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Formal verification by model checking verifies whether aayssatisfies some given correct-
ness properties, and is intractable in general. We focugweeral problems originating from
the usage of model checking and from the inherent complexXityodel checking itself. We
propose approximation and iterative refinement technigmelsdemonstrate that they help in
making these problems tractable on practical cases. Wadatection is one of the problems,
relating to the trivial satisfaction of properties. A siarilproblem is query solving, useful in
model exploration, when properties of a system are not tullgwn and are to be discovered
rather than checked. Both of these problems have solut@aesgstructured as lattices and can
be solved by model checking using those lattices. The &stim the most general formula-
tion of these problems, are too complex to be implementeciefiily. We introduce a general
approximation framework for model checking with latticeglanstantiate this framework for
the two problems, leading to algorithms and implementatibat can obtain efficiently partial
answers to the problems. We also introduce refinement tgebsithat consider incremen-
tally larger lattices and compute even the partial answeaduglly, to further abate the size
explosion of the problems. Another problem we consideresstate-space explosion of model
checking. The size of system models is exponential in theb®uraf state variables and that
renders model checking intractable. We consider systemmgpased of several components
running concurrently. For such systems, compositionafigation checks components indi-

vidually to avoid composing an entire system. Model cheglin individual component uses



assumptions about the other components. Smaller assurapéad to smaller verification
problems. We introduce iterative refinement techniquesithprove the assumptions gener-
ated by previous automated approaches. One techniquemeantally refines the interfaces
between components in order to obtain smaller assumptiatsite sufficient to prove a given
property. The smaller assumptions are approximationsefigsumption that would be ob-
tained without our interface refinement. Another technigoimputes assumptions as abstrac-
tions of components, as an alternative to current appredatiad learn assumptions from coun-
terexamples. Our abstraction refinement has the poteoattarpute smaller nondeterministic
assumptions, in contrast to the deterministic assumptearsed by current approaches. We

confirm experimentally the benefits of our new approxima#ind refinement techniques.
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Chapter 1

Introduction

Computer systems are pervasive in our world today. Theyrabatitical areas of our lives:
they monitor nuclear reactors, fly airplanes, carry outatln treatments, diagnose diseases,
perform financial transactions, etc. The reliability of tteenputer systems we build needs to
keep up with the fast pace at which these systems evolve. #ierag become more and more
complex, however, ensuring their correct behavior is moré more challenging. Systems
are still deployed without a full guarantee for their rellaya This is due to that fact that the
dominant methods for system debugging are testing and ation] which are expensive and

incomplete.

As an alternative, formal verification can be used to esthliine behavioral correctness
of hardware and software systems statically, before theguwe. For infinite-state systems,
however, such as programs with unbounded inputs, veribicasi undecidable in general. For
the finite-state case, such as systems that are contrad-batbeer than data-based, automated
verification is possible bynodel checking39, 85, 35]. This technique takes as input a be-
havioral model of the system to be verified, and a correctpeggerty. The model usually
consists of the states of the system, and the transitionghteaystem would make between
those states during execution. The property is usuallyngasea formulas in some temporal

logic [38, 74, 75]. The verification proceeds by exhaustixgl@ation of all the paths in the
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model according to the property. This approach has beermssitd in practice: Intel and IBM
report on verifying large hardware designs [46, 13]; the SLproject at Microsoft verified
important properties of Windows device drivers [7, 6, 8]. débchecking, however, is still

subject to a number of challenges, of which we address sompertemt ones in our thesis.

1.1 Our Thesis

The model checking process is simple in principle: given dehof a system, and a property of
its behavior, the process checks whether the model sattbiqgutoperty. There are, however, a
number of non-trivial questions that have to be answereddamptocess: How can we make sure
that the model faithfully represents the physical systehabmr? How can we ensure that the
property expresses the desired system behavior? The mudi¢he property are formalized
mathematically to correspond to the real, in-formal sysa@ahits requirements. Abstraction is
inherent in the formalization. How can we ensure that thesadl, mathematical abstractions,
represent the physical or the in-formal conceptual re2lifp increase user confidence in the
model checking process, the process needs to support modedraperty debugging. Two
main problems in this direction axacuity detectiomndquery solving

Vacuityrelates to the trivial satisfaction of the properties in adeld11]. Industrial re-
searchers noticed that temporal logic formulas sometirass perification for unexpected rea-
sons, and some parts of a formula maywbeuousi.e., irrelevant to its satisfaction. They noted
that in about 20% of the cases, vacuity indicates a problahreimodel or in the property and is
useful for debugging purposes. Finding the largest vaceabfrmulas of a formula requires
an exponential number of calls to a model checker.

Query solvingis a similar problem, originating imodel exploration for many legacy
systems that were not formally verified when designed, ptagseare not available. Thus,
the analysts need to explore the models in ordanfer which properties those models satisfy.

Usually some templates of the properties being sought aitaale. For model checking, these
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templates are callaeémporal logic queriesand they consist of temporal formulas with missing
subformulas. The problem is to firmblutionsto the queries, that is, the missing subformulas
that can fill in the templates in order to make them into fulhfalas satisfied by the model [25].
This problem is again double-exponential in the cost of rholdecking [63].

Finally, apart from the modeling problems, the user is vékgly to be faced with the
inherent computational complexity of the model checkingcess itself. Since the number
of possible model states is exponential in the number ofegystariables, model checking
is computationally intractable, which is the well-knowmtstspace explosion problem [34].
Assumption generaticstems from this problem. The behavior of a system consisfisgveral
components running concurrently is the product of the campbbehaviors. Computing the
product model leads to state-space explosion and rendefslcieecking intractable. To avoid
this problem, verification can be applied component-wissiassume-guarantesyle [78, 65,
83]. This involves the computation of intermediaesumptionsinder which the components
are verified individually.

Our work provides a unified treatment of these problems, by:

¢ Defining suitableapproximationgor each problem, by defining partial solutions that are
satisfactory for specific practical purposes and can beirddacheaper than the exact

solutions.

e Describing how such approximate solutions can be obtainéshaatically. Moreover,
definingrefinemenstrategies by which approximations are incrementally aatexh, to

further decrease the complexity of the problems.

o Demonstrating experimentally that these approximatiahrafinement techniques per-

form well on interesting practical cases.

The main thesis put forth by our work is that: for importantiaomputationally hard

model checking problems, that a typical user is likely to beallenged by, it is sufficient to
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compute approximate solutions that can be efficiently oletj eventually by refinement, and
make these problems, otherwise intractable, tractableanynmteresting, practical cases.
We outline the related work and our contributions in the aéghis section. More details

are in Chapter 3.

1.1.1 Vacuity detection

Most research efforts for vacuity detection concentratexdansions of vacuity to various tem-
poral logics and variations of the definition of vacuity [B059, 58, 20]. Very few approaches
address the efficiency of the vacuity detection algorith@ds 92].

We provide a new vacuity detection algorithm with an effitienplementation on top of
the widely-used model checker NuSMV [32]. Our approachofedi that of [59], where all
the possible answers to vacuity detection are ordered ittiadaand detection proceeds by
model checking using that lattice. We do not use, howeverldttice of [59], since it is too
complex to be implemented efficiently. That lattice givdeimation aboumutual vacuity all
the setsof subformulas that arsimultaneouslyacuous in a formula. Model checking using
the mutual vacuity lattice is equivalent to a number of ctdla regular model checker that is
double-exponential in the number of system variables.

We approximate the mutual vacuity lattice to a simpler ¢attihat gives information only
aboutindividual subformulas that are vacuouslependentlyf each other, that is, we keep
from the original lattice elements only the singletons gs&it single vacuous subformulas).
This leads to our algorithm, calledagUOT, that we describe and evaluate on a number of
models and formulas. Our results show thaQWoT is more efficient than the naive vacuity
detection defined by [70].

In addition, we show that by iterative refinement we can recg@eme of the missing vacu-
ity information lost due to our approximation. By running®MJoOT repeatedly on progres-
sively smaller subformulas of a formula, we are guaranteeiihtl the largest vacuous sub-

formulas, which would be indicated by the mutual vacuityedébn using the lattice of [59].
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Thus, by approximation and refinement we solve efficientlyablem otherwise intractable.

1.1.2 Query solving

Previous research in this area proposes restricting theflogthe queries in order to make the
problem tractable [25], or solves general queries [17, G8jaut improving the complexity of
the problem. Other approaches extend the queries to vdadgics [90] and systems [96], still

keeping the problem intractable.

We propose a novel approach in which we make the problem macéable not by re-
stricting the logic, but by restricting the solutions to gas. In general, solutions to queries
correspond teetsof states of a model. We restrict them to represedit/idual states, and thus
define state-query solving, which is exponentially easiantgeneral query solving. We do so
by following the approach of [60], where query solving isfpemed by model checking over
the lattice of sets of solutions proposed in [17]. Similadyour approximation for vacuity,
we approximate the lattice of [17, 60] by keeping, from eaehod solutions, those solutions
representing single states. This again leads to an effiaigorithm, called TQ, which we
describe and evaluate on an application from genetics. agp$ication, as well as others that
we identify, specifically require solutions to queries tamaividual states, which motivated us

in defining our approximation.

The number of formula atoms involved in a query determinessiae of the lattice we
work with, and the efficiency of IQ. Thus, to further optimize 0Q, we propose an iterative
refinement scheme in which queries are first asked about fwsrs of the formula, and then

gradually about more atoms, using solutions obtainedezatt restrict later queries.

Due to their similarity, we treat the problems of vacuityet#ton and query solving in a
unified way. We define a general approximation framework fodei checking with lattices
of sets, and obtain our approximations for the two problessva different instances of the

general framework.
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1.1.3 Assumption generation

The simplest assume-guarantee rule states that: if we fiadmption such that a first com-
ponent satisfies a property under that assumption, and adg@coperty satisfies the assump-
tion, then the model composed from the two components sitie property as well. With
such rules, we can avoid checking a composed model, but @léerbe is in generating a
correct assumption that is also easy to verify.

Current approaches [2, 91, 41, 79, 93] to assumption geoetade the learning framework
pioneered by [42] or similar approaches [56] that guess &medlc assumptions and modify
them using information from the counterexamples obtainbdnwerifying the components.
We extend this framework by an iterative refinement techaittpat also infers the alphabet of
the interfaces between components during learning. We sixperimentally that our refine-
ment technique improves the performance of previous legrhased algorithms by orders of
magnitude.

We also propose an alternative to the learning of assungptlwat works by abstraction-
refinement: it computes assumptions as abstraction of thgaoents and iteratively re-
fines them also using counterexamples, but according tdhanatell-known counterexample
guided abstraction refinement (CEGAR) framework [33]. OCewralgorithm, called AGAR,
incorporates interface refinement as well. We argue androoefiperimentally the benefits of

AGAR over the learning-based approaches.

1.2 Thesis Structure

The contributions of our thesis are rather technical; fartbéason, we postpone a more detailed
discussion of the problems we consider, the related woid cam contributions, to Chapter 3,
after we introduce some preliminary notions of model chegkin Chapter 2. We present a
general approximation framework for model checking witttidas, with instances for vacuity

detection and query solving, with algorithms, implemepotatrefinement, and evaluation, in
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Chapter 4. In Chapter 5, we present our new refinement tegbsifpr assumption generation,
and their evaluation. Each of the latter two chapters castan introduction, outlining the
motivation behind the work and the structure of the chajgigidjtional background specific to
the problem in that chapter, further comparison with relaterk, and conclusions and future
work. We conclude the thesis in Chapter 6, with a summary efowerall contributions and

directions for future work.



Chapter 2

Preliminaries

In this chapter we review basic notions of model checkingusttations of the concepts we

introduce here appear as we use these notions in later chapte

2.1 Models

System behavior is usually modeled by some type of a grapment@des represent system
states and edges represent transitions that the systens telveeen those states during exe-
cution. There are two main types of models. One is stateehad®ere the state of a system is
described by the values of system variables at some poimhe) tind the system proceeds by

transitions between states.

Definition 1 (Kripke structure [39]) AKripke structuras atupleM = (S, so, P, I, R), where
S is a finite set of statess, is the initial state, P is a finite set of atomic propositions,
I : S — 2% is a function labeling each state with the set of atomic psipans true in

that state, and? C S x S is a left-total transition relation.

Another type of model is action-based. Here transitionsadreled with action names. The

behavior of the system is then seen as the sequences ofsattadrthe system may perform,
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and the choices of actions it has at each step. The statassareges carrying no information

with themselves, except for having incoming and outgoirtgas.

Definition 2 (Labeled transition system (LTS) [77]) Let.A be a set of universal actions, and
let 7 denote a speciainternalaction. Alabeled transition systeisa tupleM = (Q, oM, 6, qo),
where( is the set of statesyM C A is the set of observable actions called @dphabebf

M; 0 C Q x (aM U{7}) x Q is the transition relation, and, is the initial state.

The sequence of state transitions or actions that a systmasaone execution forms a

path.

Definition 3 (Paths) A pathw from a states in a Kripke structure or an LTS is an infinite
sequence of states, 7, ... in whichm, = s and every two consecutive states are related by
the transition relation: in a Kripke structurefi > 0, (m;, m;41) € R. In an LTS, a path also

contains the actions for the transitions:= myogmi07 ..., Vi > 0, (7, 04, mir1) € AU {7}.

When systems are made from multiple components, we formalizat it means for those

components to execute together, by their parallel comiposit

Definition 4 (Synchronous composition of Kripke structures[35]) Thesynchronousompo-
sition A" of Kripke structuresM and M’ hasS” = {(s,s') | I(s) N P = I'(s') N P},
sy = {(s0,85)} NS"}, P" = PUP, I"((s,8)) = I(s) UI(s'), and R"((s,s), (t,t)) iff
R(s,t)andR'(s,t').

Asynchronousomposition of Kripke structures is as synchronous comjposiexcept that
R"((s,$), (t,t)) iff R(s,t)ands’ =t or R'(s',t') ands = t.

We say that an LTSV transitsinto A/’ with actiona, denotedM % M, if and only if
(g0, a,¢)) €9, and@Q = Q',aM = aM’, ands = §'.

Definition 5 (Parallel composition [77]) Given LTSsM; = (Q',aM;,46%,¢}) and M, =
(Q?, aMsy, 6%, ¢2), their parallel compositionV/; || M, is the LTSM = (Q, aM, d, qo) where
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Q=0Q"xQ*q = (¢,q),aM = aM, U aM,, andd is as follows (the symmetric version

also applies):

M, % M a ¢ o, My % M My 5 My,a# 7

My || My = M || M, M,y || My = M || M}
To compare models and express that fact that one model caamjopbehave as the other,
the notion of simulation is commonly used. We give its defamtfor LTSs; that for Kripke

structures is analogous.

Definition 6 (Simulation of LTSs [77]) A relationp C S; x Sy between LTS8/, and M, is
asimulationif for all (sy, s2) € p, for each(sy, o,t1) € 6; there existgs,, o,t2) € d, such that
(t1,t2) € p. Simulation defines a preorder denoted if p is a simulation betweed/; and

My, thean =< M,.

2.2 Temporal Logics

Properties of the temporal behavior of systems are comnfontyalized in various temporal
logics that we present next. Our presentation follows [88]ere these logics are interpreted

over Kripke structures; the definitions for LTSs are analtgo

221 CTL*

Let P be a set of atomic propositions. CTL* consists of two type®ahulas:state formulas
that are evaluated in the states, gath formulaghat are evaluated along the paths, of a Kripke
structure.

CTL* is the set ofstateformulasy generated by the following grammar:
A
p=ploelenY | EE,
wherep € P, ¢ is a state formula, anglis apath formuladefined by:

E2 =€ EAX|XEIEU X,
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wherey is a state formula, angl is a path formula.

The CTL* semantics is defined with respect to the paths of akéristructure having the
same sef’ of atomic propositions as the formulas of the logic. We w'st denote the suffix
starting atr; in a pathr. For a state formula, M, s = ¢ denotes thap is satisfied in state
of the Kripke structurel/. For a path formula), M, = |= ¢ denotes that holds along pathr
in M. Lety,, ¢, be state formulas, ang, ¢, be path formulas. Then the satisfaction relation
= is defined inductively as:

-M,s =piff pe I(s);

-M, s = - iff M, s = or;

-M,s = o1 Ao iff M, s = prandM, s = po;

- M, s = E  iff there exists a path from s such thatV/, 7 |= ¢x;

- M, 7 |= ¢ iff the first states along is such thatV/, s = ¢;

- M, =y iff M, e

- M, =y ANy iff M = by and M, 7 |= 1s;

- M, 7 = X 1, iff there existsk > 0 such thatV, 7% |= 1)1;

- M, 7 |= 1 U 1, iff there exists & > 0 such thatM/, 7 |= «, and for allo > j < k,
M, 7 = .

Some derived operators are commonly usedV v = —(=p A ), A ¢ = =FE —p,
Fi=tueU¢,G=—F -, p Rp=—(—pU ).

ACTL* is the subset of CTL* where only the universal path gtifzer A is allowed and
negations are allowed only on the atomic propositions. EG$Ithe subset of CTL* where
only the existential path quantifiéf is allowed and negations are allowed only on the atomic
propositions.

CTL is the subset of CTL* where each path operafot/, F', G, R isimmediately preceded
by a path quantifie® or A. ACTL is the fragment of CTL in ACTL*, and ECTL is the
fragment of CTL in ECTL*.

LTL is the subset of CTL* with formulas of the typé o where A is usually implicit,¢ is
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a path formula, and the only state subformulas allowed @& atiimic propositions.

2.2.2 Satisfaction

A Kripke structure)M satisfies a temporal logic (state) formyladenotedV/ = ¢, if M, sy =

@.

2.2.3 p-calculus

For the interpretation ofi-calculus, Kripke structures are slightly changed, so ithstead of
a single transition relation they have a set of transiti@ations?’, such that for each € T,
a C S x S. Thea’s can be thought of as labels on transitions. Let VARY, Z, .. .} be a set
of variables, such that each variable can be assigned atsilise

u~-calculus is the set of formulasdefined by the grammar:

eEp|-pleAy | {a)e | uY. o,

wherep € P, ¢ is a formula,a € T, andY is a variable appearing under an even number
of negations inp in the scope of:.. Some derived formulas are defined via DeMorgan’s laws:
eV ==(-pA), lap ={a)~p, VY. o =~(uY. ~p).

The semantics is defined with respect to an environraémit assigns subsets of states to
the variablesi.e., e : VAR — 2°. A formulay is interpreted as the set of states wheiieolds,

denoted]¢] ,se, and defined recursively as follows:

[plye £ {se€S|pel(s)}

[Z]me = e(Z)
[~¢lme = S\ [¢lae
[ AYlme = [elaue U [¥]ae

[ayelme = {s|3t.(s,t) €ante [p]ue}

U, 7:(false),

(Y. o] are
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wherer : 25 — 2% is a predicate transformer defined byiV) = [¢]re[X «— W] and

elY « W1is the environment that is likeexceptY” is assignedV .
With this semantics, for a Kripke structuié and au-calculus formulap, we havel, s =

iff s € [¢]um-

2.2.4 CTL fixpoint semantics

Of particular interest for the model checking algorithmghis-calculus (fixpoint) semantics

for CTL. The value of a CTL formula at states is denotedy](s) and defined recursively as

follows:
[€](s) = ¢ for ¢ € {true,false}
[pl(s) = pel(s)forpeP
[-el(s) = =[el(s)

[evl(s) = [el(s)V [¥1(s)

[EX ¢](s) = Vyere [£](s)

[EG ¢](s) = [vZe N EXZ](s)

[Elp UYl(s) = [pzZ4V(eNEXZ)](s)

Other common CTL operators are derived from these:

[endl(s) = =([=¢l(s) vV [~¢](s))
[AX ¢](s) £ ~([EX=](s))
[AF @l(s) = ~([EG-¢](s))
[EF¢](s) = [Eltrue U ¢][(s)
[AGe](s) = ~([EF=¢](s))

With this semantics, for a modél and a CTL formulap, we have)M, s |= ¢ iff [¢](s) =

true.



CHAPTER 2. PRELIMINARIES 14

2.2.5 Safety vs. liveness

A common distinction among properties is whether they $pesfetyor livenesf a system.
Intuitively, safety properties specify that “somethingdb@does not happen”, while liveness
properties specify that “something good eventually happeitechnically, safety properties
have counterexample paths of finite length, reaching a sthéze the “bad” condition holds.
Liveness properties have infinite counterexample pathshiag loops where the “good” thing

never happens.

2.3 Model Checking Algorithms

The pu-calculus semantics given above leads to straightforwlgiatighms for the evaluation of
CTL formulas by manipulating sets of states. A propositiGudformula represents the set of
states where that subformula holds. The basic step in th@ut@tion of temporal operators
is the computation of2 X which amounts to computing the predecessors of a set ofsstate
also calledpre-image computationAll other temporal operators are computed by iterative

pre-image computations. For a set of stalésthe pre-image operator is defined as:
Pre(W)={seS|3teS (s,t) e RAteW}

A class of algorithms use representations of Kripke stmestwr LTSs as explicit graphs
and for this reason are callexplicit-state A possible representation of sets of states for an
explicit Kripke structure is by labeling the states with gubformulas they satisfy. Computing
Pre of a set of states in this case consists of labeling the pesdecs of those states in the
graph. Another approach, calleymboli¢ represents sets of states with their characteristic
Boolean formulas, and set operations as Boolean operatidres transition relatiorR is en-
coded symbolically by labeling atomic propositions in areat state as unprimed y, . .. and
labeling them in the next state with primed versiong/, . ... Then the symbolic computation

of Prefor a set of states characterized by Boolean formulaverzx, y, . . .) is the computation
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of the following Boolean formula3z’,y/,.... R(x,y,...,2,y',...) A ¢/, where¢' is ¢ with
all occurrences of variables vy, . .. replaced by their primed versions, 3/, .... Existential
guantification is computed as a disjunction over all possialues, which are finitely many, as

atomic propositions are Boolean.

Symbolic model checkers such as NuSMV [32] usision diagramgo represent and
manipulate the Boolean formulas arising in symbolic corapahs. Reduced Ordered Binary
Decision Diagrams(ROBDDs) [18] are binary decision tréest £ncode the truth tables of
Boolean formulas. At each level, the decision is made on thary valuetrue or false of a
different variable in the formula; one subtree correspandgluetrue and the other subtree
to valuefalse. The leaves contain Boolean constantg, false. A BDD imposes an order on
the variables in which they are considered for the decisidhg value of the formula for one
truth assignment to all its variables is obtained by readlegvalue in the leaf reached by the
path following the values in that assignment, in the vagaiider fixed by the decision tree.
A BDD is also reduced in the sense that, if different decisimad to the same subtree, the
variable on which that decision is made is eliminated. Bawleperations are performed by
graph transformations and merging of these BDDs. The siteeadiagrams and consequently
the running time of the BDD operations depends on the nuntetize ordering of the vari-
ables. The state-space explosion problem manifestsitdBdD explosion in symbolic model
checkers, although non-monotonically: large state spearede represented with small BDDs

and viceversa.

Either implementations, explicit or symbolic, have a coextly of O(|S| x |¢|) for CTL
model checking an®((| M| x |¢|)¥) for u-calculus, wheréM | = |S| + | R, || is the number
of subformulas ofp, and £ is the maximum nesting depth of the fixpoint formulas. Two
fixpoint formulas are considered nested if a fixpoint vaeadgbpears free in the scope of the

other fixpoint [19].

A common algorithm for the evaluation of LTL formulas is anata-based and is com-

monly used in explicit-state algorithms for LTSs, but sopmbsolic implementations use this
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idea as well. A Buchi automaton is like a finite automatonggtthat it accepts infinite strings:
a string is accepted if upon reading that string the automaasses infinitely often through one
if its “final” states (more appropriately called “acceptistgtes”). The negation of any LTL for-
mula can be translated to a Buchi automaton. A Kripke strediivially translates to a Buchi
automaton whose every state is accepting. Then model aigeckinsists of checking whether
the automata product (intersection) of the structure aatomand the automaton for the nega-
tion of the formula has any reachable loop containing adegstates. This procedure is linear
in the size of the structure, but exponential in the size efithimula, and LTL model checking
is PSPACE-complete [95].

For mostly theoretical purposes, automata-based algesithave been defined for the
model checking of CTL, CTL*, andi-calculus. A CTL, CTL*, oru-calculus formula can
be translated to a nondeterministic tree automaton or tdtamating tree automaton [71].
These are automata that run on the computation tree of thpkd&structure. The computa-
tion tree of a Kripke structure is the infinite tree of all camgtion paths of the structure,
obtained by “unfolding” the structure. The automata-baalgdrithms for CTL, CTL* and
u~calculus work by the same principle as that for LTL: theyah#he product of a structure
automaton with a formula automaton. For CTL andalculus, the automata-based algorithms
have the same complexity as the corresponding explidié-sia symbolic algorithms. For
CTL*, the automata-based algorithm has the same complesitipr LTL: linear in the size
of the structure and exponential in the size of the formuta, @TL* model checking is also

PSPACE-complete [71].



Chapter 3

The Problems: Definitions, Related Work,

Our Contributions

In this chapter we give a detailed account of the problems deeess in the thesis, related

work, and the contributions and limitations of our work.

3.1 Vacuity Detection

3.1.1 The problem

A common problem noticed early on in the application of forwaification to hardware is that
properties sometimes hold for the wrong reasons. For instgsroperties about how a hard-
ware system reacts to stimuli from its environment are divemalized as implications — b,
wherea represents the environment stimulus, andhe system behavior in response to the
stimulus. It may happen that the implication holds in a m@it@lply because the environment
has been modeled incorrectly amahever happens. This problem is referred t@agecedent
failure in [10]. More evidence of the occurrence of this kind of pehlin the verification
practice has led IBM researchers to formulate trivial $attson of properties more generally

asvacuity[11]. The formulas considered in [11] are no longer limitedrplications, and

17
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the problem manifests itself in some subformulas not bamgpirtant for the satisfaction of a
formula in a given model. Those subformulas are calladuous and the formula is deemed
vacuousn those subformulas. In the case of antecedent failuregahsequent of the implica-
tiona — b is vacuous, since the implication holds regardleds ahd only becauseis always

false in the given model. The formal definition of vacuitygmnitially in [11] is as follows:

Definition 7 (Vacuity [11]) Lety be atemporal formula and/ be a model such that/ = .
We say thatp is vacuousin M if there exists a subformula of ¢ that does not affecthe
satisfaction ofp in M 1) can be replaced by any formufaand the newp, written [y «— ¢],
still holds in M.

Definition 7 is not effective as it does not lead directly tcadgorithm for vacuity detection:
there are infinitely many formulas that can be replaced/for his definition, however, gives
a framework for several approaches in the research worteckta vacuity detection that we
summarize next. These approaches differ from each otharrespect to the temporal logics
whose formulas are checked for vacuity, the semantics afitsaan particular of “does not

affect”, and the corresponding detection algorithms.

3.1.2 Related work

Based on industrial experience, Bearal. [11] define a subset of ACTL, called w-ACTL,
for which they are able to detect vacuity efficiently. w-ACid_so that for any formula a
single “witness™w(y) is used to detect the vacuity gfin some of its subformulas, deemed
“important”. The definition of w-ACTL intuitively capturethe interaction between a system
and its environment beyond simple implications. Each lyiogerator connects a propositional
formula to a temporal one. The assumption, stemming fronemasions of the typical uses
of CTL, is that the propositional formula represents theati from the environment and the
temporal one specifies the response of the system.

The semantics of vacuity for w-ACTL is that a formulais vacuous in a model/ if
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the “witness” formulaw(y) holds in M [11, 12]. The witness is obtained by replacing the
smallest state subformula withise. The replacement proceeds top-down on the parse tree
of the formula, at each binary operator being applied reeelss on the non-propositional
operand. This is a generalization of antecedent failurerevtiee consequent is vacuous and

it represents the response of the system to the environrientlis antecedent failure can be
detected by replacingwith false ina — b and verifying that the implication still holds. For w-
ACTL, the temporal subformulas represent the system resspand are therefore considered
“important”, i.e., likely to be vacuous, hence replacement is applied to teabéormulas.
Model checking ofw(y) is linear in the sizes of the formula and of the model. Thuss th

algorithm is of the same complexity as CTL model checking.

Kupferman and Vardi[69, 70] define vacuity for CTL*, restad to (anti)monotonic formu-
las. (Anti)Monotonicity is ensured by a sufficient syntacondition: a formula is (antiymonotonic
all the occurrences of its subformulas are in the scope ovan rumber of negations, or all of
them are in the scope of an odd number of negations. Such fasrate called gbure polarity,
otherwise they are ahixed polarity In this context, a formula is vacuous in a modeV/ if it
contains a state subformulesuch thatp[¢) < true] andy[y) < false] both hold inM [69, 70].
This definition can be applied to detect vacuity of false folas (unsatisfied in the model) as
well, as done in [59] for CTL: a false formula is vacuous inM if for some subformula),
bothp[y — true| andp[y «— false| are false inM/. Samer [90] modifies the definition slightly,
by parameterizing it with a finite set of replacements thatuker can specify as the likely
causes of vacuity. A formula is vacuous if none of those @ptzents affect the value of the

formula in the model.

Vacuity detection by the definition of Kupferman and Vardperformed by creating two
“witnesses” for each state subformuta [y < true] andy[y) « false|. The total number of
witnesses is thus linear in the size of the formula. The vstee are then model checked. The
method applies to any CTL* formulas as long as different o@nces of the same subformula

are treated as different subformulas. The overall compl@fithis algorithm for CTL is linear
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in the size of the model and quadratic in the size of the foapamd for LTL and CTL* it is||
times the cost of model checking. Purandare and Somenzpj@éent an optimized version
of this algorithm for CTL where all witnesses are checked sirgle parsing of the formula
and intermediate results are cached for reuse; while tlés dot change the complexity of the
algorithm, it shows up to 40% time improvement in a numberest tases reported in [84].
Gurfinkel and Chechik [59] define a framework that reducesitacietection, as defined by
Kupferman and Vardi, to multi-valued model checking oveattide of possible vacuity an-
swers. They also introduce the notionm@itual vacuityfor subformulas that are syntactically
non-overlapping and simultaneously vacuous in a formulacesthis notion is important for
our work, we give its definition next. Itis not the definitiortioduced in [59], but an equivalent

one.

Definition 8 (Mutual vacuity) Let ¢ be a temporal formula and/ be a model such that
M E ¢. Lety, ¢ be two non-overlapping subformulas of We say that), v are mutually
vacuousn ¢ (in M) if ¢ is vacuous in), and for any replacemergtof ¢ in ¢, p[p «— &] is

vacuous iny, where vacuity is as defined in Definition 7.

Beeret al.[12] extend the vacuity detection of [69, 70] to any logicsost operators are
monotonic or antimonotonic in each operand; these areddaligcs with polarity

Armoni et al. [5] remove the restriction to pure polarity and hence toijaminotonic for-
mulas by introducing vacuity detection for LTL formulas imnixed polarity. Gurfinkel and
Chechik [58] extend this approach to CTL*, whereas Bugthal. [20] extend it to LTL for-
mulas containing certain forms of regular expressions ngrfrom practical experience. Sim-
mondset al. [92] also address the vacuity of LTL formulas. In these apphes, syntactic
replacements of subformulas as described so far are norlongect to detect vacuity. A for-
mula with mixed polarity is ho longer monotonic or antimoowit, hence replacement of only
the extremesemantic valuegue or false is no longer sufficient. A subformula corresponds

semantically to a set or a sequence of states on a compupatibndepending on whether the
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subformula is a state or a path formula, respectively. Tthesreplacements need to take into
account all possible sets or sequences of states along tatopuaths.

In [5, 58], a formulay is vacuous in a subformutaif the quantified formul&/z. o[ — z]
holds. For LTL extended with certain regular expressio@€] {ises the same definition, where
guantification also applies to subformulas that are reggipressions. A similar definition is
used in [92], where a variabjeis vacuous ifp[p < x| holds, withx a fresh variable. The com-
plexity of vacuity detection is linear in the complexity obihel checking for LTL and ACTL*
and ECTL* [5]. For general CTL* formulas it is 2EXPTIME-congte (EXPTIME-complete
for CTL) [58]. For LTL with regular expressions it is in EXPAEGE and is NEXPTIME-
hard [20].

For p-calculus, Namjoshi [80] defines a proof-based semanticgdouity: a proof is ob-
tained as a by-product of model checking the formula; themfdrmula is considered vacuous
if some of its subformulas are not essential to any possitdefp The detection algorithm
works by building a maximal proof and has the same compleastynodel checking. Dong
et al. [43] define a different semantics for vacuity pfcalculus: a formula is vacuous if there
exists a subformula of it that can be strengthened; a sulilarin ;.-calculus represents a set
of states, and it is strengthened when mapped to a smallef stdtes. This latter definition
can also be extended to false formulas where subformulaweaikened. The strengthening
or weakening results from replacements of subformulas fitte or true, respectively, as
in [69, 12], and with the same complexity, or by simplifyifgettransition label sets of the
modal operators(* )" or “[ ]”. Thus, the notion of vacuity is extended to capture unneces
sary labels of modal operators. The detection algorithnke/by considering maximal sets of

labels to be replaced, andrisx |p| more expensive than model checking.

3.1.3 Our contribution

We improve the vacuity detection of Kupferman and Vardi bygarsing a new algorithm along

the lines of [59]. We choose the definition of vacuity givenKuypferman and Vardi because
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it does not restrict the temporal logic, as was done by Beat.[11], and allows us to work
with full CTL. At the same time, it is less computationallyp@nsive than semantic notions of
vacuity as defined by Armorat al. [5] and other similar approaches. It also does not rely on
any special underlying engine providing proofs (as in [8@hich most model checkers do not

provide.

We follow the approach of [59] where all possible mutual vcanswers are ordered in
a lattice, and the detection proceeds by model checkingtishattice. We, however, do not
use the lattice of [59]. We define a namcuity latticethat restricts oapproximateghe mu-
tual vacuity answers to subformulas that are syntacticadly-overlapping, and independently
(not mutually) vacuous in a formula for a given model, by tledirdtion of Kupferman and
Vardi. The difference between mutual and individual vacistthat mutually vacuous formu-
las can besimultaneouslyeplaced by constants, whereas individually vacuous ftasnare

independentlyeplaced by constants, without affecting the value of a tdam

Thus, our approximation loses the information abowttuality of the vacuity, but in ex-
change for a gain in complexity. Formally, using the mutwadwity lattice of [59], an answer
to vacuity detection is a set aetsof mutually vacuous formulas, whereas ours is a set of
singleton vacuous subformulas. Detecting mutual vacuitsnbdel checking using the mutual
vacuity lattice of [59] is equivalent to making simultansaeplacements by constants for all
possible subsets of atomic propositions, and checkingetha@ting “witnesses”, similar to the
approach of Kupferman and Vardi. This requires a numberrs of a classical model checker
that isexponentialin the number of atomic propositions. Our algorithm, calésQUoT,
is equivalent to Kupferman and Vardi’s algorithm, and thgaiealent to dinear number of
calls to a classical model checker. IntuitivehaMJOT essentially checks all the witnesses of
Kupferman and Vardi in parallel, and reports whether a fdenisivacuous, and which of its
subformulas are vacuous in the model. Experimentally, vesvstunning time improvements
up to 30% in several test cases over the naive detectiomfioigpthe definition of Kupferman

and Vardi. The results have been published in [51]. Here weant it slightly differently, by
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showing that it is an instance of a more general approximdtemework, that we also define
and use also for query solving.

Our approximation is an over-approximation, in the senag¢ dlset of subformulas found
independently vacuous may not be mutually vacuous, but werkhat any mutually vacuous
set has to be a subset of that found. Thus, we can reach a fuliosg that is, a mutually
vacuous set, from the approximation found, by addition&ckls. We describe an iterative
refinement technique that traverses the parse tree of theufartop-bottom in a breadth-first
manner, and appliesApUOT to the subformulas on each level; thus, we consider incneme
tally more and smaller non-overlapping subformulas. Ireothords, this iterative refinement
calls VAQUOT repeatedly with an incrementally growing lattice of inasengly refined vacu-
ity answers. This algorithm has the advantage of being abstap early, as soon as we find
a larger subformula being vacuous; in that case, we needomsider its subformulas, since
then we know that they will all be vacuous (we work with momotoformulas). The scheme
pays off if it seldom reaches the lower levels of the parse tihat have many non-overlapping
formulas (in the worst case, the leaves of the parse tref, thé most formulas, that is, the
atomic propositions). The number of formulas thaQWoT runs on, at any time, determines
the number of elements of the lattice and thus affects thieqmeance of our algorithm. This
scheme also recovers some of the information lost due topproaimation, since it discovers

the largest vacuous subformulas that would also be founduiyahvacuity detection.

3.1.4 Limitations

Our approach is an effort to improve the performance of \wgaetection according to a logic-
based definition of vacuity. Other optimizations in thisediion are possible, but we think it
is more important to address the main shortcoming of appesasuch as ours, namely that
the vacuity answers may be hard to interpret, which is whaob&erved while doing our
experiments with XQUOT. One problem is that the partitioning of a model into thetsys

versus its environment is lost during model checking. Thesea of vacuity initially observed
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in practice came from errors in the environment modeling the antecedent failures), but
subsequent vacuity detection approaches have lost tlois t@nly Beeret al. [11] take into
consideration the reactivity of the system to the environinmaplicitly, through the definition
of the logic w-ACTL.

Another problem is that the analyst expects feedback féhéisdescription of the model
and property, which are often different than the compiledleti@nd temporal formula. When
vacuity of a formula is established in some of its subformuthe user needs to undertake a
non-trivial effort to identify the parts of the model degtion responsible for that vacuity, as
we ourselves often experienced. A related problem is thatityais property-centric and thus
likely to give many false alarms for model debugging. Ourexignce with several test cases
suggests that most of the vacuity reported by current dlyos does not indicate errors, but
only that properties can be simplified.

These problems are addressed in other recent work [14, Bd]same of our own [27],

which explore alternative notions of vacuity.

3.2 Query Solving

3.2.1 The problem

A related property-based framework that helps in model dgimg is that of query solving. In
this framework, users can ask some partial questionsdciaporal logiqueries to explore
which properties hold of their models.

For instance, instead of askimghethera switch becomes “on” eventually along all paths,
in CTL: AF switch a query asksvhatvalue the switch eventually takes along all paths, as
a CTL query: AF ?{switch}. This is useful when trying to understand large models that
are not accompanied by clear specifications of their behawibich is common in system

maintenance.
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Definition 1 (Query and solution [25]) A CTL query is a CTL formula with a missing propo-
sitional subformula, designated by a placeholdet’f: A query is positiveif the placeholder
appears in the scope of an even number of negationsnagdtiveotherwise. Asolutionto the
guery is any propositional formula that, when substitutadfie placeholder, results ina CTL

formula that holds in the model.

In our example, both “on” and “off” are solutions, if both/” switchand AF’ —switchhold in
the model.

Since there ar@?" distinct Boolean formulas over any givervariables, a naive algorithm
that tries each possible formula as a replacementfoim‘the query and then model checks
the resulting temporal formula makes a double-exponemtiadber of calls to a model checker.

This gives an upper bound on the complexity of the problem.

3.2.2 Related work

The precursor of query solving is the problem of inferringanants of systems, that is, proper-
ties that hold in every state [64]; in query terms, that mesah&ng AG 7. Based on experience
with analyzing large software, Chan [25] identifies the niee@ generalization to the inference
of invariants and, as a result, formalizes for the first timepgroblem of solving temporal-logic
gueries, using CTL. Realizing that the problem is in the Wwoase double exponential in the
number of state variables, Chan defines a subset of CTL guareh that the set of their solu-
tions has a minimal element: a strongest subformula, thaliémall other subformulas in the
set. Chan calls these queriadid. The naive method Chan envisions for solving such queries
is: try out all mintermsi(e., conjunctions of all propositions or their negations) agglart the
disjunction of all that are solutions, if the query is pogtij.e., monotonic in the empty posi-
tion); if the query is negative.g., anti-monotonic), try out all negations of minterms andorép
the conjunction of all such negations that are solutionss @mounts to solving a number of
model-checking problems that is exponential in the numbatamic propositions. Since this

complexity is still not practical, Chan finds a syntactic dals of valid queries for which he
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devises an algorithm with the same complexity as model ahgckThe algorithm works as
symbolic CTL model checking, except that it computes fixpdammulas forward, from the
set of initial states, rather than backward, from the stsatisfying the innermost propositional
formulas, for those missing propositional formulas in theges. He also defines a grammar
for generating these restricted valid queries. The quarinferring invariantss among these

valid queries.

Chan’s work is generalized and extended by Bruns and Gadd€ft@]. They introduce
lattices to represent the structure of the solution-spéderoporal-logic queries and extend
classical tree-automata-based model checking to modekuoigeover these lattices to solve
gueries. They use the fact that propositional formulas edered by implication. For any kind
of query {.e., not only valid ones), the query solving problem (that thelf query checkiny
is formalized as the problem of finding the set of strongekittgms to the query, with respect
to implication. Bruns and Godefroid define the lattice ofsset strongest solutions. The
elements of the lattice represent all possible sets of gg@ntions. For positive queries, these
sets can be uniquely represented by their minimal elemémds,are the strongest formulas
that are solutions to the query. The meet and join operatbmise lattice correspond to set
intersection and union, respectively, computed in termbi@iminimal elements. The authors
devise a model checking algorithm that constructs an alterg tree-automaton for the query
and for the model, computes their product, and checks itigptiess, just like in classical
automata-based model-checking, except that the tramsl&r the query introduces values
from the lattice, and conjunction and disjunction are repthby the lattice meet and join. The
algorithm is so that its output is a value of the lattice thaeg the set of strongest solutions to
the query. This method also shows how solutions to queriebeaomputed compositionally,
from solutions to subqueries. The complexity of this apphpdowever, is the same as that of

trying all possible solutions naively, so still double-exgntial in the number of state variables.

Gurfinkel et al. [57, 28] study the problem more thoroughly, generalizingrigs to have

more than one placeholder, with mixed (positive and negatiecurrences. They also discuss
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several new applications of query solving in software eegimg. The authors also use the
lattice introduced by Bruns and Godefroid, but give a synabnbdel checking algorithm over
this lattice, for queries with multiple placeholders. Thgagithm is based on a translation of
CTL queries to formulas containing lattice elements, ané onulti-valued semantics which
replaces classical conjunction and disjunction with ¢attmeet and join. Given a query, the
algorithm results in the lattice value representing thegsetry solutions. The authors imple-
ment the algorithm with a multi-valued model checking tootaeport its evaluation on an
example of a cruise control system that shows better pedoncathan the double-exponential

upper bound.

In a parallel development, Hornus and Schnoebelen [63yshelcomplexity of computing
strongest solutions to CTL* queries, and deciding unigasioé these solutions, where queries
are general (not necessarily valid). They show that thelpmolof checking whether a given
guery has a unique strongest solution igigensystem, and computing this solution, can be
solved with a linear number of model-checking runs. Theltaswgeneralized to checking
completeness of a set of strongest solutions. They alssidescmethod by which computing
a first strongest solution requires a linear number of matiecking runs, a second one - a
guadratic number, and so on. They show that these increasstg are unavoidable, since
even counting the strongest solutions is intractable. Hs¢gblish that the double-exponential

upper bound on the complexity of general query solving is alsower bound.

In a series of papers [88, 90, 89], Samer and Veith continuen&twork of finding sub-
classes of valid queries. In [88], the authors point out amrect an error in Chan’s initial
grammar for valid CTL queries, and discuss the challengesoidihg syntactically whether a
query is valid. In [89], they give an analogous grammar fdrdveTL queries. In [90], they
formally establish a connection between vacuity detechioth query solving, and briefly dis-
cuss how it leads to extensions of query solving framewadnks allow temporal rather than
only propositional solutions. The connection to vacuitygly states that a formula is vacuous

in a subformula, iff the query obtained by replacing thatfetiula with a placeholder, has
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false as its strongest solution, for positive queriesd for negative queries). Since then all
possible formulas are solutions to the query, they do netathe value of the formula, hence
the vacuity. Our work explores a further connection betwenentwo problems: we do not

consider vacuity detection as a special case of query sp(thus reducing the easier problem
of vacuity detection to the harder problem of query solvjrag) pointed to by [90], but solve

vacuity detection independently, and keeping its reladi@siness, even if using very similar
techniques as for query solving.

Zhang and Cleaveland [96] define and solve querigs-galculus for Presburger system,
that are systems whose behavior is described by Presborgaulfis, with integer-valued vari-
ables and linear inequalities on those variables. Theihateuses tableaux for evaluating
u~calculus queries; the tableaux are tree-structured pravbbse leaves contain assignments
of integer values to variables. The placeholder in the queakes some leaves have no assign-
ments for some variables. The solutions to queries are tsEgnments at the tableau leaves
that make the tableau/proof successid, make the query into a true formula. The authors
distinguish between existential and universal query cimeck their framework. ‘Existen-
tial’ means finding query solutions for one tableau, and hasame complexity gi-calculus
model checking. ‘Universal’ query checking means enunmegatll possible tableaux, and is
exponential in the cost gf-calculus model checking. They also report on an implentemta
and a case study where they evaluate their algorithm by cosgpeto naively model checking
the formulas obtained by replacing the placeholder witpadisible variable assignments. The

evaluation, however, does not show significant improveraoeet the naive approach.

3.2.3 Our contribution

We note that for many applications, only state solutionsuerigs are needed, that is, only
those propositional subformulas that are conjunctiongl@tamic propositions or their nega-
tions. The number of such formulas is single-exponentitdémumber of atomic propositions.

Finding only the state solutions to a query is thus an easg@m that can be solved naively
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with a single-exponential number of calls to a model checkeplacing the placeholder with
every possible propositional formula representing a sirggate, and checking the resulting

formulas sequentially.

We give an algorithm, calledQ, that finds, for any CTL query, exactly the solutions that
represent single states. Our implementation is fully syimpoonsisting of a single model-
checking run over a lattice of sets of state-solutions. Spatential applications of this algo-
rithm are: finding reachable states, finding procedure sumas)ar dominators/postdominators
in program analysis.

Our approach is similar to that of [60]: it uses a lattice afssef solutions, translates
a query into a formula containing values from that latticed anodel-checks the resulting
formula over the lattice. We show how our lattice and aldnnittompute an approximation of
the results of [60]. The approximation is an instance of aeganapproximation framework
that we introduce for model checking with lattices of set&] apply also to vacuity detection.
Essentially, the lattice used in [60] contains all sets ofpsitional formulas that may solve a
qguery. A propositional formula in general represents a sstates. If a formula is a solution
to the query, it is not true that any single state in the setesgmted by that formula, also
represents a solution to the query. We obtain our latticeg@plng from the lattice of [60] only
those formulas that represent single states. The maintyafebur approach to query solving
is that it makes the problem more tractable by restrictirgstiape of the solutions, as opposed

to restricting the logic, as was previously done.

We also show a new application coming from genetics whichvated our approximation.
The application asks to find the stable states of a gene netwbich amounts to finding the
state solutions to CTL quer¥ ' AG 7. We show that our implementation solves this prob-
lem more efficiently than an algorithm making naive replaeata and checking the resulting

formulas sequentially.

Our algorithm has the potential problem that it doubles thealber of propositional vari-

ables and it may suffer from BDD size explosion. To handls tomplexity, we describe
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another iterative refinement scheme under which querieasked gradually about more and
more atomic propositions. Solutions obtained with a smak of atoms are used to restrict
the next run of our algorithm with a superset of those atontss Work has been published

previously in [52, 50].

3.2.4 Limitations

The main limitation of our approach is imposed by appliaagioWe have shown its effective-
ness on an interesting and important problem, that of finthiegtable states in gene networks,
but we need to perform extensive evaluation to assess iitsiméfe aim, however, to keep the
evaluations in tune with real applications, rather thangsirtificial cases. We expect that new
applications may require new approximations to query sglvbut we hope that our general
approximation framework can help. For our particular innpéstation, the challenge remains
to avoid BDD size explosion. We need to investigate cachthgses that can help, in addition

to our iterative refinement technique.

The main drawback of query solving in general is its compyexAny further improve-
ments have to concentrate on practical cases where quemggd useful and identify classes
of problems and any characteristics that can help make thig@gn more tractable in those
cases. Our approach makes one step in this direction, glthibonly exploits one parameter
of the problem: the shape of solutions. We believe that dordapendent problem parameters
should be identified and exploited in order to effectivelytiggainst the intractability of query

solving.
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3.3 Assumption Generation

3.3.1 The problem

As we have already mentioned, model checking is a hard proligelf as it suffers from the
well-known state-space explosion. A feasible approaclobargy this problem is composi-
tional, where properties are verified of a multi- componeatsi without actually composing
the entire model that may lead to state-space explosion.séigline for compositional veri-
fication is established by assume-guarantee rules which Bba to verify each component

individually using assumptions about the rest of the conepts

Definition 2 (Assumption generation) For a model consisting of components, and M,

and a propertyp, find an assumptiod such that\/; under A satisfiesp, and M, satisfiesA.

The simplest assume-guarantee rule ensures that if we faidasud, then the system ai/;

and M, satisfiesp.

3.3.2 Related work

Misra and Chandy [78] provide one of the earliest methode®fpr compositional verification
of invariant properties of networks of processes commuimgahrough messages. They intro-
duce a triple notation similar to the Hoare triples used infieation of sequential processes.
A triple is of the formr | h | s whereh denotes a process andand s are assertions. The
meaning of the triple iss holds initially in 2, and ifr holds at all times prior to any message
transmission of,, thens holds at all times prior to and immediately following thadrismis-
sion; a message transmission/ys eitherh sending or receiving a message. For a network
H = hy || hy || ... of processes;, the proof rule given in [78] for combining verification
resultsis: ifr; | h; | s; for all i, then/\,r; | H | \,; si.

Jones [65] discusses a similar approach for processes coiteting through shared vari-

ables. He introduces the terminology of “rely-conditionida“‘guarantee-condition” for the
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first and last members of a triple, respectively. His prodd glipulates that the rely conditions
of each component should only depend on the rely-conditeesall, and two (or more) com-
ponents must be able to coexist, in the sense that the gaaraanditions of one should be at
least as strong as the rely-conditions of the other.

Pnueli [83] formalizes compositional verification for tlegrtporal logic LTL. He introduces
theassume-guarantgearadigm similarly to [78, 65]. A triple is denotéd) A, (1)) and means
that componend/;, assuming its environment behaves as specified by LTL famugnsures

LTL formula + holds. The following assume-guarantee proof rule is given:

(@) Mi{x)
(V) My (€)
ONE— @

ONX —

(0) My || Ma(x A E)

Usually the rule is used in the following simplified form whioeeds only one assumptiah

and we use in our work as well:

Rule ASym
L: (A) M ()

2: (true) M, (A)

(true) My || Ma (o)
wherey is the property we wish to establish of the closed systeme Nuwit the rule is asym-
metric in the use of the two components, hence its name.

This rule provides a general framework for the developméabmpositional techniques in
model checking. The different assume-guarantee modekeigeapproaches are distinguished
by: the temporal logics used for formalizigg the type of structures/; and M, and of their
composition, and, the application of the assume-guaraategwhich is determined by finding

A.
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Clarkeet al. [37] define a particular application of the assume-guamniée and instan-
tiate it for CTL formulas of asynchronous processes, and fis CTL* formulas of syn-
chronous processes. They consider, for the asynchronses peocesses modeled as LTSs
whose composition is defined as usual, with synchronizatiocommon actions and inter-
leaving of the rest. For the synchronous case, they considere machines composed syn-
chronously (Moore machines are like Kripke structuresepxthe state variables are split into
input, internal, and output variables). Clar&eal. provide a new proof rule consisting of
two symmetric applications of the assume-guarantee rute. aBsume-guarantee rule is non-
symmetric in the use of the component and the environmenthemew rule of [37], a second
application of the assume-guarantee rule switches the ofltne component and the environ-
ment. The rule is also simplified in the sense that it usesasgstionA for one procesd/;
(component or environment) simply the other prockks projected on the interface withy; .
Projection consists of hiding the atomic propositions @r aletions not in the interface. This

way, the second premise of the assume-guarantee rule imgerlaeeded. The new rule is:

<M2laMl>M1<<PaM1>
<M1laM2)M2 <¢a1v12>

(M) My {panm, N Yars)

wherea M, aM, are the alphabets of the component and environment, thleiset of actions
or atomic propositions used in their models. We use an akgtebindex on a formula to show
that the formula is constructed only from atoms in that aligha The rule is proved sound,
but its application benefits verification only if the progedtprocesses are much smaller than
the original ones. Its benefit is illustrated in two case &sida tree arbiter used to control
access to shared resource [37], and the modular contréke€BU with decoupled access and
execution units [40].

Grumberg and Long [55] define assume-guarantee model ¢lgeokiACTL* formulas of
synchronous processes and consider Moore machines codnggisehronously. They show

that for ACTL* formulas, the premises of the assume-guaantle reduce to simulation (re-
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finement) checking. For every ACTL* formula, the rule can then be applied as follows:

M <A
Al My < A
M || A=
My [| Mz =

whereA, A’ are structures representing assumptions. This rule adpl@ny Kripke structures

with synchronous composition. For a component and its enuaent that are Moore machines
closing each other, Grumberg and Long further show thatsitifScient to check a component
by closing it with themaximalenvironment with respect to the simulation relation, thst i
the environemnt that assigns non-deterministic valueBdartput variables of the component
Moore machine in each computation step. For any environméntit is shown that)/; ||
My < M || MP* whereM"®is the maximal environment. Thus/"*is used forA’, A is

no longer needed, and the rule is applied as:

My || M3 =

My || My =

Grumberg and Long illustrate the effectiveness of theirragph on an example of a CPU

controller.

Any assume-guarantee approach relies on the definitionpbppate assumptions. The
work presented so far gives sufficient conditions under tvineasonable assumptions can be
computed. When these conditions are not applicable or dreffeative, the discovery of as-
sumptions rests in the expertise of the verification spistsahnd is a manual process. Other
work reports implementations and case studies that suggetstodologies for choosing the
right assumptions [62, 47]. The lack of more systematic mgsguarantee techniques comes
from the lack of algorithmic methods for assumption disegvRecent work has made signif-
icant progress in automating the computation of assumgtion

Cobleighet al. [42] propose a fully-automated method for the assume-giaeamodel

checking of safety properties. The method uses a known iligothat is able to infer or
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learn a regular languages using oracles [4, 87]. To learm&nawn languagé., the oracles
are used to answer two types of queries: membership quesi@sgawhether a string is

in L, and conjectures asking whether the language inferredna¢ gwint is.. When used
with the assume-guarantee rule, the oracles are instafheemodel checker. The unknown
language is learned as an automaton representing the assumi@nd whose alphabet is the
interface between the component and its environment. Ordehohecker instance answers
membership queries by checking whether a given stringt@slde property when composed
with M;: (s)M;(p). Given a conjectured assumption automatgranother instance checks
the first premise of the ruleA) M, (y), and yet another instance checks the second premise:
(true) M, (A). Counterexamples obtained at any point from model checkiegised to modify
the conjectured automaton and make new conjectures thahaoked by the oracles again.
The algorithm is guaranteed to converge at a minimal autonthit satisfies both premises of

the assume-guarantee rule and represents the unknownpgsurh

Alur et al.[2] provide a symbolic implementation of this method. Cadpeet al. [41] and
Nam and Alur [79] independently extend the method to alsongmse systems automatically
and optimally in terms of computational resources (timemednory) used by the learning for
those decompositions. Various algorithmic optimizatitmshe basic assumption generation
framework of [42] are proposed in [24, 93], and an alterrainference mechanism to L* is

proposed in [56]. Farzaet al. [45] extend the learning framework to liveness properties.

Flanagan and Qadeer [48] propose a different method to atikcetly discover assump-
tions for the assume-guarantee verification of multi-tdeshJava programs. A guarantee for
each thread is computed as a relation on the global modditatio the store done by that
thread. The computation starts with the empty relation #eriively fills it in during model
checking, based on the guarantees of other threads. Thajatssn for each thread is then the

disjunction of the guarantees of all the other threads.

Other work studies the automatic computation of assumgtrmependently of the assume-

guarantee rule. Giannakopouletial. [53] provide an algorithm that, given an LTS of a com-
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ponent and one of a safety property, finds Weakestenvironment assumption, as an LTS
as well, composed with which the component satisfies thegptppSimilar ideas are used for
interface synthesi®r (sequential) software components in the work of Adtial.[1] and Hen-

zingeret al.[61]. In that context, the interfaces are automata desuithe allowed sequence

of calls to methods of a component.

3.3.3 Our contribution

In this work, we use action-based LTSs, as opposed to our iwacuity detection and query
solving that uses state-based Kripke structures.

We introduce a novel iterative refinement technique thareds the learning-based frame-
work of [42] so that the alphabet of the assumption beingieais also inferred during learn-
ing. In the original framework of [42], the alphabet of theasption automaton being learned
is fixed to consist of all the actions in the interface betweemponents. Our intuition is that
not all of these actions are needed for verifying a given ergp Our refinement loop starts
learning the assumption with a small alphabet containiegaittions referred to explicitly in
the property to be verified, and adds actions to this alpreeéeded. The need to add actions
is discovered by extending the counterexample analysimgllearning. Actions are added
greedily, and the process converges either by concludiaigtiie property is not satisfied, or
reaching an assumption good enough to satisfy the premiiskee assume-guarantee rule and
conclude that the property holds.

Our refinement technique automatically introduces a notibapproximation since the
intermediate assumptions being computed with a subsetahtbrface alphabet are approxi-
mations of the assumption that would be obtained with tharftérface alphabet. We formally
show that they are under-approximations: they contain ffd&baviors than the full interface
assumption, and assumptions in later refinement stageaioanore behaviors than those in
earlier stages of the refinement. The benefit of our refinereahinique is that it leads to

smaller assumptions and smaller verification problems. Mdg&vsexperimentally that it makes
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tractable many cases that were intractable with the ofigg@aning framework, and it is also

more scalable than non-compositional verification. We alsaly its efficiency for various

assume-guarantee rules, including symmetric and circuas. The technique is not particu-
larly tied with learning; it can be applied to other compisitll verification approaches; for
instance, we also use it in our second contribution, desdmiext.

We further improve automated assumption generation bygsiog an alternative to the
current learning-based techniques. These techniqguesntaigenerate deterministic assump-
tions. It is well known that a non-deterministic automatan e exponentially smaller than a
deterministic one for the same language. We thus removeegtigation to determinism in an
effort to reduce assumption and problem sizes even moreadiigorevious work. We achieve
this goal by computing assumptions as abstractions. Fopoaents)/; and M, and prop-
erty ¢, with Rule ASrm, Premise 2s satisfied ifA is an over-approximation a¥/,, i.e., if it
contains the behaviors @f/, and possibly more. We can construct suchdaand refine it us-
ing counterexamples as in the well-known framework of Cetexample Guided Abstraction
Refinement (CEGAR) [33]. We also incorporate our previoyhabet refinement technique
in our new method. We report experimental results which stiatvour new algorithm, called

AGAR, can be significantly better than the original learnbagsed techniques.

3.3.4 Limitations

The technical limitations of our work are that both the alpdtarefinement and the abstraction
refinement are formulated only for action-based models anthé verification of safety prop-

erties. A natural extension would be to consider statebasadels and liveness properties.
For alphabet refinement, we also need to explore model-depemvays of identifying which

actions to add at each refinement step. Our current methedsdapendent of the model; they
simply compare alphabets of traces. We could use slicifgniqaes, and use multiple coun-
terexamples. For our abstraction refinement technique,egd to compare how it performs

as opposed to monolithic verification. With learning, we evable to show that compositional
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verification scales better than non-compositional vetiticaonly after implementing our al-
phabet refinement optimization and implementatiomf@omponents by recursive application
of Rule ASvm. Similar implementation and evaluation of our abstractieimement are still

pending.

3.4 Summary

We have presented in more detail the problems we addresssithésis, related work, and
have outlined the main contributions and limitations of work. In the following chapters, we

present the technical details of our contributions, andtexhdl comparison with related work.



Chapter 4

Vacuity Detection and Query Solving

4.1 Introduction

Vacuity detection and query solving are similar problens thie treat here in a unified way.
Both problems have been formulated as multi-valued modetldhg over lattices of sets,
where the sets represent all possible answers to vacuiegtiat or all possible solutions to
gueries. In their most general formulation, these problesqgsire an exponential number of
runs of a classical model checker. Their multi-valued fdatian allows them to be solved
by a single run of a multi-valued model checker. The efficyeofcthe run is determined by
the implementation of the lattice operations. With the gahlattices of solutions being very

complex, such efficient implementations are unlikely.

In this chapter, we first provide a unifying framework thdbwais the definition of approx-
imations for model checking over lattices of sets in genéngg then propose simpler lattices
for vacuity detection and query solving that are instandeésegeneral framework. These ap-
proximations are defined in order to solve efficiently instireg practical cases, rather than the
general problems. We also describe implementations of hubeeking with these lattices in
the classical symbolic model checker NuSMV [32], and ev&ltlaem experimentally, show-

ing that they outperform naive algorithms. Being symbatigr; algorithms are exposed to the

39
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size explosion of the decision diagrams used to encode tidgms, as in any symbolic ap-
proach. To handle this problem, we describe how approxonattan be computed by iterative

refinement, that works with incrementally larger lattices.

4.1.1 Vacuity detection

Although various approaches to vacuity detection have Ipeeposed (see Chapter 3), few
efficient algorithms and implementations have been regoktée work with CTL formulas and
the definition of vacuity of Kupferman and Vardi (see Cha@erWe choose this definition,
since it does not restrict the logic as done by Beteal. [11], and it is less computationally
expensive than semantic definitions as those of [5, 58]: egisivalent to a linear number of
runs of a model checker, rather than an exponential numéar,the latter approaches. It also
does not require special model checkers that provide prasfequired in [80, 92].

Our algorithm is called ¥QUOT and is based on techniques described in [59], where a
multi-valued lattice is introduced for the detectionnofitual vacuityi.e., the detection of sets
of subformulas that are simultaneously vacuous in a formiadel checking with this lat-
tice outputs information about the largest vacuous subdtamof a formula in one run. But
the lattice does not immediately lead to an efficient impletaton. We approximate it by a
simpler lattice, but with a similar model checking appraaCtur algorithm, called ¥QUoT,
only outputs information about the individual vacuity o¥/eeal fixed non-overlapping subfor-
mulas of a formula. In the worst case, the subformulas cail beeaatomic propositions in the
formula. We also introduce a refinement technique that rumstgorithm iteratively to find
the largest vacuous subformulas of a formula. Thus, by aqupation and refinement we find
mutual vacuity that is hard to detect in one run with the dattf [59].

To illustrate our approximation, consider verifying théldaving property of a traffic light
controller: in every state, the light can loed or yellow of green formalized in CTL as:
AG(red Vv vyellow v green. Suppose an error was made in modeling, and the variable

for light is stuck at value ‘red’ in the model. If we check tlig@mula on this model for the



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 41

mutual vacuity of atomic propositions, we find out that thenfala is vacuous in subformula
(yellow Vv green, i.e, yellowandgreenare mutually vacuous. In other words, bgtlow
andgreencan be simultaneously replaced wittise, and the formula still holds. The mutual
vacuity detection with the lattice of [59] outpufgyellow, greer} }, as this is the only set of
mutually vacuous propositions. In general, the mutual ig@nswer is a set of sets. If we
check the same formulas for individual vacuity of the atoprigpositions, as in the approach
of Kupferman and Vardi, we find that each yd#llow and greenare vacuous, but we cannot
conclude that the entire subformulgellow Vv green is vacuous. With our approximation,
we obtain the same answer as Kupferman and Vardi. In contréis¢ mutual vacuity answer,
ours is{{yellow}, {green}. Thus, our answer is exact (sound and complete) with respect
Kupferman and Vardi's definition of vacuity, but sound andamplete (only an approxima-

tion) with respect to mutual vacuity.

To illustrate our refinement idea on this example, suppasdidjunction is right-associative.
Then, the parse tree of the formula will have top-most subtdas (under root operatot(;)
red andyellow Vv green We can introduce a fresh super-proposition cabdage to repre-
sentyellow Vv green and run MQUOT with propositionged andblue We find thatblueis
vacuous, and we can stop without a need to ra@WOT on propositiong/ellow andgreen
We thus detect the mutual vacuity yéllow andgreencheaper than the mutual vacuity algo-
rithm of [59] that explores all possible sets of mutually waas propositions from amongd,

yellow, andgreenin one run.

Given a model, and a CTL formula with a marked subset of itsowerlapping subfor-
mulas, MAQUOT checks whether the formula is true in the model, and re@drtie vacuous
subformulas from those marked. For any single run ahMoOT we assume without loss of
generality that the subformulas of interest are atomic @sdjons of the given formula. We can
always replace those subformulas with fresh names thatcagsaatomic propositions. Fol-
lowing [69], we consider a proposition vacuous if it can bglaeed by a constant(e or false)

without affecting the value of the formula in the model. Westr different occurrences of the
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same atomic proposition as different propositions. Wherfdhmula is true, XQUOT reports
whether all of its atomic propositions are vacuous (Vaclytlieue), none of them are vacu-
ous (Non-Vacuously True), or some of the atomic proposétiare vacuous (Vacuously True,
followed by a list of the vacuous propositions). Similaraass are given when the formula
is false. To find the largest subformulas that are vacuousfammaula, we can run ¥QUoOT
iteratively by considering at each iteration the non-aueping subformulas at the same level
of the parse tree of the formula, while we scan the tree taprdo a breadth-first manner. As

soon as we find a subformula as vacuous, we no longer scarbttesifsubformulas).

4.1.2 Query solving

For query solving, we noticed that, in the analysis of stedasition models, many problems
reduce to questions of the type: “What are all the statessthiédfy a property?” which are
not readily expressed in temporal logic and usually regejecialized algorithms, but we can
formulate them as queries.

One example is finding the reachable states, which is oftedetkin a pre-analysis step
to restrict further analysis only to those states. Thedestre typically found by computing
a forward transitive closure of the transition relation][332Ve can see reachable states as
solutions toE'F' 7.

Another example is the computation of “procedure summariés procedure summary
is a relation between states, representing the input/dbghavior of a procedure. The sum-
mary answers the question of which inputs lead to which dstps a result of executing the
procedure. They are computed in the form of “summary edgesttie control-flow graphs of
programs [86, 7]. We can obtain procedure summaries byreplVf" ((pc = PROC_END) A 7),
wherepc = PROC_END holds in the return statement of the procedure.

Yet another example is the algorithm for findidgminators/postdominatoia program
analysis, proposed in [3]. A states a postdominator of a statef all paths froms eventually

reacht, andt is a dominator ok if all paths tos pass through. Dominators/postdominators
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are solutions to the queryF" 7 (i.e., what propositional formulas eventually hold on all paths)
This insight gives us a uniform formulation of these proldeamd allows for easy creation
of solutions to other, similar, problems. For example, abpgm reported in genetics re-
search [21, 44] called for findingtable state®f a model, that are those states which, once
reached, are never left by the system. This is easily fortedlasF F'AG 7, meaning “what

are the reachable states in which the system will remaivéo®g.

With our point of view, we can characterize an important €laéuseful problems by a
common requirement: solutions to queries are single stéitb® model. For example, a query
AF 7 on the model in Figure 4.4 has solutiopsA —g A r) and(g A r). The first corresponds
to the states;, and is a state solution. The second corresponds to a sette$ &ta s»} but
neithers; nor s, is a solution by itself. When only state solutions are neededcan formulate
a restrictedstate queryby constraining the solutions to be single states, rathean Hrbitrary
propositional formulas (that represesgtsof states). A naive state-query solving algorithm is
to repeatedly substitute each state of the model for theeptader, and return those for which
the resulting CTL formula holds. This approach is linearha size of the state space and in
the cost of CTL model checking. While significantly more eéfit than general query solving,

this approach is not “fully” symbolic, since it requires nyaans of a model-checker.

Similarly to vacuity detection, [60] proposes a lattice akgy solutions and a multi-valued
model checking algorithm over that lattice for solving geth@ueries. We provide a symbolic
algorithm, called TQ, for solving the state queries that approximates the gegeeay-solving
approach of [60], by using only a simpler lattice of stateuiohs. We also describe a mini-
malist implementation which only modifies the interface lué tnodel-checker NuSMV [32].
While the complexity of our approach is the same as in theespnding naive approach, we
show empirically that TQ can perform better than the naive, using a case study fromtgen
ics [44]. We also describe an iterative refinement techniqwehich queries are asked about
gradually more atomic propositions. We solve first the quesgr as few propositions as fea-

sible, then use the solutions found with those proposittongstrict a next run that asks the
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guery over the atomic propositions just considered plusdéwers, and so on.

4.1.3 Outline

In Section 4.2, we provide additional background in latticeory and multi-valued model
checking. In Sections 4.3 and 4.4 we review the formulatmingcuity detection and query
solving as multi-valued checks. Section 4.5 describes eneal approximation framework.
The particular approximations and algorithms for both peots, with their implementations

and evaluations are in Sections 4.6 and 4.7. We concludeisniasd future work in Section 4.8.

4.2 Background

Lattice theory

Definition 3 (Finite lattice) A finite latticeis a pair (L, C), whereL is a finite set andC is a
partial order onL, such that every finite subsBt C L has a least upper bound (callgdin

and writtenLIB) and a greatest lower bound (calledeetand writtenrB).

Definition 4 (Minimal, maximal elements) An element € B C L is minimal(maximal)if
forall a € B, ifa C b(b C a), thena = b. For any finite lattice there exist ‘top” = UL and

‘bottom’ | = ML, that are themaximumand respectivelyninimumelements in the lattice.
When the orderingt is clear from the context, we simply refer to the latticdas

Definition 5 A lattice isdistributiveif meet and join distribute over each other, i.e., for any

a,b,ceL:
al(bne) = (aub)N(alc)

afl(bUc) = (amb)U(aMc)
Definition 6 (DeMorgan Algebra) A De Morganalgebra is a triple(L, C, —), where(L, C)
is a finite distributive lattice and- is any operation that is an involution, i.eq—¢ = ¢, and

satisfies De Morgan laws.
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Propositional formulas form a lattice we commonly work withor a set of atomic propo-
sitions P, let F(P) be the set of propositional formulas ovBr For example,F({p}) =
{true, false, p, =p}. This set forms a finite lattice ordered by implication (ségufe 4.1(a)).
Sincep = true, p is undertrue in this lattice. Meet and join in this lattice corresponddgital

operators\ andV, respectively.

Definition 7 (Up-set, Down-set)A subsetB C L is calledupward closear an up-set if for
anya,b € L, if b € Bandb C a, thena € B. In that case B can be identified by the sét of
its minimal elements, and we write = T/NV.

A subsetB C L is calleddownward closedr a down-setif for anya,b € L, if b € B and
a C b, thena € B. In that caseB can be identified by the sét of its maximal elements, and

we writeB = | N.

For example, for the latticeF ({p}),=-) shown in Figure 4.1(a)}{p, -p} = {p, —p,true}.
The set{p, —p} is not an up-set, wheredp, —p, true} is. For singletons, we writéa for 1{a},

and the same for down-sets.

Definition 8 (Up-set lattice) For any A C £, TA = 1M, whereM is the set of minimal
elements iMl. We writel/(L) for the set of all upsets df, i.e., A C Liff TA € U(L). U(L) is
closed under union and intersection, and therefore fornegtick ordered by set inclusion. We

call (U(L), C) theup-set latticeof L.

The up-set lattice af ({p}) is shown in Figure 4.1(b).

Definition 9 (Join-irreducible element) An elemeny in a lattice L is join-irreducibleif j #
1 andj cannot be decomposed as the join of other lattice elemeatsfar anyz andy in L,

j=xUyimpliesj =z orj=y.

Every element of a finite distributive lattice has a uniqupresentation as a join of join-

irreducible elements.
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Tfalse
true T{p,ﬂp} {p»ﬁp}
p —p p T=p {r} {-p}
false ftrue 0
T}

@) (b) ()

Figure 4.1: Lattices foP = {p}: (a) (F(P),=); (b) U(F(P)),C); (c) (2MP), Q).

For example, the join-irreducible elements of the lattit&igure 4.1(a) are and—p, and of

the one in Figure 4.1(b) —Hrue, Tp, T—p, andfalse.

Definition 10 (Minterm) In the lattice of propositional formula&(P), a join-irreducible el-
ement is a conjunction in which every atomic propositiorPadippears, positive or negated.

Such conjunctions are calledintermsand we denote their set byt (P).

For example,

M({p,q}) ={pANa,pAN—=g,=pNgq,—p A —q}.

Multi-valued CTL model checking

Consider the classical CTL fixpoint semantics given in Ceapt Recall that a formula holds
in a Kripke structurelM, written M |= ¢, if it holds in the initial statej.e., [¢](so) = true.
The complexity of model-checking a CTL formufeon a Kripke structuré/ is O(|M| x |¢|),
where|M| = |S| + |R|.

Multi-valuedCTL model checking [26] is a generalization of model chegkiom a clas-

sical logic to an arbitrarfpe Morganalgebra. Conjunction and disjunction are the meet and
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join operations of L, C), respectively. When the ordering and the negation operatican
algebra L, C, —) are clear from the context, we refer to itlsIn our work, we only use a ver-
sion of multi-valued model checking where the model remelassicalj.e., both the transition
relation and the atomic propositions are two-valued, wiBselean valuesrue andfalse are
replaced by thé and_L of L, respectively. Only the properties are specified in a nualtized
extension of CTL over a given De Morgan algeliracalledXCTL(L). The logicxCTL(L)
has the same syntax as CTL, except that the allowed constenddl/ € L. The semantics of

XCTL(L) is analogous to that of CTL];y] is extended tdy] : S — L as follows:

[(](s) & ¢, forteL
[a](s) = T,ifaclI(s)elsel
[=¢l(s) = —[el(s)
[o A yl(s) = Tel(s) N 2](s)
[evel(s) = lel(s) U [¢](s)
[EX el(s) = Lhes(R(s,t) T [e](2))
[EG ¢](s) & [vZ.e N EXZ](s)
[Ele U ¢](s) = [pzZyU(enEXZ)](s)

The complexity of model checking>aCTL(L) formulay on a Kripke structuré/ is still
O(|M|x|l) as for classical CTLprovided thaimeet, join, and quantification can be computed

in constant time, which depends on the lattice [26].

4.3 Vacuity Detection as a Multi-Valued Check

We review here the lattice of mutual vacuity information ahd symbolic mutual vacuity
detection algorithm from [59].

The discussion is in terms of atomic propositions but it sggpto any non-overlapping
subformulas of a formula. We treat multiple occurrenceshefdame subformula as different

subformulas. Letp be a CTL formula with atomic propositions b, each occurring once,



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 48

a,t)

o
N

(t.f) (a.0) (t.9)

N W
N

Figure 4.2: Lattice of replacements far, b).

positively. Thus,p is monotonic in bothu andb. According to the definition of vacuity of
Kupferman and Vardi (see Chapter 3), in order to compute @hg\vofy in a given model and
decide if it is vacuous i, we need to model check witnessgsp[a « true|, p[a «— false].

In other words, the replacements foarea, true, false, respectively. Similarly fob we have
replacement$, true, false. These create the lattide = {false, a,true} x {false, b, true} of
possible replacements fo, b). These replacements are ordered according to the way they
affect the value ofp. For example, if(false, false) makesy false, (false, b) and (false, true)

can only makep truer an truer, since is monotonic inb anda stays the same; that is,
pla « false, b — false] C p[a « false] C pla « false, b « true]
in the boolean order. Thus,
(false, false) C (false, b) C (false, true)

in the lattice of replacements. Latti€éeis shown in Figure 4.2, where we use for shigirfor
true, false.

For the same reason of monotonicity, if a replacement makiege, all the replacements
above it inL. makey true as well. In other words, all the replacement$(in, y) makeyp true if

(z,y) makes ittrue. Similarly, ifz, y) makesy false, all replacements if{z, y) makey false.
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Figure 4.3: Mutual vacuity lattice of up-(down-)sets oflegements fofa, b).

This induces the lattice of sets of replacements that meikee/false shown in Figure 4.3 and
that we refer to as thenutual vacuity lattice Note that we changed the presentation of the
lattice from [59] to have the bottom half in term of down-setgeplacements that make the
formula false, rather than upsets that make formula tru¢59h the lattice of sets is ordered
by set inclusion. In our presentation, the upper half is mddy set inclusion, whereas the
bottom half is ordered by reverse set inclusion. The presiemtwe give here makes it easier
to define our approximation later on. Even if in our repreagon the mutual vacuity lattice is
not the up-set lattice fak, it is still isomorphic to the up-set lattice, so we abuseatioh and

still denote it byt (L).

The elements of this lattice give information about the gabiy and the vacuity ofi, b.

All values in the upper half indicate is true, and all those in the bottom half are indicate
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v Is false. Any value above or below the dotted boundarieseéntwo halves indicate some
vacuity: if the value is abové(q,f), it indicates thatp is vacuous im: 1(a,f) includes all
replacements where stays and is replaced byfalse, b, true, all makingy true, which by
definition mean$ is vacuous; for this reason, we dendte, f) by VT, (‘Vacuously True in
b’); similarly, any value abové(f, b) indicatesy is vacuous ini, so{(f,b) is VT, (‘Vacuously
True ina’). A similar discussion applies to values below the dottedifdary in the bottom
half. Valuest{(a,f), (f,b)} and1{(a,t), (t,b)} meany is vacuous in botlx andb separately,
while 1(f, f) and1(t, t) showa, b are vacuous at the same time (mutually).

To compute the truth value and the vacuityofising this lattice, a new semantics is given
to the atoms: andb in the formula, in terms of their truth values and vacuity agrfulas
by themselves, based on the following case analysis. Pitapos, as a formula by itself, is
either true, and then it is vacuously truebisinceb does not occur im, or it is false, and still
vacuously so irh. We can encode this symbolically @sA VT,) V (—a A VF,) or, equivalently,

a AVT, Vv VF,. To see why the two expressions are equivalent, considéwthpossible values
for a, and the fact that. < VF, < VT,: whena is true or T, both expressions evaluate to
VT,, and wheru is false or L, they both evaluate tdF;,). Similarly, for b, its truth and vacuity
semantics i$ A VT, V VF,. Thus the algorithm for vacuity detection using the mutweadwity

lattice works by model checking
¢ =pla —aAVT,VVF, b bAVT, VVF,]

over this lattice.

A naive approach to detect mutual vacuity is: for every guessubset of atomic proposi-
tions, to replace all the propositions in the set simultaisgowith constantsalse or true, and
check the resulting formulas sequentially, as checkingntiieesses for individual vacuity in
the approach of Kupferman and Vardi. This requires a numbealks to a classical model
checker that is exponential in the number of atomic propsst

The correctness of this algorithm follows from the fact show[57] that model checking

¢’ is equivalent to checking classicalfyC ¢/, for all join-irreducibles; of the lattice. The
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Figure 4.4: A simple Kripke structure.

intuition is that any value of the lattice can be guessed kingsyes/no’ questions about how
it compares to the join-irreducibles, since any value inl#tgce can be written as a join of
join-irreducible elements (see Chapter 3. Intuitivelys il the generalization to lattice orders
of the game of guessing a natural number (the set of the hatuma a linear order) by asking
repeatedly the question: ‘is the number grater thiaand adjusting: accordingly in the next
guestion. Theé- operator commutes with the temporal and propositionalaipes so that all
checksj C ¢ eventually reduce to the checks of witnesses as in the napmach. For

exampleVT, is a join-irreducible of the mutual vacuity lattice. When tag&e; C ', we get
vla — (VT, C a)A(VT, T VT,)V(VT, C VR,), b — (VT, C b)A(VT, C VT,)V(VT, C VF,)]

which isp[b < false|, sincea, b map to eithefT or L. This is one of the witnesses!
Implementing this algorithm efficiently depends on findimgedficient implementation of

the lattice operations with up-(down-)sets. It is not cleaw these could be implemented in

constant-time. Also, it is not clear how to compute the niegafficiently, in either represen-

tation: ours, with up- and down-sets, or that of [59] withugit-sets.

4.4 Query Checking as a Multi-Valued Check

Let M be a Kripke structure with a set of atomic propositions. Recall that a CTL query,

denoted byp[?], is a CTL formula containing placeholder*?” for a propositional subformula
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(over the atomic propositions in). The CTL formula obtained by substituting the placeholder
in ¢[?] by a formulac € F(A) is denoted byp[a]. A formula« is a solution to a query if its
substitution into the query results in a CTL formula thatdsobn M/, i.e., if M = ¢[a]. For
example(p A =¢ A r) and(g A r) are among the solutions to the quety’ ? on the model of

Figure 4.4, whereasr is not.

In our work, we consider queries imegation normal formwhere negation is applied only
to the atomic propositions, or to the placeholder. We furtiestrict our attention to queries
with a single placeholder, although perhaps with multiptewrences. For a query[?], a
substitutionp[a| means that all occurrences of the placeholder are replacedfor example,
if p[?] = EF (?NAX 7),thengpVq] = EF ((pVq) NAX (pV q)). We assume that
occurrences of the placeholder are either non-negategvelrere, or negated everywhere,,
the query is eithepositiveor negative respectively. For now, we limit the presentation to

positive queries.

The general CTL query-solving problem is: given a CTL quenyaomodel, find all its
propositional solutions. For instance, the answer to tleygd /' 7 on the model in Figure 4.4
is the set consisting dp A =g A7), (¢ Ar) and every other formula implied by these, including
p, (¢Vr), andtrue. If «is a solution to a query, then apysuch thaty = j (i.e., any weakefs)
is also a solution, due to the monotonicity of positive geefR5]. Thus, the set of all possible
solutions is an up-set; it is sufficient for the query-chedkeoutput the strongest solutions,

since the rest can be inferred from them.

One can restrict a query to a subset_ A [17]. We then denote the query ky? P], and
its solutions become formulas iA(P). For instance, solvinglF' ?{p, ¢} on the model of
Figure 4.4 should result ifp A —¢) andgq as the strongest solutions, together with all those
implied by them. We writep|?] for ¢[?A].

If P consists ofn atomic propositions, there aB8” possible distinct solutions tp|[? P].
A “naive” method for finding all solutions would model chegkx| for every possible propo-

sitional formula« over P, and collect all those'’s for which ¢[a] holds in the model. The
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complexity of this naive approach 8" times that of usual model-checking.

A symbolic algorithm for solving the general query-solviprgblem was described in [60]
and has been implemented in the TLQSolver tool [28]. We reties approach below.

Since an answer tp[? P| is an upset, the up-set lattité 7 (P)) is the space of all possible
answers [17]. For instance, the lattice f&F" ?{p} is shown in Figure 4.1(b). In the model
in Figure 4.4, the answer to this query{is, true}, encoded a${p}, sincep is the strongest
solution.

Symbolic query solving is implemented by model checkingrdahe up-set lattice. The
algorithm is based on a state semantics of the placeholdppdSe query{p} is evaluated in
a states. Eitherp holds ins, in which case the answer to the query should peor —p holds,

in which case the answer jsp. Thus we have:

p ifpel(s),

T-p ifpd&I(s).

[?{p}](s) =

This case analysis can be logically encoded by the forfpualp) v (-p A T-p).

Let us now consider a general quéerk in a states (where? ranges over a set of atomic
propositionsP). We note that the case analysis corresponding to the onve&lan be givenin
terms of minterms. Minterms are the strongest formulasrtiet hold in a state; they also are
mutually exclusive and complete — exactly one mintgrhrolds in any state, and ther[; is

the answer tG P ats. This semantics is encoded in the following translatiorhefptlaceholder:

T(?P)=\/ (G A1)

JEM(P)

The symbolic algorithm is defined as follows: given a quefyP], first obtainy[7 (7 P)],
which is axCTL formula (over the latticé/(F(P))), and then model check this formula. The
semantics of the formula is given by a function frdirto U/(F(P)), as described in Section
4.2. Thus model checking this formula results in a value febi# (P)). That value was shown

in [60] to represent all propositional solutionsg¢? P]. For example, the queryt” ? on the
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model of Figure 4.4 becomes

AF ((pAgATANT(PAGAT))V
(PAgA-T AT(pAgA-T))V
(PA—gAT AT(pA=gAT)V
(PA=g A= AT(pPA =g A1)V
).
The result of model-checking this formulali§p A =g A r, g A r}.
The complexity of this algorithm is the same as in the naiy@agch. In practice, however,

TLQSolver was shown to perform better than the naive algorit60, 28].

4.5 Approximations

The efficiency of model checking over a lattice is determibhgdhe complexity of the lattice
operations. In this section, we show a general approximdtemework for reasoning over
any lattice of sets. The framework defines sufficient coadgifor finding a simpler lattice
from a complex one, so that model checking over the simptacdéagives an approximation of
the answer over the complex one. This allows to still obtairtipl solutions to problems such
as vacuity detection and query solving that have intraettditices in general. We later show
how our approximations for these two problems are instaott#ss general framework.

Let U be any finite set. Its powerset lattice(i&’, C). Let (L, C) be any sublattice of the

powerset latticei,e., L C 2Y.

Definition 11 (Approximation) A functionf : L — 2V is anapproximatiorif:
1. it satisfiesf(B) C B foranyB € L (i.e., f(B) is an under-approximation a8), and

2. itis a lattice homomorphism, i.e., it respects the lattperations:f (BN C) = f(B) N
f(C),and f(BUC) = f(B)U f(C).
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From the definition off, the imagef (L) of £ throughf is a sublattice o2V, havingf(T) and
f(L) as its maximum and minimum elements, respectively.

We consider an approximation to be correct if it is presetwethodel checking: reasoning
over the smaller lattice is the approximation of reasoniey the larger one. Let be apositive
XCTL(L) formula,i.e., which does not contain negation. We define its translatép) into
f(L) recursively on the structure of the formula as expectedhtenadly replacing any constant
B € L occurring ing by f(B). The following theorem simply states that the result of mode
checkingA(y) is the approximation of the result of model checkipglts proof follows by
structural induction from the semantics ¥€TL, and uses the fact that approximations are

homomorphisms. [66] proves a similar result, albeit in a eatmat different context.

Theorem 1 (Correctness of approximations)Let M be a classical Kripke structurd, be a
finite distributive lattice of setsf be an approximation function oh, and ¢ be a positive

XCTL(L) formula. LetA(y) be the translation op into f(L). Then for any state of M,

F(I#1(s)) = TA(P)I(s)-

Proof:
By induction on the structure of .

For B € L, with f(B) = C C B, f([B](s)) = f(B) =C = [C](s) = C.

Fora € A, f([a](s)) = [a](s) = [A(a)](s) (approximation preserves T and L, which are
the possible values of [a](s), and A(a) = a).

For o Ay and EX ¢, the claim follows from the fact that f preserves I and U (second

condition of Definition 11) and that the transition relation of the model is classical:

Fle A l(s)) = f(lel(s) M [#1(s)) = [A@)](s) T [A@)(s) = [Alp AP)](s)

FIEXN(s) = [ {R(t5) N [A@](s)} = [AEX)](s)

tes

(the translation applies recursively on the structure of formulas).
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The cases for the fixpoints are similar, noting that a fixpoint is computed in a finite number
of iterations stating from Z = T for the greatest fixpoint (£'G), or Z = 1 for the least fixpoint
EU. If we expand those iterations for the fixpoints, we get formulas with the other operators
already considered in this proof. O
Note that since models are classical and formulas are p®site do not require the lattice
to be a DeMorgan algebra. We leave the treatment of nega@paralent on the particular

instance and application of the framework.

4.6 Approximation and Refinement for Vacuity Detection

4.6.1 Vacuity detection algorithm

We first present our vacuity lattice and our algorithmQWoT independently, then show how
they are an instance of the general approximation frameayopkied to the vacuity lattice from
Section 4.3. As before, the presentation is in terms of at@mapositions, but it applies to any
subset of non-overlapping subformulas of a formula.

As in the approach described in Section 4.3, the basi@UOT is a multi-valued “vacu-
ity” lattice and a translation of CTL formulas into this liat. Instead of the formulas being
interpreted over the Boolean latticftrue, false }, <), they are interpreted over thacuity lat-
ticeLy = ({true, false} x 24, C), where2* is the powerset of the setof atomic propositions.
An element(t, s) € Ly is a possible result of vacuity detection, showing that tirentula has
truth valuet, and the largest subset of its atomic propositions that aceaus iss. For any
u,v € 24, (false,u) C (true,v), (true,u) C (true,v) iff u C v, and(false,u) C (false, )
iff v C wu (note the reversal of set inclusion). The top elemenLfis (true, A), or Vac-
uously True in all propositions. The bottom elementfidse, A), or Vacuously False in all
propositions. The vacuity lattices for two and three atoprmpositionss, b, ¢ are depicted in
Figure 4.5.

In VAQUOT, we replace each atomic propositionf ¢ by ((a A VTa\.) V VF4\.), Where
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(true, {a, b, c})

(true, {a,b})
(true, {a, b}) (true, {a, c}) (true, {b, c})

(truﬁ we, {b}) (true, {a}) (true, {b>< true, {c})
\ /

(true, 0) (true, @)

(false, 0) (true, D)

(false, {a}) (false, {b}) (false, {a}) ﬁ{b})\(false, {c})
(faise, {a, b)) (false, {a. b}) (false, Ha o) false, {b,e})

(false, {a, b, c})

() (b)

Figure 4.5: Vacuity lattices for a) two and b) three atomiggmsitions.

VT, andVF,,, denote lattice valuestrue, A \ {a}), and (false, A \ {a}), respectively.
All replacements are done simultaneously. The resultingitmalued formula is then model

checked.

4.6.2 Correctness of approximation

Our lattice is isomorphic to the lattice obtained from thetmalivacuity latticé/(L) from Sec-
tion 4.3 by an approximation that keeps from every sét@t) only the elements representing
independent vacuous propositions. If the set of atomicgsitions isA = {a4, ..., a;}, forall
i=1,...,k, the replacemenray, ..., a;_1,false, a;11, ..., ax) represents ‘Vacuously True in
a;', that we denote bwT,. Similarly, (ay,...,a;_1,true,a;41,...,a;) represents ‘Vacuously

False ina;’, denoted bWWF;. LetVT={VT, |i=1,...,k},andVF={VF; | i =1,... k}.
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Formally, we define the approximation functigp : /(L) — 2VT U 2VF by:

W NVT if Wisan up-set
fv(W) =
W NVF if Wisadown-set

The isomorphism simply maps a set of replacements of thefeym. ., a;_4, false, a;1, . . ., ax)
or (ai,...,a;_1,true, a;.1,...,a) to (true, B) or (false, B), respectively, wherd is the set
of propositions whose vacuity the replacements represeammally, g : 2VTU 2¥F — Ly is

defined by

(rue,{a; |i€T}) HUC VT,T={ie{l,....k}|VT, €U}
g(U) =
(false, {a; | i€ T}) i UC VF,T={ie{l,....k}|VF, € U}.

Theorem 2 (Correctness of vacuity approximation withVAQUOT) Let M be a Kripke struc-
ture, andyp a CTL formula (not necessarily positive), with translasari into the mutual vacu-
ity lattice /(L) and ¢” into our vacuity latticel, . If the result of model checking over the
mutual vacuity latticé{/(L) is the set of replacements indicating that the formula is true/false
with (independent or mutual) vacuity of a subgebf propositions, the result ofaAQUOT
checkingy” is (true, B) or (false, B), indicating that the formula is true/false respectivelyda

propositions inB are independently vacuous.

Proof:
The approximation fy, as defined, satisfies the conditions in the general approximation frame-
work (Section 4.5, as it maps sets to their subsets and preserves set operations. The isomor-
phism introduces truth values that do not affect the approximation, so they also respect the
operations, including negation. Thus, Theorem 1 applies, and we obtain the correctness of
our algorithm, stating that the result of VAQUOT correctly indicates the truth value of ¢ and the
independent vacuity of its atomic propositions. O
Intuitively, by approximation we lose the information abthemutualityof the vacuity. We
later show how we can recover some of this information rugMRQUOT iteratively with re-

finement of subformulas. Our vacuity lattice leads immealyetio an efficient implementation
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with a classical model checker, as we describe next. Thpgwides a feasible approximation

to the otherwise very hard problem of detecting mutual \scui

4.6.3 Implementation

In our implementation, we encode each value of the vacuiticéal., as a 32-bit word. The
least-significant bit represents the truthfor true, 0 for false. The other bits represent the
vacuity: 0 for vacuous,l for non-vacuous. For instance, for a formylavith atomic proposi-
tionsa, b, ¢, the lattice valudtrue, {a, c}) is represented by the wofd) . . . 00101, where the
rightmost bits0101 mean, respectively, thatandc are vacuoug is not, and the truth value is
true. Thus, lattice operations can be efficiently implementédibe. The fixed word length,
which could be increased frof2 to 64 or 128, limits the number of atomic propositions in the
formulas we can check efficiently 81, 63, 127, respectively. Bit vectors of arbitrary length
could be used, at the cost of increasing the complexity tittabperations.

The implementation of ¥QUOT is built on top of NuSMV, which uses the CUDD pack-
age for the implementation of binary decision diagrams (BP[32]. We have implemented
multi-valued decision diagrams using CUDD ADDs which allmtegers in their leaves, and
changed the interface between NuSMV and CUDD so that ouili4vailied operations are per-
formed instead of their BDD counterparts. These modificestido not affect the complexity of
decision diagram operations or fixpoint computations, baytmay affect performance, since
the decision diagrams may be larger. Our changes are cdrtguaitith the various NuUSMV
optimizations €.g, cone of influence, dynamic reordering, partitioning). Tbel is available

as a patch for NuSMV v. 2.1.2, frommv. cs. t oront 0. edu/ f m vaquot . ht m .

4.6.4 Experiments

A few experiments comparingApUoT with basic model checking and with a naive approach

to vacuity detection are reported in Table 4.1. The naive@gpgh according to Kupferman
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Table 4.1: Experimental results witmgUoT.

Model Formulas Basic MC Naive VD VAQUOT
Total | Vacuous| Memory | Time | Witnesses| Time

el evat or 3l 45 26 43.5 | 1690.16 399 5228.94| 1441.22
gui dance 23 16 10 54.18 244 306.99 | 274.81
production | 15 15 7.2 42.41 187 228.87 | 184.08
-cel |

abp10 4 3 10.6 83.18 26 316.63 | 304.51
fgs5 6 2 106 189.57 82 239.04 | 191.92
msi Wt r ans 15 3 10.3 30.21 81 53.63 83.98

| uckySeven 4 0 12.9 469.33 20 1257.11| 842.48
ei senberg 5 4 3 11.31 25 35.77 39.77
ti cTacToe 42 3 8.9 15.81 363 68.72 102.51

and Vardi consists of separately replacing each atomicqsitpn bytrue and then byfalse
and check the resulting formulas, in addition to the origioamula; all these formulas are
calledwitnesses The number of witnesses reported in Table 4.1 is the actuwaber of for-
mulas checked in the naive approach, which we implementedmof NUSMV as well. The
experiments were performed on a Dell PC with a 2.4 GHz Intéé©e CPU and 512 MB
of RAM, running Linux 2.4.20. Modelgui dance, producti on-cel | , abpl10, and
nsi W r ans, and most of their properties are from the NuSMV distribatiel evat or 3l

is a model of a three-floor elevator system written by a stutiing the Automated Verifica-
tion class at Univ. of Toronto, anfdgs5 is a proprietary model for a flight-guidance system.
Modelsl uckySeven, ei senber g, andt i cTacToe are SMV translations of their Verilog
counterparts distributed with the VIS model checker. Faheaodel, we report the total num-
ber of formulas checked and how many were found vacuous (#as)) the total memory (in
MB) and time (in seconds) used by model-checking withoutiitga@etection (Basic MC), the

total number of withnesses and the time used by the naivetyesetiection (Naive VD), and the
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running time of MAQUOT. As it can be seen,AQUOT performs better than the naive approach
in most cases, and by a considerable margin in some: ourithigoavoids much of the redun-
dant work performed by the naive approach. In the cases Whrep&OT performs worse, we
observed that the sizes of the decision diagrams are thiemetk, and we are investigating
ways to overcome this. It may seem surprising that such mamgulas were found vacuous
for theel evat or 31 andgui dance models, and not for the others. A reason for this would
be that those providing the properties for these models didinderstand the models well: in
the former case, the student did not write a good model, athaali formalize the properties
correctly; in the latter case, the person writing the propsrand submitting them with the
model to the NuSMV archive was not very familiar with the mbalethe application domain

(as can be inferred from the case documentation in the NuSidv\e).

4.6.5 Refinement

VAQUOT can detect vacuity in any subset of non-overlapping sufitats of a formula. Vacu-
ity of larger subformulas is more useful to be reported tasifean vacuity of smaller subfor-
mulas. Thus, it is important to find the largest subformuihes &re vacuous in a formula. This
is the main motivation behind the mutual vacuity defined 8][3Ve can solve this problem
using \VAQUQT iteratively on gradually larger subformulas. We procegddanning the parse
tree of the formula (built by the model checker) top-down reduth-first manner. At each
level, we consider the set of subformulas at that level, tvhie non-overlapping. We replace
them with fresh names and rum§UOT on them as if they were the atomic propositions. For
the subformulas found vacuous among them, we do not neectorexheir subtrees further,
and we report them. For those not found vacuous, we procesgede the tree and repeat the
process. This iterative refinement technique is less promseffer from BDD explosion if it

prunes much of the parse tree.
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4.6.6 Comparison with related work

The method of [84] is the closest to ours, from related wonk.[84], withesses are gener-
ated and checked in parallel and compositionally, by a bottip exploration of the parse tree
of a formula, with explicit caching of intermediate resulfhe representation of witnesses is
explicit as well. All these are implicit in the multi-valuel@cision diagrams in our implementa-
tion. True and false formulas are treated differently, veasNAQUOT handles both uniformly
in one pass. Extensive experiments and comparisons betiveéwo methods remain for fu-
ture work; the results shown in Table 4.1, specifically, fog tast three examples (used also
in [84]), indicate that both tools exhibit a similar imprewent over the naive approach, but for
ei senber g andti cTacToe, VAQUOT found more vacuous passes.

Complementary to our vacuity checking of CTL formulas usBigD-based techniques,
the work of [92] addresses vacuity checking of LTL formuliasplemented using SAT-based
methods. In a parallel development, [27] re-examines thanmneg of vacuity in terms of
system versus environment behavior, and argues that ¢waenity checking methodology
produces too many false positives, that is, cases of vathatydo not indicate problems. As
an alternative, that work proposes checking when formudas/fail solely due to errors in the
environment model, and shows on a realistic case studyhisabhéw methodology discovers

truly problematic cases of vacuity. Similar concerns amressed in [31, 14].

4.7 Approximation and Refinement for Query Solving

4.7.1 State solutions to queries

Without loss of generality, we consider only CTL formulasnegation normal formwhere
negation is applied only to atomic propositions [35].
Let M be a Kripke structure with a set of atomic propositions. In general query solving,

solutions to queries are arbitrary propositional formul@s the other hand, fastate queries
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solutions are restricted to be single states. To repressingée state, a propositional formula
needs to be a minterm ovet. In symbolicmodel checking, any stateof M is uniquely
represented by the minterm that holds:irf-or example, in the model of Figure 4.4, stajés
represented bgp A —g A1), States, by (p AgAr), etc. Thus, for a state query, an answer to the
guery is a set of minterms, rather than an upset of propositiormulas. For instance, for the
query AF' ?, on the model of Figure 4.4, the state-query answégpis —q A r}, whereas the
general query answer {§rAq, pA—gAr}. While itis still true that ifj is a solution, everything
in T4 is also a solution, we no longer view answers as upsets, siaae interested only in
minterms, and is the only minterm in the sdtj (minterms are incomparable by implication).
We can thus formulate state-query solvingnasterm-query solviriggiven a CTL query on a
model, find all its minterm solutions. We show how to solve fior any queryp[?P], and any
subsetP C A. WhenP = A, the minterms obtained are the state solutions.

Given a queryp[?P], a naive algorithm would model chegKa| for every mintermo. If n
is the number of atomic propositions i, there are&™ possible minterms, and this algorithm
has complexit2” times that of model-checking. Minterm query solving is thusch easier to
solve than general query solving.

Of course, any algorithm for general query solving, suchhassymbolic approach de-
scribed in Section 4.4, solves minterm queries as well: filoenanswer with all solutions, we
can extract only those which are minterms. This approachetier, is much more expensive
than needed. Below, we propose a method that is tailoredtarjinterm-query solving, while

remaining symbolic.

4.7.2 Minterm-query solving

Since an answer to a minterm query is a set of minterms, tleesggall answers is the powerset
2M(P) that forms a lattice ordered by set inclusion. For example lattice2{P}) is shown
in Figure 4.1(c). Our symbolic algorithm evaluates quedesr this lattice. We first adjust

the semantics of the placeholder to minterms. Suppose weatgd{p} in a states. Eitherp
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holds ins, and then the answer should fy&, or —p holds, and then the answer{isp}. Thus,

we have
{p} ifpel(s),

{-p} ifp&I(s).

This is encoded by the formulaA {p}) VvV (=pA{—p}). In general, for a queryP, exactly one

[?{p}](s) =

mintermy; holds ins, and in that casé;j} is the answer to the query. This gives the following

translation of placeholder:

An(?P) 2\ (G AL

JEM(P)

Our minterm-query solving algorithm LD, is now defined as follows: given a quepy’ P]
on a modelV/, computep|A,,(?P)], and then model check this ovat!(?).

For example, fortAF' 7, on the model of Figure 4.4, we model check

AF ((pAgArAN{pANgAT})V
(pAgA-r A{pAgA-T})V
(pA—g AT A{pAgATEHV
(P A=gA=r A{pA—g A -rh)V

),

and obtain the answép A =g A r}, that is indeed the only minterm solution for this model.

4.7.3 Correctness of approximation

To prove our algorithm correct, we need to show that its anss/¢he set of all minterm
solutions. We prove this claim by relating our algorithmhe general algorithm in Section 4.4.
We show that, while the general algorithm computes theBset U/ (F(P)) of all solutions,
ours results in the subsat C B that consists of only the minterms froBy We first establish
an approximation mapping frotd(F(P)) to 2*(?) that, for any upseB € U(F(P)), returns

the subsefV C B of minterms.
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Definition 12 (Minterm approximation) Let P be a set of atomic propositionsMinterm

approximationy,,, : U(F(P)) — 2MP)is £,,(B) & BN M(P), foranyB € U(F(P)).

With this definition,A,,(? P) is obtained fronZ (7 P) by replacing(j with f,,(17) = {7}
The minterm approximation preserves set operations; tliews immediately from the fact

that any set of propositional formulas can be partitionéd minterms and non-minterms.

Proposition 1 The minterm approximatio,, : U(F(P)) — 2M®) is a lattice homomor-
phism, i.e., it preserves the set operations: for @&yB’ € U(F(P)), fm(B) U fi(B') =
fm(BU B') and fin(B) N fm(B') = fm(B N B').

By Proposition 1, and since model checking is performedgisimly set operations, we can
show that the approximation preserves model-checkindteediodel checkingp|A,,(?P)] is
the minterm approximation of checking7 (?P)]. In other words, our algorithm results in set

of all minterm solutions, which concludes the correctnegsment.

Theorem 3 (Correctness of minterm approximation) For any states of M,

Fn([elT(?P)]1(s)) = [l Am(7P)]](5).

Proof:
The claim is a corollary to Theorem 1. Our minterm approximation satisfies condition (1) of
Definition 11, since f,,,(B) = BNM(P) C B, and it also satisfies condition (2) by Proposition 1.
Thus, f,, is an approximation to which Theorem 1 applies, yielding Theorem 3. |

In summary, forP = A, we have the following correct symbolic state-query sajvéitgo-
rithm : given a queryp[?] on a modelM, translate it tap[.A4,,(7A)], and then model check this
over2MA),

The worst-case complexity of LD is the same as that of the naive approach. With an
efficient encoding of the approximate lattice, however,approach can outperform the naive

one in practice, as we show in Section 4.7.7.
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4.7.4 Implementation

Although TLQ is defined as model checking over a lattice, we can implemasing a classical
symbolic model checker. This is done by encoding the lagieenents ireM*) such that
lattice operations are already implemented by a symbolidehchecker. The key observation
is that the latticg2(")| C) is isomorphic to the lattice of propositional formul@g(P), =).
This can be seen, for instance, by comparing the latticesgarés 4.1(a) and 4.1(c). Thus,
the elements o2M(”) can be encoded as propositional formulas, and the opesatiecome
propositional disjunction and conjunction. A symbolic rebdhecker, such as NuSMV [32],
which we used in our implementation, already has data stresfor representing propositional
formulas and algorithms to compute their disjunction angjuwaction — BDDs [94]. The only
modifications we made to NuSMV were parsing the input andnteqgpthe result.

While parsing the queries, we implemented the translatigndefined in Section 4.7.2. In
this translation, for every minterr) we give a propositional encoding {g}. We cannot sim-
ply use; to encode{;j}. The lattice elements need to benstantswith respect to the model,
andj is not a constant — it is a propositional formula that cordairodel variables. We can,
however, obtain an encoding fdy }, by renaming; to a similar propositional formula over
fresh variables. For instance, we encdge\ —qg A r} asx A —y A z. The lattice operations are
correctly implemented with this encoding since they arelBao set operations that are imple-
mented as Boolean formula operations. Thus, our queryl&ios results in a CTL formula
with double the number of propositional variables compdecethe model. For example, the

translation ofAF 7{p, q} is

AF ((pANgNhz Ay)V

(

(pA=g Az A=y)V

(P AgA -z Ay)V

(=P A =g A =z A —y)).

We input this formula into NuSMV, and obtain the set of mimegolutions as a propositional

formula over the encoding variablesy, . ... For AF' ?{p, ¢}, on the model in Figure 4.4, we
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obtain the resuli: A —y, corresponding to the only minterm solutipm —gq.

4.7.5 Exactness of minterm approximation

In this section, we address the applicability of minternemyusolving to general query solving.
When the minterm solutions are the strongest solutions taeayg minterm-query solving
solves the general query solving problem as well, as alltwwis to that query can be inferred
from the minterms. In that case, we say that the minterm aqupiattion isexact We would
like to identify those CTL queries that admit exact minteqopi@ximations, independently of
the model. The next proposition follows easily from the fidett any propositional formula is

a disjunction of minterms.

Proposition 2 A positive queryp[?P] has an exact minterm approximation in any model iff

©[?P] is distributive over disjunction, i.eg[a V 5] = ¢[a] V ¢[F].

Proof:

Any propositional formula can be written as a disjunction of minterms. Thus, if a formula

is a solution to a query, and the query is distributive over disjunction, the minterms in the

representation of the formula are all solutions to the query. Thus the strongest solutions of

such a query are minterms. |
An example of a query that admits an exact approximatidnAs?; its strongest solutions

are always minterms, representing the reachable statg25)nChan showed that deciding

whether a query is distributive oveonjunctionis EXPTIME-complete. We obtain a similar

result.

Theorem 4 Deciding whether a CTL query is distributive over disjunntis EXPTIME-complete.

Proof:

By duality, from the result of [25]. |
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Since the decision problem is hard, it would be useful to lrageammar that is guaranteed
to generate queries which distribute over disjunction. rChefined a grammar for queries
distributive over conjunction, that was later correctedSayner and Veith [88]. We can obtain

a grammar for queries distributive over disjunction, frdra grammar in [88], by duality.

4.7.6 Negative queries

The minterm approximation defined in Section 4.7.2 is ret&d to positive queries. The gen-
eral approximation framework defined above makes it easgrivela minterm approximation
for negative queries. We denote a negative query by’ P]. To obtain the minterm solutions
to ¢[—7P], we can checko[?P], that is, ignore the negation and treat the query as positive
For example, to check the negative quety’ —7{p, ¢}, we checkAF ?{p,q} instead. The
minterm solutions to the original negative query are thelslod the maxtermsolutions to
©[?P]. A maxterm is adisjunctionwhere all the atomic propositions are, positive or negated.
We denote byt (P) the set of maxterms over a sBtof atomic propositions. For example,
X({p,q}) ={pVegpV —-q-pVq-pV g} Amintermj is a solution top[—7P] iff its
negation—j is a maxterm solution te[?P|. We thus need to defineraaxterm approximation

fo :U(F(P)) — 2% for positive queries. We defing such that, for any upse, it returns

the subset of maxterms in that se¢,, f.(B) = B N X(P). According to Definition 11f,

is an approximation: (1) holds by,’s definition, and (2) follows from the fact that any set
of propositional formulas can be partitioned into maxteand non-maxterms. We define the

translation:

A?P) 2\ (G A f(19))-

JEM(P)
Then, by Theorem 1, model-checkip@A, (? P)] results in all the maxterm solutions¢g? P).
By negating every resulting maxterm, we obtain all minteahigons top[—7 P|. For example,
maxterm solutions toAF' ?{p, ¢q} for the model of Figure 4.4 is the sét({p, ¢}); thus, the

minterm solutions tAF" —7{p, ¢} are the entire seM ({p, ¢}).
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4.7.7 Case study

In this section, we study the problem of finding stable statesmodel, and evaluate the per-
formance of our implementation by comparing it to the nappraach to state-query solving.

In a study published in plant research, a model of gene ictierahas been proposed to
compute the “stable states” of a system of genes [44]. Thik defined stable states as reach-
able gene configurations that no longer change, and usectistynamical systems to find
such states. A different publication, [21], advocated the of Kripke structures as appropriate
models of biological systems, where model checking can ansame of the relevant ques-
tions about their behaviour. [21] also noted that queryisglmight be useful as well, but did
not report any applications of this technique. Motivated2ilj, we repeated the study of [44]
using our state-query solving approach.

The model of [44] consists of 15 genes, each with a “level gdregsion” that is either
boolean ( or 1), or ternary (,1, or 2). The laws of interaction among genes have been es-
tablished experimentally and are presented as logicat¢alilhe model was translated into a
NuSMV model with 15 variables, one per gene, of which 8 arddmroand the rest are ternary,
turning the laws into NuSMV next-state relations. The mdued 559,872 states and is in the
Appendix.

The problem of finding all stable states of the model and thieiistates leading to them is
formulated as the minterm-query solvingiof” AG?, where? ranges over all variables. Perfor-
mance of our symbolic algorithm (Section 4.7.1) and the ematate-query solving algorithm
for this query is summarized in the top row of the Table 4.2ewmhthe times are reported in
minutes. Our algorithm was implemented using NuSMV as desdrin Section 4.7.4. The
naive algorithm was also implemented using NuSMV by geimagatll possible minterms over
the model variables, replacing each for the placeholder MAG? and calling NuSMV to
check the resulting formulas. Both algorithms were run oematidm 4 processor with 2.8GHz
and 1 GB of RAM. Our algorithm gave an answer in under two hdoegg about 20% faster

than the naive.
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Table 4.2: Experimental results for query solving.

Algorithms
Model Query TLQ | Naive
1 original EF AG? 117 145
2 mutantl | EF AG? 116 144
3 mutant2 | EF AG? 117 145
4 mutant3 | EF AG ? 117 146
5 original AG? 116 145
6 original EF? 118 146
7 original AF ? 117 145

To have a larger basis of comparison between the two algasitive varied the model (see
rows 2-4), and the checked queries (see rows 5-7). Each htiutas obtained by permanently
switching a different gene off, as indicated in [44]. Thefpenance gain of our algorithm is

robust to these changes.

4.7.8 Refinement

Performance improvements observed in our case study mayeraitainable for every model.
If the model is sufficiently small, our algorithm is likely twe faster. As models grow, how-
ever, our algorithm may suffer from BDD size explosion siit@oubles the number of states
variables.

To handle this problem, we envision an iterative refinemeheme. Suppose we are in-
terested in checking a queryF’ ? with two propositionsa andb. We first checkAF 7{a}
andAF ?{b}. If no value is found for a proposition, then the query has rat@nm solutions.
Otherwise, the results correspond to the values each gtimpolsas in all minterm solutions.
For example, suppose we obtain= false, whereas can be eithetrue or false. We proceed

by checking a query for each pair of propositions, using lierpplaceholder replacement only
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those values found in the previous step. For example, wekcHé& {a, b}, replacing? by
(ma AbA{=a Ab})V (ma A —=bA{—a A —b}). We continue with checking triples of propo-
sitions using the valued obtained for pairs, and so on, thilquery is checked on all atomic

propositions, or it has been established that no answesexis

4.7.9 Comparison with related work

While several approaches have been proposed to solve ggners solving, none are effec-
tive for solving the state queries. The original algorithh€ban [25] was very efficient (same
cost as CTL model checking), but was restrictegtdbd queriesj.e., queries whose solutions
can be characterized by a single propositional formulas oo restrictive for our purposes.
For example, neither of the queriés ?, AF 7, nor the stable states queRF” AG ? are
valid. Bruns and Godefroid [17] generalized query solviogli CTL queries by proposing
an automata-based CTL model checking algorithm over aéatf sets of all possible solu-
tions. This algorithm is exponential in the size of the sttace. Gurfinkel and Chechik [60]
have also provided a symbolic algorithm for general quetyisg. The algorithm is based
on reducing query solving to multi-valued model checkind enimplemented in a tool TLQ-
Solver [28]. While empirically faster than the correspamginaive approach of substituting
every propositional formula for the placeholder, this aign still has the same worst-case
complexity as that in [17], and remains applicable only todesi-sized query-solving prob-
lems. An algorithm proposed by Hornus and Schnoebelen [68§fsolutions to any query,
one by one, with increasing complexity: a first solution igrid in time linear in the size of the
state space, a second, in quadratic time, and so on. Hoveavee, the search for solutions is
not controlled by their shape, finding all state solutions stll take exponential time. Other
guery-solving methods do not apply directly to solve outestpieries, as it is exclusively con-
cerned either with syntactic characterizations of quf8®s or with extensions, rather than
restrictions, of query solving [90, 96].

There is a also a very close connection between query sobagsanity checks such
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paper

author title

ChandraMerlin ~ “A Paper Title”

Figure 4.6: An XML example (adapted from [54]).

as vacuity and coverage [68]. All these problems requireking several “mutants” of the
property or of the model to obtain the final solution. The aldpon for solving state queries
presented in this paper bears many similarities to the élhgos described in [68]. Since query
solving is more general, we believe it can provide a uniforamfework for studying all these

problems.

4.8 Conclusions and Future Work

We have identified and formalized approximate answers toityadetection and to query solv-
ing, which are of practical interest and can be solved mdre@&ftly than the general versions
of these problems. We have presented symbolic algorithatsctbmpute these approxima-
tions, and described their implementations using the NuSMdel checker. We showed the
efficiency of our implementations by experimental evalwabn practical cases. We have also
described iterative refinement techniques that consiadeementally larger lattices to handle
the size explosion of the problems.

We have presented a new application of query solving, andiitiqoilar, of our state-query
solving, to finding stable states in gene networks. In theakthis section we present another
possible application open for investigation.

State query solving can be applied to querying XML documentsch are modeled as
trees. A simple example, of a fragment from a document comginformation about research

papers and adapted from [54], is shown in Figure 4.6. An eXxaopeery is “what are the titles



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 73

of all papers authored by Chandra?”. Viewing tree nodesasstnd edges as transitions
yields a state-transition model, on which CTL propertiesloa evaluated [76]. Unfortunately,
our example, like many other XML queries, needs to refer tthlpast and future, and is

expressed as a CTL+Past formula as follows [54]:
EXP*(title A EXP?' (papern EX (authorn EX Chandra)).

Such formulas cannot be evaluated without modifying therirdls of standard model-checkers.

Formulating this question as a query yields
paperA EX (title A EX 7) A EX (authorA EX Chandra,

whose desired solutions are states (here, the node lal#eRader Title”), and which avoids the
use of the past and can be solved by our approach without ymogliéxisting model checkers.

The main direction of investigation remains finding new iagting applications of the
existing approximations or applications that require otienilar approximations. We also

expect to fine-tune our algorithms to fit new classes of pracproblems.



Chapter 5

Assumption Generation

5.1 Introduction

This chapter presents our contributions to the automatieig¢ion of assumptions for com-
positional verification in the assume-guarantee style. s€hmontributions consist of intro-
ducing new iterative refinement techniques and demonsgy #tiat they significantly improve
upon current automated assumption generation methods nidierial has been published

in [49, 82, 16].

5.1.1 Interface alphabet refinement

Ouir first contribution is related to the way the interfacetseen components are handled dur-
ing assumption generation. Interfaces consistlbEommunication points through which the
components may influence each other’s behavior. Our assumigtthat good design prac-
tice encourages system architectures with small compsnantl therefore the complexity of
a system resides not in the individual components, but inrtex-component communica-
tion. Since interfaces determine this communication, ptuifion is to manage complexity by
managing the interfaces. In the learning framework of [##},alphabet of the assumption au-

tomata being built includeall the actions in the component interface. A case study predent

74
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in [81] shows, however, a smaller alphabet that is suffidiemirove a property. This smaller
alphabet is determined through manual inspection and withssume-guarantee reasoning
achieves orders of magnitude improvement over monolitbég fron-compositional) model
checking [81]. Motivated by the successful use of a smalfgrabet in learning, we show how
to automate the process of discovering a smaller alphabetgtsufficient for checking the
desired properties. Smaller alphabet means smallerateietween components, which may
lead to smaller assumptions, and hence to smaller verditatioblems.

We introduce a novel technique callaiphabet refinemerihat extends the learning frame-
work so that it starts with a small subset of the interfacdalfget and adds actions into it as
necessary, until a required property is shown to hold or tgibkated in the system. Actions
to be added are discovered by analysis of the counterexaraptained from model checking
the components. We study the properties of alphabet refineamel show experimentally that
it leads to significant time and memory savings as comparddetmriginal learning frame-
work [42] and achieves better scalability than monolithizdal checking.

We have implemented our algorithm within the LTSA model d¢eg tool [72], but the
algorithm is applicable to and may benefit any of the previmasning-based approaches
[2, 79, 91], and it may also benefit other compositional asialyechniques. Compositional
Reachability Analysis (CRA), for example, computes alustoas of component behaviors
based on their interfaces. In the context of property chiecK80], smaller interfaces may re-
sult in more compact abstractions, leading to smaller Sjpéees when components are put

together.

5.1.2 Abstraction refinement

Our second contribution provides an alternative to theniegrbased assumption generation
techniques. Recall that the simplest assume-guaranteehekcks if a system composed of
components\/; and M, satisfies a property by checking that\/; under assumptiord sat-

isfiesp (Premise ) and discharging! on the environmend/, (Premise 2. Learning-based
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approaches using L* [42, 2, 22] work by iteratively makingnmetures in the form of automata
that represent intermediate assumptions. Each conjecassumptiom is used to check the
two premises of the rule. The process end$ gasses both premises of the rule, in which case
the property holds in the system, or if we uncover a real Vimha Otherwise, a counterexam-
ple is returned, and L* modifies the conjecture. The work 8] [ises sampling rather than L*

to learn the assumptions in a similar way.

We propose an alternative called AGAR (Assume-Guarantastrattion Refinement), that
replaces the iterative assumption refinement using leguwith iterative abstraction refine-
ment. It follows from the observation that for universal pedies, Premise 2amounts to
checking thatd is a conservative abstraction 81, i.e., an abstraction that preserves all of
M,’s execution paths. The algorithm works by iteratively caripg assumptions as conser-
vative abstractions of the interface behaviorid, i.e., the behavior that only concerns the
interaction with)/;. In each iteration, the computed assumptibsatisfiesPremise 2of the
assume-guarantee rule by construction, and is only chefdkeBremise 1 If the check is
successful, we conclude thaf; || M, satisfies the property; if the check fails, we get a coun-
terexample trace that we analyze to see if it correspondsréaleerror inM; || M, or it is
spurious due to the over-approximation in the abstractidhis spurious, we used it to refine

A and then repeat the entire process.

Unlike learning-based assumption generation, AGAR doésowstrain assumptions to
be deterministic It is well-known that a deterministic automaton can be,he worst case,
exponentially larger than a non-deterministic one acoggtie same language. Therefore, the
assumptions constructed with AGAR in the worst case can pereqtially smaller than those
obtained with learning, resulting in smaller verificatioplems. To reduce the assumption
sizes even further, we also combine the abstraction refinemigh our previousinterface
alphabet refinementvhich extends AGAR so that initially it constructs the astion A with
a small subset of the interface alphabet and adds actiohe tiphabet as necessary until the

required property is shown to hold or to be violated in theeys Actions to be added are
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discovered also by counterexample analysis.

We have implemented AGAR with alphabet refinement in theieitgtate model checker
LTSA [72] and performed a series of experiments which dernmatesthat it can achieve better

performance than L*.

5.1.3 Outline

We introduce some necessary background about LTSA andngapased assume-guarantee
reasoning in Section 5.2. We present our alphabet refineaigatithm, its properties, and
evaluation, in Section 5.3. Section 5.4 presents our dlgarfor abstraction refinement in
assumption generation, and its evaluation. We concludefthpter and give some pointers to

future work in Section 5.5.

5.2 Background

5.2.1 Labeled Transition Systems (LTSs) Analysis (LTSA)

LTSA is an explicit-state model checker that analyzes fisitde systems modeled as labeled
transition systems (LTSs). Let be the universal set of observable actions and-ldenote
the unobservable action. L&t = (Q, oM, J, q0), be an LTS, where() is the set of states;
aM C Aisthe set of observable actions called éiighabetof M; § C Q@ x (aMU{7})xQis

the transition relation, ang, is the initial state. The LT3/ is non-deterministidf it contains
r-transitions or if3(q, a, ¢'), (¢, a,¢") € ¢ such thaty’ # ¢”. Otherwise,M is deterministic
We user to denote a speci@rror statethat has no outgoing transitions, aido denote the
LTS ({r}, A, D, 7). For the parallel composition of LTSH; and M, if any of them islI, then

the compositionV/ = M, || M, is alsoll.
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Paths and traces

Recall that gpathin an LTSM = (@, >, 0, qo) IS a sequence of alternating states and (ob-
servable or unobservable actions)df, p = ¢;,., a0, ¢y, @1, - - ., an—1, i, such that for every
ke€{0,...,n— 1} we have(q;, , ax, ¢, ,) € 9.

Thetrace of pathp, denoteds(p) is the sequencl, by, . . ., b, of actions along, obtained
by removing allr from aq,...,a,_;. A stateq reachesa stateq’ in M with a sequence of
actionst, denotedy - ¢, if there exists a patlp from ¢ to ¢’ in M whose trace is, i.e,,
o(p) = t. A trace of M is the trace of a path i/ starting fromg,. The set of all traces af/
forms thelanguageof M, denotedC(M). For any tracé = ag, ay, ..., a,_1, atrace LTScan
be constructed whose only transitions afe™* ¢; 2 ¢»... %> ¢,. We sometimes abuse the
notation and denote hyboth a trace and its trace LTS. The meaning should be cleartine
context. FoX' C ¥, t]y is the trace obtained by removing frarall actionsa ¢ ¥. Similarly,

M |y is an LTS over: obtained fromM by renaming tor all the action labels not ifu. Let
t1, to be two traces. LeL,, X, be the sets of actions occurringtn t,, respectively. By the

symmetric differencef t; andt, we mean the symmetric difference of setsand>.s.

Safety properties

We call a deterministic LTS not containinga safety LTSA safety propertyp is specified as
asafety LTSvhose languagé€(y) defines the set of acceptable behaviors aver

AnLTS M = (Q, X, 9, qo) satisfiesp = (Q,, 3y, 0, ¢ ), denotedV! = o, iff Vi € L(M)-
tln,€ L(p). For checking a property, its safety LTS iscompletedby adding error state
and transitions on all the missing outgoing actions fronstdtes intar so that the resulting
transition relation is (left-)total (when seen agip x (X U {7})) x Q) and deterministic; the
resulting LTS is denoted bye,. LTSA checksM = ¢ by computingM || @er and checking
if  is reachable in the resulting LTS.

As an example (from [42], consider a simple communicaticenciel that consists of two

components whose LTSs are shown in Fig. 5.1(a). Note thanite state of all LTSs in this
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Input

ack
o (.12
send
Outp n e outp;}t\ mput
send 7 output
2
a) b)

Figure 5.1: (a) Example LTSs; (Qrder property.

work is statd). ThelnputLTS receives an input on actiamput, then sends it to th@utputLTS

on actionsendand then receives an acknowledgement on adk After being sent some
data on actiorsend Outputproduces some output on actiontputand acknowledges that it
has finished on actioack At this point, both LTSs return to their initial states se fhrocess
can be repeated. For an example of a safety propertyQtter LTS in Fig. 5.1(b) captures
a desired behavior of the communication channel from Fit(&). The property comprises
states) and1, and the transitions denoted by solid arrows. It expressefatt that inputs and
outputs come in matched pairs, with the input always precgttie output. The dashed arrows

represent transitions to the error state that were addeot&in®rder,,,.

5.2.2 Assume-guarantee rules

Recall that in the assume-guarantee paradigm a formularipla ¢A) M (y), where) is a
componentp is a property, and4 is an assumption about/’s environment. The formula
is true if whenever\ is part of a system satisfying, then the system must also guarantee
¢ [55]. In LTSA, checking(A) M () reduces to checking || M = ¢ [72]. We work with a

number of symmetric and asymmetric rules for assume-gtegasasoning.

Recall the simple rule from Chapter 2:
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Rule ASym
1: (A) My ()
2: (true) M, (A)

(true) My [| M (o)

Soundness of the rule follows from the fact tkiae) A, (A) implies(true) M; || My (A)
and from the definition of assume-guarantee triples. Corapéss holds trivially, by substi-
tuting M, for A. Note that the rule is not symmetric in its use of the two conssts, and
does not support circularity. Despite the simplicity of thée, automating the discovery of the
assumptiord even for this rule has been a long-standing challenge wuagntly.

Another rule is similar to ASM but involves some form of circular reasoning. It appears

originally in [55] for reasoning about two components. Weeexl it to reasoning about > 2

components.

Rule CIRC-N
1: <A1> M, <S0>
2: <A2> M2 <A1>
n: (An) M, (A1)

n+1: (true) M; (A,)

{true) My || --- || My ()

Soundness and completeness of this rule follow from [S5teNloat this rule is similar to
the rule AS™ applied recursively for.+ 1 components, where the first and the last component
coincide (hence the term “circular”).

Although sound and complete, the rules presented so farcar@ways satisfactory since
they are not symmetric in the use of the components. The wojg]iproposes a set of sym-
metric rules that are sound and complete. They are symmetitie sense that they establish

and discharge assumptions for each component at the same tim
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In the next rule, the co-assumptiedd, for M; is the complement ofi;, i.e., an LTS whose

language is the complement of the languagé of

Rule SYm-N
1: (A1) M (p)
n: <An> Mn <90>
n+1: L(coAy | | cod,) C L(p)
(true) My || - || My (¢)

We requireny C aMU---UaM, andfori € {1,... ,n}, aAd; C (aMiN---NaM,)Uap.
Informally, eachA; is a postulated environment assumption for the compom&nb satisfy

property.

5.2.3 The L* learning algorithm

L* was developed by Angluin [4] and later improved by RivestleéShapire [87]. It learns
an unknown regular languadé over alphabel and produces a deterministic finite state au-
tomaton (DFA) that accepts it. L* interacts withMinimally Adequate Teachdhat answers
two types of questions from L*. The first type isv@embership quergisking whether a string

s € X*isinU. For the second type, the learning algorithm generatesmgectureA and asks
whetherL(A) = U. If L(A) # U the Teacher returns a counterexample, which is a skring
in the symmetric difference of(A) andU. L* is guaranteed to terminate with a minimal au-
tomatonA for U. If A hasn states, L* makes at most— 1 incorrect conjectures. The number
of membership queries made by L* @(kn? + nlogm), wherek is the size ofS, n is the
number of states in the minimal DFA féf, andm is the length of the longest counterexample

returned when a conjecture is made.
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5.2.4 Interface alphabet and weakest assumption

In the framework of [42], an important notion is that of theakest assumptigh3] depending

on the interface between the component and its environment.

Definition 13 (Weakest Assumption forY) LetM; be an LTS for a component,be a safety
LTS for a property required af/;, andX be the interface of the component to the environment.
The weakest assumptiehy, ». of M/, for ¥ and for propertyyp is a deterministic LTS such that:

1) A, x = %, and 2) for any componety, M, || (Malx) = ¢ iff My = Ay s

Projection of M, to X forces M, to communicate with our module only through(second
condition above). [53] showed that the weakest assump#giss for components expressed
as LTSs and safety properties and provided an algorithmdimpeiting these assumptions.
The definition above refers tany environment component/, that interacts with com-
ponent)/; via an alphabet. When M, is given, there is a natural notion of the complete

interfacebetween)/; and its environment/,, when propertyp is checked.

Definition 14 (Interface Alphabet) Let M; and M, be component LTSs, andbe a safety
LTS. The interface alphabgl; of M (with respect taVl, and ) is defined as¥; = (aM; U

ap) N aMs,.

Definition 15 (Weakest Assumption) GivenM;, M, andy as above, the weakest assumption

A, is defined asl,, y, .

Note that, to deal with any system-level property, propsrin definition 14 are allowed to
include actions that are not m)/; but are inaM,. These actions need to be in the interface
since they are controllable by/;. Moreover, from the above definitions, it follows that the
assumptiord,, is indeed theveakest it characterizes all the environments, that, together

with M, satisfy propertyp, i.e,, M, || My | ¢ iff My = A,,.
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Inputs: My, Ms, ¢, 22

query: strings (8)M1{p)

remove counterex

:  false
Oracle 1:(A) M ()
: ¢ true

L« _ true || Output: My||Ms = o
| Oracle 2:(true) Mo (A) : (assumption)

conjecture:A

............................................. - Analys
LTSAT (s M) |

Counterex:f\ymé e

add countere><§§ tls |true false§ _ Output: My ||Ms |~
18 (counterex)

Figure 5.2: Learning framework (from [81]).

5.2.5 Learning framework
With Rule ASym

The original learning framework from [42] was given for RUkSYM and is illustrated in
Figure 5.2. The framework check¥; || M, = ¢ by checking the two premises of the
assume-guarantee rule separately, and using the comectirom L* as assumptions. The
automatonA output by L* is, in the worst case, theeakest assumptiod,,. The alphabet

given to the learner is fixed t6 = ;.

The Teacher is implemented using model checking. For meshlgequeries on string,
the Teacher uses LTSA to chek M, (). If true, thens € L£(A,,), so the Teacher returns true.
Otherwise, the answer to the query is false. The conjectetesned by L* are intermediate
assumptionsl. The Teacher implements tvawacles Oracle 1guides L* towards a conjecture
that makeg A) M, () true. Once this is accomplishedracle 2is invoked to dischargé on

M,. If this is true, then the assume guarantee rule guararttaeg holds onM; || M;. The
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truey
‘ L(coAy || -+ | coAn) C L(p) } true > Output:
false (true) M || | My, (@)
is true
Counterexample Analysis > Output:
e 3 (true) My || -+ || My (o)
is false

Figure 5.3: Learning framework for ruley$-N (from [9]).

Teacher then returns true and the computed assumgtidiote thatA is not necessarily,,,

it can bestrongerthanA4,,, i.e,, £L(A) C L(A,), but the computed assumption is good enough
to prove that the property holds or is violated. If model dtieg returns a counterexample,
further analysis is needed to determinegiis indeed violated inV/; || M, or if A isimprecise

due to learning, in which casé needs to be modified.

Counterexample analysis Tracet is the counterexample from Oracle 2 obtained by model
checking(true) M,(A). To determine ift is a real counterexamplég, if it leads to error

on M; || My & ¢, the Teacher analyzéson M; || ¢.... In doing so, the Teacher needs
to first projectt onto the assumption alphab®t that is the interface of/s to M; || werr-
Then the Teacher uses LTSA to chegks)M;(p). If the error state is not reached during
the model checking; is not a real counterexample, ang; is returned to the learner L* to
modify its conjecture. If the error state is reached, the @hotdecker returns a counterexample
c that witnesses the violation @f on M, in the context ot | 5,. With the assumption alphabet
¥ = ¥, ¢ is guaranteed to be a real error traceMn | M, || ¢.. [42]. However, as we
shall see in the next sectionf C ¥;, c is not necessarily a real counterexample and further

analysis is needed.
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With Rule Sym-N

The framework has been extended to other rules in [9]; foeR&IM-N, it is illustrated in
Fig. 5.3. To obtain appropriate assumptions, the framevapilies the compositional rule
in an iterative fashion. At each iteration L* is used to geterappropriate assumptions for
each component, based on querying the system and on thésrektihe previous iteration.
Each assumption is then checked to establish the premideslefSrm-N. We use separate
instances of L* to iteratively leard 1, . .. Ayp.

As before, the Teacher needed by L* is implemented with ¢althe model checker. The
conjectures returned by L* are the intermediate assumgtign...A,. The Teacher imple-

mentsn + 1 oracles, one for each premise in thev&N rule:

e Oraclesl,...n guide the corresponding L* instances towards conjectinastake the

corresponding premise of ruler8-N true. Once this is accomplished,

e Oraclen + 1 is invoked to check the last premise of the rule,

L(coAy || --- || coAn) € L ()

If this is true, rule SM-N guarantees thal/, || - -- || M, satisfiesp.

If the result ofOraclen + 1 is false (with counterexample tra¢g by counterexample
analysis we identify either that is indeed violated inM, || --- || M, or that some of the
candidate assumptions need to be modified. If (some of tise)gstions need to be refined in
the next iteration, then behaviors must be added to thosergeeons. The result will be that
at least the behavior that the counterexample represeltsenallowed by those assumptions
during the next iteration. The new assumptions may of cobeswo abstract, and therefore

the entire process must be repeated.

Counterexample analysis Counterexampléis analyzed in a way similar to the analysis for

Rule ASvwm, i.e, we analyze to determine whether it indeed corresponds to a violation in
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M, || --- || M,. This is checked by simulatingon M; || cop, foralli = 1...n. The

following cases arise:

e If tisaviolating trace of all componenid,, ... M, thenl, || --- || M, indeed violates

©, which is reported to the user.

e If ¢ is not a violating trace of at least one componf)t then we use to weaken the

corresponding assumption(s).

5.2.6 Experimental data
Models

In our experiments, we use the following case studies (aB¢hmodels were analyzed before,

using the original assume guarantee framework, withouteefent):

e Gas Statiorj41] describes a self-serve gas station consistingafstomers, two pumps,

and an operator, for = 3,4, 5.

e Chiron [41] models a graphical user interface consisting:dfartists”, a wrapper, a
manager, a client initialization module, a dispatcher, mvalevent dispatchers, far=

2...5.

¢ MER[81] models flight software component for JPL's Mars Exptama Rovers. It con-

tainsk users competing for resources that are managed by a reswbiss, fork = 2..6.

e Rover Executivi4?] is a model of a subsystem for the Ames K9 Rover. The madel i
comprised of a main component ‘Executive’ and an ‘ExecCdratRer’ component that

is responsible for monitoring state conditions.
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Decompositions

We use the decompositions of these models into componemgfisers with their original de-
scriptions, that we calk-way decompositiondut also their decompositions into two super-
components obtained by grouping the given modules. WeltalktteR-way decompositions
and for Gas Station and Chiron they are the decompositiamsifo [41] to be the best for the
performance of the learning framework. For Gas Stationgdgmomposition is: the operator
and the first pump in one component, and the rest of the modutas other. For Chiron, the
event dispatchers are one component, and the rest of thelesaghe the other. For MER we
use the decomposition where half of the users are in one coempoand the other half with

the arbiter in the other. For the Rover we use the two compsreendescribed in [42].

Properties

In [41], 4 properties for Gas Station and 9 properties forr@hwere checked, to study how
various 2-way model decompositions affect the performarsfckearning (without alphabet

refinement). For most of these properties, the learningagmpr performs better than non-
compositional verification and it produces small (oneejtatssumptions. For some other
properties, learning does not perform that well, and predunuch larger assumptions. To
stress-test our approaches, we selected the latter, maleraing, properties for our study

here:

e For Gas Station, we check the property that the operatoecityrgives change to a

customer for the pump that he/she used.

e For Chiron, we check Property 1, stating that the dispatobéfies artists of an event
before receiving a next event, and Property 2, stating tiadispatcher only notifies

artists of an event after it receives that event.

e For MER, we check a mutual exclusion property stating thatrmaoinication and driving

cannot happen at the same time as they share common resources
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[ |
request
grant
Clients deny
cancel

(@)

Server

A:

88

_ client.grant
client.grant
client;.cancel
@Q client.cancel
clienf;.cancel client.grant
client.grant client;.cancel
client.cancel client.cancel

(b)

Figure 5.4: Client-Server example: (a) complete interface (b) derived assumption with a

subset of the interface alphabet.

e For Rover, the property we check states that for a specifieedhaariable, if the Exec-

utive reads its value, then the ExecCondChecker shouldeaoktit before the Executive

clears it first.

Also note that for Gas station and Chiron we used the samegtwations (values fok) as

reported in [41].

5.3 Alphabet Refinement

In this section we present our algorithm for interface ahgtaefinement, motivated first by an

example. We also present some theoretical properties afgoeithm and then an experimental

evaluation. We conclude after further comparison withteslavork.

5.3.1 Motivating example

To illustrate the benefits of smaller interface alphabetsaBsume guarantee reasoning, con-

sider a simple client-server application (from [81]). Ihststs of aservercomponent and two

identicalclient components that communicate through shared actions. Hach sendge-

questdor reservations to use a common resource, waits for thesargrantthe reservation,
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o: client.grant
Client: Clieni.request  clienigrant  cjian; client,.grant
O T T2l )useResource 2

client.cancel client,.cancel
() (b)

Figure 5.5: Example LTS for (a) a client and (b) a mutual esicln property (b)).

cliemt[1] request.

cliert[1] request. clierit [1] Tequest

cliewit [2] reqpaest cHevit [2] arpt clevd [2] request.

et [1] gt clierd [2] Tequest.
Server

cliert [1] dereyr

cliamit[2] cancel clisrit[1] derer

clierd[1] cancel

Figure 5.6: Client-Server example: LTS for Server (as digptl by the LTSA tool).

uses the resource, and theancelsthe reservation. For example, the LTS of a client is shown
in Figure 5.5(a), wheré= 1, 2.
The server cagrantor denya request, ensuring that the resource is used only by ome clie

atatime. The LTS of the server is in Figure 5.6.

The mutual exclusion property in Figure 5.5(b) capturesiés@red behaviour of the client-

server application discussed earlier.. To check the ptppea compositional way, assume that
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clierit [3] request.

clievt[1] Zrart. clierit [1].derer

client[1].grart

' liemt [1] Tequest, Tierd [3] Tequest

o @

clert[1.. 2] 5rEwel, derey, grart |7
-\_‘_‘_\_\-*_'_/

client[1] derer
A_big

(1] feancel, Mﬁmﬂ}, [2]. {eanc Lierd [2] dargrit} } clisrt [1] Tequect
"'\_._\_\_\_‘i_'_'_,_r'

cliend[1..2]. fearwcel , requesic Herd [2] carue

D

cliexd. { [1]. {earucel, request }, [3] {dertr, gravt, Tequest}

ch{[l].{\cfiﬂ,‘:‘i% gravt}, [4] {wariel, devgr, gravd, Tequest 7
e L

cligrd {[1]. {dever, grad, request }, [2]. {cancel, request}} _clisve [1]request
"-\-‘

client {[1]. {carwcel, derge, rant, Tequest ), [2]. fcawel, dergr, grant b
i e

clist. { [1]. {earel, daver, grat}, [2]. {rancel, davgr, Tequest } }

Figure 5.7: Client-Server example: assumption obtaingH thie complete interface alphabet

(as displayed by the LTSA tool).

we break up the system intd7; = Client; || Client, andM, = Server. Theompletealphabet
of the interface betweef/; || ¢ and M, (see Figure 5.4(a)) isfclient;.cancel client.grant

client;.deny, client,.request, clientcance] client.grant, client.deny, client.request.

Using this alphabet and the learning method of [42] yieldassumption with 8 states,
as shown in Figure 5.7. However, a (much) smaller assumisafficient for proving the
mutual exclusion property (see Figure 5.4(b)). The assiomgliphabet is{client.cancel,
client;.grant,clieng.cancel, clientgrant, which is a strict subset of the complete interface
alphabet (and is, in fact, the alphabet of the property).s Hisumption has just 3 states,
and enables more efficient verification than the 8-statenagBan obtained with the complete
alphabet. In the following sections, we present technigo@sfer smaller interface alphabets

(and the corresponding assumptions) automatically.
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5.3.2 Algorithm

Let M; and M, be componentsy be a propertyy; be the interface alphabet, aftibe an
alphabet such that C ¥;. Assume that we use the learning framework of the previous
section with Rule ASM, but we now set this smallet to be the alphabet of the assumption
that the framework learns. From the soundness of RuleM\Sf the framework reports true,
M, || My = . When it reports false, it is because it finds a trade M, that falsifies
(tls)M{p). This, however, does not necessarily mean tat|| M, [~ ». Real violations
are discovered by our original framework only when the alygt@s;, and are traces of M,
that falsify (¢ | 5, ) M, (p)*.

We illustrate this with the client-server example. Assuine {client.cancel client.grant
client.grant, smaller than; = {client;.cance] client;.grant client.deny, client,.request,
client.cance] client.grant client,.deny, client.reques}. Learning withY produces trace:

t = (client.requestclient.grant client.cancel client,.requestclient.grand. Projected ta,
this becomes| = (client.grant client.grand. In the context of |y, M; = Clients violates

the property since Cliept| Client, || ... contains the following behavior (see Figure 5.4):

client.request clienty.request client;.grant client;.grant

(0,0,0) " —""(1,0,0) T —""(1,1,0) T —"(1,2,2) T — " (2,2, error).

Learning therefore reporfalse This behavior is not feasible, however, in the contextef =
(client..requestclient,.grant client.cancel client.requestclient.grant. This trace requires
a clieng.cancel to occur before the cligrgrant. Thus, in the context &f; the above violating
behavior would be infeasible. We conclude that when appgl¥ire learning framework with
alphabets smaller thal;, if trueis reported then the property holds in the system, but vaiat
reported may be spurious.

We propose a technique callatphabet refinementwhich extends the learning framework
to deal with smaller alphabets thah while avoiding spurious counterexamples. The steps of

the algorithm are as follows (see Figure 5.8 (a)):

In the assume guarantee tripléss, ¢’ | s, are trace LTSs with alphabeXs ¥ respectively.
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counterex counterex

c t
i l Extended Counterex
e L Anglysis
> Output: M || Ms = ¢ |
. TLTSA: | false
Learning : - (tls) M) > real error
Framework Extended| , Output: ¢ true :
counterexCounterex N |[M, ¢ _
candt | Analysis i| Refiner: compare
‘ tlEI ) ClZ}I
updateX; restart different update®
5 actions yagtart
(a) (b)

Figure 5.8: (a) Learning with alphabet refinement and (b)tamchl counterexample analysis.
1. Initialize X to a setS such thatS C ;.

2. Use the classic learning framework for If the framework returngrue, then reportrue
and go to step 4 (END). If the framework returns false withrtevexamplesg (andt),

go to the next step.

3. Performextended counterexample analysifor c. If ¢ is a real counterexample, then
reportfalseand go to step 4 (END). If is spurious, themefine X, which consists of

adding toX actions from>;. Go to step 2.
4. END of algorithm.

When spurious counterexamples are detected, the refiremdsxthe alphabet with actions
in the alphabet of the weakest assumption and the learniagsafmptions is restarted. In the
worst casey; is reached, and as proved in our previous work, learning ¢ciminreports real
counterexamples. In the above high-level algorithm, tighlighted steps 1) alphabet initial-
ization, 2) extended counterexample analysis and 3) agthalinement are further specified

in the following.

Alphabet initialization . The correctness of our algorithm is insensitive to theahélphabet.
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We implement two options: 1) we set the initial alphabet |¢mpty set to allow the algorithm
to only take into account actions that it discovers, and 2)uetethe initial alphabet to those
actions in the alphabet of the property that are alst ine., ap N X, (in the experiments we
use the latter). The intuition for the latter option is tHagde interface actions are likely to be
significant in proving the property, since they are involireds definition. A good initial guess
of the alphabet may achieve big savings in terms of time sin@sults in fewer refinement

iterations.

Extended counterexample analysis An additional counterexample analysis is appended to
our original learning framework as illustrated in Figur8(®). The steps of this analysis are
shown in Figure 5.8(b). The extension takes as inputs batltdlinterexampléreturned by
Oracle 2, and the counterexampléhat is returned by the original counterexample analysis.
We modified our “classic” learning framework (Figure 5.2)r&durn bothc and ¢ to be used

in alphabet refinement (as explained below). As discussishbtained becausg|s)M; (¢)
does not hold. The next step is to check whether inffaccovers a real violation in the system.
As illustrated by our client-server example, the resultstedcking)M; || ¢, in the context

of ¢ projected to different alphabets may be different. The amirresults are obtained by
projectingt on the alphabeX; of the weakest assumption. Counterexample analysis treref
calls LTSA to checkt]x,) M (p). If LTSA finds an error, the resulting counterexampis a
real counterexample. If error is not reached, the alphabeteds to be refined. Refinement

proceeds as described next.

Alphabet refinement When spurious counterexamples are detected, we needith ¢me
current alphabeX so that these counterexamples are eventually eliminateduAterexample

c is spurious if in the context af|y;, it would not be obtained. Our refinement heuristics are
therefore based on comparin@ndt|y,, to discover actions i, to be added to the learning
alphabet (for this reasanis also projected ol; in the refinement process). We have currently

implemented the following heuristics:
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AlIDiff: adds all the actions in the symmetric difference jof, andc|y;,; a potential problem
is that is that it may add too many actions too soon, but iffideans to add useful actions,

it may terminate after fewer iterations;

Forward: scans the traces in parallel from beginning to end lookimdife first index where
they disagree; if such anis found, both actionsg|y, (i),cls, (i) are added to the

alphabet.

Backward: same as Forward but scans from the end of the traces to thenoegi

So far, we have discussed our algorithm for two componentsh&ve extended alphabet
refinement to» modulesi/y, . .. M, for anyn > 2. Previous work extended learning (without
refinement) to» components [42, 81]. To checkif, || ... || M, satisfiesp, we decompose it
into: M, and M}, = M, || ... | M, and the learning algorithm (without refinement) is invoked

recursively for checking the second premise of the assuwnaeagtee rule.

Learning with alphabet refinement uses recursion in a simiég. At each recursive invo-
cation forM;, we solve the following problem: find assumptidnand alphabeX’ 4, such that
the rule premises hold:

Oracle 1:M; || Aj = Aj1

Oracle 2:M;4y || ... || M,, = A,

Here A;_; is the assumption fof/;_;, and plays the role of the property for the current re-
cursive call. Thus, the alphabet of the weakest assumptiothfs recursive invocation is
Y = (aM; UaA; )N (aMjy U...Uab,). If Oracle 2 returns a counterexample, then
the counterexample analysis and alphabet refinement mrapexetly as in the 2 component
case. At a new recursive call far; with a newA;_;, the alphabet of the weakest assumption

is recomputed.
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5.3.3 Properties of alphabet refinement

In this section, we prove the main properties of our algarithVe first re-state the correctness

and termination of learningiithoutrefinement as proven in [42].

Theorem 5 (Termination and correctness [42])Given componentd/; and M,, and prop-
erty ¢, the learning framework in [42] terminates and it returnsi¢rif A/, || M, = ¢ and

false otherwise.

For correctness and termination of learning with alphabfhement, we first show progress
of refinement, meaning that at each refinement stage, nemnadie discovered to be added

to X.

Proposition 3 (Progress of alphabet refinement)LetY C X; be the alphabet of the assump-
tion at the current alphabet refinement stage. Lieé a trace of\/, || A.,.. such that |y, leads
to error on M, || ¢ by an error tracec, butt|y,, does not lead to error oii/; || .. Then

tls,# cly, and there exists an action in their symmetric difference ighaot in>.

Proof:
We prove by contradiction that ¢ |y, # c|s,. Suppose t|s,= c|s,. We know that c is an error
trace on M; || ¢. Since actions of ¢ that are not in X are internal to M; || ¢, then c|yx, also

leads to error on M; || perr. Butthen t|y;, leads to error on M || e, Which is a contradiction.

We now show that there exists an action in the difference between t|y, and c|y, that is
not in X (this action will be added to X by alphabet refinement). Trace t|y, is t|x, with some
interleaved actions from ;. Similarly, c|yx, is t|x with some interleaved actions from ¥, since
c is obtained by composing the trace LTS t|x with M; || @err. Thus t]s= c|y. We again
proceed by contradiction. If all the actions in the symmetric difference between ¢|x,, and c|x,
were in X, we would have t|x, = t|s= c|x= c|x,, which contradicts t |y, # c|x,. O
Intuitively, correctness for two (and) components follows from the assume guarantee rule and

the extended counterexample analysis. Termination falliram termination of the original
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framework, from the progress property and also from thedin@tss of:; and ofn. Moreover,
from the progress property it follows that the refinemenbetgm for two components has at
most|>;| iterations.

In order to formally prove termination and correctness afiéng with alphabet refinement,

we use the following lemma.

Lemma 1 For any componenfl/;, property ¢, and interface alphabel, (A, ) (M) (p)
holds.

Proof:
Ay yln= Ay x. Ifin Definition 13 we substitute A,, s, for M,, we obtain that: M || Ay s, = ¢
if and only if A, 5, = Ay . Butthe latter holds trivially, so we conclude that M; || Ay, = ¢,

which is equivalent to (A, ;) (M1){y), always holds. O

Theorem 6 (Termination and correctness with alphabet refinenent — 2 components)Given
components\/; and M,, and propertyy, the algorithmwith alphabet refinemerierminates

and returns true ifV/; || M, = ¢ and false otherwise.

Proof:

Correctness: When the teacher returns true, then correctness is guaranteed by the assume-
guarantee compositional rule. If the teacher returns false, the extended counterexample anal-
ysis reports an error for a trace ¢ of M», such that ¢|y;, in the context of A/, violates the property

(the same test is used in the algorithm from [42]) hence M, || M, violates the property.
Termination: From the correctness of L*, we know that at each refinement stage (with
alphabet ¥), if L* keeps receiving counterexamples, it is guaranteed to generate A,, ;. At that
point, Oracle 1 will return true (from Lemma 1). Therefore, Oracle 2 will be applied, which will
return either true, and terminate, or a counterexample ¢. This counterexample is a trace that
is notin L(A, ). Itis either a real counter example (in which case the algorithm terminates)
or itis a trace ¢ such that ¢| s, leads to error on M; || ¢, by an error trace ¢, but ¢|x,, does not

lead to error on M || werr. Then from Theorem 3, we know that t|y;,# c|x, and there exists
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an action in their symmetric difference that is not in X. The refiner will add this action (or more
actions depending on the refinement strategy) to X and the learning algorithm is repeated for
this new alphabet. Since X ; is finite, in the worst case, ¥ grows into X7, for which termination

and correctness follow from Theorem 5. O

Theorem 7 (Termination and correctness with alphabet refinenent —n components) Given

componentd/., ..., M, and propertyp, the recursive algorithrwith alphabet refinemenér-
minates and returns true i¥/; || ... || M, | ¢ and false otherwise.

Proof:

The proof proceeds by induction on n and it follows from theorem above. O

We also note a property of weakest assumptions, which stiaé¢sy adding actions to
an alphabet:, the corresponding weakest assumption becowesker(i.e., contains more

behaviors) than the previous one.

Proposition 4 Assume componenid; and M,, property and the corresponding interface
alphabet;. Let3, Y’ be sets of actions such thatt C ¥ C X;. Then: L(A4,yx) C

L(Ays) C L(Awy,)-

Proof:

Since ¥ C ¥', we know that 4, 5 |sy= A, x. By substituting, in Definition 13, A,, 5, for M,
we obtain that: (true)M; || (Awx)(p) if and only if (true)A,, s;(A, x/). From Proposition 1
we know that (true)M; || (A, x){(p). Therefore, (true)A, (A, ) holds, which implies that
L(Aws) C L(Ays). Similarly, £(Aysr) C L(Aws,)- O
With alphabet refinement, our framework adds actions to pleadet, which translates into
adding more behaviors to the weakest assumption that L& tagrove. This means that at
each refinement stagewhen the learner is started with a new alphabetuch that:;,_; C 3;,
the learner will try to learn an assumptidr), s, that is weaker thad,, 5;, ,, which was the goal

of the learner in the previous stage. Moreover, all thesemaptons areinder-approximations
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of the weakest assumptioh, y;, that is necessary and sufficient to prove the desired prppert
Of course, as mentioned before, at each refinement stageaiheet might stop earlier.e.,
before computing the corresponding weakest assumptianabbve property allows re-use of
learning results across refinement stages: when learing, the learner can start from the

table computed fod,, . in the previous refinement stage (instead of starting froratsk).

5.3.4 Extensions to other rules

Alphabet refinement also applies to the ruler ©N and SYm-N. As mentioned, GRC-N is a
special case of the recursive application of ruleyAsSfor n + 1 components, where the first
and last component coincide. Therefore alphabet refineapgies to CRc-N as we described
here.

For rule SYm-N, the counterexample analysis for the error traobtained from checking
premisen + 1 is extended for each componehi;, for i = 1...n. The extension works
similarly to that for ASYM discussed earlier in this section. The error tracesimulated on

each); || cop with the current assumption alphabet:

e if ¢ is violating for somei, then we check whethet with the entire alphabet of the
weakest assumption faris still violating. If it is, thent is a real error trace fon/;.
If it is not, the alphabet of the current assumption#ds refined with actions from the

alphabet of the corresponding weakest assumption;

e if ¢ is a real error trace for all then it is reported as a real violation of the property on

the entire system.

If alphabet refinement takes place for soimehe learning of the assumption for this
is restarted with the refined alphabet, and premise1 is re-checked with the new learned

assumption for.
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5.3.5 Experiments

We implemented alphabet refinement for learning with rul&s®, Sym-N, CIRC-N in LTSA
and compared to learning without alphabet refinement on thaels and properties described
in Section 5.2. The goal of the evaluation was to assess feet @f alphabet refinement on
learning, to compare this effect for the different rules] &amalso assess the effect of alphabet
refinement on the scalability of compositional verificationlearning, as compared to non-

compositional verification.

Experimental set-up

We performed five sets of experiments.

1. We compared the different alphabet refinement heuristicRtde ASrm and 2-way de-

compositions (using an experimental set-up similar to)[41]

2. We used the same setup and the best heuristic found in thedirsd compare learningith

alphabet refinemerib learningwithoutalphabet refinement.

3. We compared the recursive implementation of the refinemgotithm for the same rule,

with monolithic (non-compositional) verification, for ireasing number of components.
4. We used the same setup as in the third set of experiments fes Rwc-N and
5. SyM-N, omitting monolithic verification since these rules do notperform AS/m.

For the first two sets of experiments, we used 2-way decorniposias described in Sec-
tion 5.2. For the next two sets, we implemented an addititwealristic for computing the
orderingin which the modules are considered by the recursive legmwith refinement. The
heuristic is meant to minimize the interface between maglated follows from the observa-
tion that the ordering of the modules in the sequem&e. . ., M,, influences the sizes of the

interface alphabets!, ... X" that are used by the recursive algorithm. We generated efilin
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possible orders and associated interface alphabets asd thworder that minimizes the sum
Zj:l..n |E‘}"
All experiments were performed on a Dell PC with a 2.8 GHzlIRentium 4 CPU and 1.0

GB RAM, running Linux Fedora Core 4 and using Sun’s Java SDisiva 1.5.

Experimental results

The results are shown in Tables 5.1,5.2, 5.3, 5.4, and 5.5hdrtables,|A| is the max-
imum assumption size reached during learning, ‘Mem.” is thaximummemory used by
LTSA to check assume-guarantee triples, measured in MB;Tan’ is the total CPU run-
ning time, measured in seconds. Column ‘Monolithic’ repdite memory and run-time of
non-compositional model checking. We set a limit of 30 mésufor each run. The sign ‘~’
indicates that the limit of 1GB of memory or the time limit Haeen exceeded. For these cases,
the data is reported as it was when the limit was reached.

In Table 5.1, we show the performance of the different alpha&finement heuristics, for
two-way decompositions of the systems we studied. As thessdts indicate that ‘bwd’ heuris-
tic is slightly better than the others, we used this hewrfsti alphabet refinement in the rest of
the experiments.

Table 5.2 shows the effect of alphabet refinement on learning

Table 5.3 shows the performance of the recursive implerntientaf learning with rule
ASyM, with and without alphabet refinement, as well as that of nlittmo (non-compositional)
verification, for increasing number of components.

The results for rules @c-N and SYM-N are in Tables 5.4 and 5.5, respectively.

Discussion The results in all tables show that alphabet refinementongs learning signif-
icantly. Table 5.2 shows that alphabet refinement improliedassumption size in all cases,
and in a few, up to two orders of magnitude (see Gas Statidm/wit 2, 3, Chiron, Property

2, with £ = 5, MER with & = 3). It improved memory consumption in 10 out of 15 cases. It

also improved running time, as for Gas Station and for MERWit= 3, 4 learning without
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Table 5.1: Comparison of three different alphabet refindgrhenristics for Rule ASM and

2-way decompositions.

Refinement + bwd Refinement + fwd Refinement + allDiff
Case k

|A] | Mem. Time | |A| | Mem. Time | |A| | Mem. | Time

Gas 3 8 3.29 2.70 37 6.47 36.52 | 18 4.58 7.76
Station | 4 8 2406 | 1958 | 37 | 46.95 | 256.82 | 18 | 36.06 | 52.72

5 8 | 248.17| 183.70 | 20 | 414.19 - 18 | 360.04| 530.71
Chiron, | 2 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Prop.1| 3 || 20 6.10 23.82 | 20 6.06 7.40 20 6.06 7.77
4 || 38 | 4420 | 154.00 | 38 | 4420 | 33.13 | 38 | 44.20 | 35.32
5| 110 - 300 110 - 300 110 - 300
Chiron, | 2 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Prop. 2| 3 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92
4 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67
5 3 | 163.85| 18.08 3 | 163.85| 18.05 3 | 163.85| 17.99
MER 2 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01

3 8 10.56 | 11.86 8 10.56 | 11.86 8 10.56 | 11.85
4 || 10 | 514.41| 1193.53| 10 | 514.41| 1225.95| 10 | 514.41| 1226.80

Rover | 2 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

refinement did not finish within the time limit, whereas witfinement it did. The benefit
of alphabet refinement is even more obvious in Table 5.3 whdoerefinement’ exceeded
the time limit in all but one case, whereas refinement coredlét 14 of 16 cases, producing
smaller assumption sizes in all the cases, and up to twooadenagnitude smaller in a few;
the memory consumption was also improved in all cases, atol o orders of magnitude in

a few of them.

The results in Table 5.3 indicate that learning with refinetrezales better than without

refinement for increasing number of components. Alsd; areases, the memory and time
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Table 5.2: Comparison of learning for 2-way decompositamd Rule ASM, with and with-

out alphabet refinement.

Case ) No refinement Refinement + bwd
|A] | Mem. | Time | |A| | Mem. | Time
Gas 3 || 177 | 4.34 - 8 3.29 2.70
Station | 4 || 195 | 100.21 - 8 24.06 | 19.58
5| 53 | 263.38 - 8 | 248.17| 183.70
Chiron, | 2 9 1.30 1.23 8 1.22 3.53
Prop.1| 3| 21 | 570 5.71 20 | 6.10 23.82
4| 39 | 27.10 | 28.00 || 38 | 44.20 | 154.00
5 || 111 | 569.24| 607.72|| 110 - 300
Chiron, | 2 9 116 110 3 1.05 0.73
Prop.2| 3 || 25 | 4.45 6.39 3 2.20 0.93
4| 45 | 2549 | 32.18 3 8.13 1.69
5 || 122 | 131.49| 246.84| 3 | 163.85| 18.08
MER 2| 40 | 6.57 7.84 6 1.78 1.01
3 || 377 | 158.97 - 8 10.56 | 11.86
4| 38 | 391.24 - 10 | 514.41| 1193.53
Rover | 2 || 11 | 2.65 1.82 4 2.37 2.53

consumption for ‘Refinement’ grows slower than that of ‘Mbtic’. For Gas Station, Chi-
ron (Property 2), and MER, for small values/gf‘Refinement’ consumes more memory than
‘Monolithic’, but as k increases, the gap is narrowing, and for the largest value ‘Bfe-
finement’ becomes better than ‘Monolithic’. This leads tseswhere, for a large enough
parameter value, ‘Monolithic’ runs out of memory, whereR@sfinement’ succeeds, as it is the

case for MER witht = 6.

Tables 5.5 and 5.4 indicate that the effect of alphabet nefame is insensitive to the rule

being used.
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Table 5.3: Comparison of recursive learning fas¥wm with and without alphabet refinement,

and monolithic verification.

Case ) AsYM AsYM + ref Monolithic
|A] | Mem. | Time | |A| | Mem. | Time | Mem. | Time

Gas 3 || 473 | 109.97| - 25 | 241 | 13.29| 1.41 | 0.034
Station | 4 || 287 | 203.05| - 25 | 3.42 | 2250( 2.29 | 0.13
51 268 | 283.18| - 25 | 5.34 | 46.90| 6.33 | 0.78

Chiron, | 2 || 352 | 343.62| - 4 0.93 | 2.38 | 0.88 | 0.041
Prop.1| 3 || 182 | 11457 - 4 1.18 | 2.77 | 1.53 | 0.062
4 || 182 | 116.66| - 4 2.13 | 353 | 2.75 | 0.147

51| 182 | 115.07| - 4 7.82 | 6.56 | 13.39| 1.202

Chiron, | 2 || 190 | 107.45| - 11 | 1.68 | 40.11| 1.21 | 0.035
Prop. 2| 3 || 245| 68.15 - 114| 28 - 1.63 | 0.072
4 || 245 | 70.26 - 103 | 23.81| - 2.89 | 0.173

51 245| 76.10 - 76 | 32.03 - 15.70| 1.583

MER 2| 40 | 8.65 | 21.90| 6 1.23 | 1.60 | 1.04 | 0.024
3 || 501 | 240.06| - 8 354 | 476 | 4.05 | 0.111

4 || 273 | 101.59| - 10 | 9.61 | 13.68| 14.29| 1.46

51| 200| 78.10 - 12 | 19.03| 35.23| 14.24| 27.73

6 || 162 | 84.95 - 14 | 47.09| 91.82| - 600

Chiron, Property 2, was a challenging case for learning yathwithout) alphabet refine-
ment and asymmetric rules. We looked at it more closely. rAfispecting the models, we
noticed that several modules do not influence Property 2.ddewthese modules do commu-
nicate with the rest of the system through actions that appehe counterexamples reported
by our framework. As a result, alphabet refinement introduaa-necessary’ actions. If we
eliminate these modules, the property still holds in theammng system. The performance
of learning with refinement is greatly improved when appliedthis reduced systeneq, for

k = 3, the size of the largest assumption is 13) and is better tlarofithic. We may be able
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Table 5.4: Comparison of learning fonr-N with and without alphabet refinement.

CIRC-N CIRC-N + ref

Case k
|A] | Mem. | Time | |A| | Mem. | Time
Gas 3 || 205| 108.96| - 25 | 243 | 15.10
Station | 4 || 205 | 107.00| - 25 | 3.66 | 25.90
51 199 | 105.89| - 25 | 5.77 | 58.74
Chiron, | 2 || 259 | 78.03 - 4 0.96 | 2.71
Prop. 1| 3 || 253 | 77.26 - 4 1.20 | 3.11
4| 253| 7790 | - 4 221 | 3.88
5| 253 | 81.43 - 4 7.77 | 7.14
Chiron,| 2 || 67 | 100.91| - | 327 | 44.17| -
Prop.2| 3 || 245 | 75.76 - 114 | 26.61 -
4 || 245| 77.93 - 103 | 23.93| -
5| 245| 81.33 - 76 | 32.07| -
MER 2 || 148 | 597.30| - 6 1.89 | 1.51
3 || 281| 292.01| - 8 3.53 | 4.00
4 || 239 | 237.22| - 10 | 9.60 | 10.64
5| 221 | 115.37| - 12 | 19.03 | 27.56
6 || 200| 88.00 | - 14 | 47.09| 79.17

to develop refinement heuristics that are less sensitived groblems, but we cannot expect
heuristics to always produce the optimal alphabet. Thesefio the future, we also plan to
investigate slicing-like techniques to eliminate modulest do not affect a given property. It
is worth noting that for the symmetric rule this case becosaesy, so there is value in using

different rules, even if A8M shows the best performance overall.

5.3.6 Comparison with related work

Since the original work framework of [53, 42], several otframeworks that use L* for learn-

ing assumptions have been developed — [2] presents a syorioD implementation using
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Table 5.5: Comparison of learning for8&-N with and without alphabet refinement.

SYM-N SYM-N + ref
Case k
|A] | Mem. | Time | |A| | Mem. | Time
Gas 3 7 1.34 - 83 | 31.94| 874.39
Station | 4 7 2.05 - 139 | 38.98 -
5 7 2.77 - 157 | 52.10 -
Chiron, | 2 19 | 2.21 - 21 | 456 | 52.14
Prop.1| 3 || 19 | 2.65 - 21 | 4.99 | 65.50
41| 19 | 4.70 - 21 | 6.74 | 70.40
5 19 | 17.65 - 21 | 28.38| 249.3
Chiron, | 2 7 1.16 - 8 093 | 6.35
Prop.2| 3 7 1.36 - 16 | 1.43 9.40
41 7 2.29 - 32 | 3,51 | 16.00
5 7 8.20 - 64 | 20.90| 57.94
MER 2|l 40 | 6.56 | 9.00 6 1.69 | 1.64
3|l 64 | 11.90| 2595 | 8 3.12 | 4.03
4| 88 | 1.82 | 83.18 | 10 | 9.61 9.72
51| 112 | 27.87 | 239.05| 12 | 19.03| 22.74
6 || 136 | 47.01 | 608.44| 14 | 47.01| 47.90

NuSMV. This symbolic version was extended in [79] with algfuns that decompose models
using hypergraph partitioning, to optimize the perfornm@aatlearning on resulting decompo-
sitions. Different decompositions are also studied in [@hgre the best two-way decompo-
sitions are computed for model-checking with the LTSA and®¥ERS tools. We follow a

direction orthogonal to the latter two approaches and tiynfarove learning not by automat-
ing and optimizing decompositions, but rather by discawgsmall interface alphabets. Our
approach can be combined with the decomposition approablgespplying interface alpha-
bet refinement in the context of the discovered decompasitib* has also been used in [1]

to synthesize interfaces for Java classes, and in [91] tokcbemponent compatibility after
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component updates.

A similar idea to our alphabet refinement for L* in the contekassume-guarantee veri-
fication has been developed independently in [24]. In thakwo* is started with an empty
alphabet, and, similar to our approach, the assumptiorabhthis refined when a spurious
counterexample is obtained. At each refinement stage, a neimnal alphabet is computed
that eliminates all spurious counterexamples seen so fa.cobmputation of such a minimal
alphabet is shown to be NP-hard. In contrast, we use muclpeheauristics, but do not guar-
antee that the computed alphabet is minimal. The approadepted in [93] improves upon
assume-guarantee learning for systems that communicséel lmen shared memory, by using

SAT based model checking and alphabet clustering.

The theoretical results in [73] show that circular assumargntee rules can not be both
sound and complete. These results do not apply to rules suohira that involve additional
assumptions which appear only in the premises and not indhelasions of the rules. Note
that completeness is not required by our framework (howevaympleteness may lead to

inconclusive results).

Our approach is similar in spirit to counterexample-gui@bdtraction refinement (CE-
GAR) [36]. CEGAR computes and analyzes abstractions ofrarag (usually using a set
of abstraction predicates) and refines them based on sgucmunter-examples. However,
there are some important differences between CEGAR andlgarithm. Alphabet refine-
ment works on actions rather than predicates, it is appl@dpositionally in an assume-
guarantee style and it computes under-approximationss@fraptions) rather than behavioral

over-approximations (as it happens in CEGAR).

The work of [61] proposes a CEGAR approach to interface sgishfor Java libraries.
This work does not use learning, nor does it address the usleeofesulting interfaces in

assume-guarantee verification.

Generating assumptions for a component is similar to géingraomponent interfaces to

handle intermediate state explosion in compositionalirabitity analysis. Several approaches
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have been defined to automatically abstract a componenti®ament to obtain interfaces [29,
67, 30]. These approaches do not address the incrementamefint of interfaces, and they

could benefit from our new approach.

5.4 Assumption Generation by Abstraction Refinement

In this section we present our algorithm AGAR, including aaptation of CEGAR to LTSs
with interfaces, a motivating example showing that AGAR tead to smaller assumptions
in fewer iterations than a learning-based approach, anehexins of AGAR with alphabet
refinement and with recursive applicationto- 2 components. We then show an experimental
comparison with learning-based approaches, and other aisop with related work, after

which we conclude.

5.4.1 Motivating example

We motivate our approach using the input-output example f8ection 5.2. We show that
even on this simple example AGAR leads to smaller assumptiofewer iterations than the
learning approach, and therefore it potentially leadsfast smaller verification problems.

Let M; = Input, M; = Output andy = Order. As mentioned, we aim to automatically
compute an assumption according to RuleyAsS Instead of “guessing” an assumption and
then checking both premises of the rule, as in the learnipgogehes, wéuild an abstraction
that satisfiefremise 2oy construction. Therefore, all that needs to be check®damise 1

The initial abstractiomd of Outputis illustrated in Figure 5.9(a). Its alphabet consists of
the interface betweelmput and theOrder property on one side, arfdutputon the otherj.e.,
the alphabet ofd is X; = {(Xinput U Zorder) N Xoupu: The LTS A is constructed simply by
mapping all concrete states @utputto the same abstract stadevhich has a self-loop on
every action in:; and no other transitions. By constructichis an overapproximation a¥/,,

i.e, L(Mslx,) C L(A), and thereford’remise 2(true) M, (A) holds. Checkindg’remise 1
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@ (b)

Figure 5.9: Assumptions computed (a) with AGAR and (b) with L

of the assume-guarantee rule usii@s the assumption fails, with abstract counterexample:
0, output 0. We simulate this counterexample 6, and find that it is spurious.¢., it does

not correspond to a trace iM;), thereforeA needs to be refined so that the refined abstraction
no longer contains this trace. We split abstract staitgto two new abstract states: abstract
state0, representing concrete stateand2 that do not have aautputaction, and abstract state
1, representing concrete stdtéhat has amutputaction, and adjust the transitions accordingly.
The refined abstractiod’, shown in Figure 5.9(a), is checked againfesemise land this time

it passes, therefore AGAR terminates and reports that thyeegpty holds.

The sequence of assumptions learned with L* is shown in Ei§u®(b). The assumption
computed by AGAR, even if still deterministic, has half thewber of states and is computed
in half the number of iterations than that obtained fromneay. It is possible to obtain a
smaller (deterministic) assumption than in learning, afégarning is guaranteed to produce

a minimal automaton: the minimum is taken over all possibtemata for the same language.
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In our example, the languages of the assumptions resuliomg AGAR and L* are different.
For instance A’ does not accept the trace: ack, output, which is a track;inNote also the
different initial assumptions computed by the two algarith L* builds its initial assumption
by collecting all the singleton traces for a € ack, send, output that do not lead to error in
M, || ¢. Note also that our algorithm acts monotonically in termasgumption traces: it
removes spurious traces, whereas L* both adds and rem@aoestrit can add traces that later
on may be removed following a failure Bfemise 2or can remove traces that later on may be

added for passinBremise 1

5.4.2 Assume-Guarantee Abstraction Refinemen®GAR)

The abstraction refinement presented here is an adaptdtiba GEGAR framework of [36],
with the following notable differences: 1) abstraction mefnent is performed in the context
of LTSs; abstract transitions for LTSs are computed usiogurewith respect to actions that
are not in their interface alphabet, and 2) counterexamméyais is performed in an assume-
guarantee style: a counterexample obtained from modekaoiggone component is used to
refine abstractions of a different component.

In this section, we start by describing, independently efdbsume-guarantee rule, abstrac-
tion refinement as applied to LTSs. We then describe how wéhisabstraction refinement in
an iterative algorithm (AGAR) that computes assumptiom$&fisle ASrm. Later on, we com-
bine AGAR with an orthogonal algorithm that performs iteratrefinement of the interface

alphabet between the analyzed components.

Abstraction refinement for LTSs

Abstraction. LetC' = (Q¢, X¢, 09, ¢5') be an LTS that we refer to amncrete Let alphabet
¥4 be suchthat 4 C Y. An abstractionA of C'is an LTS(Q 4, ¥4, 04, ¢') such that there
exists a surjection : Q¢ — @ 4, called theabstractiorfunction, that maps eaaoncrete state

q© € Q¢ to anabstract statey! € Q 4; ¢;' must be such that(q§) = ¢i'. Theconcretization
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functiony : Q4 — 29¢ is defined for any* € Q4 asv(¢?) = {¢° € Q¢ | a(¢°) = ¢*}.
Note thaty induces a partition of)¢, namely{~(¢*) | ¢* € Q4}.

To define the abstract transition relatiéf, we first introduce the notion of reachability
with respect to a subset alphabet. Forc C, a € ¥, we define the s&Reachable(¢®, a, ¥ 4)
of concrete stateg” reachable frong“ on actiona, under the transitive closure 6f over ac-

tions in(X¢ \ X4) U {7}:
Reachable(¢C, a,54) = {¢€ € C|3t, ¢ € (Sc \ Ta) U {r})* - ¢€ = ¢€ or ¢ "2 ¢€).

We define the abstraction to legistentia) but usingReachablg instead of the usual tran-

sition relation ofC' [36]: 3(¢;*, a, ¢') € 64 iff

Jq¢ qjc cC-a(¢f) = qZA,oz(qjC) = qf, andqjc c Reachable(¢”, a, %) (5.1)

From the above definition and that of weak simulation [77]foltows that the abstraction

defines a weak simulation relation betwe€py;, and A. It is known that weak simulation

implies trace inclusion [77]. We therefore have the follogi

Proposition 5 Given concrete LT®' and its abstractiond defined as abovef(C|y,) C

L(A), and consequentlftrue) C' (A) hold.

The CEGAR algorithm for LTSs is defined by Algorithm 1. It takas inputs a concrete
systemC, an abstractiom (as defined above), and an abstract counterexamplepathA).
The algorithm analyzes the counterexample (lines 1-6) edfgeis real, in which case it is
returned (line 13) or spurious, in which case it is used tomeethe abstraction (lines 7-11).
The refined abstractioA’ is such that it no longer contaips We discuss Algorithm 1 in more
detail below.

Analysis of abstract counterexamples Suppose we have obtained @pstract counterexam-
plein the form of a pathy = ¢¢', a1, ¢, as, . . . , an, ¢2 in the abstractiom of C'. We want to
determine if it corresponds to a concrete patiinFor this we need to “play” (i.e. symboli-
cally simulate)p in C from the initial state;S. We do so considering that, C ¥ and thus

we useReachablg again.
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We first extendReachablg to sets: forS C (¢, Reachablg(S,a,¥4) = {qf e C|
Jq¢ € S.qjC € Reachablé;“, a, ¥ 4)}. We play the abstract counterexamplollowing [36].
We start at step with the setS; = {¢{'} of concrete states, and the first transitigh*> ¢;!
from p. Note thatSy = {¢5'} N v(¢i'). Ateach step € {1,...,n}, we compute the set; =
v(g?)NReachable(S;_1, a;, X4). If, for somei < n, S; is empty, the abstract counterexample
is spurious and we need to refine the abstraction to elimihaherwise, the counterexample

corresponds to a concrete path.

Abstraction refinement. The abstraction refinement is performed in lines 8-10 ofoAlg
rithm 1: p is spurious because abstract stgte does not distinguish between two disjoint,
non-empty sets of concrete states [36]: (i) those that reaith actiona;, states in the con-
cretization ofg/* (these are the states definedyas:! ,) in line 8) and (ii) those reached so far
from ¢ with the prefixa;, as, . . ., a;_1, i.e, the states ir5;_;.

To eliminate the spurious abstract path, we need to refibg splitting its statey* ; into
(at least) two new abstract states that separate the (¢ehstates of types (i) and (ii) (line 9).
We splitg? , into 2 , wherey(xZ |) contains the set of states in (i) and , wherevy(z# ,)
contains the set of states in (ii) and any remaining stategdfi ;). Note that this results in
a finer partition of the concrete states. After the splittimg update the abstract transitions
in line 10. The refined abstractiofi has the same transitions dsexcept for those incoming
or outgoing for the split statg* ,: they are readjusted to point to or from the statés, 2 ,

according to condition 5.1. We therefore can conclude that:

Lemma 2 If a counterexample input to Algorithm 1 is spurious, the returned abstractidn
results in a strictly finer partition thanl and does not contaip.

The AGAR algorithm

The pseudocode that combines Algorithm 1 with RuleviSis given in Algorithm 2. Recall
that>J; denotes the alphabéL,, U X,) N Xy, of the interface between/; and M,, with

respect tap. The algorithm checks that/; || M, satisfiesy using Rule ASM. It builds
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Algorithm 1 CEGAR for LTSs with respect to subset alphabets
Inputs: Concrete LTS C, its abstractionA, and an abstract counterexampie =

a a1, gt ag, .. an, gt in A.
Outputs: a concrete counterexamplgf p is not spurious, or a refined abstractidhwithout
pathp, if p is spurious.
1: 90
2: 5y — {45’}
3: while S; 0 Ai<n-—1do
4: j+—1+1
5. S; « v(¢?) N Reachable(S;_1,a;,X4)
6: end while
7: if S; = 0 then
8: split ¢!, into two new abstract stateg” |, 2| s.t. y(z2,) = y(¢t,) N {¢© |
Reachable(¢C, a;, £4) N ¢/ # 0}, v (=) = 7(gt) \ (k)
9:  build new abstractios’ with Q4 = Q4 \ {¢*,} U {22, 22}
10:  change only incoming and outgoing transitions #r, in A to/from {z,,2,} in
refined abstractiod’, according to Definition 5.1
11:  return A’
12: else
13:  return concrete trace «— o(p)

14: end if

abstractionsA of M, in an iterative fashion (while loop at lines 2—-15); thesetusions

are used to checRremise lof the assume guarantee rule using model checking (lines 3—
5). If the check is successful, then, according to the ruhel (since A satisfiesPremise 2

by construction) indeed holds inM/; || M, and the algorithm returns "true”. Otherwise,

a counterexample is obtained from model checkingremise 1(line 7) and Algorithm 1 is

invoked to check ifp corresponds to a real path i, (in which case it meansis a real error
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Algorithm 2 AGAR: assume-guarantee verification by abstraction-referd
Inputs: Component LTS3/, M, safety property LTS, and alphabet , = X3;.

Outputs: true if M, || M, satisfiesp, false with a counterexample, otherwise.
Uses: Algorithm 1
1: Compute initial abstractiod of M5, with a single state;' having self-loops on all actions
in Y4
2: while true do
3:  CheckPremise 1 (A) M; ()

4: if successfuthen

5: return true
6: else
7: Get counterexample = qo,b1,q1,b2,...,0,¢q from line 3, where eachy,; =

8: Projecto on A to geto’ = ¢i', by, ¢, ba, G35, . . . by, gt
o: Projecto’ on X 4 to get abstract counterexample= ¢;', a1, ¢, . . ., a,, ¢t in A.
10: endif

11:  Call Algorithm 1 with inputs:M,, A, p

12:  if Algorithm 1 returned real counterexamplthen

13: return false with counterexample
14: else

15: A=A

16: end if

17: end while

in M, || M, and this is reported to the user in line 11)plis spurious, Algorithm 1 returns a
refined abstractionl’ for which we repeat the whole process starting from checKirggnise

1.

Obtaining an abstract counterexample.As mentioned, we use counterexamples from failed
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checks of Premise 1 (that involves checking compomiépjtto refine abstractions adf/,. Ob-
taining an abstract counterexample involves several gtegs 7—9). First, a counterexample
from line 4 is a pathv = qo,b1,¢1,b2,...,0,qin A || My || wer- Thus, for everyi € {0,1},

q; is a triple of stategq?, ¢!, p;) from A x M, x er. We first project every triple on to
obtain the sequence = ¢, b1, ¢i', ba, ¢3', . . ., bigi; o is not yet a path iM as it may contain
actions fromM; and e, that are not observable té; those actions have to be between the
same consecutive abstract states in the sequence, sigagotimet change the state df, we
eliminate fromo’ those actions and the duplicate abstract states that tmect) and finally

obtainp that we pass to Algorithm 1.

Theorem 8 Our algorithm AGAR) computes a sequence of increasingly refined abstractions
of M, until both premises of RulaSym are satisfied, and we conclude that the property is
satisfied by\/; || M,, or a real counterexample is found that shows the violatiche property

on M, || M.

Proof:

Correctness The algorithm terminates when Premise 1 is satisfied by the current abstraction

or when a real counterexample is returned by Algorithm 1. In the former case, since the ab-
straction satisfies Premise 2 by construction (Proposition 5), Rule ASym ensures that M; || M»
indeed satisfies ¢, so AGAR correctly returns answer "true”. In the latter case, the counterex-
ample returned by Algorithm 1 is a common trace of M; and of M; that leads to error in werr.
This shows that property ¢ is violated on M; || M, and in this case again AGAR correctly
returns answer "false”.

Termination AGAR continues to refine the abstraction until a real counterexample is reported
or the property holds. Refining the abstraction always results in a finer partition of its states
(Lemma 2), and is thus guaranteed to terminate since in the worst case it converges to M,
which is finite-state. O

If M, hasn states, AGAR makes at most refinement iterations, and in each itera-

tion, counterexample analysis performs at magtansitive closure operations (for computing
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Reachablg,), each of cosO(n?), wherem is the length of the longest counterexample ana-
lyzed. This bound is not very tight as the closure steps ane dm-the-fly to seldom exhibit

worst-case behavior, and actually involve only partd/&fs transition relation as needed.

AGAR with alphabet refinement

In [49] we introduced amlphabet refinemenechnique to reduce the alphabet of the assump-
tions learned with L*. This technique improved significgritie performance of compositional
verification. We show here how alphabet refinement can bdasigintroduced in AGAR. In-
stead of the full interface alphab¥t, we start AGAR from a small subsgt, C >;. A good
strategy is to start from those actionsdin that appear in the property to be verified, since the
verification should depend on them. We then run Algorithm thwis smallX 4. Alphabet
refinement introduces an extra layer of approximation, dube smaller alphabet being used.
The pseudocode is in Algorithm 3. This algorithm adds anrdotp to AGAR (lines 1—
15). At each iteration, itinvokes AGAR (line 2) for the cuntalphabet: 4. If AGAR returns
"true”, it means that alphabét, is enough for proving the property (and "true” is returned to
the user). Otherwise, the returned counterexample nedmsftather analyzed (lines 5-13) to
see if it corresponds to a real error (which is returned tauer in line 9) or it is spurious due
to the approximation introduced by the smaller interfag#abet, in which case it is used to

refine this alphabet (lines 11-12).

Additional counterexample analysisAs explained in [49], whek 4, C X ;, the counterexam-
ples obtained by applying Rule A& may be spurious, in which casg, needs to be extended.
Intuitively, a counterexample is real if it is still a coursgample when considered withy.
For counterexample analysis, we modify Algorithm 2 to alspat the traces = o(o’) of
actions along the intermediate paftlobtained at its line 8. Singeis a path obtained fronf
by eliminating transitions labeled with actions frain \ ¥4 (See Section 5.4.2) artd= o(p),

it follows thats is an “extension” of to X;.

We check whethes|y,, is a trace of\/; by making it into a trace LTS ending with the error
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Algorithm 3 AGAR with alphabet refinement
Inputs: Component LTS3/, M, safety property LTS, and alphabet , C ¥;.

Outputs: true if M, || M, satisfiesp, false with a counterexample, otherwise.
Uses: Algorithm 2

1: while true do

2. Call Algorithm 2 with My, M5, 0, ¥ 4.

3. if Algorithm 2 returnedrue then

4: return true
5. else
6: Obtain counterexample= ay, ..., a, from Algorithm 2and traces = o(o’) from

line 8 of Algorithm 2.
7: Check if error reachable isf" |y, || My wheres®" |y, is the trace-LTS ending with

an extra transition into error state

8: if error reachedhen
9 return false with counterexample|y,
10: else
11: Compare to sy, to find difference action set
12: Ype— 22U
13: end if
14:  endif

15: end while

stater, and whose alphabet1s; (line 7). Since)M, does not contaim, the only way to reach
error is if s| y;, is a trace ofMy; if we reach error, the counterexamples real. Ifs|y, is not

a trace ofM,, sincet is, we need to refine the current alphabgt At this point we have two
traces,s|yx, andt that agree with respect @, and only differ on the actions frof; \ X4;
since one trace is i/, and the other is not, we are guaranteed to find in their synienetr

difference at least an action that we can addtpto eliminate the spurious counterexample
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t. We include the new action(s) and then repeat AGAR with the alphabet. Termination

follows from the fact that the interface alphabet is finite.

5.4.3 Evaluation

We implemented AGAR with alphabet refinement for Rule 1 inltR8A tool. We compared
AGAR with learning based assume guarantee reasoning, lerARs¥M and 2-way decompo-
sitions using the same data and experimental setup as i&&cB. We report the maximum
assumption sizd.g., number of states) reachddl{’), the memory consumed (‘Mem.’) in MB,
and the time (‘Time’) in seconds. A ‘—’ indicates that theiimf 1G of memory or 30 minutes
has been exceeded. For those cases, the other quantitsfeane as they were when the limit
was reached. We also highlight in bold font the best results.

The results for the first set of experiments are shown in Eablé and 5.7. AGAR shows
better results than learning in about 75% of the cases withlphabet refinement, and in
slightly more than half of the cases with alphabet refinem@éfat noticed that the relative sizes
of M || perr and M, seem to influence the performance of the two algorithms. Tinebers of
states on each side of the two-way decompositions are ir EaBlin rows ‘S1’ and ‘S2’, where
S1is|M; || verr| @and S2 i§Ms|. For Gas Stationwherel, is consistently smaller, AGAR is
consistently better, while faChiron, as the size of\/; becomes much larger, the performance
of AGAR seems to degrade. Furthermore, we observed thae#raihg runs exercise more
the first component, whereas AGAR exercises both. We therefonsidered a second set
of experiments were we tried to compare the relative perdoee of the two approaches for
two-way system decompositions that are more balancedrmstef number of states.

We generated off-line all the possible two-way decompasgiand chose those minimizing
the difference in number of states betwe¥n || ver and M,. The rest of the setup remained
the same. The sizes for the balanced decompositions we #rend Table 5.9, and the results
for these new decompositions are in Tables 5.10 and 5.1 MR, in only one case we found

a more balanced partition than previously; for Rover theeer® other decompositions than
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Table 5.6: Comparison of AGAR and learning for Rule A6 and 2-way decompositions,

without alphabet refinement.

Case ) AGAR Learning
|A] | Mem. | Time | |A| | Mem. | Time

Gas 3| 16 | 4.11 3.33 | 177 | 42.83 -
Station | 4 || 19 | 37.43 | 23.12 | 195 | 100.17 -

5| 22 | 359.53| 278.63| 45 | 206.61 -
Chiron, | 2 || 10 | 1.30 0.92 9 1.30 1.69
Prop.1| 3 || 36 | 2.59 594 | 21 | 559 7.08

41 160 | 871 | 152.34| 39 | 27.1 | 32.05

51| 4 | 55.14 - 111 | 569.23| 676.02
Chiron, | 2 || 4 1.07 0.50 9 1.14 1.57
Prop.2| 3 8 1.84 160 | 25 | 4.45 7.72

41 16 | 4.01 | 18.75 | 45 | 25.49 | 36.33

5|| 4 | 52.53 - 122 | 134.21| 271.30
MER 2| 34| 142 | 11.38| 40 | 6.75 9.89

3|l 67 | 810 | 247.73| 335| 133.34 -

4 || 58 | 341.49 - 38 | 377.21 -
Rover 10 | 4.07 180 | 11 | 2.70 2.35

the given one).

These results show that, with these new decompositions, R@&Aconsistently better in
terms of time, memory and assumption size in almost all ofchees without alphabet re-
finement, and in slightly fewer cases with alphabet refingfnefihe results are somewhat
non-uniform ask increases because for each larger valug ofe re-computed balanced de-
compositions independently of those for smaller valuess Thwhy we even found smaller

components for larger parameter, as for Chiron, Property=%,3 vs. k = 4. All our results

2We did not count the cases when both algorithms ran out ofdimi
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Table 5.7: Comparison of AGAR and learning for Rule A6 and 2-way decompositions,

with alphabet refinement.

Case ) AGAR Learning
|A] | Mem. | Time | |A] | Mem. | Time
Gas 3|l 5 2.99 2.09 8 3.28 3.40
Station | 4 || 5 | 22.79 | 1280 | 8 | 2521 | 19.46
5| 5 | 216.07| 83.34| 8 | 207.29| 188.98
Chiron,| 2 || 10 | 1.30 1.56 8 1.22 5.17
Prop.1| 3 || 36 | 244 | 10.23 | 20 | 6.00 30.75
4| 160 | 8.22 | 252.06| 38 | 41.50 | 180.82
51| 3 | 58.71 - 110 - 386.6
Chiron, | 2 || 4 1.23 0.62 3 1.06 0.91
Prop.2| 3 || 8 2.00 3.65 3 2.28 1.12
4| 16 | 5.08 | 107.50| 3 7.30 1.95
5 1 | 81.89 - 3 | 16345 19.43
MER 2| 5 1.42 5.02 6 1.89 1.28
3| 9 11.09 | 180.13| 8 8.78 12.56
41 9 | 53249 - 10 | 489.51| 1220.62
Rover 3 2.62 2.07 4 2.46 3.30

also indicate that the benefits of alphabet refinement are pronounced for learning.

We compared AGAR with the best learning implementation @lithe work done at NASA.
Our results do not transfer directly to other learning apphes for the simple reason that
other implementations are different from the NASA impletagion; they use symbolic BDD
representations, or implement learning of general autanadglher than just LTSs. Comparisons

of AGAR with other learning implementations remain for frework.
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Table 5.8: Original component sizes.

Case Gas Station Chiron Prop. 1 Chiron Prop. 2

k 3 4 ) 2 3 4 ) 2 3 4 5

S1 1960 | 16464 | 134456| 237 | 449 | 804 | 2030 | 258 | 482 | 846 | 2084
S2 643 | 1623 | 3447 | 102 | 1122 | 5559 | 129228 102 | 1122 | 5559 | 129228

Case MER
Rover

k 2 3 4

S1 143 | 6683 | 307623| 544
S2 1270| 7138 | 22886 41

Table 5.9: Balanced component sizes.

Case Gas Station Chiron Prop. 1 Chiron Prop. 2 MER

k 3 4 ) 2 3 4 ) 2 3 4 ) 4

S1 1692 | 4608 | 31411| 906 | 6104 | 1308 | 11157 | 168 | 4240 | 4156 | 16431 | 10045
S2 1942 | 6324 | 32768 | 924 | 6026 | 1513 | 11748 | 176 | 4186 | 4142 | 16840| 66230

5.4.4 Comparison with related work

AGAR is a variant of the well-known CEGAR (Counter Examplei®d Abstraction Refine-
ment) [36] with the notable differences that the computestralstions keep information only
about the interface behavior 8f, that concerns the interaction witti; while it abstracts away
its internal behavior, and that the counterexamples usatiéaefinement oft/,’s abstractions
are obtained in an assume-guarantee style by model chettlierather componeniy/; .

CEGAR has been used before in compositional reasoning i [RBthat work, a conser-
vative abstraction of every component is constructed aed #fl the resulting abstractions are
composed and checked. If the check passes, the verificatimtuzles successfully, otherwise

the resulting abstract counterexample is analyzed on eestyaction that is refined if needed.
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Table 5.10: Comparison of AGAR and learning for balanceadsgmositions without alphabet

refinement.
Case N AGAR Learning
|A] | Mem. | Time | |A| | Mem. | Time
Gas 3 10 3.35 3.36 | 294 | 367.13 -
Station | 4 || 269 | 174.03 - 433 | 188.94 -
5 7 47.91 | 184.64| 113 | 82.59 -
Chiron, | 2 || 41 2.45 5.46 | 140 | 118.59| 395.56
Prop.1| 3 || 261 | 81.24 | 710.1 | 391 | 134.57 -
4 || 54 7.11 37.91 | 354 | 383.93 -
5| 402 | 73.74 - 112 | 90.22 -
Chiron, | 2 2 0.98 0.37 40 5.21 8.30
Prop.2| 3 || 88 | 15.45 | 102.93| 184 | 284.83 -
4 2 5.60 2.65 | 408 | 222.54 -
5 79 | 44.16 | 405.03| 179 | 104.25 -
MER 4 9 27.62 - 311 | 104.72 -

The work does not use assume-guarantee reasoning, it doasgdress the reduction of the

interface alphabets and it has not been compared with fegdmsed techniques.

A comparison of learning and CEGAR-based techniques haspgmrérmed in [15] but for
a different problem: the ‘interface synthesis’ for a singbenponent whose environment is un-
known. In our context, this would mean generating an assiompiat passeBremise 1in the
absence of a second component against which to dhezkise 2 The interface being synthe-
sized by the CEGAR-based algorithm in [15] is built as anraasion of M;. The work does
not apply reduction to interface alphabets, nor does itegkithe verification of the generated

interfaces against other componenmes, completing the assume-guarantee reasoning.
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Table 5.11: Comparison of AGAR and learning for balanceddgmsitions with alphabet

refinement.
Case N AGAR Learning
|Al | Mem. | Time | |A| | Mem. | Time

Gas 3 5 2.16 3.06 59 | 11.14 | 81.19
Station | 4 || 10 | 15.57 | 191.96| 5 9.25 4.73

5 2 | 47.48 - 15 | 52.41 | 71.29
Chiron, | 2 9 1.91 3.89 17 2.73 13.09
Prop.1| 3 || 79 | 39.94| 663.53| 217 | 36.12 -

4 || 45| 9.55 | 121.66| 586 | 213.78 -

51 33| 19.66| 157.35| 46 | 30.05 | 686.37
Chiron, | 2 2 1.02 0.49 3 1.04 0.91
Prop.2| 3 || 46 | 41.40| 115.77| 3 5.97 2.26

4 2 6.14 | 11.90 | 20 9.33 7.44

51| 42 | 42.04| 430.47| 3 21.94 | 7.00
MER 4 2 | 27.60 - 10 | 65.42 | 35.78

5.5 Conclusions and Future Work

We have introduced a novel technique for automatic and inergal refinement of interface
alphabets in compositional model checking. Our approaténels an existing framework for
learning assumption automata in assume-guarantee regsdifie extension consists of using
interface alphabets smaller than the ones previously uséehrning, and using counterex-
amples obtained from model checking the components to atilohado these alphabets as
needed. We have studied the properties of the new learngogitim and have experimented
with various refinement heuristics. Our experiments showravement with respect to pre-
vious learning approaches in terms of the sizes of resuisspmptions, and memory and
time consumption, and with respect to non-compositionad@hchecking, as the sizes of the

checked models increase.
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We have also introduced an assume-guarantee abstraefinament technique (AGAR)
as an alternative to learning-based approaches. AGAR remisassumptions as abstractions
of M, and thus satisfieBremise 2f Rule ASrm by construction. It composes the abstraction
with M; and checks the given property. If the property fails, it usescounterexample to
refine the abstraction and repeat the verification. Ourmieéry results clearly indicate that
AGAR is a feasible alternative to current approaches.

In future work we will address further algorithmic optimizans. Currently, after one al-
phabet refinement stage, we restart the learning or theaahistn process from scratch. The
property formulated in Proposition 4 in Section 5.3.3 f#&iés reuse of query answers ob-
tained during learning. A query asks whether a trace pregecin the current assumption
alphabet leads to error al; || ¢.... If the answer is ‘no’, by Proposition 4 the same trace
will not lead to error when the alphabet is refined. Thus, wadatcache these query answers.
Another feasible direction is to reuse the learning tabldesxribed in [91]. Similar optimiza-
tions are possible for AGAR. We also plan to use multiple ¢etexamples for refinement.
This may enable faster discovery of relevant interfaceoastand smaller alphabets. Finally,
we plan to perform more experiments to fully evaluate ounmégues.

We can also extend AGAR with the following rule (for reasapaboutn components).

(Premise 1) (A;) M; ()
(Premise 2) (Ag) M, (A;)
(5.2)

(Premise n) (true) M,, (A,—1)

(true) My || ... || M, {¥)

Learning with this rule and alphabet refinement overcomesritermediate state explosion
related to two-way decompositionise(, when components are larger than the entire system)
and demonstrates better scalability of compositional es-compositional verification which
we believe to be the ultimate test of any compositional tegen We expect to achieve similar

results for AGAR.
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The implementation of AGAR for Rule 5.2 involves the creataf n — 1 instancesAR;
of our abstraction-refinement code for computing edgtas an abstraction a¥/;,; || A1,
except forA,_; which abstracts\/,, . Counterexamples obtained froffAremise 1)are used
to refine the intermediate abstractiods ..., A,_1. When A, is refined, all the abstractions
Ai, ..., A;_; are refined as well to eliminate the spurious trace.

We also plan to explore extensions of alphabet refinementAgBdR to liveness prop-
erties, in a way similar to CEGAR with the analysis of laskafged counterexamples [36].
Learning with L* and without alphabet refinement has beermded to liveness properties

in [45].



Chapter 6

Conclusions and Future Work

We have introduced new approximation and iterative refimgrtechniques for several prob-
lems arising in model checking and have demonstrated tegtrttake these, otherwise com-

putationally hard problems, tractable on practical cases.

6.1 Summary of Contributions

For vacuity detection and query solving, we have formulaegneral approximation frame-
work that gives sufficient conditions to obtain simpleritas of solutions, and have instan-
tiated this framework to obtain specific approximation aifpns for the two problems. We

have implemented our algorithms and evaluated our impléstien, showing the benefit of our
approximations on a number of cases. We have also desctédrathvie refinement techniques

that consider incrementally larger lattices to computeaghygroximations gradually.

6.1.1 Vacuity detection

In vacuity detection, the approximation consists of findsudpformulas that are vacuous in a
formula, independently of each other. The approximatiowith respect to the problem of

finding subformulas that are mutually or simultaneouslywars. By approximation we lose
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the mutuality of vacuity. But the mutually vacuous subfotasare among the sets of indepen-
dently vacuous formulas. In this sense, we computed ovemeapnations of mutually vacuous
sets of subformulas. Iterative refinement runs our algoritbpeatedly, at each iteration, on the
subformulas at the same level of the parse tree of the forrmuéatop-to-bottom, breadth-first
traversal of this tree. It stops exploring subtrees of subédas found vacuous. Thus, we find

the largest vacuous subformulas.

6.1.2 Query solving

For query solving, we identified a class of problems that iregguery solutions to be single
states of a model. In general, query solving finds solutibasepresent sets of states (and it
is not true that individual states in a set that is a soluti@salutions themselves). Finding
state solutions is an exponentially easier problem thaermguery solving. We prescribed
a symbolic algorithm for solving it, by approximating thdtiee used in a general symbolic
algorithm. The approximation selects from each possibl@&solutions only those that are
single states. Thus the intractable lattice of all queryeans is collapsed to a lattice that leads
to an efficient implementation. We also described an iteeatfinement scheme which asks
the queries about more and more atomic propositions, usingj@ans obtained in one iteration
to restrict the query asked in a next iteration.

We have presented experimental evaluations which denatedtiat our approximation

algorithms for both vacuity detection and query solving@en better than naive algorithms.

6.1.3 Assumption generation

For assumption generation, we introduced two new iteragf@ement techniques. One is
designed to refine the alphabet of the assumptions genexdttetbarning-based techniques.
The refinement process starts from an initial alphabet auntaactions referred to in the

property to be verified, which are usually few. Fixing thereat alphabet, learning proceeds as
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usual with that alphabet, but it may find counterexamplestdtiee alphabet being insufficient
to conclude the verification. In that case, by an extendeateoexample analysis, we find
actions to be added to the alphabet, and restart learnihghgtnew alphabet. Furthermore, we
introduced an abstraction refinement technique that regliee learning algorithm. Our new
algorithm constructs abstractions that satisfy one of teengses of the assume-guarantee rule
by construction, and it only remains to verify another pramilf the verification fails, we use
the counterexamples to refine the abstraction. We haverpsgtban extensive experimental
evaluation of our new refinement techniques which showstiegtimprove significantly upon

previous learning-based assumption generation.

6.2 Future Work

Future work needs to address first some extensions of ourithigys and their implementa-
tions. For vacuity detection, the current implementatioesinot generate counterexamples
when properties fail, nor does it provide any kind of withn@sxases of non-vacuity. For
guery solving, we need to implement an interface that allmese applications, such as XML
gueries. The iterative refinement for both vacuity detexctiod query solving remains to be im-
plemented and evaluated. For assumption generation, lpbthkeet refinement and abstraction
refinement work only for safety properties. They need to dereded to liveness properties.
Alphabet refinement is currently model-independent: itoN®rs actions by simply comparing
traces. We could investigate slicing techniques or useipheitounterexamples to discover the
actions on which the satisfaction of a property dependstrabgon refinement should also be
extended to use arrcomponent rule. More extensive evaluation is needed tityghe perfor-
mance of all of our algorithms. For vacuity detection andrg@elving, we need to find more
cases where our approximations are useful, or find inteiggstises where our approximations
do not apply and we need to find other approximations. Ouratigdn refinement needs to be

compared to non-compositional verification.
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Apart from the technical improvement of our techniques, wedto explore other ways
to address the complexity of the problems we addressed Mdeepointed out that current
definitions of vacuity are not fully satisfying for practloases. A good direction to follow
in this sense is to define vacuity so that it is both easier &xkland useful to users. The
same applies to query solving. We envision most future worthis area to revolve around
the needs of the users rather than mathematical genelatigatFor assumption generation
and compositional verification in general, the main ch@énemains to show its benefits in
comparison to non-compositional verification. Here alsdoekeve that future improvements
should be guided by cases coming from practice. Our work isbda considered cases that
are practical, but have very abstract models, with not mofdriation to be exploited when
performing refinement. With richer models, coming from s@ite programs, more complex

dependency analysis is possible, to guide the refinemegrg.ste
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