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Abstract

Stochastic �uctuations of molecule numbers are ubiquitous in biological 

systems. Important examples include gene expression and enzymatic 

processes in living cells. Such systems are typically modelled as chemical 

reaction networks whose dynamics are governed by the chemical master 

equation. Despite its simple structure, no analytic solutions to the chemical 

master equation  are known for most systems. Moreover, stochastic 

simulations are computationally expensive, making systematic analysis and 

statistical inference a challenging task. Consequently, signi�cant effort has 

been spent in recent decades on the development of ef�cient approximation 

and inference methods. This article gives an introduction to basic modelling 

concepts as well as an overview of state of the art methods. First, we 

motivate and introduce deterministic and stochastic methods for modelling 

chemical networks, and give an overview of simulation and exact solution 

methods. Next, we discuss several approximation methods, including the 

chemical Langevin equation, the system size expansion, moment closure 

approximations, time-scale separation approximations and hybrid methods. 

We discuss their various properties and review recent advances and remaining 

challenges for these methods. We present a comparison of several of these 

methods by means of a numerical case study and highlight some of their 

respective advantages and disadvantages. Finally, we discuss the problem 

of inference from experimental data in the Bayesian framework and review 

recent methods developed the literature. In summary, this review gives a  
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self-contained introduction to modelling, approximations and inference 

methods for stochastic chemical kinetics.

Keywords: chemical reaction networks, chemical master equation, stochastic 

simulations, approximation methods, inference methods, Bayesian inference, 

stochastic chemical kinetics

(Some �gures may appear in colour only in the online journal)

1. Introduction

Understanding the functioning of living cells and biological organisms at the system level has 

gained increasing attention in recent years and de�nes a key research programme for the next 

decades. Experimental techniques are developing at breathtaking speed producing a wealth of 

data at �ner and �ner resolutions. However, such experimental data does not by itself reveal 

the function of such biological systems. The underlying processes typically involve large 

numbers of interacting components giving rise to highly complex behaviour [1]. Moreover, 

experimental data are generally corrupted by measurement noise and incomplete, thus posing 

the mathematical and statistical challenge to infer the relevant biological information from 

such measurements.

We focus here on mathematical and statistical modelling of chemical reaction networks 

in biological systems in which random �uctuations of molecule numbers play an important 

role. Recent experiments have shown this to be the case in many biological processes, gene 

expression being a prominent example [2]. Such random �uctuations or stochastic effects in 

gene expression have been found to lead to dramatically differing behaviours of genetically 

identical cells. From a modelling point of view, stochastic systems are considerably harder to 

analyse than their deterministic counterparts.

The rate equations give a macroscopic, deterministic description of the dynamics of chem-

ical reaction networks. They consist of a set of ordinary differential equations governing the 

dynamics of the mean concentrations of the species in a system, thereby ignoring stochastic 

�uctuations. The rate equations have been successfully applied to various problems and have 

the advantage of being relatively straightforward to analyse. They typically give an accurate 

description of systems with large numbers of molecules, which is generally the case in in vitro 

experiments. However, the rate equations do no longer provide a valid description in cases 

where the effects of stochastic �uctuations become signi�cant. This is typically the case when 

some species in a system occur at low molecule numbers, a common feature of chemical 

networks in cells. In this case, the chemical master equation (CME) constitutes the accepted 

probabilistic description of the resulting stochastic process [3]. In this framework, the state 

of a system is given by the molecule numbers of different species, and the CME governs the 

single-time probability of being in a certain state at a given time.

Despite its simple structure, no analytic solutions to the CME are known for all but the 

simplest systems. It is however possible to simulate exact sample paths of the underlying 

stochastic process, by means of the stochastic simulation algorithm [4, 5]. The latter allows 

us to draw exact samples from the process. However, since the stochastic simulation algo-

rithm simulates each and every chemical reaction event in a system, it is computationally 

expensive and quickly becomes infeasible for larger systems. Accordingly, signi�cant effort 

has been spent in recent decades on the development of approximation methods of the CME, 

and a large variety of different methods has emerged. Similarly, due to the growing amount of 
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experimental data becoming available, a considerable amount of work has been devoted to the 

development of statistical inference methods for such data, i.e. methods that allow to calibrate 

a model to observational data.

There exists a signi�cant amount of literature on modelling of stochastic chemical kinetics. 

However, most reviews are mainly concerned with simulation based methods [6–12]. Others 

are rather technical and require a high level of pre-existing and/or mathematical knowledge 

[13–17]. None of these references gives a thorough introduction into modelling of stochastic 

chemical kinetics in the biological context that is accessible for non-experts, neither do they 

give an overview or comparison of state of the art approximation and inference methods.

With this article, we aim at �lling these gaps in several ways:

 1. We give a self-contained introduction to deterministic and stochastic modelling tech-

niques for chemical reaction networks. First, we introduce and give a historic motivation 

to the deterministic rate equations. Next, we derive and give a detailed discussion of the 

CME. We review exact solution methods for the CME as well as simulation methods.

 2. We give a detailed derivation and discussion of the following approximation methods of 

the CME: the chemical Langevin equation and its associated chemical Fokker–Planck 

equation; the system size expansion; moment closure approximations. Moreover, we 

give an introduction and overview of other types of approximations, including time-scale 

separation based methods and hybrid approximations.

 3. We perform a numerical case study comparing the various approximation methods men-

tioned before.

 4. We give an introduction to inference methods in the Bayesian framework and review 

existing methods from the literature.

The presentation is written to be accessible for non-experts that are new to the �eld of sto-

chastic modelling.

Even though this review is motivated by stochastic effects in systems biology, it is impor-

tant to stress that many systems in other scienti�c �elds are frequently modelled by means 

of Master Equations. The methods discussed in this article can therefore readily be applied 

to such systems. Examples include ecology [18–20], epidemiology [21–26], social sciences 

[27–29] and neuroscience [30–36].

This article is structured as follows. We start by discussing the importance of stochastic-

ity in biological systems in section 2. We describe the underlying mechanisms giving rise to 

stochastic �uctuations in cells (section 2.1) and discuss key experimental studies that meas-

ured such �uctuations (section 2.2). Next in section 3 we discuss deterministic and stochastic 

modelling methods for chemical kinetics. We start by introducing the concept of chemical 

reaction networks and deterministic descriptions in terms of macroscopic rate equations  in 

section 3.1. Next, we introduce stochastic modelling techniques in terms of the CME and 

stochastic simulation algorithms in sections  3.2 and 3.3, respectively. We discuss analytic 

solution methods for certain classes of reaction systems in section 3.4. Section 4 is devoted 

to approx imation methods of the CME. We give detailed introductions and discussions of 

the chemical Langevin equation  (section 4.1), the system size expansion (section 4.2) and 

moment closure approximations (section 4.3). Next, we discuss how approximate moment 

values obtained from these methods can be used to construct probability distributions by 

means of the maximum entropy principle in section 4.4. In section 4.5 we review existing 

software packages implementing the approximation methods discussed in sections 4.1–4.3. 

We give an introduction to other approximation methods in section 4.6, including the �nite 

state projection algorithm, time-scale separation based approximations and hybrid methods. 
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In section 5 we perform a numerical case study and compare the chemical Langevin equation, 

the system size expansion and moment closure approximations. Section 6 deals with the prob-

lem of inference for CME type systems from observational data. We introduce the Bayesian 

approach to this problem and review existing methods from the literature. Finally, we sum-

marise and conclude in section 7.

2. Stochasticity in biological systems

Stochastic effects play an important role in many chemical reaction networks in living cells. 

Examples are enzymatic/catalytic processes, transduction of external signals to the interior of 

cells or the process of gene expression, to name just a few. Here we discuss different sources 

of stochasticity and illustrate their emergence in biochemical networks using gene expression 

as an example in section 2.1. Subsequently in section 2.2 we explain how the different sources 

of stochasticity can be measured and distinguished experimentally and highlight the impor-

tance of stochasticity for living cells.

2.1. Emergence of stochasticity

The term ‘gene expression’ denotes the process of synthesis of functional gene products such 

as proteins. The mechanism is illustrated in �gure 1 for prokaryotic cells, namely cells lack-

ing in-membrane-bound organelles (e.g. nucleus, mitochondria), such as bacteria. The process 

includes two main steps: transcription during which mRNA molecules are produced, and 

translation during which protein molecules are synthesised [37]. The transcription process 

involves the enzyme RNA polymerase. For the mechanism to initiate, an RNA polymerase 

enzyme must bind to the initial sequence of a gene. It then slides along the gene and produces 

an mRNA molecule that reproduces the DNA code of the gene. The RNA polymerase mol-

ecules move around randomly in the cell, a process which can be approximately described 

as Brownian motion [15]. This means that the RNA polymerase binding to the gene is a sto-

chastic event that happens randomly in time. As it turns out, not only the binding of the RNA 

polymerase to the gene, but also the sliding along the gene happens stochastically. Therefore, 

the production of mRNA molecules is a stochastic process.

The production of protein molecules from mRNA during translation is conducted by ribo-

somes, which are RNA and protein complexes. The ribosomes and mRNA diffuse in the cell 

and hence meet randomly before translation can occur. Translation is thus also a stochastic 

process. Similarly, the degradation of mRNA molecules and proteins is conducted by certain 

enzymes and hence happens stochastically.

The transcriptional regulation of gene expression is frequently modulated by regulatory 

proteins named transcription factors. Transcription factors are gene speci�c and bind to the 

promoter region, which is located upstream of the gene’s encoding region. Upon binding, 

transcription factors tune the af�nity of the RNA polymerase molecules for the promoter, 

thereby modulating the rate at which transcription initiation events occur and hence the over-

all transcription rate. A transcription factor can either increase or decrease the binding rate of 

RNA polymerase and thus either enhance or suppress gene expression.

In eukaryotes, i.e. cells possessing in-membrane-bound organelles such as a nucleus, gene 

expression happens in a similar but somewhat more complicated way involving more steps. 

For instance, genes are generally located in the nucleus and transcription hence happens in the 

nucleus. Processes such as mRNA maturation and diffusion of mRNA to the cytoplasm need 

to happen before the mature mRNA can be translated into protein.

J. Phys. A: Math. Theor. 50 (2017) 093001
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The inherent stochasticity of chemical processes leads to �uctuations of molecule numbers 

in time. As an example �gure 2(a) shows �uorescence intensity measurements of a �uorescent 

protein in individual Escherichia coli cells, indicating strong �uctuations of protein numbers 

in time. Temporal �uctuations that are due to the stochasticity of chemical processes is what 

we call intrinsic noise [2]. Differences in molecule numbers of a certain species, say proteins, 

between different cells can originate from this type of �uctuations. However, such differences 

Figure 1. Illustration of gene expression in prokaryotic cells. Transcription is 
conducted by a RNA polymerase enzyme (RNApol) that binds to the gene and produces 
an mRNA molecule from the gene’s DNA. The mRNA is then translated into proteins 
by ribosomes. Transcription factors may bind to the promoter of the gene and thereby 
in�uence the recruitment of RNA polymerase and hence the transcriptional rate of the 
gene. Gene expression in eukaryotes happens similarly but is compartmentalised in the 
nucleus (transcription) and the cytosol (translation).

Figure 2. Measurements of intrinsic and extrinsic noise. (a) Fluorescent time series 
acquired on E. coli cells expressing a green �uorescent protein (GFP) encoding gene. 
The time trajectories correspond to the difference of the measured intensities in individual 
cells and the population average. We observe that the protein numbers �uctuate strongly 
over time [39]. From [2]. Reprinted with permission from AAAS. (b)  Fluorescence 
intensities for the dual reporter technique measured in [2] for the two E. coli strains M22 
and D22. Permission kindly granted by the publisher. Each triangle corresponds to the 
measured �uorescence intensity in one cell. Variations along and perpendicular to the 
diagonal correspond to extrinsic and intrinsic noise, respectively. We observe that in this 
system both intrinsic and extrinsic noise contribute signi�cantly to the overall �uctuations. 
Reprinted by permission from Macmillan Publishers Ltd: Nature [39], copyright 2006.
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can also stem from other effects, such as physiological differences between cells or differing 

environmental conditions. For example, the numbers of RNA polymerase or ribosomes may 

differ between different cells, or different cells may be exposed to varying nutrient concentra-

tions due to environmental �uctuations. Such differences that are not due to the stochasticity 

of chemical reactions are referred to as extrinsic noise [38].

2.2. Experimental evidence

As explained above, stochastic �uctuations are inherent to biochemical processes such as 

gene expression. The question hence arises: what effects do these �uctuations have on the 

functioning of cells and which processes dominate the emergence of these �uctuations? To 

answer such questions it is crucial to be able to empirically distinguish and quantify intrinsic 

and extrinsic noise.

One of the �rst experiments that aimed at explicitly separating the effects of intrinsic and 

extrinsic noise on gene expression was conducted by Elowitz et  al in 2002 [2] by means 

of the dual reporter technique. In this study, the authors integrated two distinguishable but 

identically regulated �uorescent reporter genes into the chromosome of E. coli cells, one 

expressing cyan �uorescent protein (CFP) and one yellow �uorescent protein (YFP). The two 

genes were controlled by identical promoters, which means that they experienced the same 

external effects, i.e. the same extrinsic noise. Assuming that the two promoters are independ-

ent, �uctuations of the two proteins originating from the stochasticity of chemical reactions, 

i.e. intrinsic noise, should be completely uncorrelated. On the other hand, extrinsic effects 

should in�uence both expression systems equally, and the corresponding �uctuations should 

therefore be strongly correlated. This can be visualised as in �gure 2(b) which is taken from 

[2]. The �gure  shows the measured intensities of individual cells for two different strains, 

with the YFP intensity on the y-axis and the CFP on the x-axis. The width of the cloud along 

the diagonal corresponds to correlated �uctuations and hence extrinsic noise, while the width 

orthogonal to the diagonal corresponds to uncorrelated �uctuations, i.e. intrinsic noise. The 

�gure indicates that for this particular system both intrinsic and extrinsic noise signi�cantly 

contribute to the overall noise.

Many other experimental studies have been conducted investigating the origins and role of 

intrinsic and extrinsic noise in cells (for example [39–44]). For an overview of experimental 

techniques see [45, 46]. In [43], for example, the authors measured the expression levels of 

43 genes in E. coli under various different environmental conditions. They observed that the 

variance of protein numbers scales roughly like the mean protein numbers and that for inter-

mediate abundance proteins the intrinsic �uctuations are comparable or larger than extrinsic 

�uctuations. In another large scale study on E. coli in [44], the authors found that �uctuations 

are dominated by extrinsic noise at high expression levels.

The reported �uctuations can have signi�cant in�uence on the functional behaviour of cells 

[1]. A particularly important example are stochastic cell fate decisions [47], where geneti-

cally identical cells under the same environmental conditions stochastically differentiate into 

functionally different states. Such differing cell fate decisions of genetically identical cells are 

believed to be bene�cial for a population of cells experiencing �uctuating environments [47].

Most of the mentioned experimental studies measure certain statistics of gene expression 

systems, such as the equilibrium mean and variance of protein numbers. While experimental 

methods such as the dual reporter technique allow to estimate the magnitude of intrinsic 

and extrinsic noise, they do not explain where the stochasticity originates from and what 
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the underlying processes are. In order to answer such questions, mathematical methods are 

needed that allow researchers to model the dynamics and stochasticity of such biochemical 

reaction systems.

3. Stochastic chemical kinetics

After having given a biological motivation for the importance of stochasticity in chemical reac-

tion networks in the previous section, we consider next the question of how such systems can 

be described mathematically. First, we introduce the concept of chemical reaction networks 

in section 3.1 and describe the classical mathematical description of such systems in terms of 

deterministic rate equations. Next, we discuss the stochastic description of such systems in sec-

tion 3.2. We derive the chemical master equation and discuss its validity and solutions. Next, we 

discuss the stochastic simulation algorithm in section 3.3. Finally, we review methods for exact 

analytic solutions of the CME for certain classes of systems in section 3.4 and give an overview 

of available analytic solutions of speci�c systems that do not fall under any of these categories.

3.1. Chemical reaction networks and deterministic rate equations

Biological processes such as gene expression generally consist of complicated mechanisms 

involving several different types of molecules and physical operations. For a mathematical 

description of certain processes, one typically does not model all these mechanisms explic-

itly, but rather replaces them by an effective single chemical reaction event. In the context of 

gene expression, for example, transcription or translation may be modelled as single chemical 

 reactions. A �nite set of chemical species that interact via a set of such chemical reactions 

constitutes what we call a chemical reaction network. Given a set of chemical species Xi, 

i  =  1, ..., N, we de�ne R chemical reactions by the notation

∑ ∑ = …′

= =

s X s X r R, 1, , ,

i

N

ir i

k

i

N

ir i

1 1

r

⟶ (1)

where the stoichiometric coef�cients sir and ′sir are non-negative integer numbers denoting 

numbers of reactant and product molecules, respectively. We say that the rth reaction is 

‘of order m’ if ∑ == s m
i

N
ir1

, i.e. if it involves m reactant molecules. We further call a reaction 

‘unimolecular’ if m  =  1, ‘bimolecular’ if m  =  2 and a system ‘linear’ if ⩽m 1 for all reactions 

occurring in the system. We further call a system ‘open’ if it contains a chemical process 

that generates molecules, and ‘closed’ otherwise. The quantity kr in equation (1) is called the 

 reaction rate constant of the rth reaction.

Classically, the dynamics of a chemical reaction system as in equation (1) has been model-

led by the law of mass action which was developed by Guldberg and Waage in its �rst version 

in the 1860s in the context of macroscopic in vitro experiments, i.e. macroscopic amounts of 

chemical molecules in solutions [48–51]. The law of mass action states that the rate of a reac-

tion is proportional to the product of the concentrations of reactant molecules. Speci�cally, if 

we de�ne ( )φ φ φ= …, ,
N1 , where φ

i
 denotes the concentration of species Xi, the rate gr of a 

reaction as in equation (1) is given by

( ) ∏φ φ=

=

g k .r r

i

N

i
s

1

ir (2)
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We call gr the macroscopic rate function of the rth reaction. Let us further de�ne the stoichio-

metric matrix S as

= − = … = …′S s s i N r R, 1, , , 1, , .ir ir ir (3)

The entry Sir corresponds to the net change of Xi molecules when the rth reaction occurs. 

Consequently, ( )φS gir r  is the rate at which the concentration φ
i
 of species Xi changes due to the 

rth reaction. Summing up the contributions from all reactions in a given system one obtains [52]

( )∑ φφ = = …
=t
S g i N

d

d
, 1, , .i

r

R

ir r

1

 (4)

This set of ordinary differential equations is called the rate equations. The law of mass action 

and the associated rate equations assume continuous concentrations, which means that they 

ignore the discreteness of molecule numbers. Moreover, they constitute a deterministic method, 

i.e. for a �xed initial condition the state of the system is exactly determined for all times. 

However, in the previous section we have seen that chemical reactions occur stochastically 

leading to �uctuations of molecule numbers in time. The reason why the rate equations give an 

accurate description in experiments such as the ones of Guldberg and Waage is that they studied 

chemical systems in solutions which typically contain a large number of substrate molecules. 

For large molecule numbers, it has been found experimentally that the relative �uctuations, i.e. 

the standard deviation divided by the mean value of molecule concentrations, scales like the 

inverse square root of the mean concentration and hence becomes small for systems with large 

molecule numbers [43]. One can therefore expect the rate equations to be an accurate descrip-

tion whenever a system has large molecule numbers for all species.

Example. As an example, consider the gene system in �gure 3. This system can be viewed 

as a simpli�ed version of the gene expression process described in �gure 1: we replace the 

process of transcription (gene produces an mRNA molecule) and translation (mRNA mol-

ecule produces a protein) by a single effective reaction in which the gene directly produces 

the protein.

The example in �gure 3 depicts negative autoregulation. The latter is one of the most com-

mon regulatory mechanisms: the gene’s product downregulates its own expression. In the 

bound state Goff, the gene does not produce any protein. The protein thus suppresses its own 

production, which means the system is an example of a negative feedback loop. The corre-

sponding reactions in the notation of equation (1) read

⟶ ⟶+ + ∅⇌G G P G P G P, , ,
k

k

k k
on on on off1

3

2 4

 (5)

Figure 3. Illustration of a gene expression system with negative feedback loop. When 
the gene is in the ‘on’ state it produces proteins of a certain type. The protein can decay 
or bind to the gene’s promoter. In the bound state the gene is in the ‘off’ state, i.e. no 
protein is produced. The corresponding reactions are given in equation (5). The protein 
hence suppresses its own production.
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where we call the gene in the bound and unbound state Gon and Goff, respectively and the pro-

tein P. In our nomenclature, →+G P G
on off is a second-order or bimolecular reaction, while 

the other three reactions are �rst order or linear. By ‘ →∅P ’ we indicate that P leaves the 

system under consideration. This could for example mean that P becomes converted into dif-

ferent types of chemical species or degraded in its constitutive elements that are not included 

in our model.

Let us order reactions according to the rate constants in equation  (5), and species as 

G P,on  and Goff, respectively. Consider the stoichiometric coef�cients sir and ′sir de�ned in 

equation  (1), which correspond to the number of reactant and product molecules, respec-

tively, of species Xi in the r th reaction. For the reaction → +G G P
on on , for example, we have 

= =s s1, 011 21  and s31  =  0, since there is one Gon on the lhs of the reaction but no P or Goff, 

and = =′ ′s s1, 111 21  and =′s 031  since there is one Gon, one P and no Goff molecules on the rhs. 

Proceeding similarly for the other reactions in equation (5), we �nd

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= =′s s

1 1 0 0

0 1 0 1

0 0 1 0

,

1 0 1 0

1 0 1 0

0 1 0 0

. (6)

Accordingly, the stoichiometric matrix = −′S s s reads

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=

−

− −

−

S

0 1 1 0

1 1 1 1

0 1 1 0

. (7)

Let ( )φ φ φ φ= , ,1 2 3 , where φ φ,1 2 and φ
3
 denote the concentrations of G P,on  and Goff, respec-

tively. The macroscopic rate vector ( ) ( ( ) ( ))( ) ( )
φ φ φ= …g gg , , r

T0
1

0 , with the gr de�ned in equa-

tion (2), is obtained by using s in equation (6) and reads

( ) ( )φ φ φ φ φ φ= k k k kg , , , .T1 1 2 1 2 3 3 4 2 (8)

Using equations (4), (7) and (8) it is easy to write down the corresponding rate equations. 

However, note that the system has a conservation law in particle numbers which we can use 

to �nd a simpli�ed description by reducing the number of variables: the total number of genes 

in the ‘on’ state and genes in the ‘off’ state is constant, i.e. φ φ+ = ≡ gconst.
1 3 0

. We can thus 

reduce the system to a two species system by using φ φ= −g
3 0 1

. The matrices s and ′s  for the 

reduced system are obtained from equation (6) by dropping the last row,

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= =′s s
1 1 0 0

0 1 0 1
,

1 0 1 0

1 0 1 0
, (9)

and the stoichiometric matrix and propensity vector of the reduced system read accordingly

( ) ( ) ( ( ) )φ φ φ φ φ φ=

−

− −

= −k k k g kS g
0 1 1 0

1 1 1 1
, , , , .T1 1 2 1 2 3 0 1 4 2 (10)

Using equation (4) we hence obtain the rate equations

( )

( )

φ φ φ φ

φ φ φ φ φ φ

∂

∂
= − + −

∂

∂
= − + − −

t
k k g

t
k k k g k

,

.

1 2 1 2 3 0 1

2 1 1 2 1 2 3 0 1 4 2

 (11)

The gene system in �gure 3 will be used to showcase several different methods in this article, 

and we will throughout use the reduced system.
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3.2. Stochastic methods

The rate equations discussed in the previous section constitute a deterministic description of chem-

ical reaction systems in terms of continuous molecule concentrations. As we have seen in section 2, 

however, �uctuations become important in many biological processes such as gene expression. 

The reason for this is that often some species occur at low molecule counts. A more general, 

stochastic description would keep the discrete nature of the Xi molecules in equation (1) intact. 

One general approach is to explicitly model the spatial positions of molecules and to model their 

movement as Brownian motion, with chemical reactions happening stochastically under certain 

rules. Exact analytic results for such systems are generally not known. Simulations, on the other 

hand, have to keep track of every single particle and quickly become computationally unfeasible. 

However, under certain conditions, which we discuss in the following section, simpli�ed descrip-

tions can be employed making spatial models and the simulation of single particles unnecessary.

3.2.1. The chemical master equation. We now consider a chemical reaction system as in equa-

tion (1) in a closed compartment of volume Ω. We seek a stochastic description of the system 

under well-mixed and dilute conditions. By ‘well-mixed’ we mean that the diffusion of particles 

in the compartment constitutes the fastest time scale of the system, in the sense that the expected 

distance travelled by each particle between successive reactive collisions is much larger then 

the length scale of the compartment. This implies that the spatial positions of molecules can be 

ignored and the dynamics of the system only depends on the total molecule numbers. By ‘dilute’ 

we mean that the combined volume of all the considered molecules is much smaller than the 

total volume, which means that the molecules can be considered as point particles.

If these two conditions are met, it can be shown [3] that the state of the system at any time 

is fully determined by the state vector ( )= …n nn , , N1 , where ni is the molecule number of 

species Xi in the compartment. In particular, the spatial locations and diffusion of molecules 

does not have to be modelled, and the system corresponds to a continuous-time Markov jump 

process. It can further be shown that the probability for the rth reaction to happen in an in�ni-

tesimal time step td  is given by ( )f tn dr  where ( )f nr  is the propensity function of the rth reac-

tion and proportional to the number of combinations of reactant molecules in ( )= …n nn , , N1 . 

Consider for example a bimolecular reaction of the form →+ ∅A B . The number of pairs 

with one A and one B molecule is n nA B, where nA and nB are the molecule numbers of A and 

B, respectively. The corresponding propensity function is hence given by /Ωk n nr A B . The scal-

ing with the volume Ω stems from the fact that the probability for two molecules to collide is 

proportional to /Ω1 . Generalising these arguments to reactions as in equation (1) leads to

( )
( )

∏= Ω
− Ω=

f k
n

n s
n

!

!
.r r

i

N
i

i ir
s

1
ir

 (12)

Propensity functions of this form are called mass-action kinetics type [14]. Although equa-

tion (2) is often, due to historical reasons, stated to be the law of mass action, from a microscopic 

perspective it is more accurate to state equation (12) as the law of mass action. Equation (2) can 

be viewed as the macroscopic version of (12) obtained in the limit of large molecule numbers 

and small �uctuations. Speci�cally, for reactions of up to order two equation (12) becomes

  → ( )

  → ( )

  → ( )

  → ( ) ( )

∅ = Ω

=

+ =
Ω

+ =
Ω

−

f k

A f k n

A B f
k
n n

A A f
k
n n

n

n

n

n

zeroth order ,

first order ,

second order ,

second order 1 .

r r

r r A

r
r

A B

r
r

A A

 

(13)
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Let us now consider how we can mathematically describe the dynamics of such a system. To 

this end, consider the probability distribution ( )|P t tn n, ,0 0  for the system to be in state n at 

time t given that it was in state n0 at time t0. We will use the shorthand ( ) ( )= |P t P t tn n n, , ,0 0  

in the following and implicitly assume conditioning on an initial state. The probability 

( )+P t tn, d  after an in�nitesimal time step td  is given by ( )P tn,  plus the probability to trans-

ition into state n from a different state ∗n  minus the probability to leave state n, which leads 

us to

∑ ∑+ = + − − −
= =

⎛

⎝
⎜

⎞

⎠
⎟P t t P t t f P t f P tn n n S n S n n, d , d , , ,

r

R

r r r

r

R

r

1 1

( ) ( ) ( ) ( ) ( ) ( )

 

(14)

where we used the fact that probability of the rth reaction to happen in an in�nitesimal time interval 

td  is given by ( )f tn dr  and where Sr is the rth column of the stoichiometric matrix S. Subtracting 

( )P tn, , dividing by td  and taking the limit →td 0 gives the chemical master equation (CME) [3],

( ) ( ) ( ) ( ) ( )∑ ∑∂ = − − −
= =

P t f P t f P tn n S n S n n, , , .t

r

R

r r r

r

R

r

1 1

 (15)

Since n is a discrete-valued vector, equation  (15) is a coupled system of linear ordinary 

differential equations. Note that this system is in�nite whenever n is unbounded. Despite 

its simple structure, there are generally no analytic solutions known to the CME. We call 

a distribution ( )P tn,  a steady-state solution of the CME if it solves the CME and ful�ls 

( )∂ =P tn, 0t .

In the context of chemical reactions, one of the �rst applications of the CME was done by 

Delbrück in 1940 for describing the dynamics of an autocatalytic reaction [53]. It has later 

been applied to linear reactions by Bartholomay [54] and McQuarrie [55], and bimolecular 

reactions by Ishida [56] and McQuarrie et al [57]. Gillespie derived the CME from molecular 

physics of a dilute and well-mixed gas in 1992 [3], which he extended to liquids in 2009 [58].

Example. Consider again the gene system in �gure 3 with reactions given in equation (5). The 

corresponding stoichiometric matrix S is given in equation (10). Let n1 and n2 be the molecule 

numbers of the gene in the unbound state Gon and the protein P, respectively. Let us assume 

that there is only one gene in the system, which implies that the number of bound genes Goff 

is 1  −  n1. Using equation (12) we �nd the propensity vector

( ) ( ( ) )=
Ω

−k n
k
n n k n k nf n , , 1 , .T1 1

2
1 2 3 1 4 2 (16)

The corresponding CME becomes (see equation (15))

∂ = − +
Ω

+ + + +

+ − − − + + +

− +
Ω

+ − +

P n n t k n P n n t
k

n n P n n t

k n P n n t k n P n n t

k n
k
n n k n k n P n n t

, , , 1, 1 1 1, 1,

2 1, 1, 1 , 1,

1 , , .

t 1 2 1 1 1 2
2

1 2 1 2

3 1 1 2 4 2 1 2

1 1
2

1 2 3 1 4 2 1 2

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ( ) ) ( )

 

(17)

Despite having a relatively simple system here with effectively only two species, no time-

dependent solution for its CME in equation (17) is known to our knowledge. A solution in 

steady state has been derived in [59], but for most other systems not even a steady state solu-

tion is available. Therefore, one generally needs to rely on stochastic simulations or approx-

imations to study the behaviour of such systems.
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3.2.2. Moment equations. Suppose we are not interested in the whole distribution solution 

of the CME but only in its �rst few moments, say the mean and variance. Starting from the 

CME in equation (15) one can derive time evolution equations for the moments of its solution 

as follows. To obtain the time evolution equation for the moment ⟨ ⟩…n ni l  we multiply equa-

tion (15) by …n ni l and sum over all molecule numbers, leading to

⟨ ⟩ ⟨( ) ( ) ( )⟩ ⟨ ( )⟩∑ ∑∂ … = + … + − …
= =

n n n S n S f n n fn n .t i l

r

R

i ir l lr r

r

R

i l r

1 1

 (18)

Here, ⟨ ⟩⋅  denotes the expectation with respect to the solution ( )P tn,  of the CME in equa-

tion (15). For moments of up to order two equation (18) becomes

⟨ ⟩ ⟨ ( )⟩∑∂ =
=

n S f n ,t i

r

R

ir r

1

 (19)

⟨ ⟩ [ ⟨ ( )⟩ ⟨ ( ) ⟩ ⟨ ( )⟩]∑∂ = + +
=

n n S n f S f n S S fn n n .t i j

r

R

jr i r ir r j ir jr r

1

 (20)

We see that if all ( )f nr  are zeroth or �rst-order polynomials in n, i.e. the system is linear 

without any bimolecular or higher order reactions, the equation of a moment of order m 

depends only on moments of order m or lower, i.e. the equations are not coupled to higher 

order equations. The equations up to a certain order hence constitute a �nite set of lin-

ear ordinary differential equations which can be readily solved numerically or by matrix 

exponentiation as will be described in the context of the CME in section 3.4. Note that 

no approx imation has been made here which means that the equations describe the exact 

moments of the CME’s solution. This means that for linear systems, the exact moments 

up to a �nite order of the process can be obtained by solving a �nite set of linear ordinary 

differential equations.

If the systems is non-linear, i.e. contains bimolecular or higher order reactions, the equa-

tion of a certain moment depends on higher order moments. This means that the moment 

equations  of different orders are coupled to each other, leading to an in�nite hierarchy 

of coupled equations. This can obviously not be solved directly but gives the basis of 

approximation methods such as moment closure approximations which we will discuss in 

section 4.3.

Example. Let us again consider the gene system in �gure 3 with reactions given in equa-

tion (5). The corresponding stoichiometric matrix and propensity vector are given in equa-

tion (10). Using these in equations (19) and (20) one obtains

( )∂ = −
Ω

+ −y
k
y k y1 ,t 1

2

1,2 3 1 (21)

( )∂ = −
Ω

+ − −y k y
k
y k y k y1 ,t 2 1 1

2

1,2 3 1 4 2 (22)

( ) ( )∂ =
Ω
− + + − + +y

k
y y k y y2 2 1 ,t 1,1

2

1,1,2 1,2 3 1,1 1 (23)

( ) ( )∂ = +
Ω
− − + + − − + + −y k y

k
y y y k y y y k y1 ,t 1,2 1 1,1

2

1,1,2 1,2,2 1,2 3 1,1 1,2 2 4 1,2

 

(24)
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( ) ( ) ( ) ( )∂ = + +
Ω
− + + − − + + + − +y k y y

k
y y k y y y k y y2 2 2 2 1 2 ,t 2,2 1 1,2 1

2

1,2,2 1,2 3 1,1 1 2 4 2,2 2

 
(25)

where we introduced the shorthand

⟨ ⟩= …
…

y n n .i i i i, , k k1 1 (26)

Note that the equations for the �rst order moments in equations (21) and (22) depend on the 

second moment y1,2, and that the equations for the second moments (23)–(25) depend on the 

third moments y1,1,2 and y1,2,2. Similarly, it is easy to see that moment equations of any order 

depend on higher order moments, which means that we have an in�nite system of coupled 

equations. Note that all terms in equations (21)–(25) depending on higher order moments are 

proportional to the rate constant k2 of the bimolecular reaction in equation  (5), illustrating 

that the moment equations decouple in the absence of bimolecular (and higher order) reac-

tions. This could be achieved here by setting k2  =  0 for which the moment equations would 

decouple and could thus be solved numerically.

3.2.3. Non-mass-action propensity functions. So far we only considered propensity func-

tions of mass-action type de�ned in equation  (12). However, in the literature propensity 

functions that are not of mass-action kinetics type are frequently used, such as Michaelis–

Menten or Hill functions to model the dependence of the production rate of a product on the 

substrate concentration in an enzymatic catalysis or the dependence of the expression level of 

a gene on its transcription factor. Such propensity functions typically arise in reduced models 

where an effective reaction replaces several microscopic reactions. For a gene that becomes 

regulated by a transcription factor, for example, the binding of the transcription factor to the 

promoter of the gene is not modelled explicitly, but the effect of its concentration included 

in the modi�ed propensity function of the expression reaction. Such non-mass-action type 

reactions should thus normally be seen as an effective reaction replacing a set of mass-action 

type reactions.

A possible reduced model of the gene expression system in �gure 3, for example, elimi-

nates the gene from the system and combines the binding, unbinding and protein production 

reactions into one effective reaction →∅ P with a Michaelis–Menten type propensity func-

tion /( )+k k n k n kP P1 3 2 3 , which means that the reaction producing protein now depends on the 

protein number nP. Such reductions often emerge from separations of time-scales in a system 

and become exact in certain limits, see section 4.6 for more details.

Independently of the origin of a non-mass-action propensity function, as long as it is inter-

preted as the �ring rate of the corresponding reaction, the CME description remains valid. 

Unless explicitly stated otherwise, we will assume mass-action kinetics in this article.

3.3. Stochastic simulations

As mentioned above, there are generally no analytic solutions known to the CME. However, 

it is possible to directly simulate the underlying process. The stochastic simulation algorithm 

(SSA) is a popular Monte Carlo method that allows one to simulate exact sample paths of the 

stochastic process described by the CME.

The stochastic simulation algorithm was �rst proposed in the context of chemical kinetics 

by Gillespie [4, 5], and several variants have been proposed in the literature, see [9–11] for 

reviews. The basic idea is to simulate reaction events explicitly in time and to update the time 

and state vector accordingly. The stochastic process described by the CME is a continuous-

time Markov jump process, which has the important property that waiting times, i.e. time 
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intervals between successive reaction events, are exponentially distributed [15]. Since it is 

easy to sample from exponential distributions, it is straightforward to simulate the occurrences 

of chemical reactions.

One example is the so-called direct method [4], which samples the time step τ for the next 

reaction to happen and subsequently which of the different reactions occurs. Speci�cally, let 

( )τ|p tn,  be the probability for the next reaction to happen in an in�nitesimal time interval td  

around τ+ t, given that the state of the system is n at time t, and ( )|p r tn,  the probability that 

the next reaction is a reaction of type r. Using that ( )f tn dr  is the probability for the rth reaction 

to happen in td , it can be shown that [4]

( ) ( ) ( )∑τ λ τλ λ| = − =
=

p t fn n, exp , ,
r

R

r

1

 (27)

( )
( )

λ
| =p r t

f
n

n
, .

r
 (28)

Samples from equations (27) and (28) can be respectively obtained as

( )/τ λ= − uln ,1 (29)

      ( )∑ λ= >
=

r f unsmallest integer satisfying ,
i

r

r

1

2 (30)

where u1 and u2 are uniform random numbers between 0 and 1. The direct SSA method itera-

tively updates the state vector and time of the process by �rst sampling the time point of the 

next reaction event according to equation  (29) and subsequently sampling which reaction 

happens according to equation (30).

Unfortunately, the applicability of the SSA is severely limited due to its computational 

cost. Since each and every reaction is simulated explicitly, the SSA becomes computationally 

expensive even for systems with few species. This is particularly the case if the molecule num-

bers have large �uctuations or if many reactions happen per unit time. In the �rst case a large 

number of samples have to be simulated to obtain statistically accurate results, whereas in 

the second case single simulations become expensive since the time between reaction events 

becomes small.

3.3.1. Extrinsic noise. So far we have only discussed stochastic simulations of systems with 

propensity functions that depend solely on the system’s molecule numbers and the system’s 

volume. This implies that the propensity functions are constant between reactions events, 

leading to inter-reaction intervals being exponentially distributed. However, as already men-

tioned in section 3.2.1, it is frequently of interest to consider stochastically varying propensity 

functions. This could for example represent the effect of a randomly �uctuating environment 

on a cell.

To model the effect of extrinsic noise, one typically includes a stochastic variable in one or 

several propensity functions, whose dynamics may for example be governed by a stochastic 

differential equation. This means that the corresponding propensities become explicit (sto-

chastic) functions of time. While the CME in equation (15) is still valid in this case, stochastic 

simulation algorithms discussed above are not since the inter-reaction times are now not expo-

nentially distributed anymore.

The simplest approach is to assume the propensity functions to be constant between reac-

tion events, which allows one to use the standard simulation algorithm [4, 60]. However, 
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this is of course an approximation and can lead to inaccuracies if the extrinsic process (and 

hence the corresponding propensity functions) �uctuates strongly between consecutive reac-

tion times. The most straightforward way to simulate such processes exactly is to integrate the 

propensity functions step-wise over time until a certain target value is reached [61–63]. Apart 

from numerical integration errors this class of algorithms is exact. However, due to the numer-

ical integration it becomes computationally highly expensive. More recently an alternative 

exact method has been proposed [64]. This method introduces an additional reaction channel 

in such a way that the total propensity (i.e. λ in equation (27)) is constant between successive 

reactions. This in turn allows one to use a standard SSA algorithm on the augmented system. 

It is hence generally more ef�cient than the aforementioned integral methods.

3.4. Exact results

As pointed out before, for most systems no analytic solutions of the CME are known. However, 

for certain classes of systems analytic solutions do exist. For some classes the general time-

dependent case can be solved while others can be solved only in steady state. Moreover, 

analytic solutions have been derived for various simple example systems that do not fall under 

any of these classes. We give here �rst an overview of general classes of systems that can be 

solved analytically, and subsequently list some additional systems for which analytic solu-

tions are known.

3.4.1. Finite state space. Suppose the state space of n is �nite with M elements. Let us asso-

ciate with each state a probability ( ) = …p t i M, 1, ,i . In section 3.2 we have noted that in this 

case the CME in equation (15) is a �nite system of coupled ordinary differential equations. If 

we write ( ) ( ( ) ( ))= …t p t p tp , , M
T

1 , the CME can be written in the matrix form as

( ) ( )∂ = Et tp p ,t (31)

where E is a ×M M matrix whose elements can be easily derived for a given system using 

equation (15). The solution of equation (31) is simply given by

= Et tp pexp 0 .( ) ( ) ( ) (32)

Therefore, for systems with �nite state space a solution of the CME for all times can be in 

principle computed using equation (32). However, even for systems with �nite state space, 

the dimension of equation (32) is often quite large in practice, making matrix exponentiation 

computationally expensive. Ef�cient numerical methods for matrix exponentiation have been 

developed in recent years [65, 66], but for many chemical reaction systems of practical inter-

est it remains an intractable task. For systems with large or in�nite state space equation (32) 

is hence not of direct practical use. It forms the basis for certain approximation methods, 

however, see section 4.6.

3.4.2. Linear systems. In section 3.2.2 we found that the moment equations decouple from 

higher order equations for linear reaction systems, i.e. systems without bimolecular or higher 

order reactions. The moment equations  up to a �nite order can hence be directly solved 

numerically for such systems. For non-linear systems, in contrast, this is not possible since 

the moment equations couple to higher orders. Similarly, exact solutions for the whole distri-

bution solution of the CME are easier to obtain for linear systems. Often this can be done by 

means of the generating function method which transforms the CME into a partial differ ential 
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equation [15]. The form of the latter becomes particularly simple for linear systems and can 

often be solved analytically.

In 1966 Darvey and Staff used the generating function approach to derive a multinomial solu-

tion for ( )P tn,  for multinomial initial conditions and for systems with ∑ = ∑ =′= =s s 1
i

N
ir i

N

ir1 1
 

for all reactions r, i.e. exactly one reactant and exactly one product molecule for all reactions 

[67]. Note that these are closed systems. Later Gardiner used the so-called ‘Poisson repre-

sentation’ to show that for systems with ⩽∑ ∑ ′
= =s s, 1
i

N
ir i

N

ir1 1  for all reactions r and Poisson 

product initial conditions, the solution of the CME is a Poisson product for all times [68]. The 

auto- and cross-correlation functions for such systems have more recently been computed in 

[69]. These results have been generalised to systems with ⩽∑ ∑ ′
= =s s, 1
i

N
ir i

N

ir1 1  for all reactions 

r, with arbitrary initial conditions in [70]. In this case the solution can be written as a convolu-

tion of multinomial and product Poisson distributions. In all these cases, the solutions can be 

constructed from the solution of the deterministic rate equations discussed in section 3.1 and 

can hence be obtained ef�ciently by (numerically) solving a �nite set of ordinary differential 

equations.

We would like to stress that the methods described here do not apply to all linear reactions, 

but only to those with less than two product molecules ( ⩽∑ ′
= s 1
i

N

ir1
). This excludes reactions 

of the type → +A A B which are common in biology, such as translation of a protein B from 

its mRNA, A.

3.4.3. Non-linear systems. As discussed in the previous section, for linear systems where 

each reaction has at most one product molecule, an analytic solution of the CME can be 

derived. In contrast, for non-linear systems or linear systems including reactions with two 

product molecules no analytic solutions are known in general. However, for certain subclasses 

of systems it is possible to derive steady-state solutions, i.e. solutions satisfying ( )∂ =P tn, 0t . 

One example are reversible systems that obey detailed balance, which is also called thermo-

dynamic equilibrium. By ‘reversible’ we mean that each reaction possesses a corresponding 

reversing reaction. Note that the steady-state condition ( )∂ =P tn, 0t  in the CME in equa-

tion  (15) merely means that the probability �ow out of a state (second term in the CME) 

equals the probability �ow into a state (�rst term in the CME). These probabilities consist 

of sums over all reactions. Detailed balance is a stronger condition, as it requires the �ow 

of each single reaction in each state to be balanced by its corresponding reversible reaction. 

Speci�cally, let r and ′r  be the indices of two reactions that revert each other and let ( )P n  be a 

steady-state solution. The detailed balance condition reads [15]

( ) ( ) ( ) ( )= + +′f P f Pn n n S n S ,r r r r (33)

which needs to be ful�lled for all reactions and all n. Note that = − ′S Sr r . The left side of 

equation (33) is the �ow out of state n due to the rth reaction, while the right side is the 

�ow into state n due to the backward reaction ′r . An analogue detailed balance condition 

can be formulated for the deterministic rate equations. It can be shown that for a revers-

ible reaction system with mass-action kinetics, the stochastic system is in detailed balance 

if and only if the deterministic system is in detailed balance [71]. If the detailed balance 

condition is ful�lled, the solution of the CME is a product of Poisson distributions times 

a function accounting for conservation laws in molecule numbers, where the mean values 

of the Poisson distributions are simply given by the detailed balance solutions of the rate 

equations [15, 72].
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As an example, consider a closed, bimolecular system with reactions + ⇌A A B
k

k

2

1

. Let nA 

and nB be the molecule numbers of A and B respectively. The quantity + =n n C2A B  is con-

served. The corresponding steady-state solution of the CME in detailed balance reads

α α
δ= + −

α α− −

P n n
e

n

e

n
n n C,

! !
2 ,A B

n

A

n

B

A B
1 2
A B1 2

( ) ( ) (34)

where α φ= Ω1 1

0 and α φ= Ω2 2

0, φ
1

0 and φ
2

0 are the steady-state solutions of the rate equa-

tions of A and B, respectively, Ω is the system volume, and δ is the delta function accounting 

for the conservation law.

These results have more recently been generalised to weakly reversible reaction systems 

[73]. A system is called weakly reversible when for each reaction the change in state space 

can be reversed by a chain of other reactions. For example, a system with the reactions 

→ → →X X X X1 2 3 1 is not reversible but it is weakly reversible. Weak reversibility is a generali-

sation of reversibility since each reversible system is also weakly reversible. Correspondingly, 

the concept of complex balance has been employed which is a generalisation of detailed bal-

ance [74]. It can be shown that if the rate equations of a system with mass-action kin etics are 

complex balanced, the CME possesses a steady-state solution given by a product of Poisson 

distributions times a function accounting for conservation laws [73]. The mean values of 

the Poisson distributions are given by the complex-balance solutions of the rate equations. 

Moreover, it can be shown that for any mass-action kinetics reaction system with de�ciency 

zero (see [75] for a de�nition), the rate equations have a complex-balance solution if and only 

if the system is weakly reversible [75].

3.4.4. Exact results for special cases. Most reaction systems of practical interest are neither 

linear nor do they satisfy the detailed/complex balance conditions. However, the CME has been 

solved for several speci�c systems that do not fall under any of these categories. In particular for 

systems with only a single reaction it is often straightforward to obtain a time-dependent solu-

tion of the CME. Some examples are given below. Most of these solutions are obtained either by 

means of the aforementioned generating function method or the Poisson representation. While the 

former transforms the CME into a partial differential equation, the latter maps the discrete process 

underlying the CME to a continuous diffusion process governed by a Langevin equation de�ned 

in a complex-valued space [68]. We would like to stress that both approaches are exact. However 

the Poisson representation has not been used much in the literature, probably because of its relative 

complexity compared to other methods and hence we do not cover it in detail here. We refer the 

reader to the following references for speci�c applications [76–82]. For more details on the Poisson 

representation and the generating function approach we refer the reader to [15].

Single reaction systems.

Time-dependent solutions have been derived for

 • → +A A A [53]

 • →+A B C [56]

 • →+A A C [56]

 • ↔+A B C [83]

Gene regulatory networks.

 • → ↔ → → →+ + ∅ +G G P G P G P G G P G G, , , ,on on on off off off off on: a steady-state solu-

tion has been derived if there is one gene in the system [59]. Note that if we ignore the last 

two reactions this system corresponds to the gene system in �gure 3.
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 • A system similar to the previous one but with geometrically distributed bursts of protein 

production has been solved in steady state in [84].

Enzyme systems.

 • ↔ →+ +E S C E P: A time-dependent solution has been derived for the case of a single 

enzyme in the system [85].

 • Adding the reaction →+E P C to the previous system makes it reversible and a corre-

sponding steady-state solution has been derived in [86].

 • The system with added substrate input reaction →∅ S has been solved in steady state in 

[87].

 • A similar system but with multiple substrate species competing for the enzyme has been 

solved in steady state in [88].

Most of these examples only consider steady-state solutions and all of them consider systems 

with few species. The lack of solutions for more complicated systems makes the development 

of approximation methods necessary.

4. Approximation methods

As discusses in the previous section, analytic solutions of the CME are known only for very 

restrictive classes of systems and few simple special cases. For most systems of practical 

interest, no analytic solutions are known to date. Stochastic simulation algorithms introduced 

in section 3.3 allow to simulate exact samples of the underlying stochastic process, but they 

quickly become computationally infeasible for larger systems. For these reasons signi�cant 

effort has been spent in the literature on the development of approximation methods. We give 

here an introduction to a wide range of such methods. First, we give a detailed introduction 

to a few approximation methods that can be applied to (almost) arbitrary systems without any 

pre-knowledge of the system necessary. We derive the approximations, give examples and 

discuss their properties. Subsequently, we give an overview of other types of approximation 

methods developed in the literature.

The �rst method aims at approximating the solution of the CME, namely the chemical 

Fokker–Planck equation (CFPE) and the associated chemical Langevin equation (CLE), 

which we introduce in section 4.1. The CFPE/CLE de�ne an approximating stochastic pro-

cess. An alternative method for approximating the solution of the CME is given by the 

system size expansion, which constitutes a systematic expansion of the CME in the inverse 

volume size. The system size expansion includes the popular linear noise approximation 

(LNA) and also provide an ef�cient way of approximating the moments of a process. We 

discuss the system size expansion in section 4.2. Next, in section 4.3 we introduce a certain 

class of moment closure approximations, which approximate the moments of a process. In 

section 4.4 we show how such approximate moments can be used to construct distributions 

using the maximum entropy principle. Next, in section 4.5 we review software packages 

implementing the discussed approximation methods. Finally, in section 4.6 we give a brief 

overview of other approximation methods found in the literature. As we shall see, many of 

these methods use the CLE, the system size expansion or moment closure approximations 

as building blocks.
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4.1. The chemical Langevin equation

The chemical Langevin equation (CLE) and the corresponding chemical Fokker–Planck equa-

tion (CFPE) constitute a popular diffusion approximation of the CME. Kramers and Moyal 

derived the CFPE by applying a Taylor expansion to the CME which upon truncation leads 

to a partial differential equation  approximation of the CME [89, 90]: Suppose we let the 

variables in the CME in equation (15) become continuous and let ( )= …x xx , , N1 , where xi 

is the continuous variable denoting the molecule number of species Xi. Performing a Taylor 

expansion to second order around x in the �rst term of the rhs of equation (15) gives (with n 

replaced by x)

∑

∑
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Inserting this into the CME in equation (15), we see that the �rst term on the rhs of equa-

tion (35) cancels the last term on the rhs of equation (15) leading to the CFPE:
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where the drift vector A and diffusion matrix B are respectively given by

( ) ( )∑=
=

A S fx x ,i

r

R

ir r

1

 (37)

∑=
=

B S S fx x .ij

r

R

ir jr r

1

( ) ( ) (38)

Note that the drift vector ( )A x  and diffusion matrix ( )B x  do not depend on time. Note also 

that whereas the state variables denote discrete molecule numbers in the CME, they denote 

continuous real numbers in the CFPE. The CFPE in equation (36) is equivalent to the CLE

( ) ( ) ( ) ( ) ( )= + =tx A x C x W C x C x B xd d d , ,T (39)

which is an Ito stochastic differential equation [15]. W in equation (39) is a multi-dimensional 

Wiener process. It can be shown [15] that the distribution of a process described by equa-

tion  (39) agrees exactly with the solution of the corresponding Fokker–Planck equation  in 

(36). One can thus interpret the CLE in equation  (39) as a generator of realisations of the 

stochastic process described by the corresponding CFPE. In this sense, the CLE and CFPE are 

considered to be equivalent to each other. An alternative derivation, which leads directly to the 

CLE in equation (39), was given by Gillespie in [91].

Generally there exist different choices for ( )C x  in equation (39) corresponding to different 

factorisations of the matrix ( )B x ; these lead to as many different representations of the CLE. 

One possibility is given by
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( ) ( )∑ ∑= + = …
= =

x S f t S f W i Nx xd d d , 1, , .i
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r
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ir r r
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This representation of the CLE is the one most commonly used in the literature [91, 92].

Example. Let us come back to the gene expression system in �gure  3 with reactions in 

 equation (5) and consider the corresponding CFPE and CLE. Using the stoichiometric matrix 

in equation  (10) and propensity vector in equation  (16) we obtain for the drift vector and 

 diffusion matrix de�ned in equation (37) and equation (38), respectively,
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where x1 and x2 are the (continuous) particle numbers of Gon and P, respectively. To obtain the 

CLE in equation (39), we have to compute C, which is the square root of B and thus generally 

not uniquely de�ned. One possibility as given in equation (40) reads
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This gives rise to the CLE
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(45)

where the Wi are independent Wiener processes. Note that it does not make a difference if 

one changes the signs in front of the square roots in equation (43), or equivalently in front of 

the noise terms in equation (44), as long as one does so simultaneously for each occurrence 

of a speci�c term, i.e. changes the sign of whole columns in equation (43). To see that such 

changes are equivalent note that the diffusion matrix =B CC
T of the CFPE is invariant under 

such changes. This can also be seen directly from the CLE in equations (44) and (45) since the 

Wiener processes are symmetric.

4.1.1. Stochastic simulations. As for the CME, there are no analytic solutions known for 

the CLE for most systems. However, the computational cost of CLE simulations scales with 

the number of species, rather than with the rate of reaction events as CME simulations. This 
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means that CLE simulations are often more ef�cient than simulations of the CME, typically if 

the molecule counts in a system are not too small.

A popular method to simulate the CLE is the Euler–Maruyama algorithm which discre-

tises time into intervals dt and simulates the process iteratively as [93]

+ = + + ∼Nx t t x t A x t t B x t t w wd d d d , d 0, 1 ,( ) ( ) ( ( )) ( ( ))   ( ) (46)

where ( )N 0, 1  is a normal distribution with mean 0 and variance 1. The smaller dt, the better 

the true process is approximated by equation (46) but also the slower the algorithm becomes. 

The right choice of dt is therefore a tradeoff between accuracy and ef�ciency. It is important 

to point out that more ef�cient simulation methods exist, see for example [93–96].

4.1.2. Properties and recent developments. The CLE is typically a good approximation 

whenever the molecule numbers of the system are not too small and is particularly useful if 

one is interested in time trajectories or distributions of a process. It can be shown that the dif-

ferences between the CLE and the CME tend to zero in the limit of large molecule numbers 

[97]. In other words, the CLE becomes exact in the thermodynamic limit.

By multiplying the CFPE in equation (36) by …x xi l and integrating over the whole state 

space, one obtains ordinary differential equation  for the moment ⟨ ⟩…x xi l  of the process 

described by the CLE. Importantly, it turns out that the equations for moments of up to order 

two are exactly the same as the corresponding equations derived from the CME. These are 

given in equations (19) and (20). Note however that since they are generally coupled to higher 

order moments for which the evolution equations derived from the CLE and CME do not 

agree, the �rst two moments (and higher order moments) of the CLE do not generally agree 

with the ones of the CME. However, since the moment equations decouple for linear systems 

as shown in section 3.2.2, we obtain the important result that the moments up to order two of 

the processes described by the CLE and CME agree exactly for linear reaction systems.

Note that the CME has a natural boundary at zero molecule numbers, i.e. for a sensible 

initial condition with zero probability to have a negative number of molecules, this probability 

remains zero for all times. Until recently it has not been clear how this boundary condition 

behaves when approximating the discrete process underlying the CME by a continuous pro-

cess using the CLE. As it turns out, this boundary issue leads to an ill-de�nedness of the CLE 

due to occurrences of square roots of negative expressions in �nite time with �nite probability 

[99, 100]. Since traditionally the domain of the CLE is (implicitly) assumed to be that of real 

numbers, the CLE is not well-de�ned in this case. More recently, it has been shown that this 

problem is independent of the chosen factorisation of the CFPE’s noise matrix B (see equa-

tion (39)), which means that the CLE is not well-de�ned for real variables [87]. In this study it 

has been shown that the same can be expected for the majority of reaction systems.

Several modi�ed versions of the CLE have been proposed that try to keep the state space 

real, for example [98, 99]. However, these are ad hoc modi�cations and have been found to 

introduce high inaccuracies for some non-linear reaction systems [87]. Importantly, they also 

have been found to violate the CLE’s exactness for the moments up to order two for linear 

systems. Alternatively, the ill-de�ned problem can be solved by extending the state space 

of the CLE to complex variables. It has been proven that this leads to real-valued moments, 

real-valued autocorrelation functions and real-valued power spectra, and to restore the CLE’s 

exactness for the moments up to order two for linear systems [87]. This complex CLE was 

found to be highly accurate for some non-linear systems in comparison to other modi�ed ver-

sions. For one example the results from [87] are shown in �gure 4. The complex-valued CLE 

has other drawbacks, however. For example, it does not directly give approximations of the 

process or of distributions. Rather, the results have to be projected to real space.
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In recent years the CLE has been frequently used for approximating the dynamics of 

intermediate or high abundance species in so-called hybrid methods, see section 4.6.4. In 

this case, the probability of negative concentrations becomes very small. If the partitioning 

into low and high abundance species is done adaptively, the problem of square roots of nega-

tive expressions is avoided completely. In this case the complex-valued CLE automatically 

reduces to the real-valued CLE. The CLE is particularly useful in simulation based hybrid 

methods since it gives an approximation of the whole process (rather than for example only 

the process’s moments).

Recently, a tensor-based method has been proposed in [101] for the direct numerical solu-

tion of the CFPE. This is a promising approach since it avoids computationally expensive 

ensemble averaging and has been used for sensitivity and bifurcation analysis [101]. Recall 

that the CLE becomes exact in the limit of large system sizes. As one may expect, the CLE 

therefore generally captures the multimodality of the CME’s solution if the multimodality 

persists for large volumes, since this is the case if the deterministic rate equations are multi-

stable. Surprisingly, however, it has recently been found that the CLE is also able to reproduce 

noise-induced multimodality of the CME’s solution, i.e. multimodality that occurs only if the 

system volume is decreased below a certain critical value [102]. However, it was found that 

this is not the case for all reaction systems [103]. In [104], the CLE as a diffusion approx-

imation was applied to Petri nets.

4.2. The system size expansion

Suppose we are not interested in approximating the whole process but only in its distribu-

tion or �rst few moments. Running stochastic simulations of the CLE seem like unnecessary 

computational effort in this case and the question arises if there exist more ef�cient approx-

imation methods to achieve this. We next discuss the system size expansion which aims at 

Figure 4. Comparison of different CLE implementations. The �gures show the steady-
state mean (left) and variance (right) of a substrate in a Michaelis–Menten reaction 
system as a function of the strength of the substrate-to-enzyme binding strength. The 
results are normalised by the exact CME result, which means that the horizontal dashed 
line corresponds to the exact value. CLE-C corresponds to the complex-valued CLE, 
CLE-R to a real-valued implementation with rejecting boundaries at zero molecules, 
and CLE-DR to the real-valued version proposed in [98]. LNA and 2MA correspond 
to the linear noise approximation and the second-order normal moment closure, which 
we will introduce in sections 4.2 and 4.3, respectively. We observe that both real-valued 
implementations give large deviations from the CME result, signi�cantly more than 
the LNA and 2MA. The complex CLE on the other hand is signi�cantly more accurate 
than all the other methods. Reprinted from [87], with the permission of AIP Publishing.
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approximating the distribution or the �rst few moments of a process. The system size expan-

sion is a perturbative expansion of the CME in the inverse system size originally developed by 

van Kampen [14, 105]. The idea is to separate concentrations into a deterministic part, given 

by the solution of the deterministic rate equations, and a part describing the �uctuations about 

the deterministic mean.

4.2.1. Derivation. The system size expansion splits the instantaneous particle numbers ni of 

the CME into a deterministic part and a �uctuating part as

/φ
Ω
= +Ω = …−

ε

n
i N, 1, , ,

i

i i
1 2

 (47)

where Ω is the volume of the system, φ
i
 is the solution of the deterministic rate equations in (4) 

and we introduced the new variables εi representing �uctuations about the deterministic mean. 

Following [106], the system size expansion proceeds by transforming the master equation to 

these new variables εi. To this end, we rewrite the CME in equation (15) as
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where we introduced the step operators −Ei
Sir, which are de�ned in terms of their action on a 

general function of the state space, ( ) ( )= …h h n nn , , N1  as
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The system size expansion now proceeds in three steps:

 1. Time derivative. Due to the change of variables in equation  (47) we need to trans-

form the distribution ( )P tn,  into a distribution ( )Π ε t,  of the new variables. Note that 

the time derivate in the CME in equation  (48) is taken at constant n, which implies 
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 2. Step operator. Using equation (47) in the de�nition of the step operator in equation (49), 

we obtain
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  Expanding the rhs in powers of /
Ω
−1 2 we can expand the term of the CME involving the 

step operators as
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(52)

 3. Propensity functions. We assume that the propensity functions in the CME can be 

expanded as
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  If we assume mass-action kinetics for which the propensity functions take the form in 

equation (12), the propensity functions are polynomials and it is easy to see that such 

an expansion always exists. The same is also true for many propensity functions that are 

not of mass-action kinetics type, such as Michaelis–Menten and Hill-type propensity 

functions. Using equation (47) and expanding the rhs of equation (53) in /
Ω
−1 2 we obtain
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(54)

  where we have identi�ed ( ) ( )
( )
φ φ=f g

r r
0  and ( )φgr  is the macroscopic rate function of 

the rth reaction introduced in equation (2) in context of the deterministic rate equations.

Applying equations (50), (52) and (54) to equation (48) we obtain
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Here we use the shorthand /∂ = ∂ ∂εi i and assume summations over doubly occurring indices 

for notational simplicity. We note that in equation (55) also two terms of order /
Ω
1 2 occur. 

However, these terms cancel each other because they just correspond to the deterministic rate 

equations. In equations (56)–(58) we de�ned
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Note that both the ( )J i  and ( )
D

i  matrices depend on the solution φ of the rate equations in (4) 

and are thus generally time dependent. Comparing with equation (4) we �nd that ( )J 0  in equa-

tion (60) is just the Jacobian of the rate equations.
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4.2.2. The linear noise approximation. The popular linear noise approximation (LNA)  

[14, 105] is obtained if we truncate the expansion in equation (55) to zeroth order, leading to
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Equation (61) is a Fokker–Planck equation with drift and diffusion linear and constant in ε , 

respectively, and hence has a multivariate normal solution under appropriate initial conditions. 

By multiplying equation (61) with εi and ε εi j and integrating over all ε , one obtains ordinary 

differential equations for the �rst and second-order moments, ⟨ ⟩εi  and ⟨ ⟩ε εi j , respectively. By 

doing so one �nds that if the mean is initially zero, ⟨ ⟩| ==ε 0i t 0
, it remains zero for all times. 

This is normally the case since otherwise the initial condition of the rate equations would not 

agree with the initial mean value of the stochastic system. If we additionally assume deter-

ministic initial conditions, we also have ⟨ ⟩| ==ε ε 0i j t 0
. The solution of equation (61) is thus a 

multivariate normal distribution with zero mean. Since n and ε  are related by the linear trans-

formation given in equation (47), the distribution of n is also given by a multivariate normal 

distribution. The mean of the latter satis�es the rate equations in equation (4) and the covari-

ance Σ de�ned as ⟨ ⟩ ⟨ ⟩⟨ ⟩Σ = −n n n nij i j i j  ful�ls

( ) ( ) ( )
Σ Σ Σ∂ = + + Ω−J J D .t

T0 0 1 0 (62)

The LNA describes the lowest order �uctuations of the system size expansion about the deter-

ministic mean and is valid in the limit of large volumes, i.e. the thermodynamic limit.

An alternative derivation of the LNA is given in [15], where it is derived from the chemical 

Langevin equation given in equation (39).

Example. Let us consider the rate equations and LNA for the gene system in �gure 3. The 

corresponding stoichiometric matrix, the macroscopic rate vector and the rate equations were 

already derived in section 3.1 and are given in equations (10) and (11), respectively. The LNA 

de�ned in equation (61) requires matrices ( )J 0  and ( )
D

0  de�ned in equations  (59) and (60), 

respectively, for which we obtain

( ) ( )

( ) ( )

( )

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

=

+
Ω
− +

Ω
−

+
Ω
− + +

Ω
− +

k k k k

k k k k k k

D

1 1

1 1
,0

2 1 2 3 1 2 1 2 3 1

2 1 2 3 1 1 1 2 1 2 3 1 4 2

 (63)

( )
⎛

⎝
⎜

⎞

⎠
⎟

φ φ

φ φ
=

− − −

− − − −

k k k

k k k k k
J .

0 2 2 3 2 1

1 2 1 3 2 1 4

 (64)

Note that ( )
D

0  and ( )J 0  are functions of the time-dependent solutions φ
1
 and φ

2
 of the rate 

equations in (11). The solution of the LNA is a normal distribution in ( )= n nn ,1 2 . Its mean 

is obtained by (numerically) solving the rate equations in (11), and the covariance by subse-

quently solving equation (62) using equations (63) and (64).

4.2.3. Higher order corrections. Suppose we want to include higher orders in /
Ω
−1 2 in equa-

tion (55) beyond the LNA. In contrast to the LNA, now the PDE in equation (55) can gener-

ally not be solved analytically. However, we can derive ordinary differential equations for the 
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moments of the system accurate to the corresponding order in /
Ω
−1 2, as follows. Assuming an 

expansion of the distribution ( )Π ε t,  as

( ) ( )/ ( )∑Π = Ω Π
=

∞
−

ε εt t, , ,

i

i i

0

2
 (65)

one obtains an expansion of the moments

⟨ ⟩ [ ] [ ]   ( )( ) / ( ) ( )∫∑… = … Ω … = … Π
=

∞
−

ε εε ε ε ε ε ε ε ε t, d , .j k

i

j k
i i

j k
i

j k
i

0

2

 (66)

Multiplying equation (55) with …ε εj k, using equations (65) and (66) and integrating over all 

ε , we obtain

[ ] [ ]( )∂ =ε εJ ,t i i

q
q0

0
0 (67)

[ ] [ ] [ ]( ) ( ) ( )∂ = + +ε ε ε εJ D J
1

2
,t i i

q
q i i

q r
q r1

0
1

1 0 ,

0 (68)
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1
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1
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(69)

[ ] [ ] [ ]( ) ( ) ( )
∂ = + +ε ε ε ε ε εJ J D ,t i j i
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0
 (70)
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[ ] [ ] ( ↔ ↔ ) [ ] ( ↔ ↔ )( )∂ = + + +ε ε ε ε ε ε εD i j k J i j k ,t i j k ij k i

q
j k q0 0
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0 (73)
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[ ] [ ] ( ↔ ↔ ↔ ) [ ] ( ↔ ↔ ↔ )( )∂ = + + +ε ε ε ε ε ε ε ε ε εD i j k l J i j k l .t i j k l ij k l i

q
j k l q0 0

0
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(75)
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Here, ( ↔ ↔ )i j k  denotes a sum over the previous term over all cyclic permuta-

tions of the indices i,j and k, and similarly for four indices. For example, we have 

[ ] ( ↔ ↔ ) [ ] [ ] [ ]+ = + +ε ε ε εD i j k D D Dij k ij k ki j jk i1 1 1 1. We �nd that for deterministic initial 

conditions [ ] [ ] [ ] [ ]= = = =ε ε ε ε ε ε ε 0i i i j i j k0 2 1 0  holds for all times. The moments in molecule 

numbers ni can now be obtained from the moments of the εi variables by using the ansatz in 

equation (47). For the mean and covariance this leads to

[ ] ( )φ
Ω
= +Ω + Ω− −

ε

n
O ,

i

i i
1

1
2

 (76)

[ ] ([ ] [ ] [ ] ) ( )
Ω Ω

−
Ω Ω

= Ω + Ω − + Ω− − −
ε ε ε ε ε ε

n n n n
O .

i j i j
i j i j i j

1
0

2
2 1 1

3

 (77)

To order Ω0, equation (76) corresponds to the macroscopic rate equations, while equation (77) 

to order Ω−1 corresponds to the LNA estimate for the covariance. Including terms of order Ω−1 

in equation (76) gives the leading order corrections to the mean given by the rate equations. 

To this order, the system size expansion equations have been called ‘effective mesoscopic rate 

equations’ in the literature [107]. The next leading order corrections to the covariance, which 

have been called ‘inverse omega square’ in the literature [106], are obtained by keeping terms 

of order Ω−2 in equation (77).

4.2.4. Properties and recent developments. As long as one is only interested in the LNA or 

higher order corrections to the moments, rather than the distributions of higher order trunca-

tions, the system size expansion amounts to the solution of �nite sets of ordinary differential 

equations. It is thus generally signi�cantly more ef�cient than stochastic simulations of the 

CME or of the CLE.

Since the system size expansion is an expansion around the deterministic mean, it cannot 

be used for deterministically multistable systems, i.e. systems whose rate equations have two 

or more positive stable steady states, unless one is only interested in the short-time behaviour 

of a process (for example for the purpose of inference from time-series data, see section 6).

In many cases, the lowest order of the system size expansion, i.e. the LNA, already gives 

remarkably accurate results and has been used succesfully in various applications [109–113]. 

However, for some systems it gives rise to signi�cant deviations from the exact result [114]. 

Higher order approximations beyond the LNA have frequently been found to be highly accu-

rate for such systems. Examples include oscillations in networks of coupled autocatalytic 

reactions [115, 116], predator-prey systems [117] and circadian oscillators [118].

We note that for truncations of higher orders than zero, the resulting PDEs involve higher 

order derivatives than two and hence have no probabilistic interpretation due to non positive-

de�nite solutions [119]. Moreover, the solutions to the PDEs are generally not longer known 

in this case. However, for systems with only one species a general solution to all orders has 

recently been derived [108]. A similar approach has been developed in [120] for discrete-time 

models in neuroscience. Note that the variables described by the system size expansion are 

typically assumed to be continuous. In [108] it has been found that if the support is assumed to 

be continuous, the �rst few leading orders of the system size expansion lead to oscillations in 

the tail of the Poisson distribution for a linear birth-death process. In contrast, if one assumes 

a discrete support, the distribution is captured accurately. In the same work, a modi�ed system 
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size expansion has been employed. Instead of expanding the variables of the CME around the 

deterministic mean value given by the rate equations, one expands the variables around the 

mean value given by the system size expansion itself to the considered order (which is not 

known a priori). The authors call this method ‘renormalised approximation’. This approach 

has been found to give an improved approximation of the distribution for a non-linear process 

as shown in �gure 5.

4.3. Moment closure approximations

Another popular class of methods that approximate the �rst few moments of a process are so-

called moment closure approximations. We present a popular class of such methods here that 

are particularly easy to derive and implement.

4.3.1. General formulation. In section 3.2.2 we showed that the CME gives rise to ordinary 

differential equations for the moments of a process. For linear reaction systems, these equa-

tions can be solved numerically up to a certain desired order. For non-linear systems, how-

ever, we found that the moment equations of a certain order couple to higher order equations, 

leading to an in�nite hierarchy of equations which can hence not be solved directly. Moment 

Figure 5. Distribution of non-linear birth-death process. The �gures show the steady-
state distribution for a non-linear birth-death process for two parameter sets, one 
corresponding to a small mean number of molecules (left panel) and one corresponding 
to a large mean number of molecules (right panel). Results are shown for different orders 
of the system size expansion with discrete support (top panel) as well as the renormalised 
approximation (see main text for a de�nition). The studied system corresponds to a 
birth-death process where the propensity of the death process is of Michaelis–Menten 
type. Such a system is obtained when reducing a Michaelis–Menten system under 
time-scale separation. This will be demonstrated in section 4.6.3. Reprinted �gure with 
permission from [108]. Copyright 2015 by the American Physical Society.
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closure approximations truncate this in�nite set of equations at a certain order M in some 

approximate way.

One popular class of moment closure approximations close the moment equations  by 

expressing all moments above a certain order M as functions of lower-order moments. One 

way to achieve this is for example by assuming the distribution of the system to have a par-

ticular functional form, for example a normal distribution. This decouples the equations of the 

moments up to order M from higher-order moments, and hence leads to a �nite set of coupled 

ordinary differential equations which can then be solved (numerically). We refer to such a 

moment closure as ‘Mth order moment closure’.

Let

⟨ ⟩= …
…

y n n ,i i i i, , k k1 1 (78)

⟨( ) ( )⟩ ⩾

⎪

⎧
⎨
⎩

=

− … −

=

…
z

n y n y k

y k

if 2,

if 1,
i i

i i i i

i

, , k

k k

1

1 1

1

 (79)

( )= ∂ …∂ … |… … =c g s s, , ,i i s s N s s, , 1 , , 0k i ik N1 1 1
 (80)

denote raw moments, central moments and cumulants of order k, respectively. We call 
…

yi i, , k1
 

a ‘diagonal moment’ if =i il m for all { }∈ …l m k, 1, , , and a ‘mixed moment’ otherwise, and 

similarly for central moments and cumulants. The function g(s) in equation (80) is the cumu-

lant generating function and is de�ned as

( ) ⟨ ( )⟩… = +…+g s s s n s n, , log exp .N N N1 1 1 (81)

We note that all three types of moments are respectively invariant under permutations of their 

indices. Therefore, only one representative combination of each permutation class has to be 

considered. Taking this symmetry into account signi�cantly reduces the number of variables 

and moment equations.

Some popular moment closure methods can be de�ned as

 • ‘Normal moment closure’ [57, 121–123] (also called ‘cumulant neglect moment closure’ 

in the literature): all cumulants above order M are set to zero, i.e.

= >…c k M0, for .i i, , k1 (82)

  Note that the cumulants of order higher than two are zero for a normal distribution, hence 

the name ‘normal moment closure’. We refer to the normal moment closure approx-

imations to second and third order as ‘2MA’ and ‘3MA’, respectively.

 • ‘Poisson moment closure’ [124]: the cumulants of a one-dimensional Poisson distribu-

tion are all equal to the mean value. We assume here a multivariate distribution to be a 

product of uni-variate Poisson distributions. Accordingly, for the Poisson moment closure 

approximation of order M we set all diagonal cumulants to the corresponding mean and 

all mixed cumulants to zero, i.e.

= > … = ∈ ……c y k M i i i i N, for and , , , for some 1, , ,i i i k, , 1k1
  { }

 

(83)

= > ≠ ∈ ……c k M i i m n K0, for and for some , 1, , .i i m n, , k1
  { }

 
(84)
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 • ‘Log-normal moment closure’ [125]: let m and S be the mean vector and covariance 

matrix of a multi-dimensional normal random variable. Then the logarithm of this random 

variable has a multivariate log-normal distribution whose moments can be expressed in 

terms of m and S as [126]

⎜ ⎟
⎛

⎝

⎞

⎠
= + >

…
y k Mv m v Svexp

1

2
, for ,i i

T T
, , k1

 (85)

  where ( )= …g gv , , N1 , and gm is the number of ij’s having the value m. This allows one to 

express m and S in terms of the �rst two moments yi and yi,j which then in turn allows one 

to express higher-order moments in terms of yi and yi,j, too.

 • ‘Central-moment-neglect moment closure’ (also called ‘low dispersion moment closure’ 

in the literature) [127]: all central moments above order M are set to zero:

= >…z k M0, for .i i, , k1 (86)

 • ‘Derivative matching’: the idea of this method is to express moments above order M 

by lower order moments in such a way that the time derivatives of the moments of the 

closed system approximate the time derivatives of the moments up to order M of the exact 

system at some initial time point. In [128] a method is derived that allows one to produce 

the corresponding expressions.

Each of the closure methods allows one to express all raw moments above a speci�ed order 

M in terms of lower order moments and hence to close the moment equations. Note that 

third order central moments and third order cumulants are identical. Therefore, whenever the 

moment equation of up to order two do not depend on moments of order higher than three, the 

normal and central-moment-neglect moment closure are identical. Similarly, the normal and 

Poisson moment closure approximations can be equivalent for certain systems.

Example. As an example, consider again the gene system in �gure 3. The moment equa-

tions up to order two for this system are given in equations (21)–(25). To close these we need 

to express the third order moments y1,1,2 and y1,2,2 in terms of lower order moments. We do so 

by means of the normal moment closure de�ned in equation (82) to second order, i.e. we set 

the third order cumulants c1,1,2 and c1,2,2 to zero:

= − − +c y y y y y y y2 2 ,1,1,2 1,1,2 1 1,2 2 1,1 2 1

2
 (87)

= − − +c y y y y y y y2 2 .1,2,2 1,2,2 2 1,2 1 2,2 1 2

2
 (88)

Setting these to zero and rearranging gives

= + −y y y y y y y2 2 ,1,1,2 1 1,2 2 1,1 2 1

2
 (89)

= + −y y y y y y y2 2 .1,2,2 2 1,2 1 2,2 1 2

2
 (90)

Using these expressions in equations  (21)–(25) the equations  decouple from higher order 

moments. We give here the resulting equations in terms of central rather than raw moments 

(see equation (79))

( ) ( )∂ = −
Ω

+ + −z
k

z z z k z1 ,t 1
2

1,2 1 2 3 1 (91)
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( ) ( )∂ = −
Ω

− + − −z k z
k

z z z k z k z1 ,t 2 1 1
2

1,2 1 2 3 1 4 2 (92)

( ) ) ( )∂ =
Ω
− − + + + + − − +z

k
z z z z z z z y k z z2 2 2 1 ,t 1,1

2
2 1,1 1 1,2 1,2 1 2 1,2 3 1,1 1 (93)
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− − − − ++ +

+ − − + −

z k z
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z z z z z z z z z z z

k z z z k z1 ,

t 1,2 1 1,1
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2 1,1 1 1,2 2 1,2 1 2,2 1,2 1 2

3 1,2 1,1 1 4 1,2
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+ − − + + − +

z k z z
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z z z z z z z

k z z k z z

2 2 2

2 1 2 .

t 2,2 1 1,2 1
2

1 2,2 2 1,2 1,2 1 2

3 1,2 1 4 2,2 2

 (95)

Note that the equations do not depend on third or higher order moments and hence are closed 

and can be integrated.

4.3.2. Properties and recent developments. Moment closures are a popular class of approx-

imations of the moments of the CME with many useful properties. First of all, they are easy to 

derive and implement. Moreover, since they amount to solving a �nite set of ordinary differ-

ential equations no ensemble averaging is needed, which means they are computationally sig-

ni�cantly more ef�cient than stochastic simulations of the CME or the CLE, and comparable 

to the system size expansion. However, this computational ef�ciency comes at a cost: moment 

closure methods only give approximate moments and not an approximation of the process or 

distributions. One advantage of moment closures over the system size expansion is that they 

can be applied to deterministically multistable systems. However, care must be taken for such 

system since moment closures can lead to unphysical results, see below.

In contrast to the system size expansion, moment closures are not an expansion in any 

small parameter, and one can therefore generally not expect that increasing the closure order 

leads to a higher accuracy. Numerical case studies suggest that this is often indeed the case, 

however [129–131]. One explanation for this was given in [129] where it has been shown that 

increasing orders of the normal moment closure agree with increasing orders of the system 

size expansion in the limit of large volumes. These results can to some extent be generalised 

to other moment closure methods. For monostable systems, one may therefore expect higher 

order closures to become more accurate for large enough system sizes. For small system sizes 

on the other hand, the closures can generally not be expected to converge.

Moreover, since moment closure approximations are an ad hoc approximation, it is not 

even clear if they always give physically meaningful results. As it turns out, this is not always 

the case, but they sometimes give rise to unphysical behaviour, such as negative mean values, 

negative variances or negative higher central moments, as well as diverging trajectories [124, 

131]. In numerical case studies, it has been found for several non-linear reaction systems 

that the normal, log-normal, Poisson and central-moment neglect moment closure show such 

unphysical behaviour for system volumes below a certain critical volume [131, 132]. An exam-

ple of such unphysical behaviour is shown in �gure 6. This may be expected, since smaller 

volumes correspond to stronger non-linearity and hence stronger �uctuations. However, it 

has been found for deterministically oscillatory and deterministically multistable systems, 

that the moment closure methods give rise to non-physical oscillations and non-physical 
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multistability, respectively, for system volumes above a certain critical volume [131, 132]. In 

[132], the normal moment closure was found to give physically meaningful results for larger 

ranges of system volumes than the other three methods. In terms of accuracy, the four methods 

performed similar to each other. We emphasise that these were numerical case studies, and it 

remains open to what extent these results can be generalised to arbitrary reaction systems. In 

[133] and [134], for example, the log-normal moment closure was found to be signi�cantly 

more accurate than the normal and central-moment-neglect moment closure for several reac-

tion systems.

4.4. Construction of distributions from moments

The system size expansion and moment closure approximations generally only provide 

approximations of the moments of a process. Suppose we are however interested in approxi-

mating distributions of a process. This can be achieved by running Monte Carlo simulations 

using the SSA or simulations of the chemical Langevin equation. These methods are computa-

tionally quite expensive, however. An alternative approach is to �rst compute approximations 

of the moments up to a certain order by means of the system size expansion or moment closure 

methods, and subsequently constructing a distribution from these moments. If the second step 

can be done ef�ciently, this can provide a signi�cantly more ef�cient method than stochastic 

simulations since one avoids ensemble averaging. One popular method to construct distribu-

tions from moments relies on the maximum entropy principle.

Figure 6. Time trajectories of moment closure with negative variance. The �gures show 
time trajectories in the mean-variance (µ−Σ) plane of a protein P in a system with 
bursty protein production. The reactions are ⟶ \ { } ⟶N∅ ∈ + ∅mP m P P, 0 , , 
where the burst size m is a geometrically distributed random number. The top panel 
shows results obtained from exact stochastic simulations (SSA) and the lower panel 
results obtained using the normal moment closure to third order (3MA). The parameter 
k corresponds to the system size. We �nd that the results from stochastic simulations 
converge to a positive �xed point for all system sizes and all initial conditions, and 
that the mean and variance remain non-negative for all times. The 3MA, in contrast, 
converges to a �xed point with negative variance for the smallest system size k  =  20. 
For k  =  60, the �xed point is now positive, but some initial conditions still lead to 
trajectories that have a negative variance for some time and are hence physically not 
meaningful. Only for the largest system size k  =  150 do all trajectories lead to non-
negative trajectories. Reprinted from [131], with the permission of AIP Publishing.
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For simplicity, assume we have a one-dimensional problem with discrete-valued variable n 

and that we have approximate values for the �rst K moments µ µ…, ,
K1 , for example obtained 

by means of the system size expansion. The goal is to construct a distribution P(n) matching 

these moments. The entropy H of a distribution P(n) is de�ned as [135]

( ) ( ) ( ( ))∑= −H P P n P nlog .
n

 (96)

The maximum entropy method aims at �nding a distribution P(n) in a certain family of distri-

butions that maximises the entropy. In our case, the family of distributions is given by the con-

straint that the �rst K moments of the distribution should match µ µ…, ,
K1 . This is a non-linear 

constrained optimisation problem, which can be solved by means of Lagrange multipliers as 

follows. We de�ne the Lagrangian
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Optimising L with respect to P and the λi corresponds to solving the constrained optimisation 

problem. The variation of L with respect to P(n) reads

( )
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Setting this to zero we obtain
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Figure 7. Construction of distribution via maximum entropy. The �gure  shows the 
marginal steady-state distribution of a protein in a chemical reaction system with bursty 
protein production. The grey area shows the exact result computed using the SSA, while 
the coloured lines show the results obtained using the central-moment-neglect moment 
closure to order K  =  3 (red) and K  =  5 (blue) in combination with maximum entropy. 
We observe that the approximations accurately capture the skewed distribution, with 
increasing accuracy at higher order. The �gure is taken from [137].
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with normalisation constant Z. Inserting equation  (99) into equation  (97) one obtains an 

unconstrained optimisation problem which can be ef�ciently solved using standard numerical 

methods. The maximum entropy method for the construction of the marginal distributions of 

single species has recently been used in combination with moment closure methods and the 

system size expansion in [136, 137]. Figure 7 shows the result for one example system.

A related approach has been developed in [138], where the maximum entropy principle 

has been used directly to close the moment equations. For time-dependent approximations 

this method is computationally expensive because the moment equations have to be solved 

iteratively in small time steps, and in each time step a multi-variate optimisation problem has 

to be solved. For steady-state approximations, however, the method was found to be ef�cient 

and accurate.

4.5. Software

Several software packages for using the discussed approximation methods, as well as for 

deterministic rate equations  and stochastic simulation algorithms, are freely available. For 

exact stochastic simulations, for example, available packages include the Java-based program 

Dizzy [139], stand-alone COPASI [140], stand-alone StochKit [141] and the python pack-

age StochPy [142]. The system size expansion for orders beyond the LNA is implemented 

in the stand-alone package iNA [143], which also allows one to perform exact stochastic 

simulations. Various moment closure approximations are available in the Matlab toolbox 

StochDynTools [144], and the normal moment closure in Python package MomentClosure 

[145]. These packages require programming knowledge and are only applicable to mass-action 

propensity  functions. The mathematica package MOCA [132] extends the applicability to 

non- polynomial and time-dependent propensity functions and does not require any program-

ming skills. Similarly, the python package MEANS [146] extends moment closure methods 

to non-mass-action propensity functions. The Matlab package CERENA [147] implements 

several of the mentioned methods, including exact stochastic simulations, the system size 

expansion and moment closure methods. For a detailed overview of available software pack-

ages and their capabilities see �gure 1 in [147].

4.6. Other approximations

One reason why the CLE, the system size expansion and moment closure approximations 

discussed above are so popular is that they are easy to implement, do not require any pre-

knowledge of the system (except monostability for the system size expansion), are gener-

ally ef�cient computationally, and often give accurate approximations. The three methods 

have been frequently applied successfully in the literature. However, there are many scenarios 

where the three methods give quite inaccurate results. In particular if one or several of the 

species occur in very low copy numbers, the three methods often perform poorly. A large 

number of other approximation methods have been developed in the literature, and we give an 

overview of these methods here. Many of these methods are more sophisticated but only apply 

to certain classes of systems and require pre-knowledge and/or �ne-tuning. As we shall see, 

the CLE, the system size expansion or moment closure approximations form building blocks 

of many of these methods.

4.6.1. State space truncation. In section 3.2 we saw that the CME can be solved exactly by 

matrix exponentiation whenever the state space is �nite (see equation  (32)). However, for 

many chemical systems of interest the state space is in�nite and the solution in equation (32) 
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can not be computed. The idea of the �nite state projection algorithm is to truncate the state 

space to a �nite subspace and use matrix exponentiation to obtain an approximation of the 

distribution on this subspace [148]. It also provides an estimate of the error, which can be 

systematically reduced by increasing the truncated space.

While this is an ef�cient method in some cases, often a large truncated space has to be chosen 

to achieve a reasonable accuracy, making matrix exponentiation intractable, despite recent pro-

gress on numerical algorithms, see [16, 66] for overviews. Similarly, sometimes the state space 

of a system is �nite but too large to compute the matrix exponential. Accordingly, several modi-

�ed versions of the �nite state projection algorithm have been developed, see [149] for a review.

4.6.2. Tau-leaping. Tau-leaping methods are approximate ways of simulating a chemical net-

work with the goal of being more ef�cient than exact stochastic simulations [150]. The basic 

idea is to ‘leap’ along time in certain steps τ during which several reaction events occur, thereby 

avoiding the simulation of each single reaction event as exact stochastic simulations do. The 

time step has to be chosen small enough such that the propensity functions do not change 

signi�cantly during one time step. In that case different reactions become independent of each 

other, and the number of reaction events ( )τN tn; ,r  of the rth reaction during the time interval 

τ given that the state at time t is n becomes a Poisson random variable ( ( ) )τP f nr  with mean 

( )τf nr . Accordingly, the tau-leaping algorithm updates the state ( )tn  of the system iteratively as

( ) ( ) ( ( ) )∑τ τ+ = +
=

Pt t fn n S n ,

r

R

r r

1

 (100)

where Sr is the rth row of the stiochiometric matrix. If many reactions are happening per time 

step the algorithm is more ef�cient than exact simulations. Increasing τ increases the algo-

rithm’s ef�ciency but obviously decreases its accuracy. If a system contains species with very 

low particle numbers τ may have to be chosen smaller than the average inter-reaction time 

to ensure approximately constant propensity functions, which would lead to the algorithm 

becoming less ef�cient than exact simulations. Roughly speaking, tau-leaping therefore works 

best for systems with not too small average molecule numbers.

Despite its simplicitly, implementing the tau-leaping method bears several dif�culties. 

Most importantly, the trade-off between accuracy and ef�ciency makes the choice of the step 

size τ non-trivial. A bad choice can lead to highly inef�cient or inaccurate results and also to 

other problems, such as negative molecule numbers. Recent years have therefore seen a wide 

range of studies developing modi�ed versions of the tau-leaping method that aim at solving 

these problems, including implicit methods [151, 152], binomial methods [153–156], multi-

nomial methods [157], K/R-leaping [156, 158] and a post-hoc correcting method [159]. See 

[8, 9, 160] for overviews of these methods.

4.6.3. Time-scale separation. Many biochemical systems involve processes with highly varying 

time scales. Given a certain separation of time scales in a system, it is often possible to derive 

a reduced model of the system which either allows more ef�cient simulations or more accu-

rate approximations. Such methods have been well-known for deterministic ordinary differential 

equation models of biochemical kinetics for several decades [161] but have only more recently 

been developed for stochastic methods [162]. We start here by describing the deterministic setting.

The deterministic case. In the following we describe two popular methods for reducing deter-

ministic rate equations under time-scale separation. The �rst method assumes that the chemi-

cal reactions in a given system can be divided into ‘slow’ and ‘fast’ reactions, i.e. reactions 
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that happen very infrequently or very frequently on a certain time scale of interest. In this case 

it is sometimes possible to derive a reduced model by eliminating the fast reactions, typically 

by assuming that certain reactions balance each other. Such methods are often called quasi-

equilibrium approximations (QEA) [163].

The second method separates a system into ‘slow’ and ‘fast’ species, rather than reactions. 

The fast species are assumed to be asymptotically in steady state on the time scale of the 

slow species. This is known as the quasi-steady-state approximation (QSSA). The idea is to 

eliminate the fast species from the system and to include their steady-state effect on the slow 

species.

Example. Let us illustrate the QEA and QSSA in the deterministic setting by means of a 

simple example, the well-studied Michaelis–Menten system:

+ +⇌S E C E P.
k

k k

2

1 3

⟶ (101)

A substrate S reversibly binds to an enzyme E to form the substrate-enzyme complex C, from 

which a product molecule P becomes catalysed. The corresponding rate equations are

( )

( )

φ φ φ φ

φ φ φ φ

φ φ φ φ

φ φ

∂ = − +

∂ = − + +
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(102)

where φ φ φ, ,
S E C

 and φ
P
 denote the concentrations of S, E, C and P, respectively. Let us �rst 

make the assumption that the binding and unbinding of the substrate and the enzyme in equa-

tion (101) are fast reactions and that the catalysis reaction is slow. This is the case whenever 

≪k k3 2. On the time scale of the slow reaction, this means that the two fast reactions balance 

each other, i.e.

φ φ φ≈k k .
S E C1 2 (103)

This corresponds to the quasi-equilibrium approximations (QEA). Note that the total concen-

tration E0 of enzyme molecules is conserved, i.e. φ φ+ = E
E C

0. Using this to eliminate φ
E
 in 

equation (103) one obtains ( )/( )φ φ φ= +E K
C S S M

0 , where we de�ned the Michaelis–Menten 

constant /=K k kM 2 1. Let φ φ= ∂ =v kt P C3  be the production rate of the product P. According 

to equation (102) this becomes

φ

φ
=

+
v

k E

K
,

S

S M

3
0

 (104)

which is the well-known Michaelis–Menten equation [164].

Next, we illustrate the quasi-steady-state approximation (QSSA). To this end, we assume 

that the complex is approximately in steady state:

φ∂ ≈ 0.t C (105)

It can be shown that this is a reasonable approximation whenever φ φ+ ′ ≫K
S M E

 with 

( )/= +′K k k kM 2 3 1 [165]. This corresponds to the complex C and free enzyme E being fast 

species, and the substrate S being a slow species.

Using equation (105) in equation (102) and the conservation law φ φ+ = E
E C

0 we obtain
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φ

φ
=

+ ′
v

k E

K
.

S

S M

3
0

 (106)

This is also called Briggs–Haldane kinetics [166]. Note that equation (106) has the same form 

as equation (104) but with a different constant ′KM, showing that the QEA and QSSA are gen-

erally not equivalent. Depending on the parameters, only one of the two conditions (or none) 

may be satis�ed. This is illustrated in �gure 8.

The stochastic case. For stochastic systems described by the CME, reductions based on 

time-scale separations are not as straightforward as in the deterministic case. Ideally, one 

would like to derive a reduced CME and/or a stochastic simulation algorithm for a reduced 

system. As it turns out, under the quasi-equilibrium assumption of fast and slow reactions it is 

indeed possible to derive a reduced CME [167]. In contrast, the quasi-steady-state assumption 

of fast and slow species does not necessarily allow to derive a reduced master equation since 

it leads to a non-Markovian process for the fast species [168]. One can use a reduced master 

equation with non mass-action propensity functions that corresponds to the reduced determin-

istic system under the quasi-steady-state assumption. This heuristic master equation has been 

found to be accurate for some examples [169–171]. However, even if the quasi-steady-state 

assumption is valid for the deterministic system, the reduced master equation can be highly 

inaccurate [172, 173]. The validity of a reduction in the deterministic case does not generally 

imply a valid reduction in the stochastic case. The relationship between the two descriptions 

with respect to time-scale separation approximations has for example been studied in [173]. 

In [174] a reduced description of stochastic models under the quasi-steady-state assumption 

was derived by means of the linear noise approximation.

It is however possible to derive reduced descriptions based on quasi-steady-state assump-

tions for a stochastic system if one requires stronger conditions on a system than the condi-

tions needed to reduce the deterministic system. In [175], for example, reactions are split 

into fast and slow reactions, and slow species are de�ned as those involved in slow reactions 

only and fast species as those participating in at least one fast reaction and any number of 

slow reactions. As mentioned before, the fast variables conditioned on the slow ones are not 

Figure 8. Visualisation of different time-scale separation regimes. The �gure visualises 
the two different time-scale separation regimes for the Michaelis–Menten reaction 
system with reactions in equation (101). The blue area represents the regime of parameter 
space where only the quasi-equilibrium assumption holds, the green area where only 
the quasi-steady-state assumption holds, and the red area where both assumptions hold.
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Markovian. The authors in [175] solve this problem by approximating the fast process by a 

virtual fast process that is affected by fast reactions only and therefore Markovian.

A large number of other approximation methods for CME type systems based on time-

scale separations have been developed in recent years, see for example [167, 176–185]. Most 

of these methods split up the full CME into a CME for the fast variables conditioned on the 

slow reactions/species, and a CME for the slow reactions/variables with marginalised fast 

variables. On the time scale of the slow dynamics, the conditional CME of the fast dynamics is 

assumed to quickly reach steady state. Therefore, the CME of the slow dynamics only depends 

on the steady-state distribution of the fast dynamics. Most methods rely on SSA simulations 

of the slow dynamics and assume that the fast dynamics is in steady state [175–179, 183].

For some systems, the reduced CMEs under time-scale separation have been solved 

exactly, for example for gene expression [186–188]. In [189] a perturbative expansion based 

on time-scale separation for a two-stage gene expression model is derived that allows one to 

systematically include higher order corrections to the solution.

The studies mentioned so far mainly rely on stochastic simulations of the reduced equa-

tions or on analytic solutions for special cases. An alternative approach is to combine time-

scale separation reductions with other approximations, such as approximating the fast variables 

by the chemical Langevin equation  [183, 190, 191], deterministic rate equations  [190], or 

moment closure methods [180]. Other methods combine time-scale separation with the �nite 

state projection algorithm [192] (see section  4.6.1), tau-leaping [193], or the linear noise 

approximation [174, 194, 195]. An adiabatic approximation derived form a stochastic path 

integral description has been developed in [196]. Other methods derive reduced models for 

systems that allow a partition in more than two typical time scales, see for example [179, 197]. 

In [198] a conditional linear noise approximation for gene expression systems with �nite, slow 

promoter states has been derived.

4.6.4. Hybrid methods. In many biochemical reaction networks of practical interest no time-

scale separation assumptions apply. However, often some species occur in low and others in high 

copy numbers, which motivates the combination of different simulation and/or approx imation 

methods for these two groups of species, similar to the time-scale separation case. One possibil-

ity would be to partition species into a discretely modelled group and a continuously modelled 

group, and accordingly reactions into discrete reactions involving discrete species and continu-

ous reactions that do not involve discrete species. In this case species that are involved in both 

continuous and discrete reactions describe diffusion-jump processes. Such methods are broadly 

referred to as hybrid methods. Note that many of the methods discussed in section 4.6.3 fall 

under this de�nition. We give here an overview of hybrid methods that do not rely on separation 

of time scales, although a clear distinction between the two cases is often not possible.

Consider the case where we split the species of a system into a low abundance group which we 

model discretely using the SSA and a high abundance group which we model continuously using 

deterministic rate equations or chemical Langevin equations. Accordingly, we group reactions 

into discrete reactions involving discrete species and continuous reactions that do not involve 

discrete species. Between two discrete reaction events, the continuous variables follow rate equa-

tions or chemical Langevin equations which can be solved numerically or simulated in a standard 

way. The propensity functions of the discrete reactions, however, may depend on the continuous 

variables and hence depend on time in such a hybrid approach. This is akin to the case of extrin-

sic noise discussed in section 3.3.1, where a discrete system’s propensities where assumed to 

depend on some external stochastic process. Correspondingly, the discrete system of our hybrid 

system can not be simulated by a standard SSA. As in the extrinsic noise case, one possibility is 

to numerically integrate the time-dependent propensity functions over time until a target value is 
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reached and the corresponding reaction occurs. The discrete system is then updated accordingly 

which may also change the propensity functions of the continuous reactions.

A key challenge of such an approach is to decide which species should be modelled 

 discretely and which continuously, in particular since some species may �uctuate strongly 

during a simulation. More sophisticated algorithms therefore partition species and reactions 

adaptively during simulation. Many different methods addressing these and other issues 

have been developed in the literature, see for example [199–211]. They differ mainly in how 

the partitioning is conducted and in the simulation methods for the resulting reduced sys-

tem. Simulation-based approaches include combination of the SSA for the low abundance 

species with tau-leaping [204], chemical Langevin equations  [202, 206, 208, 209, 212], 

the chemical Fokker–Planck equation [210] and deterministic rate equation approximations 

[199–201, 205, 211] for the abundance species. Other approaches split species into more 

than two sets [203].

Since many of these methods are heuristic, it is not straightforward to assess their perfor-

mance or to prove their convergence to the exact system in some limit. In some cases, this 

is possible, however. For example, error bounds for some hybrid methods have been derived 

[208, 213, 214]. In [215] the convergence of different types of hybrid methods to the exact 

system have been studied, and in [184] criteria have been developed for the convergence of a 

CME to discrete-deterministic hybrid approximations. An error analysis of various methods 

has recently been conducted in [216].

While simulation-based hybrid methods are often orders of magnitude more ef�cient than 

the standard SSA, they all still rely on stochastic simulations for the low abundance species 

and some of them also for the high abundance species. They therefore can still become com-

putationally expensive depending on the studied system. Some methods aim at circumvent-

ing expensive simulations by applying additional approximations to the reduced systems. In 

[217], for example, the dynamics of the large abundance species is formulated in terms of 

moment equations conditional on the low abundance (discrete) species. For non-linear sys-

tems these can be closed by means of moment closure approximations (see section 4.3). This 

method amounts to the solution of a differential algebraic equation which is dif�cult to solve. 

The authors in [217] propose several simulation based algorithms. This method has shown to 

give accurate approximations to the distributions and moments of some gene systems, but its 

implementation is non-trivial and requires additional approximations and/or simulations. In 

[218] a simpler conditional moment closure has been proposed for two-state gene systems. 

Here, the conditional moment equations are closed by means of the second-order normal clo-

sure or derivative matching (see section 4.3). This method amounts to solving a coupled set of 

ordinary differential equations. In [219] a hybrid method is developed where the abundance 

species is described by the (non-conditional) rate equations. This is a simpli�cation of the pre-

viously mentioned methods that model the abundance species by rate equations conditional 

on the low abundance species. However, this simpli�cation allows one to derive analytic solu-

tions of the CME for the low abundance species for certain systems [219].

5. Comparison of approximation methods

In the previous section we gave a detailed introduction to three popular approximation meth-

ods of the CME: the chemical Langevin equation (CLE, section 4.1), the system size expan-

sion (section 4.2) and moment closure approximations (section 4.3). These methods have been 

successfully used in many applications in the literature, but there exist only very few studies 

comparing their accuracy. It thus remains unclear how the different methods compare to each 

other.
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In sections 4.1–4.3 we discussed advantages and disadvantages of the different methods. 

Here, we perform a numerical case study to enable the reader to understand the differences 

between the methods. First, we study an enzyme reaction system of the Michaelis–Menten 

type in section 5.1 which can be viewed as a catalysed degradation of a spontaneously pro-

duced protein. We then extend the model in section 5.2 by including transcription of mRNA 

and translation of the protein from mRNA, which allows for bursts in protein production. 

Finally in section 5.3 we summarise the results and give an overview of advantages and dis-

advantages of the different methods.

Implementation. Implementation details for the different methods are:

 • CLE: we simulate the CLE using the Euler–Maruyama algorithm introduced in sec-

tion 4.1.1. As pointed out in section 4.1, the CLE is traditionally de�ned for real variables, 

but suffers from the occurrences of square roots of negative expressions for which it is 

not well-de�ned. We therefore implement two versions of the CLE here: (i) a real-valued 

implementation which keeps the variables positive by rejecting Euler–Maruyama steps 

that lead to negative variables. We term this version ‘CLE-R’; (ii) the recently proposed 

complex CLE which is de�ned for complex variables and has been shown to give real-

valued moments in the ensemble average [87]. We term this version ‘CLE-C’.

  The Euler–Maruyama algorithm requires a step size dt for time discretisation. For the 

simulation of steady-state moments or distributions, we take a total number of M samples 

from a single long trajectory at time steps separated by ∆t. The chosen values for these 

parameters will be given for each of the examples.

 • System size expansion and stochastic simulation algorithm: we use the stand-alone 

software package iNA [143] for both the system size expansion and the stochastic simula-

tion algorithm (section 3.3). We study the zeroth order system size expansion, i.e. the 

linear noise approximation (termed ‘LNA’, section 4.2.2), as well as the �rst order cor-

rections to the mean and variance (both termed ‘SSE-1’) given in equations (76) and (77), 

respectively.

 • Moment closure approximations: we study here the second-order normal moment 

closure (termed ‘2MA’) introduced in section 4.3, which is probably the most commonly 

used one in the literature. For its implementation we use the Mathematica software 

package MOCA [132].

5.1. Enzymatic protein degradation

Let us consider the well-known Michaelis–Menten system with reactions

⟶ ⟶∅ + +⇌S S E C E P, .
k

k

k k0

2

1 3

 (107)

We studied this system without the �rst reaction in section 4.6.3 in the context of time-scale 

separations in a deterministic setting. A substrate molecule S is created spontaneously and 

binds reversibly to a free enzyme molecule E to form a complex C, which catalyses the sub-

strate into a product molecule P. We consider S to be a protein in the following.

Here, we are interested in the accuracy of the different approximation methods as com-

pared to exact stochastic simulations of the corresponding stochastic system. Note that the 

total number of enzymes E0 is conserved. The system has a steady state in the protein numbers 

if and only if /( )α≡ Ω <k E k 10
0

3 , which means that the input rate must be smaller than the 

maximum turnover rate. The parameter α can hence be viewed as a saturation factor.
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Figure 9 shows the relative mean and variance of the protein S as a function of α for a sys-

tem with a large number of total enzymes, E0  =  2500. We �nd that both the real and complex 

CLE implementations (CLE-R and CLE-C), the �rst order system size expansion (SSE-1) 

and the second-order normal moment closure (2MA) give good approximations for the mean 

value. Only the LNA, which corresponds to the deterministic rate equations for mean values, 

shows signi�cant deviations from the exact result. For the variance we observe larger devia-

tions for all methods, with the LNA again being the least accurate. The two CLE implementa-

tions show the best performance, being more accurate than the 2MA, which in turn is more 

accurate than the SSE-1. Note that the CLE-R and the CLE-C give very similar results, mean-

ing that the inclusion of a rejecting boundary has a negligible effect in this case.

Overall, we �nd that the approximation methods give rise to larger errors for larger values 

of α, which can be explained as follows. As mentioned before, the system only possesses a 

steady state for α< 1 and becomes unstable for α> 1. We therefore expect larger �uctuations 

for values of α close to unity. Moreover, since most of the enzymes are in the complex state C 

in this limit, we expect a skewed distribution for the substrate. In the other limit, →α 0, most 

enzymes are in the free state E, which reduces the non-linear effect of the bimolecular reaction 

→+S E C. We therefore expect the approximation methods to perform well in this limit, and 

to lead to larger errors for →α 1. This is exactly what we observe in �gure 9.

Next, we study the steady-state probability distribution of the protein as predicted by the 

SSA, CLE-R, CLE-C and the LNA. Note that the CLE-C gives complex-valued samples. 

To obtain a distribution in real variables, we take the real parts of these samples. We reduce 

the total number of enzymes to E0  =  60 to study small molecule number effects. The results 

are shown in �gure 10. We �nd that the LNA strongly underestimates the true mean value 

(obtained using the SSA) and does not reproduce the distribution very accurately. However, 

surprisingly, the real-valued CLE (CLE-R), does even worse than the LNA, both in terms of 

mean value and distribution. The complex valued CLE (CLE-C) on the other hand, predicts 

the true mean value with a negligible error, and even captures the highly skewed distribution 

very well (right panel of �gure 10). This demonstrates that a naive �xing of the boundary 

problem of the CLE (CLE-R) can lead to highly inaccurate results.

Figure 9. Steady-state mean and variance of protein for enzyme system in equation (107). 
The �gures  show the steady-state mean (left) and variance (right) of the protein 
S of the enzyme system in equation  (107), as a function of the saturation parameter 

/( )α = Ωk E k0
0

3  on logarithmic scale. The values obtained by the approximation 
methods are normalised by the result obtained from stochastic simulations using the 
SSA, which means that the dashed black line corresponds to the exact result (up to 

sampling error). The parameters used are = = = = Ω =E k k k2500, 40, 8, 60, 10
1 2 3  

and we vary k0 according to the shown values of α. The simulation parameters for the 

two CLE implementations are = ∆ =
−

dt t10 , 15  and M  =  105.
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5.2. Bursty protein production

We now extend the system in equation (107) by considering the protein S to be produced in 

a gene expression motif, i.e. via transcription of mRNA M followed by translation to protein:

⟶ ⟶ ⟶

⟶

∅ ∅ +

+ +⇌

M M M M S

S E C E P

, , ,

.

k k k

k

k k

dM s0

2

1 3
 (108)

Depending on the parameters kdM and ks this system can give rise to bursts in the production 

of protein S, namely whenever each produced mRNA molecule produces on average several 

proteins during its lifetime. The average number of proteins per mRNA molecule is given by 

/=b k ks dM and also called ‘burst size’ [220]. Large b correspond to large bursts which in turn 

lead to large �uctuations.

Here, we are interested in the accuracy of the different approximation methods as a func-

tion of the burst size b, since we expect larger errors for larger �uctuations. To isolate the 

effect of the burst size b, we vary k0 and kdM such that the average production rate of protein 

/ =k k k 115s dM0  in steady-state conditions is held constant and equal to the production rate 

used in the previous section in �gure 10.

Figure 11 shows the mean and variance of the protein S as a function of b as predicted 

by the different approximation methods. Similar to the previous section in �gure 9 we �nd 

that the LNA performs worse than the other methods for the mean and the variance, with the 

exception of the real-valued CLE (CLE-R) which performs even worse. Similarly to �gure 10, 

we �nd here that the complex-valued CLE (CLE-C) performs surprisingly well, demonstrat-

ing again the signi�cance of the boundary problem of the CLE. In fact, the CLE-C performs 

signi�cantly better than all the other methods, including the 2MA and SSE-1. The latter two 

perform similarly and both signi�cantly better than the LNA. One should keep in mind, how-

ever, that the 2MA, SSE-1 and LNA are computationally signi�cantly more ef�cient than the 

CLE-C since they do not rely on sampling.

Next, we consider the steady-state distribution of the protein for a large burst size of 

b  =  7.5. Figure 12 shows the results predicted by the stochastic simulation algorithm, the 

two CLE implementations, and the LNA. We �nd that the CLE-R and LNA give highly 

Figure 10. Steady-state distribution of protein for enzyme system in equation (107). 
Left: distribution obtained using the CLE-R, CLE-C, LNA and SSA. Right: only CLE-C 
and SSA. The vertical lines indicate the corresponding steady-state mean values. The 
mean values of the 2MA and SSE-1 are very close to the SSA result and are not shown 

here. The used parameters are = = = = = Ω =E k k k k60, 115, 3.5, 2, 2, 10
0 1 2 3 . 

Simulation parameters for the CLE-R and CLE-C are = ∆ =
−

dt t10 , 15  and M  =  105.
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inaccurate results, both for the mean value and the distribution, with even larger deviations 

than for the simpler system in the previous section in �gure 10. This is to be expected, since 

the system now leads to large bursts in protein production, while the average production 

rate of protein and the rate constants of the enzymatic reactions are the same as in �gure 10. 

Similar to the previous section, we �nd here that the complex-valued CLE gives a highly 

accurate approximation for the distribution, despite the large skewness of the later. Once 

again we �nd that the boundary problem of the CLE can lead to highly inaccurate results if 

not treated carefully.

5.3. Discussion

5.3.1. Numerical results. In this section we gave a numerical comparison of the CLE, the 

LNA, the normal moment closure to second order (2MA) as well as the next leading order 

corrections to mean and variance of the system size expansion beyond the LNA (SSE-1). We 

implemented two versions of the CLE: a real-valued version with rejecting boundary and a 

complex-valued version. We considered an enzymatic protein degradation system (section 

5.1) and an extension thereof including bursty protein production (section 5.2).

One important observation we made is the large discrepancy between the two CLE imple-

mentations: while we found a negligible difference in the case of large total enzyme numbers 

(�gure 9), the complex version was signi�cantly more accurate in the case of smaller total 

enzyme numbers (�gures 10–12). Crucially, in the latter cases, the real-valued CLE performed 

worse than all the other methods, while the complex-valued CLE performed better than all the 

other methods. This illustrates the boundary problem of the CLE, and how signi�cant inac-

curacies can arise when �xing it in a naive way.

Another important observation is that the LNA was throughout found to be less accurate 

than all the other methods (except the CLE-R). This result is not very surprising, since the 

LNA corresponds to the deterministic rate equations on the mean level, and gives the zeroth 

order �uctuations (in terms of the system size expansion) about the deterministic mean for 

the variance. The SSE-1 includes the leading order corrections to both the mean and variance. 

Figure 11. Steady-state mean and variance of protein for extended system in 
equation (108). The �gures show the steady-state mean (left) and variance (right) of the 
protein S of the enzyme system in (108), as a function of the burst size /=b k ks dM on 
logarithmic scale. The values obtained by the approximation methods are normalised 
by the result obtained from stochastic simulations (SSA), which means that the dashed 

black line corresponds to the exact result (up to simulation error). The used parameters 

are = = = = = Ω =E k k k k60, 1.5, 3.5, 2, 2, 1s
0

1 2 3 . k0 and kdM are varied to vary the 

burst size b  =  ks/kdM such that the average protein production rate / =k k k 115s dM0  is 

held constant. Simulation parameters for the CLE-R and CLE-C are = ∆ =
−

dt t10 , 104  

and M  =  104.
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Similarly, the 2MA and CLE capture effects of �uctuations on the mean. It is hence not sur-

prising that these methods perform better than the LNA.

In terms of the mean and variance (�gures 9 and 11), we found that the SSE-1 and 2MA 

performed similar to each other, except for the variance in �gure 9 where 2MA was more 

accurate. Surprisingly however, the CLE-C was found to be signi�cantly more accurate than 

the 2MA and SSE-1 in most cases.

In terms of distributions (�gures 10 and 12) we found the CLE-C to be highly accurate, 

even though the distributions were highly skewed. The LNA, which predicts a Gaussian dis-

tribution, was obviously not able to capture these skewed distributions.

5.3.2. Advantages and disadvantages. The advantage of the CLE over the other methods 

is that it gives approximations of the process and distributions in contrast to moment closure 

methods and the system size expansion. Moment closure approximations give only approx-

imations to the �rst few moments of a process. The system size expansion in principle predicts 

distributions. However, closed-form solutions for higher orders beyond the LNA have so far 

only been derived for one-dimensional systems [108]. It is not clear if the same is possible for 

multi-species systems. The higher orders of the system size expansion have therefore mainly 

been used to approximate the moments of a process. If one is interested in approximating the 

whole process or its distributions, the CLE is therefore a useful method.

Suppose now that we are only interested in the moments of a process. In the numerical 

case study performed before, we found the CLE to be more accurate than the LNA, the SSE-1 

and the 2MA. However, the CLE is computationally signi�cantly more expensive than the 

other methods. While the CLE requires a large number of stochastic simulations to obtain the 

moments of a process, the other methods only require the numerical solution of a �nite set of 

ODEs and are hence typically orders of magnitude faster. Moreover, if de�ned for real-valued 

variables, the CLE suffers from a boundary problem at zero molecule numbers, and real-

valued modi�cations lead to inaccurate results. The boundary problem is solved by extending 

the CLE to complex-valued variables, which is however less ef�cient to simulate [87]. Due 

to these reasons, it seems preferable to use the system size expansion or moment closure 

approximations if one is only interested in the moments of a process.

Next, the question arises if the system size expansion or moment closure approximations 

are preferable. While the system size expansion is a systematic expansion in a small parameter, 

Figure 12. Steady-state distribution of protein for extended system in equation (108).  
Left: distribution obtained using the CLE-R, CLE-C, LNA and SSA. Right:  
only CLE-C and SSA. The vertical lines indicate the corresponding steady-state  

mean values. The used parameters are = = = =E k k k60, 1.5, 15.33, 0.2,s dM
0

0  

= = = Ω =k k k3.5, 2, 2, 11 2 3 , corresponding to a burst size of /= =b k k 7.5s dM . 

Simulation parameters for the CLE-R and CLE-C are = ∆ =
−

dt t10 , 104  and M  =  104.
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moment closure approximations are an ad hoc approximation. This fact makes the system size 

expansion more appealing, since it is guaranteed to be accurate for large system volumes. The 

same cannot generally be expected to be true for moment closure approximations. On the 

other hand, the system size expansion has the disadvantage that it is not applicable to systems 

that are deterministically multi-stable, a limitation not shared by moment closure methods. 

Moreover, higher order corrections of the system size expansion are signi�cantly harder to 

derive and implement than higher order moment closure methods. Current software packages 

implementing the system size expansion only implement two orders beyond the LNA for the 

mean, and one order beyond the LNA for the covariance [143, 147]. Moment closure approx-

imations, on the other hand, are implemented to various orders [132, 146, 147]. Due to these 

reasons, it depends on the problem at hand as to decide which method is preferable.

6. Inference

So far, we have focussed on the forward problem of approximating marginal distributions of 

a fully speci�ed process. Such distributions depend naturally on the parametrisation of the 

process: it is not uncommon for e.g. steady-state distributions to exhibit qualitatively differ-

ent behaviours depending on the speci�c value of reaction propensities. In many concrete 

applications, the model parameters may only be known approximately: direct measurements 

of kinetic reaction parameters are dif�cult to obtain, and, even in cases when good estimates 

are available, in vivo parameters of a concrete system embedded in a cell may be in�uenced 

by a plethora of additional factors, leading to signi�cant uncertainty. It is therefore of con-

siderable interest to also address the inverse problem: using (noisy) observations of a system 

to constrain the uncertainty over model parameters and/ or predictions. This is a well-studied 

problem in statistics and machine learning: we give here a brief review of recent developments 

within the Bayesian approach to solving this inverse problem, with particular attention to 

methodologies which have employed the approximation methods described earlier.

6.1. General problem formulation

The setup we will consider is the following: we consider a stochastic process ( )θ|p x T0:  as 

a measure over the space of trajectories x T0:  of the system in the time interval [0, T ], with 

xt representing the value of the state variable at time t. In the case of a CME system, such 

trajectories will be piecewise constant functions from [0,T ] onto a discrete space, while for 

a continuous approximation (e.g. CLE or LNA) xt will be real-valued. The stochastic pro-

cess is assumed to depend on a set of kinetic parameters θ, whose a priori uncertainty is 

captured by a prior distribution ( )θp . Additionally, we assume the existence of a measure-

ment process which associates each trajectory x T0:  with an observed random variable y; in 

the simplest case, the observed variable y may just be thought of as the state of the sys-

tem at a particular set of time points, corrupted by random observation noise. We account 

for such experimental errors through an observation model encoded in a probability dis-

tribution ( )|p y x T0: , i.e. the likelihood of a measurement given the true state of the system, 

which may depend on additional parameters (here omitted for notational conciseness). 

We restrict our interest here to the case where the observations are in the form of a time 

series of state variable observations with independent and identically distributed noise, i.e. 

measurements of all or of a subgroup of the species in the system. Hence, the observation 

vector will take the form ( )= …y yy , , T0  for some discrete time points 0,...,T. More gen-

eral cases where the observations take other forms, such as continuous-time constraints 

or penalties over particular areas of the state space, are treated for example in [221, 222].  
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Also, we consider all observations to come from a single trajectory, or from replicate tra-

jectories with the same (unknown) kinetic parameter values; in other words, we exclude the  

case where parameters can also be variable, e.g. to accommodate extrinsic noise between  

cells [223].

The general inference problem is then the problem of computing the joint posterior meas-

ure ( )θ|p x y,T0:  over the set of trajectories and parameters of the system. This is formally 

obtained by applying Bayes’ rule

( ) ( ) ( ) ( )θ θ θ| ∝ | |p p p px y y x x, .T T T0: 0: 0: (109)

This joint posterior provides information both about the parameters and about the state of 

the system at all time points during the speci�c trajectory for which data was collected. In 

most systems of interest, computation of the normalisation constant of the posterior distribu-

tion is analytically intractable, due to the requirement of performing very large sums/ high 

dimensional integrals. Much of the research in Bayesian statistics and machine learning is 

therefore focussed on computing ef�cient approximations to posterior distributions: such 

approx imations can be analytic, usually obtained by variational minimisation of a divergence 

functional, or sampling based [224]. This latter class has received particular attention in recent 

years, and is predicated on constructing a Markov chain which has the required posterior as 

an invariant distribution. This implies that, asymptotically, the Markov chain will sample from 

the correct posterior distribution, enabling Monte Carlo computation of any desired statistic ( 

Markov chain Monte Carlo, MCMC).

6.2. The forward–backward algorithm

Inference in dynamical systems is based on the fundamental factorisation of the single time 

posterior marginal

( ) ( ) ( )⩽| … ∝ | |>p p px y y x y y x, .t T t i t i t t0 (110)

This factorisation, which is a simple consequence of the Markovian assumption and the prod-

uct rule of probability [224], states that the posterior probability at time t is a product of the 

posterior ( )⩽|p x yt i t  based on the data seen so far up to time t (the so called �ltering distribution) 

and the likelihood ( )|>p y xi t t  of future data conditioned on the current state. The factors in equa-

tion (110) can be computed iteratively using the celebrated forward–backward algorithm [225].

The forward part, which is also referred to as �ltering [226], works as follows. Assume that 

we know the posterior ( )| …− −p x y y,i i1 1 0  at time step −i 1, and that we can solve the system 

forward in time (i.e. solve the CME) to obtain the transition probability ( )| −p x xi i 1  and hence 

the predictive distribution ( ) ( ) ( )∫| … = | | …− − − − −p p px y y x x x x y y, d ,i i i i i i i1 0 1 1 1 1 0 . The poste-

rior of time step i is then obtained by taking the measurement y
i
 at time point i into account by 

means of the the Bayesian measurement update

( )
( ) ( )
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(111)

where we have used the Markov property to obtain the second line. The �ltering procedure 

thus comprises iteratively solving the process between measurements and performing the 

Bayesian measurement update in equation (111) and yields the �ltering distribution ( )⩽|p x yt i t .
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The second term in equation (110) can be obtained by the Backward algorithm, a recursion 

procedure similar to �ltering (but running backward in time) [225]. Furthermore, a modi�ca-

tion of the algorithm, the so called forward �ltering/backward sampling algorithm [227], can 

be used to draw sample trajectories from the posterior process, which can then be used in 

MCMC approaches for joint state and parameter inference.

6.3. Parameter inference

Suppose we are not interested in state inference but only in the parameters of the system. In 

this case we do not need to compute the posterior marginal in equation (110). Rather, it is suf-

�cient to either run the forward algorithm (�ltering) or the backward algorithm, since each of 

them independently deliver the marginal likelihood ( )p y . The backward algorithm computes 

the likelihood ( )|>p y xi t t  of future data conditioned on the current state, and ( )p y  is simply the 

end result of the recursion algorithm at time 0.

To see that the forward algorithm also allows to compute the likelihood ( )p y , note that due 

to the Markov property the latter can be written as

( ) ( ) ( )∏= | …
=

−p p py y y y y, , .

i

T

i i0

1

1 0 (112)

We �nd the factors on the rhs of equation  (112) are just the normalisations factors of the 

Bayesian updates of the �ltering procedure in equation (112).

Optimising ( ) ( )θ= |p py y  with respect to the parameters yields asymptotically consistent 

parameter estimates, also called maximum likelihood estimate. In a Bayesian framework, one 

would combine the likelihood with a parameter prior ( )θp  to give the posterior over the param-

eters according to Bayes’ law

( ) ( ) ( )θ θ θ| ∝ |p p py y , (113)

which also allows to quantify uncertainty of the inferred parameter values.

6.4. Computational methods for Bayesian inference in stochastic chemical reaction networks

6.4.1. Methods for general networks. The primary dif�culty in applying the forward–back-

ward approach to inference in chemical reaction networks is the requirement for forward inte-

grability of the system dynamics: calculating the transition probabilities ( )| −p x xi i 1  requires 

solving the CME, which is generally not possible analytically. Some approaches resort to 

numerical integration of the equations, including the variational approach of [228] and the 

uniformisation sampler of [229]. These approaches can be effective for closed systems with 

low molecular numbers; however their application to open systems invariably requires an arti-

�cial truncation of the state space, introducing a bias which is hard to quantify. Truncations 

are also used in the recent work of [230]; however, here a random truncation scheme guaran-

tees unbiasedness of the results, as well as leading to substantial computational savings. Other 

approaches that can handle open systems either introduce additional latent auxiliary variables 

(such as the number of reactions in the time interval as in [231]), or resort to a sequential 

Monte-Carlo scheme which relies on multiple simulations from different initial conditions 

(particle �ltering, [232]). Both such schemes incur potentially large computational overheads.

The computationally intensive nature of inference methodologies adopting a microscopic 

system description constitutes a formidable obstacle to inference in large-scale reaction net-

works. This has justi�ed a considerable interest in the use of mesoscopic approximations for 
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inference. One of the earliest attempts [233] relied on the chemical Langevin equation approx-

imation to the CME (section 4.1); this provides a more ef�cient inference scheme compared 

to the auxiliary variable approach of [231], however the computational costs remain high due 

to the need to compute transition probabilities for non-linear diffusion processes. In this light, 

the LNA provides a more promising avenue, since the suf�cient statistics of the (Gaussian) 

single-time marginals can be ef�ciently computed by integrating a system of ordinary differ-

ential equations. Several authors have therefore proposed inference schemes which integrate 

the LNA approximation [234–236]. Moment closure approximations provide an alternative 

approximation scheme with similar computational complexity to the LNA, however they 

do not generally compute a marginal distribution, rather only a few moments of a generally 

unknown distribution. Their use for time series inference is therefore limited to second-order 

normal moment closure schemes, where a Gaussian approximation is taken. This approach 

has been proposed in [237], where it has been shown to yield accurate results with modest 

computational overheads. In [238] the second-order normal moment closure has been com-

bined with the chemical Langevin equation and integrated into an expectation-propagation 

algorithm for intractable likelihoods and continuous-time constraints. Another interesting 

opportunity for moment-based inference is offered by �ow-cytometry data: here, simultane-

ous measurements of millions of cells enable an empirical characterisation of the marginal 

moments directly (albeit potentially corrupted by extrinsic noise), which can then be �tted to 

a moment-approximation of the CME [239].

6.4.2. Inference for gene expression data. The inference methods mentioned above do not 

assume any knowledge about a given system. While this makes them in principle applicable to 

any type of reaction network, more ef�cient and/or accurate methods can often be employed 

by including a priori knowledge in a model. Gene expression systems constitute a particularly 

important example where this is often the case. Cells typically possess only one or very few 

copies of a gene. Proteins and mRNA molecules on the other hand often occur at copy num-

bers that are orders of magnitude larger. Such systems are therefore often suitable for hybrid 

methods (see, section 4.6.4) that model some of the species as discrete variables (e.g. the 

genes) and others as continuous variables (e.g. the mRNA and proteins).

While it is often not straightforward to integrate hybrid methods into inference schemes, 

signi�cant progress has recently been made in this respect. In [240], for instance, the different 

promoter states of a gene are modelled as a change-point process which drives a linear SDE 

representing the protein dynamics, and an ef�cient MCMC inference method is developed. 

The same model has been integrated into a variational inference method which additionally 

allows transcriptional feedback in [241, 242]. In [243], a particle MCMC scheme is devel-

oped based on a hybrid method that approximates the continuous variables by the linear noise 

approximation (see section 4.2.2). More recently a different hybrid approach combining sev-

eral types of approximations has been integrated into an ef�cient Bayesian inference scheme 

in [244].

6.5. Summary

This bird eye survey of inference for stochastic chemical reaction networks highlights the 

diversity of statistical research in the area. Such diversity can appear baf�ing to the outsider, 

and a major problem for the greater diffusion of these ideas is the lack of standard software 

tools. Inference tools for stochastic chemical reaction networks often form a small subsection 

of software tools for parameter estimation of deterministic methods [245, 246], and there 
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haven’t been systematic comparisons of various inference schemes that investigate the relative 

merits of the different algorithms on a number of relevant examples. Furthermore, inference 

approaches inevitably construct an approximation of a posterior distribution; while much sta-

tistics research investigates the convergence properties of these approximations, it remains 

entirely unclear how inference errors combine with approximation errors when inference 

schemes are deployed on approximate dynamics. Due to these reasons, we have chosen not 

to include an explicit numerical comparison between inference methods in this tutorial, as we 

feel this would deserve a separate review on its own.

7. Conclusions

Recent years have seen an explosion of experimental studies revealing the crucial role that 

stochastic �uctuations in chemical reaction networks play for living cells. Driven by these 

discoveries a plethora of methods for the mathematical and statistical analysis of such sys-

tems has evolved. The goal of this review is to give a self-contained introduction to the �eld 

of modelling for stochastic chemical kinetics. Moreover, it introduces key approximation and 

inference methods for this �eld and gives an overview of recent developments.

The chemical master equation (CME) constitutes the accepted non-spatial description of 

stochastic chemical networks. Recent years have seen a burst of analysis and approximation 

methods based on the CME. We gave here an introduction to the CME modelling framework 

and discussed stochastic simulation and analytic solution methods. Next, we introduced vari-

ous approximation methods with particular focus on the chemical Langevin equation, the sys-

tem size expansion and moment closure methods. We also gave an introduction to time-scale 

separation based approximations, as well as hybrid methods and reviewed the existing litera-

ture. Finally, we gave an introduction to the problem of statistical inference from experimental 

data in a Bayesian framework, and reviewed existing methods. The presentation is aimed to be 

a self-contained introduction for scientists from different disciplines.

In a numerical case study we compared the chemical Langevin equation, the zeroth order 

system size expansion (linear noise approximation, LNA), the �rst-order corrections of the 

system size expansion to mean and covariance (SSE-1) and the second-order normal moment 

closure (2MA) with exact results obtained using stochastic simulations. In terms of moments, 

we found that a naive real-valued implementation of the CLE (CLE-R) enforcing positive 

concentrations was less accurate than all the other methods. A complex version of the CLE 

(CLE-C), in contrast, was found to be the most accurate of all methods. The SSE-1 and 2MA 

performed similar two each other and signi�cantly better than the LNA. In terms of steady-

state distributions, we compared the CLE-R, the CLE-C and the LNA with exact results 

obtained using the SSA. We found that the CLE-R and the LNA were not able to accurately 

capture the distributions, the LNA being more accurate than the CLE-R, however. The CLE-C, 

in contrast, gave accurate approximations even for highly skewed distributions.

The CME is a valid description of systems that are well-mixed and suf�ciently dilute, 

i.e. the diffusion of particles constitutes the fastest time scale of the system and the total 

volume of all molecules in the model is much smaller than the system volume. While these 

assumptions are valid in some cases, it turns out that they are not met by many biological 

systems. Whenever this is the case, models need to be employed that take spatial positions 

and diffusion of particles into account. The main family of such models goes under the name 

of stochastic reaction–diffusion processes (SRDPs), Markovian models where independent 

particles diffuse in space and react whenever they come in contact (or suf�ciently close). 

The evolution equation  for the marginal probabilities of an SRDP, the spatial analogue of 
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the CME, is complicated by the fact that the number of particles varies in time, and needs 

to be de�ned on an in�nite-dimensional Fock space [247, 248]. Solving, or even approxi-

mating, such an equation  is essentially impossible, and hence SRDPs are mainly analysed 

in an algorithmic way: each particle is simulated performing Brownian motion in continu-

ous space and chemical reactions between particles happen stochastically under certain rules 

[249]. This is computationally extremely expensive and signi�cant effort has been spent in 

improved simulation methods [250, 251]. An alternative modelling framework is given by the 

reaction–diffusion master equation (RDME) which coarse-grains an SRDP by assuming a 

compartmentalisation of space and locally homogeneous conditions within each compartment 

[252]. While simulations in this framework are generally more ef�cient than in the continuous 

case, they are typically still expensive [253], generally signi�cantly more expensive than in 

the non-spatial CME case. More importantly, the RDME is not a systematic discretisation of 

an SRDP, in the sense that its continuum limit generally does not lead to the original SRDP 

in two or more spatial dimensions [252], because bimolecular reactions become vanishingly 

infrequent in the continuum limit.

Due to these reasons, analysis methodologies for spatial models are much less developed 

than in the non-spatial CME case. Some studies investigating spatial stochastic phenomena 

and comparing the SRDP and RDME approaches include [249, 254–259]. In contrast to the 

CME case, very few studies have attempted analytical approximations for SRDPs. However, 

some progress has been made in recent years in this respect. In [260] and [261], for example, 

the linear noise approximation was extended to spatial systems, and in [262] higher orders 

of the system size expansion for effective one-species systems. Even fewer studies have 

addressed inference for SRDPs. Only a handful of studies have approached the issue of infer-

ence working directly with the SRDP or RDME framework, using likelihood-free sampling 

methods [263] or variational approximations [264]. In [265], the linear noise approximation 

has been integrated into an inference scheme for SRDPs. This method is however limited to 

certain classes of one-dimensional systems. More recently, in [82] it was shown that SRDPs 

can be approximated by spatio-temporal point processes, a popular class of models from sta-

tistics [266]. This was used to derive an ef�cent inference algorithm for general SRDPs.

In summary, we have presented an introduction to modelling, approximation and inference 

methods for stochastic chemical kinetics based on the chemical master equation. We hope that 

this review will help scientists from other disciplines to dive into this exciting �eld, and that it 

will stimulate research in the presented areas.
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