 + 1)=β] are integer multiples of w. Now, solving (32) and (33), we get

v
z

( )
− v̂

ẑ

( )
� w
4β

1
−(1+ 2β)
( )

,

so that the nonnegativity conditions v̂ ≥ 0 and ẑ ≥ 0 are equivalent to k1 ≥ 1=(4β) and k2 ≥ −(1+ 2β)=(4β). Hence,
taking k1 � �1=(4β)� and k2 � 1, we have that (v, z) and (̂v, ẑ) are, respectively, Nash andWardrop equilibria. Their
load difference is of the order of O(w=β), which diverges as β→ 0. Note that here c′min � β, c′max � 1, L � 0, κ � 2,
and dmax � d1 + d2 ~ w=(2β2), so that the bound (31) becomes θ


w

√
~


2

√
w=β3=2, which also diverges as β→ 0

although at a faster rate compared with the actual error O(w=β). We do not know an instance when (31) is tight.
Combining Proposition 2 and Theorem 5, we can derive an explicit estimate for the L2 distance between the

random resource loads Xn
e in a sequence of mixed Nash equilibria for ΓnW, and the loads in the Wardrop equili-

brium of the nonatomic limit game Γ∞.
The resulting bound in (34) has an additional term that involves the distance between the demands along the

sequence ΓnW and those in Γ∞. Thus, having an equilibrium close to the limit requires small weights and aggre-
gate demands that are close to the limiting demands.

Corollary 3. Let ΓnW be a sequence of weighted congestion games satisfying (12) with dntot ≤ dmax for all n. Let the costs
ce( · ) and θ be as in Theorem 5 and Ξ as in Proposition 2. Let Xn

e be the random loads in a sequence of mixed Nash equilibria
ŝn ∈MNE(ΓnW) and x̂e the unique resource loads in the Wardrop equilibrium for the nonatomic limit game Γ∞ � (G, (dt)t∈T).
Then, with wn defined by (12b), we have

‖Xn
e − x̂e‖L2 ≤ θ · 

wn
√ +Ξ · ‖dn − d‖1

√
: (34)

Proof. See Appendix A. w

Figure 4. (Color online) A network with twoOD pairs and unbounded errors for β→ 0. Labels over the arcs denote cost func-
tions, whereas labels close to origins denote path flows.
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6.2. Bernoulli Congestion Games
Analogously to Section 6.1, we now find nonasymptotic estimates for the rate of convergence in Bernoulli con-
gestion games. Notice that (16) already provides a simpler—although difficult to quantify—bound on the dis-
tance between the resource loads in the finite games ΓnB and the Poisson limits. Indeed, although un is a primitive
parameter of the model and its proximity to zero is readily available, the second term |̂xne − x̂e| is only known to
converge to zero asymptotically. The following estimates provide more explicit bounds expressed directly in
terms of the primitives of the model.

We first show that the distance between a Bayesian Nash equilibrium for a Bernoulli congestion game ΓB and
a Wardrop equilibrium for the nonatomic game Γ̆

∞
with the same aggregate demands is bounded by an expres-

sion that depends on the topology and the function Λ(u) defined in (20) evaluated at the maximum participation
probability u �maxi∈Nui.

Theorem 6. Let ΓB be a Bernoulli congestion game with expected demands dt �∑
i:ti�tui and dtot ≤ dmax. Suppose that (18)

holds and that c̆′e(x) ≥ c̆′min > 0 for all x ∈ [0,dmax]. Let θ̆ � 
2κdmax=c̆′min

√
with κ ≥ |s| for all strategies s ∈⋃

t∈TSt. Let Xe

be the random loads in a Bayesian Nash equilibrium ŝ ∈ BNE(ΓB) with expected flow loads (y,x), and X̂e ~ Poisson(̂xe)
with x̂ the unique Wardrop equilibrium loads in the nonatomic game Γ̆

∞
with costs c̆e( · ) and with the same aggregate

demands dt as ΓB. Then, ‖x− x̂‖2 ≤ θ̆ · 
Λ(u)√

and

ρTV(L(Xe),L(X̂e)) ≤ u+ θ̆ · 
Λ(u)√

: (35)

Proof. See Appendix A. w

Remark 6. The condition c̆′e(x) ≥ c̆′min holds when ce(k+ 1) ≥ ce(k) + c̆′min for all e ∈ E and k ≥ 1. A milder assump-
tion is 0 < δ :�mine∈Ece(2) − ce(1) in which case one can take c̆′min � δe−dmax .

Example 5. Similarly to the case of weighted congestion games, for c̆′min � β ≈ 0, the distance ‖x− x̂‖2 between the
loads in a Bernoulli congestion game and the corresponding Wardrop equilibrium can be arbitrarily large.
Indeed, consider the graph in Figure 4 and a Bernoulli game with identical participation probabilities ui ≡ u and
expected demands d1 � n1u, d2 � n2u, integer multiples of u. In this setting, v � k1u and z � k2u with k1,k2 ∈ N\{0},
is a pure Bayes–Nash equilibrium if and only if

(1+ 2β)v+ z � βd1 + ε1
v+ (1+ 2β)z � βd2 + ε2

with ε1,ε2 ∈ [−1− βu,−1+ (1+ β)u]: (36)

Taking ε1 � −1+ (1+ β)u and ε2 � −1− βu with 1=β ∈ N and 1=(βu) ∈ N, the demands are indeed integer multiples
of u, whereas solving (32) and (36), we get

v
z

( )
− v̂

ẑ

( )
� u
4β(1+ β)

1+ 2β(2+ β− 1=u)
−1− 2β(1+ β+ 1=u)
( )

:

Hence, by taking k1 ≥ (1+ 2β(2+ β− 1=u))=(4β(1+ β)) and k2 � 1, we have that (̂v, ẑ) is nonnegative, and therefore,
it is a Wardrop equilibrium with ‖x− x̂‖2 ~O(u=β) for u fixed and β ≈ 0. The bound in Theorem 6 is again not
tight because θ̆


Λ(u)√

~O(u=β3=2).
Using Theorem 6, we may estimate the distance between the random loads in a sequence ΓnB of Bernoulli con-

gestion games and the corresponding Wardrop equilibrium in the limit game Γ̆
∞
. The bound in (37) has an addi-

tional term that involves the distance between the demands along the sequence ΓnB and the demands in Γ̆
∞
.

Hence, having an equilibrium close to the limit requires small participation probabilities together with the aggre-
gate demands being close to the limiting demands.

Corollary 4. Let ΓnB be a sequence of Bernoulli congestion games satisfying (14) and (18) with dntot ≤ dmax. Suppose that
c̆′e(x) ≥ c̆′min > 0 for all x ∈ [0,dmax] and let θ̆ � 

2κdmax=c̆′min

√
and Ξ̆ � 

2C=c̆′min

√
, where κ ≥ |s| and C ≥∑

e∈sc̆e(dmax) for
all s ∈⋃

t∈TSt. Let Xn
e be the random load in a sequence of Bayes–Nash equilibria ŝn ∈ BNE(ΓnB), and Xe ~ Poisson(̂xe)
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with x̂e the unique resource load in the Wardrop equilibrium for the nonatomic limit game Γ̆
∞
. Then,

ρTV(L(Xn
e ),L(Xe)) ≤ un + θ̆ · 

Λ(un)√ + Ξ̆ · ‖dn − d‖1
√

: (37)

Proof. See Appendix A. w

7. Convergence of the Inefficiency of Equilibria
In this section, we study the convergence of the inefficiency of equilibria as captured by the PoA and the PoS. Let
us begin by recalling these notions. We measure the social cost of a strategy profile as the sum of all players’
costs. This provides us with a yardstick with which we can quantify the efficiency of equilibria as first proposed
by Koutsoupias and Papadimitriou [33]. The price of anarchy is the worst case ratio of the social cost of the equili-
brium to the optimum. Here, the worst case is taken with respect to all possible equilibria. The price of stability is
defined accordingly with respect to the best equilibria.

Starting with nonatomic congestion games, their social cost is given by

∀(y, x) ∈ F(d) SC(y, x) :� ∑
e∈E

xe ce(xe), (38)

from where the social optimum is Opt(Γ∞) :�min(y,x)∈F(d)SC(y,x). It is well-known (see Beckmann et al. [7]) that,
whenever the cost functions ce are weakly increasing, all Wardrop equilibria have the same social cost so that
defining Eq(Γ∞) :� SC(ŷ, x̂) for any (ŷ, x̂) ∈WE(Γ∞), it follows that the PoA and PoS for a nonatomic game coin-
cide and are given by

PoA(Γ∞) � PoS(Γ∞) :� Eq(Γ∞)
Opt(Γ∞) :

The corresponding definitions for weighted and Bernoulli congestion games are similar, adjusted for the fact that
now these games include stochastic realizations. The expected social cost is

∀s ∈ Σ ESC(s) :� Es

[∑
e∈E

Xe ce(Xe)
]
, (39)

where (Xe)e∈E are the random resource loads induced by the mixed strategy profile s. The optimum cost is
Opt(Γ) :�mins∈ΣESC(s), and the social optimum is s̃ ∈ arg mins∈ΣESC(s). Considering the worst and best
social cost at equilibrium, the price of anarchy and stability are

PoA(Γ) :� max
ŝ∈MNE(Γ)

ESC(ŝ)
Opt(Γ) , and PoS(Γ) :� min

ŝ∈MNE(Γ)
ESC(ŝ)
Opt(Γ) :

With these definitions, we may now establish the convergence of the PoA for a sequence of weighted congestion
games ΓnW. The proof uses some auxiliary results on the convergence of social costs presented in Appendix B.

Theorem 7. Let ΓnW be a sequence of weighted congestion games satisfying the conditions in (12) and let ŝn ∈MNE(ΓnW).
Then, ESC(ŝn) → Eq(Γ∞), and therefore, both the price of anarchy PoA(ΓnW) and the price of stability PoS(ΓnW) converge
toward PoA(Γ∞) � PoS(Γ∞).
Proof. From Theorem 1, we know that every accumulation point of (ŷn, x̂n) is aWardrop equilibrium for Γ∞; hence,
by LemmaB.1, the full sequenceESC(ŝn) converges toEq(Γ∞) as n→∞. On the other hand, Proposition B.1 shows
thatOpt(ΓnW) →Opt(Γ∞) fromwhich the convergence ofPoA(ΓnW) and PoS(ΓnW) follows at once. w

Example 6. Consider the sequence of games in Example 1 and the different equilibria described there. The social
cost is minimized by splitting half of the players between the upper and lower paths (up to one player when n is
odd). For n � 2, we have PoA(Γn) � 4=3 and PoS(Γn) � 1, whereas for n ≥ 3, by setting δn � 1 if n is odd and δn � 0
otherwise, we get PoA(Γn) � 4n2=(3n2 + δn) and PoS(Γn) � (4n2 − 2n+ 2)=(3n2 + δn), both converging to PoA(Γ∞)
� PoS(Γ∞) � 4=3 as n→∞.

The following analogous result holds for sequences of Bernoulli congestion games.

Theorem 8. Let ΓnB be a sequence of Bernoulli congestion games satisfying the conditions in (14) and (18). Then, for every
sequence ŝn ∈ BNE(ΓnB), the expected social cost ESC(ŝn) converges to Eq(Γ̆∞). As a consequence, both PoA(ΓnB) and
PoS(ΓnB) converge to PoA(Γ̆∞) � PoS(Γ̆∞).
Proof. From Lemma 1, we have that c̆′e(x) ≥ 0 for x ∈ [0,dmax] so that the extended costs c̆′e( · ) are weakly increas-
ing, and therefore, the social cost SC(ŷ, x̂) ≡ Eq(Γ̆∞) is the same in every Wardrop equilibrium. Now, Theorem 2
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states that every accumulation point of (ŷn, x̂n) is a Wardrop equilibrium for Γ̆
∞
; hence, by Lemma B.2, the full

sequence ESC(ŝn) converges to Eq(Γ̆∞) as n→∞. On the other hand, Proposition B.2 gives Opt(ΓnB) →Opt(Γ̆∞)
from which the convergence of PoA(ΓnB) and PoS(ΓnB) follows at once. w

Example 7. Consider the sequence of games ΓnB on the Wheatstone network in Example 2. The social cost is mini-
mized by splitting half of the players between the upper and lower routes (up to one player for n odd). This strat-
egy profile is also a pure Nash equilibrium so that PoS(ΓnB) � 1 for all n ∈ N. As far as the PoA is concerned, the
worst equilibrium occurs when each player chooses the upper and lower routes with probability 1/2. Setting
δn � 1=n when n is odd and δn � 0 otherwise, we obtain PoA(ΓnB) � (5n− 1)=(5n− 2+ δn), which converges to
PoA(Γ̆∞) � 1 as n→∞.

Remark 7. For polynomial costs ce( · ) of degree at most d, we have that c̆e(x) are again polynomials of the same
degree (though with different coefficients) so that the results in Roughgarden [54] imply

lim
n→∞PoA(ΓnB) � PoA Γ̆

∞( )
≤ B(d) :� (d+ 1) 

d+ 1d
√

(d+ 1) 
d+ 1d

√ −d
:

In fact, for d � 1, the bound PoA(ΓnB) ≤ 4=3 is valid as soon as un ≤ 1=4 (see Cominetti et al. [17]). For higher
degrees, we conjecture the existence of a threshold for un under which PoA(ΓnB) already falls below the nonatomic
bound B(d). The current result only implies that we have this as an asymptotic bound when un → 0.

Remark 8. Examples 6 and 7 may suggest that the PoA in the nonatomic game obtained as a limit of weighted
congestion games is larger than the PoA in the nonatomic limit game for Bernoulli congestion games. This is not
true in general. Consider, for instance, the Pigou network in Figure 5 with a demand of one. The Wardrop equili-
brium of the standard nonatomic game is optimal, so PoA(Γ∞) � 1. The Wardrop equilibrium of the nonatomic
limit game of the Bernoulli game, in which the auxiliary cost function on the upper edge is now c̆1(x) � 1+ x,
sends all demand on the upper path, whereas in the social optimum, the demand is split over the upper and
lower path. So, we have that PoA(Γ̆∞) � 8=7.

8. Conclusions and Perspectives
In this paper, we study the convergence of equilibria of atomic unsplittable congestion games with an increasing
number of players toward a Wardrop equilibrium for a limiting nonatomic game. For the case in which players
have vanishing weights, the random flow–load pairs (Yn,Xn) at a mixed equilibrium in the finite games are
shown to converge in distribution toward constant flow–load pairs (ŷ, x̂), which are Wardrop equilibria for the
nonatomic limit game. In contrast, if players have a fixed unit weight but are present in the game with vanishing
probabilities, then (Yn,Xn) converge in total variation to Poisson variables (Y,X), whose expected values (ŷ, x̂)
are again characterized as a Wardrop equilibrium for a nonatomic congestion game with auxiliary cost functions.
In this case, the limit variables (Y,X) can also be interpreted as an equilibrium for a Poisson game in the sense of
Myerson [43]. Under additional conditions, we also established explicit estimates for the distance between the
random loads (Yn,Xn) and their limits (ŷ, x̂) and (Y,X), respectively. These convergence results are completed by
showing that, in both frameworks, the PoA and the PoS converge to the PoA of the limit game.

We do not address the combined case in which both the weights and the presence probabilities vary across
players. Such situations may be relevant for routing games in which cars and trucks have a different impact on
traffic or in the presence of heterogeneous drivers that may be slower or faster, inducing more or less congestion.
Other settings in which players are naturally heterogeneous arise in telecommunications, in which packets come
in different sizes, and in processor sharing, in which tasks arriving to a server have different workloads. In such

Figure 5. (Color online) Pigou network.
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cases, one might still expect to obtain a limit game that is likely to yield a weighted nonatomic game, possibly
involving weighted sums of Poisson distributions.

Another direction not explored in this paper concerns the case of oligopolistic competition in which some play-
ers, for example, TomTom, Waze, FedEx, UPS, etc., may control a nonnegligible fraction of the demand, whereas
simultaneously, another fraction of the demand behaves as individual selfish players. A natural conjecture is that
in the vanishing weight limit one may converge to a composite game as those studied by Cominetti et al. [16]
and Sorin and Wan [59] with the coexistence of atomic splittable and nonatomic players. Similarly, in the case of
fixed weights and vanishing probabilities, one may expect to converge to some form of composite game involv-
ing Poisson random variables, which remains to be discovered.
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Appendix A. Approximation Bounds and Rates of Convergence: Proofs

Proof of Proposition 2.
a. Defining Cs :�∑

e∈sce(xe) and ηt :�mins∈StCs, we bound the squared distance by∑
e∈E

c′min (xe − x̂e)2 ≤
∑
e∈E

(ce(xe) − ce (̂xe))(xe − x̂e)

≤∑
e∈E

ce(xe)(xe − x̂e)

�∑
t∈T

∑
s∈St

∑
e∈s

ce(xe)
( )

(yt,s − ŷt,s)

�∑
t∈T

∑
s∈St

(Cs − ηt)(yt,s − ŷt,s)

≤∑
t∈T

∑
s∈St

(Cs − ηt)yt,s :

Here, in the second inequality, we drop the sum
∑

e∈Ece (̂xe)(xe − x̂e), which is nonnegative because (ŷ, x̂) is a Wardrop equili-
brium for Γ∞ and (y,x) ∈F(d). The first equality follows from expressing the resource loads in terms of the strategy flows
and exchanging the order of summation and the second equality from the fact that

∑
s∈St (yt,s − ŷt,s) � 0 for all types t as

both solutions (ŷ, x̂) and (y,x) are feasible. Now, using (30), we conclude

c′min‖x− x̂‖22 ≤
∑
t∈T

∑
s∈St

εyt,s � ε
∑
t∈T

dt � εdtot ≤ εdmax:

b. Proceeding as in the previous part, we have

c′min‖x̂′ − x̂‖22 ≤
∑
e∈E

(ce (̂x′e) − ce (̂xe))(̂x′e − x̂e)

� ∑
e∈E

ce (̂x′e)(̂x′e − x̂e) +
∑
e∈E

ce (̂xe)(̂xe − x̂′e):

Let the two sums in the right-hand side be denoted by Ψ(̂x′, x̂) and Ψ(̂x, x̂′), respectively. To bound Ψ(̂x′, x̂), we exploit
the fact that x̂′ is a Wardrop equilibrium for the demand d′. Because (ŷ, x̂) is feasible for d but not for d′, for each type t
with dt > 0, we consider the rescaled flows yt,s � ŷt,sd

′
t=dt, whereas when dt�0, we simply take yt,s � ŷ′t,s. Letting xe �∑

t∈T
∑

s∈St yt,s1{e∈s} denote the corresponding resource loads, we have that (y,x) ∈F(d′), and therefore,

Ψ(̂x′, x̂) �∑
e∈E

ce (̂x′e)(̂x′e − xe) +
∑
e∈E

ce (̂x′e)(xe − x̂e)

≤∑
e∈E

ce (̂x′e)(xe − x̂e)

�∑
t∈T

∑
s∈St

(∑
e∈s

ce (̂x′e)
)
(yt,s − ŷt,s),

where, in the inequality, we drop the first sum that is nonpositive because (ŷ′, x̂′) is a Wardrop equilibrium and (y,x) is
feasible for d′, whereas the last equality follows by expressing the resource loads in terms of the strategy flows and
exchanging the order of the sums.
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We now analyze each term in the outer sum over t ∈T. When dt > 0, the inner double sum can be bounded as∑
s∈St

∑
e∈s

ce (̂x′e)
( )

(yt,s − ŷt,s) �
∑
s∈St

∑
e∈s

ce (̂x′e)
( )̂

yt,s(d′t=dt − 1)

≤ ∑
s∈St

C ŷt,s|d′t=dt − 1|

� C|d′t − dt|,
whereas when dt � 0, we have yt,s � ŷ′t,s and ŷt,s � 0 so that

∑
s∈St

∑
e∈s

ce(̂x′e)
( )

(yt,s − ŷt,s) �
∑
s∈St

∑
e∈s

ce (̂x′e)
( )̂

y′t,s ≤ Cd′t � C|d′t − dt|:

Summing these estimates over all t ∈T, we get Ψ(̂x′, x̂) ≤ C‖d′ − d‖1. Symmetrically, we have Ψ(̂x, x̂′) ≤ C‖d− d′‖1, from
which the result follows. w

Proof of Theorem 5. (This proof is out of order to prevent a forward reference in the next proof) Let xe � Eŝ [Xe] so that

‖Xe − x̂e‖L2 ≤ ‖Xe − xe‖L2 + |xe − x̂e|, (A.1)
with

‖Xe − xe‖2L2 � Varŝ (Xe) �
∑
i∈N

w2
i σi,e(1− σi,e) ≤ 1

4

∑
i∈N

w2
i ≤

wdtot
4

≤ wdmax

4
: (A.2)

With this bound in place, we proceed to estimate |xe − x̂e| by showing that (y,x) is an ε-Wardrop equilibrium with

ε � κ(2c′max + Ldmax=4)w:
To this end, we first observe that, because the derivatives c′e( · ) are L-Lipschitz, we have

−1
2
L (Xe − xe)2 ≤ ce(Xe) − ce(xe) − c′e(xe)(Xe − xe) ≤ 1

2
L (Xe − xe)2,

so that, taking expectations and noting that the expected value of the linear part vanishes, we get

|Eŝ [ce(Xe)] − ce(xe)| ≤ 1
2
LVarŝ (Xe) ≤ Lwdmax=8: (A.3)

Now, if yt,s > 0, then there exists some player i ∈N with ti � t and σ̂i(s) > 0 so that the equilibrium condition in ΓW
implies that, for each alternative strategy s′ ∈St, we have∑

e∈s
Eŝ [ce(Xi,e)] ≤

∑
e∈s′

Eŝ [ce(Xi,e)]: (A.4)

Now, because |Xi,e −Xe| ≤ w and ce( · ) is c′max-Lipschitz, by using (A.3) we get

|Eŝ [ce(Xi,e)] − ce(xe)| ≤ c′maxw+ |Eŝ [ce(Xe)] − ce(xe)| ≤ (c′max + Ldmax=8)w,
and then, we can approximate (A.4) with respect to costs:∑

e∈s
ce(xe) ≤

∑
e∈s′

ce(xe) + 2κ(c′max + Ldmax=8)w:

This shows that (y,x) is an ε-Wardrop equilibrium for the nonatomic game with demands d, and then, invoking Proposi-
tion 2(a), we get

|xe − x̂e| ≤ ‖x− x̂‖2 ≤

κdmax(2c′max + Ldmax=4)w=c′min

√
: (A.5)

Plugging (A.5) and (A.2) into (A.1), we obtain the final estimate in (31). w

Proof of Theorem 3. Take (ŷn, x̂n), a Wardrop equilibrium for the nonatomic game Γ∞ with demands dn. A triangle
inequality gives ‖Xn

e − x̂e‖L2 ≤ ‖Xn
e − x̂ne ‖L2 + |̂xne − x̂e|, so the result follows from the estimate ‖Xn

e − x̂ne ‖L2 ≤ θ

wn

√
in Theorem 5

and the bound |̂xne − x̂e| ≤ Ξ
‖dn − d‖1

√
from Proposition 2(b). w

Proof of Theorem 6. The bound ‖x− x̂‖2 ≤ θ̆

Λ(u)√

follows from Proposition 2(a) because x is an ε-Wardrop equilibrium
for Γ̆

∞
with ε � 2κΛ(u). Indeed, if yt,s > 0, there exists some player i ∈N with ti � t and σ̂i(s) > 0 so that the equilibrium

condition yields for all s′ ∈St ∑
e∈s

Eŝ [ce(1+Zi,e)] ≤
∑
e∈s′

Eŝ [ce(1+Zi,e)],

and then (21) implies the conditions for ε-Wardrop equilibrium∑
e∈s

c̆e(xe) ≤
∑
e∈s′

c̆e(xe) + 2κΛ(u):
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Now, taking Ve ~ Poisson(xe), Theorem C.1(a) gives ρTV(L(Xe),L(Ve)) ≤ u, and (C.1) implies ρTV(L(Ve),L(X̂e)) ≤ |xe − x̂e|
so that (35) follows from a triangle inequality. w

Proof of Corollary 4. This follows by considering X̂
n
e ~ Poisson(̂xne ) with (ŷn, x̂n), a Wardrop equilibrium for the game Γ̆

∞

with demands dn and then using a triangle inequality and applying Theorem 6 and Proposition 2(b). w

Appendix B. Convergence of Social Costs
This appendix includes the auxiliary results on the convergence of social costs required to establish the convergence of
the PoA and the PoS presented in Section 7.

B.1. Weighted Congestion Games
From Section 3, we know that the equilibria in a sequence of weighted congestion games converge to the set of Wardrop
equilibria for the limit game. We prove that the corresponding social costs at equilibrium as well as the optimal social
costs also converge. To this end, we start by proving that, for any sequence of converging expected flow–load pairs, the
social cost of the sequence converges to that of the limiting flow–load pair.

Lemma B.1. Let ΓnW be a sequence of weighted congestion games satisfying the conditions in (12) and sn an arbitrary sequence
of mixed strategy profiles (not necessarily equilibria). Let (Yn

t,s,X
n
e ) be the corresponding random flow–load pairs with expected

values (ynt,s,xne ). Then, along any subsequence of (yn,xn) converging to some (y,x), the expected social cost ESC(sn) converges to
SC(y,x) �∑

e∈Exece(xe).
Proof. Take a convergent subsequence and rename it so that (yn,xn) → (y,x). By conditioning on 1{e∈Sni }, which indicates
whether player i selects a strategy including e, we get

ESC(sn) �∑
e∈E

∑
i∈Nn

Esn [wn
i 1{e∈Sni } ce(Xn

e )] �
∑
e∈E

∑
i∈Nn

wn
i σ

n
i,eEsn [ce(Xn

i,e)]:

Note that |Xn
i,e −Xn

e | ≤ wn → 0 and 0 ≤ Xn
e ≤ dntot with dntot → dtot. Because ce( · ) is continuous and, hence, uniformly continu-

ous on compact intervals, it follows that Esn [ce(Xn
i,e)] −Esn [ce(Xn

e )] converges to zero uniformly in i, that is,

δne :�max
i∈Nn

|Esn [ce(Xn
i,e)] −Esn [ce(Xn

e )]| → 0:

Hence, using the identity

xne � ∑
i∈Nn

wn
i σ

n
i,e,

we obtain

|ESC(sn) −∑
e∈E

xne ce(xne )| ≤ ∑
e∈E

∑
i∈Nn

wn
i σ

n
i,e|Esn [ce(Xn

i,e)] − ce(xne )|

≤ ∑
e∈E

∑
i∈Nn

wn
i σ

n
i,e(δne + |Esn [ce(Xn

e )] − ce(xne )|)

� ∑
e∈E

xne (δne + |Esn [ce(Xn
e )] − ce(xne )|):

The conclusion follows because xne → xe and Xn
e →

D
xe so that Esn [ce(Xn

e )] → ce(xe). w

Using the previous lemma, we may derive the convergence of the optimal social cost.

Proposition B.1. Let ΓnW be a sequence of weighted congestion games satisfying (12). Then, Opt(ΓnW) →Opt(Γ∞).
Proof. Let (ỹ, x̃) be a social optimum flow–load pair in the limiting game Γ∞. We convert the strategy flow ỹ into mixed
strategies ˜̃σt ∈�(St) by setting

∀s ∈St
˜̃σt(s) � ỹt,s=dt

when dt > 0 and otherwise taking an arbitrary ˜̃σt ∈�(St) for each type with dt � 0.
Let ˜̃sn

be the strategy profile for ΓnW in which player i plays ˜̃σn
i � ˜̃σtni . For each t such that dt � 0, we have ˜̃ynt,s → 0 � ỹt,s

for all s ∈St, whereas when dt > 0, we have

˜̃ynt,s � ỹt,sd
n
t

dt
→ ỹt,s:

Hence, ˜̃yn,˜̃xn( )
converges to (̃y, x̃), and Lemma B.1 implies that ESC ˜̃sn( )

→ SC(ỹ, x̃).
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Now, take a sequence s̃n of optimal mixed strategies in ΓnW and let (ỹn, x̃n) be the corresponding expected loads. From

the optimality of s̃n, we have ESC(s̃n) ≤ ESC ˜̃sn( )
so that

limsup
n→∞

ESC(s̃n) ≤ limsup
n→∞

ESC ˜̃sn( )
� SC(ỹ, x̃) �Opt(Γ∞): (B.1)

On the other hand, taking a subsequence along which we attain the liminf n→∞ESC(s̃n) and extracting a further subse-
quence so that (ỹn, x̃n) converges to a certain limit (y,x), it follows that

lim inf
n→∞ ESC(s̃n) � SC(y,x) ≥Opt(Γ∞),

which, combined with (B.1), yields the result. w

B.2. Bernoulli Congestion Games
The following are the analogous results for a sequence of Bernoulli congestion games.

Lemma B.2. Let ΓnB be a sequence of Bernoulli congestion games satisfying the conditions in (14) and (18), and let sn be an arbi-
trary sequence of mixed strategies. Let Yn

t,s and Xn
e be the corresponding random loads with expected values ynt,s and xne . Then, along

any subsequence of (yn,xn) converging to some (y,x), the expected social cost ESC(sn) converges to S̆C(y,x) :�∑
e∈Exe c̆e(xe).

Proof. Take a convergent subsequence and rename it so that (yn,xn) → (y,x). By conditioning on the event Un
i,e � 1, we

have

ESC(sn) �∑
e∈E

∑
i∈Nn

Esn [Un
i,e ce(Xn

e )] �
∑
e∈E

∑
i∈Nn

uni σ
n
i,eEsn [ce(1+Zn

i,e)]:

Using the identity xne �∑
i∈Nnuni σ

n
i,e and invoking Lemma 1, we obtain

|ESC(sn) −∑
e∈E

xne c̆e(xne )| ≤∑
e∈E

∑
i∈Nn

uni σ
n
i,e|Esn [ce(1+Zn

i,e)] − c̆e(xne )|

≤∑
e∈E

∑
i∈Nn

uni σ
n
i,eΛ(un)

�∑
e∈E

xne Λ(un) → 0,

and then the conclusion follows from xne → xe and the continuity of c̆e( · ). w

Proposition B.2. Let ΓnB be a sequence of Bernoulli congestion games satisfying (14) and (18). Then, Opt(ΓnB) →Opt(Γ̆∞).
Proof. It suffices to repeat the proof of Proposition B.1 step by step, replacing SC( · ) with S̆C( · ) and invoking Lemma
B.2 instead of Lemma B.1. w

Appendix C. Poisson Approximation for Sums of Bernoulli Random Variables
This section collects some known facts on the Poisson approximation for sums of Bernoulli random variables. The main
results are taken from Adell and Lekuona [2], Barbour and Hall [5], and Borisov and Ruzankin [10], suitably adapted to
our goals. We recall that X ~ Poisson(x) with parameter x ≥ 0 if and only if

P(X � k) � e−x
xk

k!
∀k ∈ N:

As usual, we denote the law of X by L(X).
Two Poisson variables X ~ Poisson(x) and Y ~ Poisson(y) are close when x ≈ y. In fact, their total variation distance (see

(15)) can be estimated as (see Adell and Lekuona [2])

ρTV(L(X),L(Y)) ≤ 1− e−|x−y| ≤ |x− y|: (C.1)

Given a function h : N→ R, for each X ~ Poisson(x) with E[|h(X)|] <∞, we define

h̆(x) � E[h(X)] �∑∞
k�0

h(k)e−x x
k

k!
:

We also define h �→ Δh as the operator that takes the function h into Δh(k) � h(k+ 1) − h(k). We state three useful facts
that are used in the sequel.

Proposition C.1. Let X ~ Poisson(x). Then,
a. E[|h(Y)|] ≤ ex−yE[|h(X)|] for each Y ~ Poisson(y) with y ≤ x.

b. For each j � 1, 2, : : : , we have2

E[|Δjh(X)|] <∞�E[|h(X+ j)|] <∞�E[Xj|h(X)|] <∞:
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Proof. Property (a) is just the monotonicity of x �→ ex ·E[|h(X)|] �∑∞
k�0 |h(k)| xkk!, whereas (b) can be found in Borisov and

Ruzankin [10, proposition 1]. w

Proposition C.2. Let h : N→ R and V ~ Poisson(dmax).
a. If E[|h(V)|] <∞, then h̆(x) is well-defined and continuous for x ∈ [0,dmax].
b. If E[|Δjh(V)|] <∞ for some j ∈ N, then h̆ is of class Cj on [0,dmax] and h̆( j)(x) � E[Δjh(X)].

Proof.
a. It suffices to note that the series

f (x) � exh̆(x) � ∑∞
k�0

h(k) x
k

k!

is well-defined and continuous. This follows because the partial sums fn(x) �∑n
k�0 h(k)xk=k! converge uniformly to f(x).

Indeed,

sup
x∈[0,dmax]

| f (x) − fn(x)| ≤ sup
x∈[0,dmax]

∑∞
k�n+1

|h(k)|x
k

k!
≤ ∑∞

k�n+1
|h(k)|d

k
max

k!
,

where the latter tail of the series tends to zero as n→∞ because E[|h(V)|] <∞.
b. Consider first the case j � 1. We note that the derivatives

f ′n(x) �
∑n−1
k�0

h(k + 1) x
k

k!

converge uniformly toward g(x) �∑∞
k�0 h(k+ 1)xk=k!. This follows from part (a) because, by Proposition C.1(b) with j � 1,

we have E[|h(V+ 1)|] <∞. Hence, f is C1 with f ′(x) � g(x), and then, h̆(x) � e−xf (x) is also in C1 with

h̆′(x) � e−xf ′(x) − e−xf (x) �∑∞
k�0

(h(k+ 1) − h(k))e−x x
k

k!
� E[Δh(X)]:

This establishes the case j � 1. Applying this property to Δh, we obtain the result for j � 2, and then, the cases j � 3, 4, : : :
follow by induction. w

Corollary C.1. Let V ~ Poisson(dmax) and suppose that E[|Δ2h(V)|] ≤ ν <∞.

a. For all x ∈ [0,dmax], we have |h̆′(x)| ≤ (edmax − 1)ν+ |h(1) − h(0)|.
b. If h( · ) is weakly increasing, then for all x ∈ [0,dmax], we have h̆′(x) ≥ 0 with strict inequality when h( · ) is nonconstant.

Proof. (a) Combining Propositions C.2(b) and C.1(a), we get | h̆′′(x)|≤ edmax−xν so that, by integration, it follows that
|h̆′(x) − h̆

′(0)| ≤ (edmax − 1)ν, and we conclude because h̆
′(0) � h(1) − h(0).

(b) This follows from Proposition C.2(b). w

Let S � X1 + : : : +Xn be a sum of independent Bernoulli random variables with P(Xi � 1) � pi ∈ (0, 1), and denote
x � E[S] � p1 + : : : + pn. Consider a Poisson variable X ~ Poisson(x) with the same expectation. The following result shows
that S and X are close when the pi’s are small.

Theorem C.1. Let p �max{p1, : : : ,pn}. Then,
a. The following double inequality holds:

ρTV(L(S),L(X)) ≤ (1 − e−x) x−1∑n
i�1

p2i ≤ p:

b. If h : N→ R is such that E[|Δ2h(X)|] ≤ ν <∞, then

|E[h(S)] −E[h(X)]| ≤ νx
2

pep

(1− p)2 :

Proof. These properties follow from Barbour and Hall [5, theorem 1] and Borisov and Ruzankin [10, corollary 4],
respectively. w
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Appendix D. List of Symbols
The following table contains the symbols used in the paper.

BNE(ΓnB) Set of Bayesian Nash equilibria of the game ΓnB
ce Cost function of edge e
c̆e Cost function of edge e in the Poisson limit game, defined in (17)
C Upper bound for

∑
e∈sce(dmax) in Proposition 2 and

∑
e∈sc̆e(dmax) in Corollary 4

Cs
∑

e∈sce(xe)
c′min Lower bound on c′e( · )
c′max Upper bound on c′e( · )
c̆′min Lower bound on c̆′e( · )
d Demand vector
dt Demand of type t
dnt Aggregate demand of type t in the games ΓnW and ΓnB
dmax Upper bound on the demand
dtot Total demand
D Random demand
e Edge
E Set of resources
Es Expectation induced by s
Eq(Γ∞) Equilibrium cost of Γ∞

ESC(s) Expected social cost of s, defined in (39)
F(d) Feasible pairs for demand d
G (E, (ce)e∈E,T, (St)t∈T), defined in (1)
L Lipschitz constant for c′e( · )
L(X) Law of the random variable X
MNE(Γ) Set of mixed Nash equilibria of Γ
n (nt,s)t∈T,s∈St

Ne
∑

i:e∈siUi, that is, random number of players who use resource e
Nt Random number of players of type t in a Poisson game
N (Nt)t∈T
N Set of players
Opt(Γ∞) Optimum social cost in Γ∞

Opt(Γ) Optimum expected social cost in Γ

Ps Probability measure induced by s
PNE(Γ) Set of pure Nash equilibria of Γ
PoA Price of anarchy
PoS Price of stability
St Set of strategies for type t
s Strategy profile
si Strategy of player i
Si Random strategy of player i
SC(y,x) Social cost of (y,x), defined in (38)
T Set of types
ti Type of player i
ui Probability of player i being active
un maxi∈Nn uni , defined in (14b)
Ui Indicator of player i being active
Ui,e Ui1{e∈Si}
wi Weight of player i
wn maxi∈Nnwn

i , defined in (12b)
x Load vector
xe Load of edge e
X Random load vector
Xe Random load of edge e
Xi,e wi +∑

j≠iwj1{e∈Sj}, defined in (7)
x̃ Optimum load in Γ∞

(ŷ, x̂) Equilibrium flow–load pair
y Flow vector
yt,s Flow of type t on strategy s
Y Random flow vector
Yt,s Random flow of type t on strategy s
Zi,e

∑
j≠iUj,e, defined in (10)
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Endnotes
1 To avoid trivialities, we suppose that, for each t ∈T, the random variable Nt is not identically zero.
2 Note that, if E[Xj|h(X)|] <∞ holds for a certain j, it also holds for j′ � 1, : : : , j.
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Appendix D. (continued)

Γ Game
ΓB Bernoulli congestion game
ΓP Game with population uncertainty
ΓW Weighted congestion game
Γ∞ Nonatomic congestion game
Δ Difference operator
ζ (edmax − 1)ν+maxe∈E (ce(2) − ce(1)), defined in (19)
ηt mins∈St Cs

θ

dmax=4

√ + 
2κdmax(c′max + Ldmax=4)=c′min

√
, defined in Theorem 5

θ̆

2κdmax=c̆′min

√
, defined in Theorem 6

κ cardinality of the largest feasible strategy s ∈⋃
t∈TSt, defined in Theorem 5

Λ(u) dmaxν
2

ueu

(1−u)2 + ζu, defined in (20)
µ Joint probability distribution of the number of players in a Poisson game
ν Upper bound of E[ Δ2ce(1+V)∣∣ ∣∣] in (18)
Ξ


2C=c′min

√
, defined in Proposition 2

Ξ̆

2C=c̆′min

√
, defined in Corollary 4

ρTV Total variation distance, defined in (15)
s Mixed strategy profile
σi Mixed strategy of player i
σi,e Ps(e ∈ Si), defined in (5)
ŝ Mixed Nash equilibrium
s̃ Optimum mixed strategy in Γ

Σ Set of mixed strategy profiles
�(St) Simplex of probability measures on St

‖x‖2
∑

e∈Ex2e
√

‖d‖1 ∑
t∈T dt| |

‖X‖L2

E[X2]√
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