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This work discusses an approach,�rst-order approximationand model managementoptimization (AMMO), for

solving design optimization problems that involve computationally expensive simulations. AMMO maximizes the

use of lower-�delity, cheaper models in iterative procedures with occasional, but systematic, recourse to higher-

�delity, more expensive models for monitoring the progress of design optimization. A distinctive feature of the ap-

proach is that it is globallyconvergent to a solution of the original, high-�delity problem. Variants of AMMO based

on three nonlinear programming algorithms are demonstrated on a three-dimensional aerodynamic wing opti-

mization problem and a two-dimensionalairfoil optimizationproblem. Euler analysison meshes of varying degrees

of re�nement provides a suite of variable-�delity models. Preliminary results indicate threefold savings in terms

of high-�delity analyses for the three-dimensional problem and twofold savings for the two-dimensional problem.

Nomenclature

CD = drag coef�cient
CL = lift coef�cient
Cl = rolling moment coef�cient
CM = pitching moment coef�cient
cE = equality constraints
c I = inequality constraints
f = objective function
M1 = freestream Mach number
S = semispan wing planform area
x; xL ; xU = design variables and bounds
® = angle of attack
1 = trust-region radius

Introduction

W E describe a general approach to design optimization,
the �rst-order approximation and model management

optimization (AMMO) framework, that integrates engineering and
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physicalmodelingconceptswith mathematicallyrigorousnonlinear
programming techniques. AMMO uses a range of simulations in a
systematicway that guaranteesconvergenceto high-�delityoptimal
designs without the expense of relying exclusively on high-�delity
models or simulations.

A few words are in order to place AMMO in relation to other
work. Great progress has been made in the ability to simulate the
behavior of physical and engineeringsystems accurately.However,
the enormous computational cost of repeated high-�delity simula-
tions, such as the Navier–Stokes equations or those based on �ne
computational meshes, makes it impractical to rely exclusively on
high-�delity models for the purpose of design optimization.

To address this dif�culty, designers have combined the use of
high-�delity and low-�delity models for a long time, see, e.g.,
Schmit et al.1¡3 Barthelemy and Haftka 4 survey the use of approxi-
mations in structural optimization. Recent overviews of models for
aerodynamic analysis and optimization can be found, for example,
in Jameson5 and Newman et al.6

Approaches to engineeringdesign optimizationthat use variable-
�delity models are sometimes called sequential approximate opti-
mization (SAO).1 Although practically every optimization method
can be called sequential and approximate, the term SAO is usually
reserved for methods that replace the objective function and con-
straintsof the design problemby low-�delitymodels.A low-�delity
model can be a simpli�ed physics model, a single numerical model
evaluatedon a relativelycoarsemesh, a singlenumericalmodel con-
verged to a varying degree of accuracy, one of a variety of response
surfaces, or one of a variety of reduced-order models. An SAO
method minimizes the low-�delity model. Some SAO algorithms
attempt to create the best possible low-�delity model and optimize
it only once,whereas others update the models during optimization.
Haftka and Gürdal7 discuss several SAO techniques. SAO proce-
dures have been largely based on heuristics, and convergence to a
solution of the high-�delity optimal design problem has not been
guaranteed, in general.The mathematicaloptimizationcommunity,
on the other hand, has focused on provably convergent algorithms,
but the models used in those algorithms have been assumed to be
based on local Taylor-series approximations, as a rule.

Combining the two perspectives,AMMO8¡10 is a general,mathe-
maticallyrigorous,globallyconvergentmethodologythat can be ap-
plied to any derivative-basedoptimizationalgorithm to alleviate the
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expenseof designoptimizationwith simulations.The approachinte-
grates the convergenttechniquesof nonlinearprogrammingwith the
use of variable-�delity models available in engineeringdisciplines.
We work with �rst-order (i.e., derivative-based) optimizationmeth-
ods because they are generally more ef�cient and can handle larger
numbers of design variables and a broader range of models than
methods that do not rely on derivatives.

In thispaperwe describethe idea thatunderlies�rst-orderAMMO
andgive threespeci�c examplesof adaptingnonlinearprogramming
algorithms in the AMMO framework. Computational demonstra-
tions follow. The paper concludes with lessons learned and open
questions under investigation.

First-Order AMMO Methodology

In this work the design optimization problem is represented by a
nonlinear program of the form

minimize
x

f .x/

subject to cE .x/ D 0

c I .x/ ¸ 0

xL · x · xU
(1)

where the evaluation of the objective function and constraints in-
volvesa high-�delity simulationor, for a multidisciplinaryproblem,
a set of coupledsimulations,with eachanalysisa particularaspectof
the physicalsystemor thebehaviorof a subsystem.Some constraints
can involvephysicalstates (responses) of the system,whereasothers
can be algebraic or purely geometrical.

To solve Eq. (1), AMMO relies on the trust-region approach11

in nonlinear programming to ensure robust behavior. Conven-
tional derivative-basednonlinear programming algorithms, includ-
ing trust-region methods, solve a sequence of subproblems, each
of which operates on local �rst- or second-orderTaylor series, with
variousapproximationsto the �rst and secondderivativesof thecon-
tributing functions.The informationexchangebetween the analysis
and the optimizer is depicted at the top of Fig. 1.

If evaluatingthe functionsand derivativesinvolvesa simulationof
high accuracy but high computationalcost (e.g., the Navier–Stokes
equations), the repeated consultationswith the analysis required by
the optimizer are expensive.

In AMMO we expand the idea of a local model by replacing
the Taylor series in the subproblemswith general models that have
local trends that are similar to those obtained with high-�delity
analyses. AMMO builds models for the sequence of optimization
subproblems using high-�delity and low-�delity information. The
models are constructedso that their trends are similar locally to the
trends in the high-�delity model. This is accomplishedby requiring
that the models in the optimization subproblems be consistent to
�rst order with the high-�delity model, as follows.

Let Qf , QcE , and Qc I be low-�delity models of f , cE , and c I , respec-
tively. At each iteration xk of an AMMO algorithm, the low-�delity

Fig. 1 Conventional optimization vs AMMO.

models are required to satisfy �rst-order consistencywith the high-
�delity counterparts, i.e.,

Qf .xk / D f .xk / r Qf .xk / D r f .xk/

QcE .xk / D cE .xk / r QcE .xk/ D rcE .xk /

Qc I .xk/ D c I .xk / r Qc I .xk/ D rcI .xk/ (2)

Higher-order consistency conditions can be imposed for problems
with available higher-order derivatives.

Conditions (2) ensure that Qf , QcE , and Qc I mimic the local behavior
of �rst-order Taylor series approximations of f , cE , and cI around
the current design xk . First-order consistency is easily obtained in
practice. The work reported here uses a technique we call the ¯-
correction, due to Chang et al.12 Given a high-�delity function Áhi

(say, f ) and any low-�delity model Álo of Áhi, we correct Álo as
follows. De�ne

¯.x/ D
Áhi.x/

Álo.x/

and construct the linear approximation

¯k .x/ D ¯.xk/ C r¯.xk /T .x ¡ xk /

Then

QÁ.x/ D ¯k .x/Álo.x/

satis�es the consistency conditions (2). Other simple correction
schemes are available to enforce consistency.

Optimization subproblems in the AMMO framework, depicted
at the bottom of Fig. 1, operate on corrected low-�delity models.
Expensive, high-�delity computations serve to recalibrate the low-
�delity models occasionally, based on a set of systematic criteria,
to obtain Qf , QcE , and Qc I . The salient features of AMMO can be
summarized as follows:

1) Although a low-�delity model may not capture a particular
feature of the physical phenomenon to the same degree of accuracy
(or at all) as its high-�delity counterpart, a low-�delity model may
still have satisfactorypredictiveproperties for the purposes of �nd-
ing a good direction of design improvement. Locally, imposing the
�rst-order consistency (2) ensures this property.

2) AMMO replaces the local Taylor series of conventional opti-
mization by general nonlinear models required to satisfy the con-
sistency conditions (2). In principle, AMMO is capableof handling
arbitrary models, provided the easily imposed consistency condi-
tions are satis�ed.

3) AMMO is based on the trust-region approach, which can be
describedas an adaptivemove limit strategyfor improvingtheglobal
behavior of optimization algorithms based on local models. The
trust-region methodology ensures the convergence of the AMMO
scheme to a solution of the high-�delity problem13 by providing a
measure of the low-�delity model’s predictive behavior, a criterion
for updating the model, and a systematic response to situations in
which an optimization phase performed using a low-�delity model
gives either an incorrect or a poor prediction of the high-�delity
model’s actual behavior.

Practical ef�ciency of any particularAMMO scheme dependson
the predictive qualities of the corrected low-�delity models for the
purposes of optimization,which, in turn, are problem dependent.

AMMO Under Study

The �rst-orderAMMO approachcan be used in conjunctionwith
any gradient-basedoptimizationalgorithmand any suiteof variable-
�delity models. In the remainder of the paper, we describe speci�c
instances of �rst-order AMMO based on three nonlinear program-
ming algorithms. This discussion will give a prospective user an
idea of how to adapt a particular nonlinear programming technique
to the AMMO framework.

The three algorithms under study follow the trust-regionscheme.
Each algorithmsolves a sequence of optimization subproblemsthat
operate on models of the objective function and constraints within
a trust region where the model trends are thought to approximate
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the function trends adequately for �nding a step towards a solution.
Once such a trial step is computedaccordingto a speci�c algorithm,
it is evaluated by comparing the actual improvement in the merit
function of the problem with the improvement predicted by the
model of the merit function.The trial step is then either acceptedor
rejected, and the trust region is updated, based on the comparative
performance of the model.

All subproblems are solved approximately. “Approximately”
means that the resultingstep shouldpredict suf�cient decreasein the
merit functionor its components.Roughly speaking,global conver-
gence analysis requires a very mild suf�cient decrease condition—
the step must predict at least a fraction of the decrease a linear
Taylor-series model would predict within a given trust region. All
algorithms of interest for solving trust-region subproblems satisfy
this requirement automatically.

Augmented Lagrangian AMMO

The augmented Lagrangian method for constrainedoptimization
allows for an immediate extensionof the unconstrainedAMMO8 to
constrained problems. The underlying algorithm is the augmented
Lagrangian approach of Conn et al.11

In this method the explicit nonlinear inequality constraints of
problem (1) are converted to equalities by introducinga set of non-
negative slack variables z to de�ne the equality constraints

c.x; z/ D

µ

cE .x/

c I .x/ ¡ z

¶

D 0

Denoting .x; z/ by y, we obtain the following reformulation of
Eq. (1):

minimize
y

f .y/

subject to c.y/ D 0

yL · y · yU (3)

where yL D .xL ; 0/ and yU D .xU ; 1/. The augmented Lagrangian
associated with this problem is

L.yI ¸; ¹/ D f .y/ C ¸T c.y/ C .1=2¹/kc.y/k2
2

where¸ is thevectorofLagrangemultipliersand¹ > 0 is the penalty
parameter. The bound constraints are treated explicitly. For appro-
priatevaluesof ¹ and¸, minimizationof L solvesEqs. (3). However,
because the appropriatevalues of ¹ and ¸ are not known a priori an
iterative approach is devised that solves an augmented Lagrangian
subproblem while updating ¹ and ¸.

Let P be the projection onto the set B D fy j yL · y · yU g.
Given y 2 B and v, de�ne P.y; v/ D y ¡ P.y ¡ v/. The augmented
Lagrangian approach is summarized as follows:

Algorithm 1: Augmented Lagrangian method.
Initialization. Set k D 1. Select y1, the initial penalty parameter

¹1 < 1, and the initial convergence criteria !1 and ´1. Specify the
least allowable decrease 0 < ¿ < 1 in the penalty parameter.

Step 1: Subproblem. Approximately solve

minimize
y

L.yI ¸k ; ¹k/

subject to yL · y · yU

to �nd yk satisfyingkP[yk; rL.yk I ¸k; ¹k /]k · !k . If kc.xk /k · ´k ,
go to 2. Otherwise go to 3.

Step 2: Lagrange multiplier update. Update Lagrange multipli-
ers with any standard update formula, e.g., the Hestenes–Powell
update ¸k C 1 D ¸k C c.xk/=¹k . Choose ¹k C 1 · ¹k , !k C 1 > 0,
´k C 1 > 0, so that limk ! 1 !k D 0 and limk ! 1 ´k D 0. Choose yk C 1.
Set k D k C 1. Go to 1.

Step 3: Reduce thepenaltysigni�cantly. Set ¸k C 1 D ¸k , ¹k C 1 ·

¿¹k . Update !k C 1; ´k C 1 as in 2. Set k D k C 1. Go to 1.
For further details, see Conn et al.11

Typically, the subproblem in step 1 is solved by conventional
unconstrainedtrust-region techniques.In the AMMO adaptationof
this algorithm,we solve the subproblemusing QL, an approximation
to L , based on low-�delity models of the objective and constraints
in Eq. (3), as follows.

Algorithm 2: AMMO solution of step 1.
Choose 11 > 0, constants 1¤ > 0, 0 < r1 < r2 < 1,
and 0 < c1 < 1 < c2.
For j D 1; : : : ; until kP[yk ; rL.ykI ¸k ; ¹k /]k · !k

Compute L and rL at yk .

Select a model QL k of L, with

QLk .ykI ¸k ; ¹k / D L.yk I ¸k; ¹k /

r QLk .ykI ¸k ; ¹k / D rL.ykI ¸k ; ¹k /

Solve approximately to obtain s j :

minimize
s

QL k .yk C sI ¸k ; ¹k /

subject to yL · yk C s · yU

ksk1 · 1 j

Compute

r D
L.yk I ¸k; ¹k/ ¡ L.yk C s j ; ¸kI ¹k/

L.yk I ¸k; ¹k / ¡ QLk .yk C s j ; ¸k I ¹k /

Evaluate new step:
If L.yk C s j / < L.yk /, then yk Ã yk C s j ;
else yk Ã yk

Update trust-region:
If r < r1 , then 1 j C 1 D c1ks j k;
else if r > r2, then 1 j C 1 D minfc2k1 j k; 1¤g;
else 1 j C 1 D 1 j .

End for.
Typical values of the constantsare r1 D 0:1, r2 D 0:75, c1 D 0:5, and
c2 D 2. The trust-regionradius constraint uses the `1 norm because
it conforms naturally to bound constraints on the design variables.
Other norms, such as the `2 norm, are also frequentlyused in trust-
region subproblems.

The augmented Lagrangian AMMO is relatively easy to im-
plement and can be proven to converge reliably under reason-
able assumptions.13 The expected dif�culties are those of the un-
derlying optimization approach: augmented Lagrangian methods
can converge slowly, and they are subject to ill-conditioning as ¹

approaches 0.

MAESTRO-AMMO

The second AMMO under study is based on a class of trust-
region multilevel algorithms for large-scale constrained optimiza-
tion (MAESTRO).14 The present version of MAESTRO deals with
problem (1) by converting the explicit inequalities into equalities
via squared slack variables z:

c.x; z/ D

µ

cE .x/

cI .x/ ¡ z2

¶

D 0

Denoting .x; z/ by y, we again obtain Eq. (3), with the lower bound
constraintsnow de�ned as yL D .xL ; ¡1/ because the nonnegativ-
ity of the slack z need not be maintained.

Optimization steps in the basic MAESTRO approachare sums of
substeps, each of which is a minimizer of a subproblem designed to
improve a part of the total problem, e.g., a block of the constraints,
while preserving the predicted improvement already obtained in
otherparts of theproblem.Each subproblemis solvedwithin its own
trust region.The total step is evaluatedby consideringthe actual and
predicted reductions in the merit function, as in algorithm 2. The
augmentedLagrangianand the`2 penaltyfunctionare suitablemerit
functions. Here we use the `2 penalty function

P.yI ¹/ D f .y/ C ¹kc.y/k2

where ¹ ¸ 1 is the penalty parameter. The corresponding low-
�delity model of P is

QP.yI ¹/ D Qf .y/ C ¹k Qc.y/k2
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Because the current demonstrations are single-discipline design
problems with a small number of constraints, the following brief
descriptionofMAESTRO-AMMO isgivenfor a singleblockof con-
straints. The version for multidisciplinaryoptimization or multiple
blocks of constraints can be found elsewhere.9

Algorithm 3: MAESTRO-AMMO.

Initialization. Choose y1 , 1
f

1 , 1c
1; set ¹1 D 1.

Do k D 1; : : : ; until convergence:
Subproblem 1: Improve constraints.

Compute c and rc at yk .
Select a model Qck of c, with

Qck .yk / D c.yk/

r Qck .yk / D rc.yk /

Solve approximately to obtain sc
k :

minimize
s

Qck.yk C s/

subject to yL · yk C s · yU

ksk1 · 1c
k

Subproblem 2: Improve objective.
Compute f and r f at yk C sc

k .

Select a model Qfk of f , with

Qfk

¡

yk C sc
k

¢

D f
¡

yk C sc
k

¢

r Qfk

¡

yk C sc
k

¢

D r f
¡

yk C sc
k

¢

Solve approximately to obtain s
f

k :

minimize
s

Qf
¡

yk C sc
k

C s
¢

subject to r Qck.yk /T s D 0

yL · yk C sc
k

C s · yU

ksk1 · 1
f

k

Set sk D sc
k

C s
f

k
.

Compute

r D
P.yk I ¹k / ¡ P.yk C sk I ¹k /

P.ykI ¹k / ¡ QPk.yk C sk I ¹k/

Update the penalty parameter ¹k :
Increase ¹k , if necessary, so that the predicted

reduction P.yk I ¹k / ¡ QPk .yk C sk I ¹k / > 0.
Evaluate step sk :

If P.yk C sk I ¹k/ < P.ykI ¹k /,
then yk Ã yk C sk ;

else yk Ã yk .

Update 1c
k

and 1
f

k
as in algorithm 2.

End do.
In thebasicMAESTRO approach,subproblems1 and 2 are solved

directly with Taylor-series models of c and f . The AMMO version

replaces them with low-�delity counterparts Qc and Qf that satisfy
�rst-order consistency (2). Subproblems 1 and 2 are now solved
iterativelyby conventionalmethods.MAESTRO-AMMO sharesthe
global convergenceproperties of the underlying algorithm.

Implementing MAESTRO-AMMO is more laborious than the
augmented Lagrangian AMMO. The bene�ts are the expected
greater ef�ciency and its natural capability for multidisciplinary
optimization problems with arbitrary couplings.

SQP-AMMO

The sequential quadratic programming (SQP) approach forms
a popular class of nonlinear programming methods15. The SQP-
AMMO shares the global convergenceproperties of the underlying
SQP approach.

Let 8.xI ¹/ be a merit function for the high-�delity problem. In
the work described here 8 is the l1 penalty function

8.xI ¹/ D f .x/ C ¹

X

i 2 E

jcE ;i .x/j C ¹

X

i 2 I

max[0; ¡c I;i .x/]

where E and I are the index sets of the equality and inequality
constraints, respectively. Other choices of the merit function are
possible.16 SQP-AMMO models the merit function by

Q8.xI ¹/ D Qf .x/ C ¹
X

i 2 E

j QcE;i .x/j C ¹
X

i 2 I

max[0; ¡Qc I;i .x/]

and the following algorithm results:
Algorithm 4: SQP-AMMO.
Initialization. Choose x1 , ¹1 .
Do k D 1; : : : ; until convergence:

Select models Qc I , QcE , and Qf satisfying consistency (2).
Solve approximately for s D x ¡ xk :

minimize
s

Qf .xk C s/

subject to Qc I .xk / C r Qc I .xk/
T s · 0

QcE .xk/ C r QcE .xk /T s D 0

xL · x · xU

ksk1 · 1k

Compute

r D
8.xkI ¹k/ ¡ 8.xk C sk ; ¹k /

8.xk I ¹k/ ¡ Q8k.xk C sk ; ¹k/

Update 1k , xk based on r , as in algorithm 2.
End do.
The penalty parameter ¹k must be greater than the smallest

Lagrange multiplier associated with Eqs. (1) It is usually estimated
at the beginning of optimization and updated only if necessary. If
the low-�delitymodels are Taylor series, then SQP-AMMO reduces
to conventionalSQP.

SQP-AMMO has a number of bene�ts. It is relatively easy to im-
plement, and it converges very rapidly once it is near a solution. It
handles the inequality constraintsdirectly and enjoys the ef�ciency
of SQP methods. By choosing 1k suf�ciently large, the �rst itera-
tion yields solution of the low-�delity optimization problem. This
feature must be obtained by preprocessing in the other approaches.
SQP-AMMO also allows for an easy incorporation of commercial
software.

Computational Demonstrations

The computational demonstrations are intended to validate the
concept of AMMO. The ability to maximize the use of low-�delity,
cheaper models, and thereby reduce the overall computationalcost,
will depend on the predictive qualities of the low-�delity models.
Even though the low-�delity models may not be good approxi-
mators of the high-�delity models for the purposes of analysis,
they may possess suitable predictive properties for the purposes
of optimization.

The computational tests include both the case when the relation-
ship between the various levels of models is favorable and the case
when it is not. The relationship is favorable when the low-�delity
models can provide a long sequenceof steps with satisfactorydirec-
tions of improvement for the high-�delity merit function before the
low-�delity model has to be re-calibrated. The relationship is not
favorablewhen the low-�delity models do not satisfactorilycapture
the trends in the high-�delity models on a signi�cant portion of the
feasible region.

AMMO approaches could suffer from an overreliance on the
low-�delity model if it does not adequately re�ect the behavior of
the higher-�delity model adequately in a large region. In this case
AMMO might take only a few steps using the low-�delity informa-
tion before having to resort to recalibrating the model. Thus, in the
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worst case AMMO reverts to conventional optimization with the
high-�delity models.

The tests described in this paper investigate variable-resolution
modeling—that in which a single type of analysis, performed on a
variety of related meshes, provides variable-�delity models. In this
case the �ner the mesh, the higher the model �delity (presumably)
and the higher the computational expense. AMMO with variable-
�delity physics models is described elsewhere.10

The initial experiments are conductedonly with two design vari-
ables in order to visualize the progress of the algorithms easily
and completely. For the purposes of understandingthe problem, we
generatedenough data to constructgraphical level sets of the objec-
tive and constraints; however, this information is not used (nor is it
necessary) for any of the solution schemes.

The problems are �rst solved in single-�delity mode using con-
ventional optimization methods, such as NPSOL17 and PORT,18 to
obtain a baseline number of function evaluations or iterations to
�nd an optimum (The use of names of commercial software in this
paper is for accurate reportingand does not constitutean of�cial en-
dorsement, either expressedor implied, of such products by NASA
or ICASE.) The problems are then solved with AMMO adaptations
of the conventional methods. We terminate the optimization algo-
rithms when the norm of the projectedgradientof the objective falls
below 10¡5.

In our computational study we use the following high-�delity
models: 1) Euler computational �uid dynamics (CFD) analysis on
a relatively �ne mesh; 2) a synthetic analysis constructed from ob-
jective and constraintvalues from the high-�delity Euler CFD anal-
ysis and two-dimensional, uniform, variation diminishing splines
using PORT18; 3) a synthetic analysis constructed from objective
and constraintvalues from the high-�delity Euler CFD analysis and
kriging19; and 4) a synthetic analysis constructed from objective
and constraintvalues from the high-�delity Euler CFD analysis and
cubicpolynomials,using theRSG software.20 The low-�delitymod-
els are obtained in a similar fashion, using Euler CFD analysis on a
coarser mesh.

The synthetic analyses serve two purposes. First, they reduce the
computational cost of experimentation. Second, they allow us to
study the situation where the uncorrected low-�delity model does
not capture the high-�delity trends very well. In particular,graphics
will show that for the problems under study the objective and con-
straints obtained from the low-�delity Euler CFD analysis capture
the trends of the high-�delity problem well. This is a most favorable
situation for AMMO. Some of the synthetic analyses, on the other
hand, allow us to investigate the adverse situation.

For all three AMMO approachesthe consistencyconditionswere
enforcedvia the¯-correctiontechnique,whichwas found to provide
an excellent correction strategy.

Performance is evaluated in terms of the absolutenumberof calls
to thehigh-and low-�delityfunctionandsensitivitycalculationsand
the number of “equivalent” high-�delity computations. The latter
are easily obtained because the CFD analysis codes use multigrid
techniques, where this metric is commonly computed.

Finally, a conscious effort was made to implement AMMO in a
straightforwardmanner, without any �ne tuning, in order to obtain
a proof of concept. As will be discussed later, signi�cant improve-
ments in ef�ciency can likely be made.

Three-Dimensional Wing Problem

Optimization Problem

The �rst demonstration problem is a three-dimensional aerody-
namic wing optimization.The wing consists of a single trapezoidal
panel with a rounded tip. It is parameterized by 15 variables: �ve
of which describe the planform, �ve of which describe the root sec-
tion shape, and �ve of which describe the tip section shape. The
wing and some of the associated parameters are depicted in Fig. 2.
The two design variables are the tip chord and the tip trailing-edge
setback. The objective function f .x/ is ¡CL =CD . Several arti�cial
constraints are imposed in lieu of multidisciplinary constraints: 1)
a lower bound on total lift CL £ S, in lieu of a minimum payload
requirement; 2) an upper bound on CM , in lieu of a trim constraint;

Fig. 2 Three-dimensional wing problem.

and 3) an upper bound on Cl , in lieu of a maximum bending mo-
ment. Geometric constraintsensurea minimum leading-edgeradius
and a minimum thickness.

For the results we report here, M1 D 0:5, and ® D 3 deg. Given
the subsonicspeedof the �ow, the drag is primarily the induceddrag
caused by lift, CD / C2

L , and so our objective is effectively¡1=CL .
The aerodynamic analysis code used for this study is

CFL3D.ADII,21 a version of CFL3D22 obtained via automatic dif-
ferentiation. The surface geometry was computed using RAPID.23

The volume mesh and associated gradients needed for CFL3D are
computed using a version of CSCMDO24 generated by automatic
differentiation.

The CFD analysis is performed on two meshes: 1) 97£ 25 £ 17
(low�delity), and2)193 £ 49 £ 33 (high�delity). Becausetheanal-
ysis uses a multigrid solution process, the CPU time per analysis
is essentially linear in the number of grid points, resulting in an
eight-fold difference in execution time between adjacent levels of
�delity.On an Ultra 1 Sun workstation,a singleCFD analysison the
97 £ 25 £ 17 mesh takes eightminutes, and the 193 £ 49 £ 33 mesh
analysis takes about an hour.The analysisresidualsare convergedto
10¡6. Sensitivity calculations for the objective and constraints take
roughly 6 1

2
times as long as the analysis. The sensitivity analysis

residuals are converged to 10¡3.

Numerical Results

Figure 3 depicts the level sets of the objectivefunctionsand active
constraints obtained by performing analyses on the 193£ 49 £ 33
and 97 £ 25 £ 17 meshes. The shaded regions are infeasible. The
constraintCl is inactiveat the solutionand is not depicted.Solutions
are marked by black squares. This problem has a favorable struc-
ture for AMMO: although the optima are at different locations, the
low-�delity and high-�delityobjectivesand constraintshave similar
trends.

For MAESTRO-AMMO testing was done with function values
obtained directly from CFL3D.ADII. The analysis count was as
follows. To obtain a solution on the low-�delity mesh alone, us-
ing conventionalMAESTRO required 17 function and 17 sensitiv-
ity calls. Solution with the high-�delity mesh alone was attempted
but not completed because of the expense of direct function and
derivative evaluations. Given the similiarity of the level sets of
the objective and constraints associated with the two meshes, we
assume that conventional optimization on the high-�delity mesh
would take a similar number of iterations as that on the low-�delity
mesh. MAESTRO-AMMO required 18 low-�delity functions, 18
low-�delity sensitivities, seven high-�delity functions, and seven
high-�delity sensitivities,for a total of 7 C 18

8
D 9 1

4
equivalenthigh-

�delity functions and as many sensitivities. Thus, the increase in
ef�ciency is approximately two-fold.

Figures 4–6 show the resulting level sets for the objective and
active constraintsobtained from the syntheticanalyses based on the
same CFL3D. ADII data used to generate Fig. 3. The low-�delity
synthetic polynomial analysis is not a good approximation to the
high-�delity synthetic polynomial analysis, as Fig. 6 demonstrates.
Thus, the synthetic spline and kriging analyses manifest the situ-
ation in which the relationship between the high- and low-�delity
approximationsis favorable,whereas the syntheticpolynomialanal-
ysis, the situation when the relationship is not as favorable.

The augmented Lagrangian AMMO was tested with a syn-
thetic kriging analysis. The conventional augmented Lagrangian
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Fig. 3 High-�delity vs low-�delity objectives and active constraints:

level sets from CFD analysis.

algorithmrequired 37 evaluations of the high-�delity objective and
constraintsand 27 evaluationsof the high-�delityobjectiveand con-
straintsensitivities.The augmentedLagrangianAMMO requiredsix
evaluationsof the high-�delity objective and constraints, six evalu-
ations of the high-�delity objective and constraint sensitivities, 51
evaluationsof the low-�delityobjectiveand constraints,and36 eval-
uationsof the low-�delity objectiveand constraintsensitivities.Be-
cause the low-�delity analyses take 1

8
of the time of the high-�delity

analyses, the augmented Lagrangian required the equivalent work
of 6 C 51

8
D 12 3

8
evaluations of the high-�delity objective and con-

straints and 6 C 36
8

D 10 1
2

evaluations of the high-�delity objective
and constraint sensitivities.

The SQP-AMMO approach yielded similar improvements in
performance.ConventionalSQP, appliedto the syntheticcubicpoly-
nomial analysis, required 31 high-�delity functions and 31 high-
�delity sensitivities.SQP-AMMO required four high-�delity func-
tions and 51 low-�delity functions, for a total of 4 C 51

8
D 10 3

8

equivalent high-�delity functions, and as many sensitivities. In the
case of the synthetic spline analysis, conventionalSQP required 21
high-�delity functions and as many sensitivities. SQP-AMMO re-
quired four high-�delity functions, four high-�delity sensitivities,
28 low-�delity analyses, and 28 low-�delity sensitivities, for a total
of 4 C 28

8
D 7 1

2
equivalent high-�delity function evaluations and as

many sensitivities.

Table 1 Wing optimization problem: summary

of improvements as a result of AMMO

Algorithm Improvement

Augmented Lagrangian 3.0/2.6 (kriging)

SQP 2.8/2.8 (spline)

SQP 3.0/3.0 (polynomial)

MAESTRO 1.9/1.9 (CFD)

Fig. 4 High-�delity vs low-�delity objectives and active constraints:

level sets from synthetic kriging analysis.

All three AMMO algorithms produced consistent improve-
ments in ef�ciency compared to conventional versions of the same
algorithms. Improvements in ef�ciency are summarized in Table 1.
We compare the costs of conventional optimization using a single
model to that of optimizationusing AMMO. The entries in the table
have the form “A/B”, where A is the ratio of the numbers of the ob-
jective and constraint evaluations and B is the ratio of the numbers
of sensitivity evaluations.

We should emphasize that the amount of improvement as a result
of AMMO cannot be predicted a priori. The only theoretical guar-
antee is the global convergence to a high-�delity stationary point.

Two-Dimensional Airfoil Problem

Optimization Problem

The objective function is again ¡CL=CD , and the single nonlin-
ear constraint is on CM . Figure 7 depicts the two design variables,
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Fig. 5 High-�delity vs low-�delity objectives and active constraints:
level sets from synthetic spline analysis.

maximum camber and maximum thickness. The �ow is transonic,
with M1 D 0:8, and ® D 0 deg. Function and constraint values are
obtained with the FLOMG code 25 evaluated on a 129 £ 33 mesh
and a 257 £ 65 mesh, with the former providing the low �delity.
Figure 8 depicts the level sets obtained directly from FLOMG on
the 129 £ 33 and 257£ 65 meshes, respectively. Figure 9 depicts
the level sets of the corresponding synthetic spline analyses. This
problem’s structure is favorable for AMMO: while the optima are at
different locations, the low-�delity objective and constraint exhibit
the same general trends as their high-�delity counterparts.

The time per analysis on the 257 £ 65 mesh is approximately
four times the analysis time on the 129 £ 33 mesh. On an SGI
Octane workstation the actual CPU times are approximately 8
and 2 min, respectively, iterating from freestream conditions. One-
hundred multigrid iterations were done to converge each analysis;
no other stopping convergence criterion was available in FLOMG.

Numerical Results

Again, AMMO consistently yielded improvements in ef�ciency
compared to conventional versions of the same algorithms. How-
ever, the gains in relative ef�ciency are somewhat smaller (though
still very good) than those observed for the three-dimensionalwing
problem because the relative costs of the low- and high-�delity
calculations are smaller for the two-dimensionalcalculations.

Fig. 6 High-�delity vs low-�delity objectives and active constraints:
level sets from synthetic cubic polynomialanalysis.

Fig. 7 Two-dimensional airfoil problem.

In tests done directly with FLOMG, MAESTRO required 34
evaluations of the objective and constraints and their sensitivities
on the high-�delity mesh. MAESTRO-AMMO required 20 evalu-
ations of the objective and constraints and their sensitivities on the
low-�delity mesh and nine evaluations of the objective and con-
straints and their sensitivities on the high-�delity mesh. A com-
parison is made by considering that 20 evaluationson the 129 £ 33
mesh are equivalentto �ve evaluationson the 257 £ 65 mesh.There-
fore, MAESTRO-AMMO took 14 equivalent high-�delity function
and sensitivity evaluations. MAESTRO-AMMO took fewer itera-
tions to �nd an answer than did conventional MAESTRO with the
high-�delity model. This result may appear surprising, but can be
attributed to the fact that MAESTRO-AMMO took a different path
through the design space.

The augmented Lagrangian AMMO was tested with a syn-
thetic spline analysis. The conventional augmented Lagrangian al-
gorithm (using analytical derivatives) required 58 evaluations of
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Table 2 Airfoil optimization problem: summary

of improvement as a result of AMMO

Algorithm Improvement

Augmented Lagrangian 3.1/1.6 (spline)

SQP 2.2/2.2 (spline)

MAESTRO 2.4/2.4 (CFD)

Fig. 8 High-�delity vs low-�delity objectives and active constraints:

level sets from CFD analysis.

the high-�delity objective and constraints and 21 evaluationsof the
high-�delity objective and constraint sensitivities. The augmented
LagrangianAMMO required six evaluationsof the high-�delity ob-
jective and constraints, six evaluationsof the high-�delity objective
and constraintsensitivities,50 evaluationsof the low-�delity objec-
tive and constraints, and 30 evaluationsof the low-�delity objective
and constraintsensitivities.Because the low-�delity analysestake 1

4
of the time of the high-�delity analyses, the augmented Lagrangian
AMMO requiredthe equivalentworkof 6 C 50

4
D 18 1

2
evaluationsof

the high-�delity objective and constraints, and 6 C 30
4

D 13 1
2

eval-
uations of the high-�delity objective and constraint sensitivities.
These numbers indicate approximately three-fold improvement in
the number of equivalent evaluations.

SQP-AMMO yielded similar improvements in performance.
Conventional SQP applied to the synthetic spline analysis required
19 high-�delity function and sensitivity calls each. SQP-AMMO

Fig. 9 High-�delity vs low-�delity objectives and active constraints:
level sets from synthetic spline analysis.

required only four high-�delity and 19 low-�delity function and
sensitivity calls, each, for a total of 4 C 19

4
D 8 3

4
equivalent high-

�delity analyses. The two-dimensional airfoil optimization results
are summarized in Table 2; the entries have the same meaning as in
Table 1.

Conclusions

In the experiments discussed here AMMO yielded about a three-
fold improvement in computational cost for the three-dimensional
wing design problem and a two-fold improvement for the two-
dimensional airfoil problem. We believe that greater improvements
can be achieved.No �ne tuningof theAMMO approacheswas done,
and there is room for improvement in the interaction among all the
pieces. In particular, currently the inner subproblem of minimizing
the low-�delity model is probably being solved to an unnecessar-
ily high degree of accuracy. Because the analysis of the algorithms
requires the subproblem solution to proceed only as far as needed
to ensure suf�cient predicted improvement in the merit function of
the high-�delity problem, the subproblems are almost certainly be-
ing oversolved in some instances. In the examples presented here,
the relative cost of the low-�delity analysiswas not inconsequential
compared to that of the high-�delity analysis. In this situation, the
ef�ciency of AMMO can be improved if it is determined how to
terminate the inner subproblemas soon as it produces the necessary
decrease.
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The ef�cacy of AMMO depends on the ability of the low-�delity
model to predict the trends in the high-�delity model. We found
that even when this prediction was not favorable, as in the case of
the synthetic cubic polynomial analysis, the ¯ correction proved
effective in adjusting the low-�delity model to follow the high-
�delity trends.

Although these initial experiments are promising, much work
remains on further details of the implementation, as well as con-
clusions and practical guidance for using AMMO. As already men-
tioned, one question is that of the proper amount of optimization
in the AMMO subproblems and the consequences for overall ef�-
ciency. The relative ef�ciency of AMMOs based on different un-
derlying optimization algorithms is also of interest. At this point
SQP-AMMO is the most promising for single discipline problems
andforproblemformulationsthat relyon multidisciplinaryanalysis.
A variant of the augmented Lagrangian approach may have merit
in the multidisciplinary setting as well. The MAESTRO approach
is also promising for multidisciplinaryproblems. The AMMO idea
will also be applied to a broader class of problems and variable-
�delity models. In particular,AMMO with variable �delity physics
models presents an intriguing line of inquiry.10
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