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Abstract
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2009

Formal verification by model checking verifies whether a system satisfies some given correct-

ness properties, and is intractable in general. We focus on several problems originating from

the usage of model checking and from the inherent complexityof model checking itself. We

propose approximation and iterative refinement techniquesand demonstrate that they help in

making these problems tractable on practical cases. Vacuity detection is one of the problems,

relating to the trivial satisfaction of properties. A similar problem is query solving, useful in

model exploration, when properties of a system are not fullyknown and are to be discovered

rather than checked. Both of these problems have solution spaces structured as lattices and can

be solved by model checking using those lattices. The lattices, in the most general formula-

tion of these problems, are too complex to be implemented efficiently. We introduce a general

approximation framework for model checking with lattices and instantiate this framework for

the two problems, leading to algorithms and implementations that can obtain efficiently partial

answers to the problems. We also introduce refinement techniques that consider incremen-

tally larger lattices and compute even the partial answers gradually, to further abate the size

explosion of the problems. Another problem we consider is the state-space explosion of model

checking. The size of system models is exponential in the number of state variables and that

renders model checking intractable. We consider systems composed of several components

running concurrently. For such systems, compositional verification checks components indi-

vidually to avoid composing an entire system. Model checking an individual component uses
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assumptions about the other components. Smaller assumptions lead to smaller verification

problems. We introduce iterative refinement techniques that improve the assumptions gener-

ated by previous automated approaches. One technique incrementally refines the interfaces

between components in order to obtain smaller assumptions that are sufficient to prove a given

property. The smaller assumptions are approximations of the assumption that would be ob-

tained without our interface refinement. Another techniquecomputes assumptions as abstrac-

tions of components, as an alternative to current approaches that learn assumptions from coun-

terexamples. Our abstraction refinement has the potential to compute smaller nondeterministic

assumptions, in contrast to the deterministic assumptionslearned by current approaches. We

confirm experimentally the benefits of our new approximationand refinement techniques.
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Chapter 1

Introduction

Computer systems are pervasive in our world today. They control critical areas of our lives:

they monitor nuclear reactors, fly airplanes, carry out radiation treatments, diagnose diseases,

perform financial transactions, etc. The reliability of thecomputer systems we build needs to

keep up with the fast pace at which these systems evolve. As systems become more and more

complex, however, ensuring their correct behavior is more and more challenging. Systems

are still deployed without a full guarantee for their reliability. This is due to that fact that the

dominant methods for system debugging are testing and simulation, which are expensive and

incomplete.

As an alternative, formal verification can be used to establish the behavioral correctness

of hardware and software systems statically, before they execute. For infinite-state systems,

however, such as programs with unbounded inputs, verification is undecidable in general. For

the finite-state case, such as systems that are control-based rather than data-based, automated

verification is possible bymodel checking[39, 85, 35]. This technique takes as input a be-

havioral model of the system to be verified, and a correctnessproperty. The model usually

consists of the states of the system, and the transitions that the system would make between

those states during execution. The property is usually given as a formulas in some temporal

logic [38, 74, 75]. The verification proceeds by exhaustive exploration of all the paths in the

1



CHAPTER 1. INTRODUCTION 2

model according to the property. This approach has been successful in practice: Intel and IBM

report on verifying large hardware designs [46, 13]; the SLAM project at Microsoft verified

important properties of Windows device drivers [7, 6, 8]. Model checking, however, is still

subject to a number of challenges, of which we address some important ones in our thesis.

1.1 Our Thesis

The model checking process is simple in principle: given a model of a system, and a property of

its behavior, the process checks whether the model satisfiedthe property. There are, however, a

number of non-trivial questions that have to be answered in the process: How can we make sure

that the model faithfully represents the physical system behavior? How can we ensure that the

property expresses the desired system behavior? The model and the property are formalized

mathematically to correspond to the real, in-formal systemand its requirements. Abstraction is

inherent in the formalization. How can we ensure that these formal, mathematical abstractions,

represent the physical or the in-formal conceptual reality? To increase user confidence in the

model checking process, the process needs to support model and property debugging. Two

main problems in this direction arevacuity detectionandquery solving.

Vacuity relates to the trivial satisfaction of the properties in a model [11]. Industrial re-

searchers noticed that temporal logic formulas sometimes pass verification for unexpected rea-

sons, and some parts of a formula may bevacuous, i.e., irrelevant to its satisfaction. They noted

that in about 20% of the cases, vacuity indicates a problem inthe model or in the property and is

useful for debugging purposes. Finding the largest vacuoussubformulas of a formula requires

an exponential number of calls to a model checker.

Query solvingis a similar problem, originating inmodel exploration: for many legacy

systems that were not formally verified when designed, properties are not available. Thus,

the analysts need to explore the models in order toinfer which properties those models satisfy.

Usually some templates of the properties being sought are available. For model checking, these
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templates are calledtemporal logic queries, and they consist of temporal formulas with missing

subformulas. The problem is to findsolutionsto the queries, that is, the missing subformulas

that can fill in the templates in order to make them into full formulas satisfied by the model [25].

This problem is again double-exponential in the cost of model checking [63].

Finally, apart from the modeling problems, the user is very likely to be faced with the

inherent computational complexity of the model checking process itself. Since the number

of possible model states is exponential in the number of system variables, model checking

is computationally intractable, which is the well-known state-space explosion problem [34].

Assumption generationstems from this problem. The behavior of a system consistingof several

components running concurrently is the product of the component behaviors. Computing the

product model leads to state-space explosion and renders model checking intractable. To avoid

this problem, verification can be applied component-wise inanassume-guaranteestyle [78, 65,

83]. This involves the computation of intermediateassumptionsunder which the components

are verified individually.

Our work provides a unified treatment of these problems, by:

• Defining suitableapproximationsfor each problem, by defining partial solutions that are

satisfactory for specific practical purposes and can be obtained cheaper than the exact

solutions.

• Describing how such approximate solutions can be obtained automatically. Moreover,

definingrefinementstrategies by which approximations are incrementally computed, to

further decrease the complexity of the problems.

• Demonstrating experimentally that these approximation and refinement techniques per-

form well on interesting practical cases.

The main thesis put forth by our work is that: for important and computationally hard

model checking problems, that a typical user is likely to be challenged by, it is sufficient to
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compute approximate solutions that can be efficiently obtained, eventually by refinement, and

make these problems, otherwise intractable, tractable on many interesting, practical cases.

We outline the related work and our contributions in the restof this section. More details

are in Chapter 3.

1.1.1 Vacuity detection

Most research efforts for vacuity detection concentrate onextensions of vacuity to various tem-

poral logics and variations of the definition of vacuity [70,5, 59, 58, 20]. Very few approaches

address the efficiency of the vacuity detection algorithms [84, 92].

We provide a new vacuity detection algorithm with an efficient implementation on top of

the widely-used model checker NuSMV [32]. Our approach follows that of [59], where all

the possible answers to vacuity detection are ordered in a lattice, and detection proceeds by

model checking using that lattice. We do not use, however, the lattice of [59], since it is too

complex to be implemented efficiently. That lattice gives information aboutmutual vacuity: all

thesetsof subformulas that aresimultaneouslyvacuous in a formula. Model checking using

the mutual vacuity lattice is equivalent to a number of callsto a regular model checker that is

double-exponential in the number of system variables.

We approximate the mutual vacuity lattice to a simpler lattice that gives information only

aboutindividual subformulas that are vacuousindependentlyof each other, that is, we keep

from the original lattice elements only the singletons (sets of single vacuous subformulas).

This leads to our algorithm, called VAQUOT, that we describe and evaluate on a number of

models and formulas. Our results show that VAQUOT is more efficient than the naive vacuity

detection defined by [70].

In addition, we show that by iterative refinement we can recover some of the missing vacu-

ity information lost due to our approximation. By running VAQUOT repeatedly on progres-

sively smaller subformulas of a formula, we are guaranteed to find the largest vacuous sub-

formulas, which would be indicated by the mutual vacuity detection using the lattice of [59].
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Thus, by approximation and refinement we solve efficiently a problem otherwise intractable.

1.1.2 Query solving

Previous research in this area proposes restricting the logic for the queries in order to make the

problem tractable [25], or solves general queries [17, 60] without improving the complexity of

the problem. Other approaches extend the queries to variouslogics [90] and systems [96], still

keeping the problem intractable.

We propose a novel approach in which we make the problem more tractable not by re-

stricting the logic, but by restricting the solutions to queries. In general, solutions to queries

correspond tosetsof states of a model. We restrict them to representindividualstates, and thus

define state-query solving, which is exponentially easier than general query solving. We do so

by following the approach of [60], where query solving is performed by model checking over

the lattice of sets of solutions proposed in [17]. Similarlyto our approximation for vacuity,

we approximate the lattice of [17, 60] by keeping, from each set of solutions, those solutions

representing single states. This again leads to an efficientalgorithm, called TLQ, which we

describe and evaluate on an application from genetics. Thisapplication, as well as others that

we identify, specifically require solutions to queries to beindividual states, which motivated us

in defining our approximation.

The number of formula atoms involved in a query determines the size of the lattice we

work with, and the efficiency of TLQ. Thus, to further optimize TLQ, we propose an iterative

refinement scheme in which queries are first asked about feweratoms of the formula, and then

gradually about more atoms, using solutions obtained earlier, to restrict later queries.

Due to their similarity, we treat the problems of vacuity detection and query solving in a

unified way. We define a general approximation framework for model checking with lattices

of sets, and obtain our approximations for the two problems as two different instances of the

general framework.
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1.1.3 Assumption generation

The simplest assume-guarantee rule states that: if we find anassumption such that a first com-

ponent satisfies a property under that assumption, and a second property satisfies the assump-

tion, then the model composed from the two components satisfies the property as well. With

such rules, we can avoid checking a composed model, but the challenge is in generating a

correct assumption that is also easy to verify.

Current approaches [2, 91, 41, 79, 93] to assumption generation use the learning framework

pioneered by [42] or similar approaches [56] that guess and check assumptions and modify

them using information from the counterexamples obtained when verifying the components.

We extend this framework by an iterative refinement technique that also infers the alphabet of

the interfaces between components during learning. We showexperimentally that our refine-

ment technique improves the performance of previous learning-based algorithms by orders of

magnitude.

We also propose an alternative to the learning of assumptions that works by abstraction-

refinement: it computes assumptions as abstraction of the components and iteratively re-

fines them also using counterexamples, but according to another, well-known counterexample

guided abstraction refinement (CEGAR) framework [33]. Our new algorithm, called AGAR,

incorporates interface refinement as well. We argue and confirm experimentally the benefits of

AGAR over the learning-based approaches.

1.2 Thesis Structure

The contributions of our thesis are rather technical; for this reason, we postpone a more detailed

discussion of the problems we consider, the related work, and our contributions, to Chapter 3,

after we introduce some preliminary notions of model checking in Chapter 2. We present a

general approximation framework for model checking with lattices, with instances for vacuity

detection and query solving, with algorithms, implementation, refinement, and evaluation, in
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Chapter 4. In Chapter 5, we present our new refinement techniques for assumption generation,

and their evaluation. Each of the latter two chapters contains an introduction, outlining the

motivation behind the work and the structure of the chapter,additional background specific to

the problem in that chapter, further comparison with related work, and conclusions and future

work. We conclude the thesis in Chapter 6, with a summary of the overall contributions and

directions for future work.



Chapter 2

Preliminaries

In this chapter we review basic notions of model checking. Illustrations of the concepts we

introduce here appear as we use these notions in later chapters.

2.1 Models

System behavior is usually modeled by some type of a graph where nodes represent system

states and edges represent transitions that the system makes between those states during exe-

cution. There are two main types of models. One is state-based, where the state of a system is

described by the values of system variables at some point in time, and the system proceeds by

transitions between states.

Definition 1 (Kripke structure [39]) AKripke structureis a tupleM = 〈S, s0, P, I, R〉, where

S is a finite set of states,s0 is the initial state,P is a finite set of atomic propositions,

I : S → 2P is a function labeling each state with the set of atomic propositions true in

that state, andR ⊆ S × S is a left-total transition relation.

Another type of model is action-based. Here transitions arelabeled with action names. The

behavior of the system is then seen as the sequences of actions that the system may perform,

8
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and the choices of actions it has at each step. The states are just nodes carrying no information

with themselves, except for having incoming and outgoing actions.

Definition 2 (Labeled transition system (LTS) [77]) LetA be a set of universal actions, and

let τ denote a special,internalaction. Alabeled transition systemis a tupleM = 〈Q,αM, δ, q0〉,

whereQ is the set of states;αM ⊆ A is the set of observable actions called thealphabetof

M ; δ ⊆ Q× (αM ∪ {τ})×Q is the transition relation, andq0 is the initial state.

The sequence of state transitions or actions that a system makes in one execution forms a

path.

Definition 3 (Paths) A pathπ from a states in a Kripke structure or an LTS is an infinite

sequence of statesπ0, π1, . . . in whichπ0 = s and every two consecutive states are related by

the transition relation: in a Kripke structure,∀i ≥ 0, (πi, πi+1) ∈ R. In an LTS, a path also

contains the actions for the transitions:π = π0σ0π1σ1 . . ., ∀i ≥ 0, (πi, σi, πi+1) ∈ ∆ ∪ {τ}.

When systems are made from multiple components, we formalize what it means for those

components to execute together, by their parallel composition.

Definition 4 (Synchronous composition of Kripke structures[35]) Thesynchronouscompo-

sition M ′′ of Kripke structuresM andM ′ hasS ′′ = {(s, s′) | I(s) ∩ P ′ = I ′(s′) ∩ P},

s′′0 = {(s0, s
′
0)} ∩ S

′′}, P ′′ = P ∪ P ′, I ′′((s, s′)) = I(s) ∪ I(s′), andR′′((s, s′), (t, t′)) iff

R(s, t) andR′(s′, t′).

Asynchronouscomposition of Kripke structures is as synchronous composition, except that

R′′((s, s′), (t, t′)) iff R(s, t) ands′ = t′ or R′(s′, t′) ands = t.

We say that an LTSM transits into M ′ with actiona, denotedM
a
→ M ′, if and only if

(q0, a, q
′
0) ∈ δ, andQ = Q′, αM = αM ′, andδ = δ′.

Definition 5 (Parallel composition [77]) Given LTSsM1 = 〈Q1, αM1, δ
1, q1

0〉 and M2 =

〈Q2, αM2, δ
2, q2

0〉, their parallel compositionM1 ‖ M2 is the LTSM = 〈Q,αM, δ, q0〉 where
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Q = Q1 × Q2, q0 = (q1
0, q

2
0), αM = αM1 ∪ αM2, andδ is as follows (the symmetric version

also applies):

M1
a
→ M ′

1, a /∈ αM2

M1 ‖M2
a
→M ′

1 ‖M2

M1
a
→M ′

1,M2
a
→M ′

2, a 6= τ

M1 ‖M2
a
→M ′

1 ‖M
′
2

To compare models and express that fact that one model can appear to behave as the other,

the notion of simulation is commonly used. We give its definition for LTSs; that for Kripke

structures is analogous.

Definition 6 (Simulation of LTSs [77]) A relationρ ⊆ S1 × S2 between LTSsM1 andM2 is

a simulationif for all (s1, s2) ∈ ρ, for each(s1, σ, t1) ∈ δ1 there exists(s2, σ, t2) ∈ δ2 such that

(t1, t2) ∈ ρ. Simulation defines a preorder denoted�: if ρ is a simulation betweenM1 and

M2, thenM1 �M2.

2.2 Temporal Logics

Properties of the temporal behavior of systems are commonlyformalized in various temporal

logics that we present next. Our presentation follows [35],where these logics are interpreted

over Kripke structures; the definitions for LTSs are analogous.

2.2.1 CTL*

Let P be a set of atomic propositions. CTL* consists of two types offormulas:state formulas

that are evaluated in the states, andpath formulasthat are evaluated along the paths, of a Kripke

structure.

CTL* is the set ofstateformulasϕ generated by the following grammar:

ϕ , p | ¬ϕ | ϕ ∧ ψ | E ξ,

wherep ∈ P , ψ is a state formula, andξ is apath formuladefined by:

ξ , ϕ | ¬ξ | ξ ∧ χ | X ξ | ξ U χ,
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whereϕ is a state formula, andχ is a path formula.

The CTL* semantics is defined with respect to the paths of a Kripke structure having the

same setP of atomic propositions as the formulas of the logic. We useπi to denote the suffix

starting atπi in a pathπ. For a state formulaϕ, M, s |= ϕ denotes thatϕ is satisfied in states

of the Kripke structureM . For a path formulaψ,M,π |= ψ denotes thatψ holds along pathπ

in M . Letϕ1, ϕ2 be state formulas, andψ1, ψ2 be path formulas. Then the satisfaction relation

|= is defined inductively as:

- M, s |= p iff p ∈ I(s);

- M, s |= ¬ϕ1 iff M, s 6|= ϕ1;

- M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 andM, s |= ϕ2;

- M, s |= E ψ1 iff there exists a pathπ from s such thatM,π |= ψ1;

- M,π |= ϕ1 iff the first states alongπ is such thatM, s |= ϕ1;

- M,π |= ¬ψ1 iff M,π 6|= ψ1;

- M,π |= ψ1 ∧ ψ2 iff M,π |= ψ1 andM,π |= ψ2;

- M,π |= X ψ1 iff there existsk ≥ 0 such thatM,πk |= ψ1;

- M,π |= ψ U ψ2 iff there exists ak ≥ 0 such thatM,πk |= ψ2 and for allo ≥ j < k ,

M,πj |= ψ1.

Some derived operators are commonly used:ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), A ϕ = ¬E ¬ϕ,

F ψ = true U ψ,G ψ = ¬F ¬ψ, ϕ R ψ = ¬(¬ϕ U ¬ψ).

ACTL* is the subset of CTL* where only the universal path quantifier A is allowed and

negations are allowed only on the atomic propositions. ECTL* is the subset of CTL* where

only the existential path quantifierE is allowed and negations are allowed only on the atomic

propositions.

CTL is the subset of CTL* where each path operatorX,U, F,G,R is immediately preceded

by a path quantifierE or A. ACTL is the fragment of CTL in ACTL*, and ECTL is the

fragment of CTL in ECTL*.

LTL is the subset of CTL* with formulas of the typeA ϕ whereA is usually implicit,ϕ is
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a path formula, and the only state subformulas allowed are the atomic propositions.

2.2.2 Satisfaction

A Kripke structureM satisfies a temporal logic (state) formulaϕ, denotedM |= ϕ, if M, s0 |=

ϕ.

2.2.3 µ-calculus

For the interpretation ofµ-calculus, Kripke structures are slightly changed, so thatinstead of

a single transition relation they have a set of transitions relationsT , such that for eacha ∈ T ,

a ⊆ S × S. Thea’s can be thought of as labels on transitions. Let VAR= {Y, Z, . . .} be a set

of variables, such that each variable can be assigned a subset of S.

µ-calculus is the set of formulasϕ defined by the grammar:

ϕ , p | ¬ϕ | ϕ ∧ ψ | 〈a〉ϕ | µY. ϕ,

wherep ∈ P , ψ is a formula,a ∈ T , andY is a variable appearing under an even number

of negations inϕ in the scope ofµ. Some derived formulas are defined via DeMorgan’s laws:

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), [a]ϕ = ¬〈a〉¬ϕ, νY. ϕ = ¬(µY.¬ϕ).

The semantics is defined with respect to an environmente that assigns subsets of states to

the variables,i.e., e : VAR → 2S. A formulaϕ is interpreted as the set of states whereϕ holds,

denoted[[ϕ]]Me, and defined recursively as follows:

[[p]]Me , {s ∈ S | p ∈ I(s)}

[[Z]]Me , e(Z)

[[¬ϕ]]Me , S \ [[ϕ]]Me

[[ϕ ∧ ψ]]Me , [[ϕ]]Me ∪ [[ψ]]Me

[[〈a〉ϕ]]Me , {s | ∃t. (s, t) ∈ a ∧ t ∈ [[ϕ]]Me}

[[µY. ϕ]]Me ,
⋃

i τi(false),
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whereτ : 2S → 2S is a predicate transformer defined byτ(W ) = [[ϕ]]Me[X ← W ] and

e[Y ← W ] is the environment that is likee exceptY is assignedW .

With this semantics, for a Kripke structureM and aµ-calculus formulaϕ, we haveM, s |=

ϕ iff s ∈ [[ϕ]]M .

2.2.4 CTL fixpoint semantics

Of particular interest for the model checking algorithms istheµ-calculus (fixpoint) semantics

for CTL. The value of a CTL formulaϕ at states is denoted[[ϕ]](s) and defined recursively as

follows:

[[ℓ]](s) , ℓ, for ℓ ∈ {true, false}

[[p]](s) , p ∈ I(s), for p ∈ P

[[¬ϕ]](s) , ¬[[ϕ]](s)

[[ϕ ∨ ψ]](s) , [[ϕ]](s) ∨ [[ψ]](s)

[[EX ϕ]](s) ,
∨

s′∈R(s) [[ϕ]](s′)

[[EG ϕ]](s) , [[νZ.ϕ ∧ EXZ]](s)

[[E[ϕ U ψ]]](s) , [[µZ.ψ ∨ (ϕ ∧ EXZ)]](s)

Other common CTL operators are derived from these:

[[ϕ ∧ ψ]](s) , ¬([[¬ϕ]](s) ∨ [[¬ψ]](s))

[[AX ϕ]](s) , ¬([[EX¬ϕ]](s))

[[AF ϕ]](s) , ¬([[EG¬ϕ]](s))

[[EFϕ]](s) , [[E[true U ϕ]]](s)

[[AGϕ]](s) , ¬([[EF¬ϕ]](s))

With this semantics, for a modelM and a CTL formulaϕ, we haveM, s |= ϕ iff [[ϕ]](s) =

true.
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2.2.5 Safety vs. liveness

A common distinction among properties is whether they specify safetyor livenessof a system.

Intuitively, safety properties specify that “something bad does not happen”, while liveness

properties specify that “something good eventually happens”. Technically, safety properties

have counterexample paths of finite length, reaching a statewhere the “bad” condition holds.

Liveness properties have infinite counterexample paths, reaching loops where the “good” thing

never happens.

2.3 Model Checking Algorithms

Theµ-calculus semantics given above leads to straightforward algorithms for the evaluation of

CTL formulas by manipulating sets of states. A propositional subformula represents the set of

states where that subformula holds. The basic step in the computation of temporal operators

is the computation ofEX which amounts to computing the predecessors of a set of states,

also calledpre-image computation. All other temporal operators are computed by iterative

pre-image computations. For a set of statesW , the pre-image operator is defined as:

Pre(W ) = {s ∈ S | ∃t ∈ S. (s, t) ∈ R ∧ t ∈W}

A class of algorithms use representations of Kripke structures or LTSs as explicit graphs

and for this reason are calledexplicit-state. A possible representation of sets of states for an

explicit Kripke structure is by labeling the states with thesubformulas they satisfy. Computing

Pre of a set of states in this case consists of labeling the predecessors of those states in the

graph. Another approach, calledsymbolic, represents sets of states with their characteristic

Boolean formulas, and set operations as Boolean operations. The transition relationR is en-

coded symbolically by labeling atomic propositions in a current state as unprimedx, y, . . . and

labeling them in the next state with primed versionsx′, y′, . . .. Then the symbolic computation

of Pre for a set of states characterized by Boolean formulaφ (overx, y, . . .) is the computation
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of the following Boolean formula:∃x′, y′, . . . . R(x, y, . . . , x′, y′, . . .) ∧ φ′, whereφ′ is φ with

all occurrences of variablesx, y, . . . replaced by their primed versionsx′, y′, . . .. Existential

quantification is computed as a disjunction over all possible values, which are finitely many, as

atomic propositions are Boolean.

Symbolic model checkers such as NuSMV [32] usedecision diagramsto represent and

manipulate the Boolean formulas arising in symbolic computations. Reduced Ordered Binary

Decision Diagrams(ROBDDs) [18] are binary decision trees that encode the truth tables of

Boolean formulas. At each level, the decision is made on the binary valuetrue or false of a

different variable in the formula; one subtree correspondsto valuetrue and the other subtree

to valuefalse. The leaves contain Boolean constantstrue, false. A BDD imposes an order on

the variables in which they are considered for the decisions. The value of the formula for one

truth assignment to all its variables is obtained by readingthe value in the leaf reached by the

path following the values in that assignment, in the variable order fixed by the decision tree.

A BDD is also reduced in the sense that, if different decisions lead to the same subtree, the

variable on which that decision is made is eliminated. Boolean operations are performed by

graph transformations and merging of these BDDs. The size ofthe diagrams and consequently

the running time of the BDD operations depends on the number and the ordering of the vari-

ables. The state-space explosion problem manifests itselfin BDD explosion in symbolic model

checkers, although non-monotonically: large state spacescan be represented with small BDDs

and viceversa.

Either implementations, explicit or symbolic, have a complexity of O(|S| × |ϕ|) for CTL

model checking andO((|M |× |ϕ|)k) for µ-calculus, where|M | = |S|+ |R|, |ϕ| is the number

of subformulas ofϕ, andk is the maximum nesting depth of the fixpoint formulas. Two

fixpoint formulas are considered nested if a fixpoint variable appears free in the scope of the

other fixpoint [19].

A common algorithm for the evaluation of LTL formulas is automata-based and is com-

monly used in explicit-state algorithms for LTSs, but some symbolic implementations use this
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idea as well. A Buchi automaton is like a finite automaton, except that it accepts infinite strings:

a string is accepted if upon reading that string the automaton passes infinitely often through one

if its “final” states (more appropriately called “acceptingstates”). The negation of any LTL for-

mula can be translated to a Buchi automaton. A Kripke structure trivially translates to a Buchi

automaton whose every state is accepting. Then model checking consists of checking whether

the automata product (intersection) of the structure automaton and the automaton for the nega-

tion of the formula has any reachable loop containing accepting states. This procedure is linear

in the size of the structure, but exponential in the size of the formula, and LTL model checking

is PSPACE-complete [95].

For mostly theoretical purposes, automata-based algorithms have been defined for the

model checking of CTL, CTL*, andµ-calculus. A CTL, CTL*, orµ-calculus formula can

be translated to a nondeterministic tree automaton or to an alternating tree automaton [71].

These are automata that run on the computation tree of the Kripke structure. The computa-

tion tree of a Kripke structure is the infinite tree of all computation paths of the structure,

obtained by “unfolding” the structure. The automata-basedalgorithms for CTL, CTL* and

µ-calculus work by the same principle as that for LTL: they check the product of a structure

automaton with a formula automaton. For CTL andµ-calculus, the automata-based algorithms

have the same complexity as the corresponding explicit-state or symbolic algorithms. For

CTL*, the automata-based algorithm has the same complexityas for LTL: linear in the size

of the structure and exponential in the size of the formula, and CTL* model checking is also

PSPACE-complete [71].



Chapter 3

The Problems: Definitions, Related Work,

Our Contributions

In this chapter we give a detailed account of the problems we address in the thesis, related

work, and the contributions and limitations of our work.

3.1 Vacuity Detection

3.1.1 The problem

A common problem noticed early on in the application of formal verification to hardware is that

properties sometimes hold for the wrong reasons. For instance, properties about how a hard-

ware system reacts to stimuli from its environment are oftenformalized as implicationsa→ b,

wherea represents the environment stimulus, andb, the system behavior in response to the

stimulus. It may happen that the implication holds in a modelsimply because the environment

has been modeled incorrectly anda never happens. This problem is referred to asantecedent

failure in [10]. More evidence of the occurrence of this kind of problem in the verification

practice has led IBM researchers to formulate trivial satisfaction of properties more generally

asvacuity [11]. The formulas considered in [11] are no longer limited to implications, and

17
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the problem manifests itself in some subformulas not being important for the satisfaction of a

formula in a given model. Those subformulas are calledvacuous, and the formula is deemed

vacuousin those subformulas. In the case of antecedent failure, theconsequent of the implica-

tion a→ b is vacuous, since the implication holds regardless ofb, and only becausea is always

false in the given model. The formal definition of vacuity given initially in [11] is as follows:

Definition 7 (Vacuity [11]) Letϕ be a temporal formula andM be a model such thatM |= ϕ.

We say thatϕ is vacuousin M if there exists a subformulaψ of ϕ that does not affectthe

satisfaction ofϕ in M : ψ can be replaced by any formulaξ, and the newϕ, writtenϕ[ψ ← ξ],

still holds inM .

Definition 7 is not effective as it does not lead directly to analgorithm for vacuity detection:

there are infinitely many formulas that can be replaced forψ! This definition, however, gives

a framework for several approaches in the research work related to vacuity detection that we

summarize next. These approaches differ from each other with respect to the temporal logics

whose formulas are checked for vacuity, the semantics of vacuity, in particular of “does not

affect”, and the corresponding detection algorithms.

3.1.2 Related work

Based on industrial experience, Beeret al. [11] define a subset of ACTL, called w-ACTL,

for which they are able to detect vacuity efficiently. w-ACTLis so that for any formulaϕ a

single “witness”w(ϕ) is used to detect the vacuity ofϕ in some of its subformulas, deemed

“important”. The definition of w-ACTL intuitively capturesthe interaction between a system

and its environment beyond simple implications. Each binary operator connects a propositional

formula to a temporal one. The assumption, stemming from observations of the typical uses

of CTL, is that the propositional formula represents the stimuli from the environment and the

temporal one specifies the response of the system.

The semantics of vacuity for w-ACTL is that a formulaϕ is vacuous in a modelM if
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the “witness” formulaw(ϕ) holds inM [11, 12]. The witness is obtained by replacing the

smallest state subformula withfalse. The replacement proceeds top-down on the parse tree

of the formula, at each binary operator being applied recursively on the non-propositional

operand. This is a generalization of antecedent failure where the consequent is vacuous and

it represents the response of the system to the environment stimuli; antecedent failure can be

detected by replacingbwith false ina→ b and verifying that the implication still holds. For w-

ACTL, the temporal subformulas represent the system response and are therefore considered

“important”, i.e., likely to be vacuous, hence replacement is applied to thesesubformulas.

Model checking ofw(ϕ) is linear in the sizes of the formula and of the model. Thus, this

algorithm is of the same complexity as CTL model checking.

Kupferman and Vardi[69, 70] define vacuity for CTL*, restricted to (anti)monotonic formu-

las. (Anti)Monotonicity is ensured by a sufficient syntactic condition: a formula is (anti)monotonic

all the occurrences of its subformulas are in the scope of an even number of negations, or all of

them are in the scope of an odd number of negations. Such formulas are called ofpure polarity,

otherwise they are ofmixed polarity. In this context, a formulaϕ is vacuous in a modelM if it

contains a state subformulaψ such thatϕ[ψ ← true] andϕ[ψ ← false] both hold inM [69, 70].

This definition can be applied to detect vacuity of false formulas (unsatisfied in the model) as

well, as done in [59] for CTL: a false formulaϕ is vacuous inM if for some subformulaψ,

bothϕ[ψ ← true] andϕ[ψ ← false] are false inM . Samer [90] modifies the definition slightly,

by parameterizing it with a finite set of replacements that the user can specify as the likely

causes of vacuity. A formula is vacuous if none of those replacements affect the value of the

formula in the model.

Vacuity detection by the definition of Kupferman and Vardi isperformed by creating two

“witnesses” for each state subformulaψ: ϕ[ψ ← true] andϕ[ψ ← false]. The total number of

witnesses is thus linear in the size of the formula. The witnesses are then model checked. The

method applies to any CTL* formulas as long as different occurrences of the same subformula

are treated as different subformulas. The overall complexity of this algorithm for CTL is linear
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in the size of the model and quadratic in the size of the formula, and for LTL and CTL* it is|ϕ|

times the cost of model checking. Purandare and Somenzi [84]present an optimized version

of this algorithm for CTL where all witnesses are checked in asingle parsing of the formula

and intermediate results are cached for reuse; while this does not change the complexity of the

algorithm, it shows up to 40% time improvement in a number of test cases reported in [84].

Gurfinkel and Chechik [59] define a framework that reduces vacuity detection, as defined by

Kupferman and Vardi, to multi-valued model checking over a lattice of possible vacuity an-

swers. They also introduce the notion ofmutual vacuityfor subformulas that are syntactically

non-overlapping and simultaneously vacuous in a formula. Since this notion is important for

our work, we give its definition next. It is not the definition introduced in [59], but an equivalent

one.

Definition 8 (Mutual vacuity) Let ϕ be a temporal formula andM be a model such that

M |= ϕ. Letψ, ξ be two non-overlapping subformulas ofϕ. We say thatψ, γ are mutually

vacuousin ϕ (in M) if ϕ is vacuous inψ, and for any replacementξ of ψ in ϕ, ϕ[ψ ← ξ] is

vacuous inγ, where vacuity is as defined in Definition 7.

Beeret al. [12] extend the vacuity detection of [69, 70] to any logics whose operators are

monotonic or antimonotonic in each operand; these are called logics with polarity.

Armoni et al. [5] remove the restriction to pure polarity and hence to (anti)monotonic for-

mulas by introducing vacuity detection for LTL formulas with mixed polarity. Gurfinkel and

Chechik [58] extend this approach to CTL*, whereas Bustanet al. [20] extend it to LTL for-

mulas containing certain forms of regular expressions coming from practical experience. Sim-

mondset al. [92] also address the vacuity of LTL formulas. In these approaches, syntactic

replacements of subformulas as described so far are no longer correct to detect vacuity. A for-

mula with mixed polarity is no longer monotonic or antimonotonic, hence replacement of only

the extremesemantic valuestrue or false is no longer sufficient. A subformula corresponds

semantically to a set or a sequence of states on a computationpath, depending on whether the
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subformula is a state or a path formula, respectively. Thus,the replacements need to take into

account all possible sets or sequences of states along computation paths.

In [5, 58], a formulaϕ is vacuous in a subformulaψ if the quantified formula∀x. ϕ[ψ ← x]

holds. For LTL extended with certain regular expressions, [20] uses the same definition, where

quantification also applies to subformulas that are regularexpressions. A similar definition is

used in [92], where a variablep is vacuous ifϕ[p← x] holds, withx a fresh variable. The com-

plexity of vacuity detection is linear in the complexity of model checking for LTL and ACTL*

and ECTL* [5]. For general CTL* formulas it is 2EXPTIME-complete (EXPTIME-complete

for CTL) [58]. For LTL with regular expressions it is in EXPSPACE and is NEXPTIME-

hard [20].

For µ-calculus, Namjoshi [80] defines a proof-based semantics for vacuity: a proof is ob-

tained as a by-product of model checking the formula; then, the formula is considered vacuous

if some of its subformulas are not essential to any possible proof. The detection algorithm

works by building a maximal proof and has the same complexityas model checking. Dong

et al. [43] define a different semantics for vacuity ofµ-calculus: a formula is vacuous if there

exists a subformula of it that can be strengthened; a subformula inµ-calculus represents a set

of states, and it is strengthened when mapped to a smaller setof states. This latter definition

can also be extended to false formulas where subformulas areweakened. The strengthening

or weakening results from replacements of subformulas withfalse or true, respectively, as

in [69, 12], and with the same complexity, or by simplifying the transition label sets of the

modal operators “〈 〉” or “ [ ]”. Thus, the notion of vacuity is extended to capture unneces-

sary labels of modal operators. The detection algorithm works by considering maximal sets of

labels to be replaced, and isn× |ϕ|more expensive than model checking.

3.1.3 Our contribution

We improve the vacuity detection of Kupferman and Vardi by proposing a new algorithm along

the lines of [59]. We choose the definition of vacuity given byKupferman and Vardi because



CHAPTER 3. THE PROBLEMS: DEFINITIONS, RELATED WORK, OUR CONTRIBUTIONS22

it does not restrict the temporal logic, as was done by Beeret al. [11], and allows us to work

with full CTL. At the same time, it is less computationally expensive than semantic notions of

vacuity as defined by Armoniet al. [5] and other similar approaches. It also does not rely on

any special underlying engine providing proofs (as in [80]), which most model checkers do not

provide.

We follow the approach of [59] where all possible mutual vacuity answers are ordered in

a lattice, and the detection proceeds by model checking withthis lattice. We, however, do not

use the lattice of [59]. We define a newvacuity latticethat restricts orapproximatesthe mu-

tual vacuity answers to subformulas that are syntacticallynon-overlapping, and independently

(not mutually) vacuous in a formula for a given model, by the definition of Kupferman and

Vardi. The difference between mutual and individual vacuity is that mutually vacuous formu-

las can besimultaneouslyreplaced by constants, whereas individually vacuous formulas are

independentlyreplaced by constants, without affecting the value of a formula.

Thus, our approximation loses the information aboutmutualityof the vacuity, but in ex-

change for a gain in complexity. Formally, using the mutual vacuity lattice of [59], an answer

to vacuity detection is a set ofsetsof mutually vacuous formulas, whereas ours is a set of

singleton vacuous subformulas. Detecting mutual vacuity by model checking using the mutual

vacuity lattice of [59] is equivalent to making simultaneous replacements by constants for all

possible subsets of atomic propositions, and checking the resulting “witnesses”, similar to the

approach of Kupferman and Vardi. This requires a number of runs of a classical model checker

that is exponentialin the number of atomic propositions. Our algorithm, calledVAQUOT,

is equivalent to Kupferman and Vardi’s algorithm, and thus equivalent to alinear number of

calls to a classical model checker. Intuitively, VAQUOT essentially checks all the witnesses of

Kupferman and Vardi in parallel, and reports whether a formula is vacuous, and which of its

subformulas are vacuous in the model. Experimentally, we show running time improvements

up to 30% in several test cases over the naive detection following the definition of Kupferman

and Vardi. The results have been published in [51]. Here we present it slightly differently, by
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showing that it is an instance of a more general approximation framework, that we also define

and use also for query solving.

Our approximation is an over-approximation, in the sense that a set of subformulas found

independently vacuous may not be mutually vacuous, but we know that any mutually vacuous

set has to be a subset of that found. Thus, we can reach a full solution, that is, a mutually

vacuous set, from the approximation found, by additional checks. We describe an iterative

refinement technique that traverses the parse tree of the formula top-bottom in a breadth-first

manner, and applies VAQUOT to the subformulas on each level; thus, we consider incremen-

tally more and smaller non-overlapping subformulas. In other words, this iterative refinement

calls VAQUOT repeatedly with an incrementally growing lattice of increasingly refined vacu-

ity answers. This algorithm has the advantage of being able to stop early, as soon as we find

a larger subformula being vacuous; in that case, we need not consider its subformulas, since

then we know that they will all be vacuous (we work with monotonic formulas). The scheme

pays off if it seldom reaches the lower levels of the parse tree that have many non-overlapping

formulas (in the worst case, the leaves of the parse tree, with the most formulas, that is, the

atomic propositions). The number of formulas that VAQUOT runs on, at any time, determines

the number of elements of the lattice and thus affects the performance of our algorithm. This

scheme also recovers some of the information lost due to our approximation, since it discovers

the largest vacuous subformulas that would also be found by mutual vacuity detection.

3.1.4 Limitations

Our approach is an effort to improve the performance of vacuity detection according to a logic-

based definition of vacuity. Other optimizations in this direction are possible, but we think it

is more important to address the main shortcoming of approaches such as ours, namely that

the vacuity answers may be hard to interpret, which is what weobserved while doing our

experiments with VAQUOT. One problem is that the partitioning of a model into the system

versus its environment is lost during model checking. The causes of vacuity initially observed
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in practice came from errors in the environment modeling (see the antecedent failures), but

subsequent vacuity detection approaches have lost this track. Only Beeret al. [11] take into

consideration the reactivity of the system to the environment implicitly, through the definition

of the logic w-ACTL.

Another problem is that the analyst expects feedback for his/her description of the model

and property, which are often different than the compiled model and temporal formula. When

vacuity of a formula is established in some of its subformulas, the user needs to undertake a

non-trivial effort to identify the parts of the model description responsible for that vacuity, as

we ourselves often experienced. A related problem is that vacuity is property-centric and thus

likely to give many false alarms for model debugging. Our experience with several test cases

suggests that most of the vacuity reported by current algorithms does not indicate errors, but

only that properties can be simplified.

These problems are addressed in other recent work [14, 31], and some of our own [27],

which explore alternative notions of vacuity.

3.2 Query Solving

3.2.1 The problem

A related property-based framework that helps in model debugging is that of query solving. In

this framework, users can ask some partial questions, called temporal logicqueries, to explore

which properties hold of their models.

For instance, instead of askingwhethera switch becomes “on” eventually along all paths,

in CTL: AF switch, a query askswhat value the switch eventually takes along all paths, as

a CTL query: AF ?{switch}. This is useful when trying to understand large models that

are not accompanied by clear specifications of their behavior, which is common in system

maintenance.
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Definition 1 (Query and solution [25]) A CTL query is a CTL formula with a missing propo-

sitional subformula, designated by a placeholder (“?”). A query ispositiveif the placeholder

appears in the scope of an even number of negations, andnegativeotherwise. Asolutionto the

query is any propositional formula that, when substituted for the placeholder, results in a CTL

formula that holds in the model.

In our example, both “on” and “off” are solutions, if bothAF switchandAF ¬switchhold in

the model.

Since there are22n

distinct Boolean formulas over any givenn variables, a naive algorithm

that tries each possible formula as a replacement for “?” in the query and then model checks

the resulting temporal formula makes a double-exponentialnumber of calls to a model checker.

This gives an upper bound on the complexity of the problem.

3.2.2 Related work

The precursor of query solving is the problem of inferring invariants of systems, that is, proper-

ties that hold in every state [64]; in query terms, that meanssolvingAG ?. Based on experience

with analyzing large software, Chan [25] identifies the needfor a generalization to the inference

of invariants and, as a result, formalizes for the first time the problem of solving temporal-logic

queries, using CTL. Realizing that the problem is in the worst case double exponential in the

number of state variables, Chan defines a subset of CTL queries such that the set of their solu-

tions has a minimal element: a strongest subformula, that implies all other subformulas in the

set. Chan calls these queriesvalid. The naive method Chan envisions for solving such queries

is: try out all minterms (i.e., conjunctions of all propositions or their negations) and report the

disjunction of all that are solutions, if the query is positive (i.e., monotonic in the empty posi-

tion); if the query is negative (i.e., anti-monotonic), try out all negations of minterms and report

the conjunction of all such negations that are solutions. This amounts to solving a number of

model-checking problems that is exponential in the number of atomic propositions. Since this

complexity is still not practical, Chan finds a syntactic subclass of valid queries for which he
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devises an algorithm with the same complexity as model checking. The algorithm works as

symbolic CTL model checking, except that it computes fixpoint formulas forward, from the

set of initial states, rather than backward, from the statessatisfying the innermost propositional

formulas, for those missing propositional formulas in the queries. He also defines a grammar

for generating these restricted valid queries. The query for inferring invariantsis among these

valid queries.

Chan’s work is generalized and extended by Bruns and Godefroid [17]. They introduce

lattices to represent the structure of the solution-space of temporal-logic queries and extend

classical tree-automata-based model checking to model checking over these lattices to solve

queries. They use the fact that propositional formulas are ordered by implication. For any kind

of query (i.e., not only valid ones), the query solving problem (that they call query checking)

is formalized as the problem of finding the set of strongest solutions to the query, with respect

to implication. Bruns and Godefroid define the lattice of sets of strongest solutions. The

elements of the lattice represent all possible sets of querysolutions. For positive queries, these

sets can be uniquely represented by their minimal elements,that are the strongest formulas

that are solutions to the query. The meet and join operationsof the lattice correspond to set

intersection and union, respectively, computed in terms ofthe minimal elements. The authors

devise a model checking algorithm that constructs an alternating tree-automaton for the query

and for the model, computes their product, and checks it for emptiness, just like in classical

automata-based model-checking, except that the translation for the query introduces values

from the lattice, and conjunction and disjunction are replaced by the lattice meet and join. The

algorithm is so that its output is a value of the lattice that gives the set of strongest solutions to

the query. This method also shows how solutions to queries can be computed compositionally,

from solutions to subqueries. The complexity of this approach, however, is the same as that of

trying all possible solutions naively, so still double-exponential in the number of state variables.

Gurfinkelet al. [57, 28] study the problem more thoroughly, generalizing queries to have

more than one placeholder, with mixed (positive and negative) occurrences. They also discuss
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several new applications of query solving in software engineering. The authors also use the

lattice introduced by Bruns and Godefroid, but give a symbolic model checking algorithm over

this lattice, for queries with multiple placeholders. The algorithm is based on a translation of

CTL queries to formulas containing lattice elements, and ona multi-valued semantics which

replaces classical conjunction and disjunction with lattice meet and join. Given a query, the

algorithm results in the lattice value representing the setquery solutions. The authors imple-

ment the algorithm with a multi-valued model checking tool and report its evaluation on an

example of a cruise control system that shows better performance than the double-exponential

upper bound.

In a parallel development, Hornus and Schnoebelen [63] study the complexity of computing

strongest solutions to CTL* queries, and deciding uniqueness of these solutions, where queries

are general (not necessarily valid). They show that the problem of checking whether a given

query has a unique strongest solution in agivensystem, and computing this solution, can be

solved with a linear number of model-checking runs. The result is generalized to checking

completeness of a set of strongest solutions. They also describe a method by which computing

a first strongest solution requires a linear number of model-checking runs, a second one - a

quadratic number, and so on. They show that these increasingcosts are unavoidable, since

even counting the strongest solutions is intractable. Theyestablish that the double-exponential

upper bound on the complexity of general query solving is also a lower bound.

In a series of papers [88, 90, 89], Samer and Veith continue Chan’s work of finding sub-

classes of valid queries. In [88], the authors point out and correct an error in Chan’s initial

grammar for valid CTL queries, and discuss the challenge of deciding syntactically whether a

query is valid. In [89], they give an analogous grammar for valid LTL queries. In [90], they

formally establish a connection between vacuity detectionand query solving, and briefly dis-

cuss how it leads to extensions of query solving frameworks that allow temporal rather than

only propositional solutions. The connection to vacuity simply states that a formula is vacuous

in a subformula, iff the query obtained by replacing that subformula with a placeholder, has
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false as its strongest solution, for positive queries (true for negative queries). Since then all

possible formulas are solutions to the query, they do not affect the value of the formula, hence

the vacuity. Our work explores a further connection betweenthe two problems: we do not

consider vacuity detection as a special case of query solving (thus reducing the easier problem

of vacuity detection to the harder problem of query solving), as pointed to by [90], but solve

vacuity detection independently, and keeping its relativeeasiness, even if using very similar

techniques as for query solving.

Zhang and Cleaveland [96] define and solve queries inµ-calculus for Presburger system,

that are systems whose behavior is described by Presburger formulas, with integer-valued vari-

ables and linear inequalities on those variables. Their method uses tableaux for evaluating

µ-calculus queries; the tableaux are tree-structured proofs whose leaves contain assignments

of integer values to variables. The placeholder in the querymakes some leaves have no assign-

ments for some variables. The solutions to queries are thoseassignments at the tableau leaves

that make the tableau/proof successful,i.e., make the query into a true formula. The authors

distinguish between existential and universal query checking in their framework. ‘Existen-

tial’ means finding query solutions for one tableau, and has the same complexity ofµ-calculus

model checking. ‘Universal’ query checking means enumerating all possible tableaux, and is

exponential in the cost ofµ-calculus model checking. They also report on an implementation

and a case study where they evaluate their algorithm by comparison to naively model checking

the formulas obtained by replacing the placeholder with allpossible variable assignments. The

evaluation, however, does not show significant improvementover the naive approach.

3.2.3 Our contribution

We note that for many applications, only state solutions to queries are needed, that is, only

those propositional subformulas that are conjunctions of all atomic propositions or their nega-

tions. The number of such formulas is single-exponential inthe number of atomic propositions.

Finding only the state solutions to a query is thus an easier problem that can be solved naively
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with a single-exponential number of calls to a model checker: replacing the placeholder with

every possible propositional formula representing a single state, and checking the resulting

formulas sequentially.

We give an algorithm, called TLQ, that finds, for any CTL query, exactly the solutions that

represent single states. Our implementation is fully symbolic, consisting of a single model-

checking run over a lattice of sets of state-solutions. Somepotential applications of this algo-

rithm are: finding reachable states, finding procedure summaries, or dominators/postdominators

in program analysis.

Our approach is similar to that of [60]: it uses a lattice of sets of solutions, translates

a query into a formula containing values from that lattice, and model-checks the resulting

formula over the lattice. We show how our lattice and algorithm compute an approximation of

the results of [60]. The approximation is an instance of a general approximation framework

that we introduce for model checking with lattices of sets, and apply also to vacuity detection.

Essentially, the lattice used in [60] contains all sets of propositional formulas that may solve a

query. A propositional formula in general represents a set of states. If a formula is a solution

to the query, it is not true that any single state in the set represented by that formula, also

represents a solution to the query. We obtain our lattice by keeping from the lattice of [60] only

those formulas that represent single states. The main novelty of our approach to query solving

is that it makes the problem more tractable by restricting the shape of the solutions, as opposed

to restricting the logic, as was previously done.

We also show a new application coming from genetics which motivated our approximation.

The application asks to find the stable states of a gene network, which amounts to finding the

state solutions to CTL queryEF AG ?. We show that our implementation solves this prob-

lem more efficiently than an algorithm making naive replacements and checking the resulting

formulas sequentially.

Our algorithm has the potential problem that it doubles the number of propositional vari-

ables and it may suffer from BDD size explosion. To handle this complexity, we describe
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another iterative refinement scheme under which queries areasked gradually about more and

more atomic propositions. Solutions obtained with a smaller set of atoms are used to restrict

the next run of our algorithm with a superset of those atoms. This work has been published

previously in [52, 50].

3.2.4 Limitations

The main limitation of our approach is imposed by applications. We have shown its effective-

ness on an interesting and important problem, that of findingthe stable states in gene networks,

but we need to perform extensive evaluation to assess its merits. We aim, however, to keep the

evaluations in tune with real applications, rather than using artificial cases. We expect that new

applications may require new approximations to query solving, but we hope that our general

approximation framework can help. For our particular implementation, the challenge remains

to avoid BDD size explosion. We need to investigate caching schemes that can help, in addition

to our iterative refinement technique.

The main drawback of query solving in general is its complexity. Any further improve-

ments have to concentrate on practical cases where query solving is useful and identify classes

of problems and any characteristics that can help make the problem more tractable in those

cases. Our approach makes one step in this direction, although it only exploits one parameter

of the problem: the shape of solutions. We believe that domain-dependent problem parameters

should be identified and exploited in order to effectively fight against the intractability of query

solving.
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3.3 Assumption Generation

3.3.1 The problem

As we have already mentioned, model checking is a hard problem itself as it suffers from the

well-known state-space explosion. A feasible approach to solving this problem is composi-

tional, where properties are verified of a multi- component model without actually composing

the entire model that may lead to state-space explosion. A discipline for compositional veri-

fication is established by assume-guarantee rules which show how to verify each component

individually using assumptions about the rest of the components.

Definition 2 (Assumption generation) For a model consisting of componentsM1 andM2,

and a propertyϕ, find an assumptionA such thatM1 underA satisfiesϕ, andM2 satisfiesA.

The simplest assume-guarantee rule ensures that if we find such anA, then the system ofM1

andM2 satisfiesϕ.

3.3.2 Related work

Misra and Chandy [78] provide one of the earliest methodologies for compositional verification

of invariant properties of networks of processes communicating through messages. They intro-

duce a triple notation similar to the Hoare triples used in verification of sequential processes.

A triple is of the formr | h | s whereh denotes a process andr ands are assertions. The

meaning of the triple is:s holds initially inh, and ifr holds at all times prior to any message

transmission ofh, thens holds at all times prior to and immediately following that transmis-

sion; a message transmission byh is eitherh sending or receiving a message. For a network

H = h1 ‖ h2 ‖ . . . of processeshi, the proof rule given in [78] for combining verification

results is: ifri | hi | si for all i, then
∧

i ri | H |
∧

i si.

Jones [65] discusses a similar approach for processes communicating through shared vari-

ables. He introduces the terminology of “rely-condition” and “guarantee-condition” for the
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first and last members of a triple, respectively. His proof rule stipulates that the rely conditions

of each component should only depend on the rely-conditionsoverall, and two (or more) com-

ponents must be able to coexist, in the sense that the guarantee-conditions of one should be at

least as strong as the rely-conditions of the other.

Pnueli [83] formalizes compositional verification for the temporal logic LTL. He introduces

theassume-guaranteeparadigm similarly to [78, 65]. A triple is denoted〈ϕ〉M1〈ψ〉 and means

that componentM1, assuming its environment behaves as specified by LTL formulaϕ, ensures

LTL formulaψ holds. The following assume-guarantee proof rule is given:

〈ϕ〉M1〈χ〉

〈ψ〉M2〈ξ〉

θ ∧ ξ → ϕ

θ ∧ χ→ ψ

〈θ〉M1 ‖M2〈χ ∧ ξ〉

Usually the rule is used in the following simplified form which needs only one assumptionA,

and we use in our work as well:

Rule ASYM

1 : 〈A〉M1 〈ϕ〉

2 : 〈true〉M2 〈A〉

〈true〉M1 ‖M2 〈ϕ〉

whereϕ is the property we wish to establish of the closed system. Note that the rule is asym-

metric in the use of the two components, hence its name.

This rule provides a general framework for the development of compositional techniques in

model checking. The different assume-guarantee model checking approaches are distinguished

by: the temporal logics used for formalizingϕ, the type of structuresM1 andM2 and of their

composition, and, the application of the assume-guaranteerule, which is determined by finding

A.
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Clarkeet al. [37] define a particular application of the assume-guarantee rule and instan-

tiate it for CTL formulas of asynchronous processes, and also for CTL* formulas of syn-

chronous processes. They consider, for the asynchronous case, processes modeled as LTSs

whose composition is defined as usual, with synchronizationon common actions and inter-

leaving of the rest. For the synchronous case, they considerMoore machines composed syn-

chronously (Moore machines are like Kripke structures, except the state variables are split into

input, internal, and output variables). Clarkeet al. provide a new proof rule consisting of

two symmetric applications of the assume-guarantee rule. The assume-guarantee rule is non-

symmetric in the use of the component and the environment. Inthe new rule of [37], a second

application of the assume-guarantee rule switches the roles of the component and the environ-

ment. The rule is also simplified in the sense that it uses as assumptionA for one processM1

(component or environment) simply the other processM2, projected on the interface withM1.

Projection consists of hiding the atomic propositions or the actions not in the interface. This

way, the second premise of the assume-guarantee rule is no longer needed. The new rule is:

〈M2↓αM1
〉M1〈ϕαM1

〉

〈M1↓αM2
〉M2〈ψαM2

〉

〈M2〉M1〈ϕαM1
∧ ψαM2

〉

whereαM1, αM2 are the alphabets of the component and environment, that is,the set of actions

or atomic propositions used in their models. We use an alphabet as index on a formula to show

that the formula is constructed only from atoms in that alphabet. The rule is proved sound,

but its application benefits verification only if the projected processes are much smaller than

the original ones. Its benefit is illustrated in two case studies: a tree arbiter used to control

access to shared resource [37], and the modular controller of a CPU with decoupled access and

execution units [40].

Grumberg and Long [55] define assume-guarantee model checking of ACTL* formulas of

synchronous processes and consider Moore machines composed synchronously. They show

that for ACTL* formulas, the premises of the assume-guarantee rule reduce to simulation (re-
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finement) checking. For every ACTL* formulaϕ, the rule can then be applied as follows:

M1 � A

A ‖M2 � A′

M1 ‖ A
′ |= ϕ

M1 ‖M2 |= ϕ

whereA,A′ are structures representing assumptions. This rule applies to any Kripke structures

with synchronous composition. For a component and its environment that are Moore machines

closing each other, Grumberg and Long further show that it issufficient to check a component

by closing it with themaximalenvironment with respect to the simulation relation, that is,

the environemnt that assigns non-deterministic values to the input variables of the component

Moore machine in each computation step. For any environmentM2, it is shown thatM1 ‖

M2 � M1 ‖ M
max
2 , whereMmax

2 is the maximal environment. Thus,Mmax
2 is used forA′, A is

no longer needed, and the rule is applied as:

M1 ‖M
max
2 |= ϕ

M1 ‖M2 |= ϕ

Grumberg and Long illustrate the effectiveness of their approach on an example of a CPU

controller.

Any assume-guarantee approach relies on the definition of appropriate assumptions. The

work presented so far gives sufficient conditions under which reasonable assumptions can be

computed. When these conditions are not applicable or are not effective, the discovery of as-

sumptions rests in the expertise of the verification specialists and is a manual process. Other

work reports implementations and case studies that suggestmethodologies for choosing the

right assumptions [62, 47]. The lack of more systematic assume-guarantee techniques comes

from the lack of algorithmic methods for assumption discovery. Recent work has made signif-

icant progress in automating the computation of assumptions.

Cobleighet al. [42] propose a fully-automated method for the assume-guarantee model

checking of safety properties. The method uses a known algorithm that is able to infer or
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learn a regular languages using oracles [4, 87]. To learn an unknown languageL, the oracles

are used to answer two types of queries: membership queries asking whether a strings is

in L, and conjectures asking whether the language inferred at some point isL. When used

with the assume-guarantee rule, the oracles are instances of a model checker. The unknown

language is learned as an automaton representing the assumptionA and whose alphabet is the

interface between the component and its environment. One model checker instance answers

membership queries by checking whether a given string violates the propertyϕwhen composed

with M1: 〈s〉M1〈ϕ〉. Given a conjectured assumption automatonA, another instance checks

the first premise of the rule:〈A〉M1〈ϕ〉, and yet another instance checks the second premise:

〈true〉M2〈A〉. Counterexamples obtained at any point from model checkingare used to modify

the conjectured automaton and make new conjectures that arechecked by the oracles again.

The algorithm is guaranteed to converge at a minimal automaton that satisfies both premises of

the assume-guarantee rule and represents the unknown assumptionA.

Alur et al. [2] provide a symbolic implementation of this method. Cobleigh et al. [41] and

Nam and Alur [79] independently extend the method to also decompose systems automatically

and optimally in terms of computational resources (time andmemory) used by the learning for

those decompositions. Various algorithmic optimizationsto the basic assumption generation

framework of [42] are proposed in [24, 93], and an alternative inference mechanism to L* is

proposed in [56]. Farzanet al. [45] extend the learning framework to liveness properties.

Flanagan and Qadeer [48] propose a different method to automatically discover assump-

tions for the assume-guarantee verification of multi-threaded Java programs. A guarantee for

each thread is computed as a relation on the global modifications to the store done by that

thread. The computation starts with the empty relation and iteratively fills it in during model

checking, based on the guarantees of other threads. The assumption for each thread is then the

disjunction of the guarantees of all the other threads.

Other work studies the automatic computation of assumptions independently of the assume-

guarantee rule. Giannakopoulouet al. [53] provide an algorithm that, given an LTS of a com-
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ponent and one of a safety property, finds theweakestenvironment assumption, as an LTS

as well, composed with which the component satisfies the property. Similar ideas are used for

interface synthesisfor (sequential) software components in the work of Aluret al.[1] and Hen-

zingeret al. [61]. In that context, the interfaces are automata describing the allowed sequence

of calls to methods of a component.

3.3.3 Our contribution

In this work, we use action-based LTSs, as opposed to our workin vacuity detection and query

solving that uses state-based Kripke structures.

We introduce a novel iterative refinement technique that extends the learning-based frame-

work of [42] so that the alphabet of the assumption being learned is also inferred during learn-

ing. In the original framework of [42], the alphabet of the assumption automaton being learned

is fixed to consist of all the actions in the interface betweencomponents. Our intuition is that

not all of these actions are needed for verifying a given property. Our refinement loop starts

learning the assumption with a small alphabet containing the actions referred to explicitly in

the property to be verified, and adds actions to this alphabetas needed. The need to add actions

is discovered by extending the counterexample analysis during learning. Actions are added

greedily, and the process converges either by concluding that the property is not satisfied, or

reaching an assumption good enough to satisfy the premises of the assume-guarantee rule and

conclude that the property holds.

Our refinement technique automatically introduces a notionof approximation since the

intermediate assumptions being computed with a subset of the interface alphabet are approxi-

mations of the assumption that would be obtained with the full interface alphabet. We formally

show that they are under-approximations: they contain fewer behaviors than the full interface

assumption, and assumptions in later refinement stages contain more behaviors than those in

earlier stages of the refinement. The benefit of our refinementtechnique is that it leads to

smaller assumptions and smaller verification problems. We show experimentally that it makes
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tractable many cases that were intractable with the original learning framework, and it is also

more scalable than non-compositional verification. We alsostudy its efficiency for various

assume-guarantee rules, including symmetric and circularones. The technique is not particu-

larly tied with learning; it can be applied to other compositional verification approaches; for

instance, we also use it in our second contribution, described next.

We further improve automated assumption generation by proposing an alternative to the

current learning-based techniques. These techniques can only generate deterministic assump-

tions. It is well known that a non-deterministic automaton can be exponentially smaller than a

deterministic one for the same language. We thus remove the restriction to determinism in an

effort to reduce assumption and problem sizes even more thanout previous work. We achieve

this goal by computing assumptions as abstractions. For componentsM1 andM2, and prop-

ertyϕ, with Rule ASYM , Premise 2is satisfied ifA is an over-approximation ofM2, i.e., if it

contains the behaviors ofM2 and possibly more. We can construct such anA and refine it us-

ing counterexamples as in the well-known framework of Counterexample Guided Abstraction

Refinement (CEGAR) [33]. We also incorporate our previous alphabet refinement technique

in our new method. We report experimental results which showthat our new algorithm, called

AGAR, can be significantly better than the original learning-based techniques.

3.3.4 Limitations

The technical limitations of our work are that both the alphabet refinement and the abstraction

refinement are formulated only for action-based models and for the verification of safety prop-

erties. A natural extension would be to consider state-based models and liveness properties.

For alphabet refinement, we also need to explore model-dependent ways of identifying which

actions to add at each refinement step. Our current methods are independent of the model; they

simply compare alphabets of traces. We could use slicing techniques, and use multiple coun-

terexamples. For our abstraction refinement technique, we need to compare how it performs

as opposed to monolithic verification. With learning, we were able to show that compositional
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verification scales better than non-compositional verification only after implementing our al-

phabet refinement optimization and implementation forn-components by recursive application

of Rule ASYM . Similar implementation and evaluation of our abstractionrefinement are still

pending.

3.4 Summary

We have presented in more detail the problems we address in this thesis, related work, and

have outlined the main contributions and limitations of ourwork. In the following chapters, we

present the technical details of our contributions, and additional comparison with related work.



Chapter 4

Vacuity Detection and Query Solving

4.1 Introduction

Vacuity detection and query solving are similar problems that we treat here in a unified way.

Both problems have been formulated as multi-valued model checking over lattices of sets,

where the sets represent all possible answers to vacuity detection or all possible solutions to

queries. In their most general formulation, these problemsrequire an exponential number of

runs of a classical model checker. Their multi-valued formulation allows them to be solved

by a single run of a multi-valued model checker. The efficiency of the run is determined by

the implementation of the lattice operations. With the general lattices of solutions being very

complex, such efficient implementations are unlikely.

In this chapter, we first provide a unifying framework that allows the definition of approx-

imations for model checking over lattices of sets in general. We then propose simpler lattices

for vacuity detection and query solving that are instances of the general framework. These ap-

proximations are defined in order to solve efficiently interesting practical cases, rather than the

general problems. We also describe implementations of model checking with these lattices in

the classical symbolic model checker NuSMV [32], and evaluate them experimentally, show-

ing that they outperform naive algorithms. Being symbolic,our algorithms are exposed to the

39
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size explosion of the decision diagrams used to encode the problems, as in any symbolic ap-

proach. To handle this problem, we describe how approximations can be computed by iterative

refinement, that works with incrementally larger lattices.

4.1.1 Vacuity detection

Although various approaches to vacuity detection have beenproposed (see Chapter 3), few

efficient algorithms and implementations have been reported. We work with CTL formulas and

the definition of vacuity of Kupferman and Vardi (see Chapter3). We choose this definition,

since it does not restrict the logic as done by Beeret al. [11], and it is less computationally

expensive than semantic definitions as those of [5, 58]: it isequivalent to a linear number of

runs of a model checker, rather than an exponential number, as in the latter approaches. It also

does not require special model checkers that provide proofs, as required in [80, 92].

Our algorithm is called VAQUOT and is based on techniques described in [59], where a

multi-valued lattice is introduced for the detection ofmutual vacuity, i.e., the detection of sets

of subformulas that are simultaneously vacuous in a formula. Model checking with this lat-

tice outputs information about the largest vacuous subformulas of a formula in one run. But

the lattice does not immediately lead to an efficient implementation. We approximate it by a

simpler lattice, but with a similar model checking approach. Our algorithm, called VAQUOT,

only outputs information about the individual vacuity of several fixed non-overlapping subfor-

mulas of a formula. In the worst case, the subformulas can be all the atomic propositions in the

formula. We also introduce a refinement technique that runs our algorithm iteratively to find

the largest vacuous subformulas of a formula. Thus, by approximation and refinement we find

mutual vacuity that is hard to detect in one run with the lattice of [59].

To illustrate our approximation, consider verifying the following property of a traffic light

controller: in every state, the light can bered or yellow of green, formalized in CTL as:

AG(red ∨ yellow ∨ green). Suppose an error was made in modeling, and the variable

for light is stuck at value ‘red’ in the model. If we check thisformula on this model for the



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 41

mutual vacuity of atomic propositions, we find out that the formula is vacuous in subformula

(yellow ∨ green), i.e., yellowandgreenare mutually vacuous. In other words, bothyellow

andgreencan be simultaneously replaced withfalse, and the formula still holds. The mutual

vacuity detection with the lattice of [59] outputs{{yellow, green}}, as this is the only set of

mutually vacuous propositions. In general, the mutual vacuity answer is a set of sets. If we

check the same formulas for individual vacuity of the atomicpropositions, as in the approach

of Kupferman and Vardi, we find that each ofyellow andgreenare vacuous, but we cannot

conclude that the entire subformula(yellow ∨ green) is vacuous. With our approximation,

we obtain the same answer as Kupferman and Vardi. In contrastto the mutual vacuity answer,

ours is{{yellow}, {green}}. Thus, our answer is exact (sound and complete) with respectto

Kupferman and Vardi’s definition of vacuity, but sound and incomplete (only an approxima-

tion) with respect to mutual vacuity.

To illustrate our refinement idea on this example, suppose the disjunction is right-associative.

Then, the parse tree of the formula will have top-most subformulas (under root operatorAG)

red andyellow ∨ green. We can introduce a fresh super-proposition calledblue, to repre-

sentyellow ∨ green, and run VAQUOT with propositionsred andblue. We find thatblue is

vacuous, and we can stop without a need to run VAQUOT on propositionsyellowandgreen.

We thus detect the mutual vacuity ofyellowandgreencheaper than the mutual vacuity algo-

rithm of [59] that explores all possible sets of mutually vacuous propositions from amongred,

yellow, andgreenin one run.

Given a model, and a CTL formula with a marked subset of its non-overlapping subfor-

mulas, VAQUOT checks whether the formula is true in the model, and reportsall the vacuous

subformulas from those marked. For any single run of VAQUOT we assume without loss of

generality that the subformulas of interest are atomic propositions of the given formula. We can

always replace those subformulas with fresh names that can act as atomic propositions. Fol-

lowing [69], we consider a proposition vacuous if it can be replaced by a constant (true or false)

without affecting the value of the formula in the model. We treat different occurrences of the
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same atomic proposition as different propositions. When the formula is true, VAQUOT reports

whether all of its atomic propositions are vacuous (Vacuously True), none of them are vacu-

ous (Non-Vacuously True), or some of the atomic propositions are vacuous (Vacuously True,

followed by a list of the vacuous propositions). Similar answers are given when the formula

is false. To find the largest subformulas that are vacuous in aformula, we can run VAQUOT

iteratively by considering at each iteration the non-overlapping subformulas at the same level

of the parse tree of the formula, while we scan the tree top-down in a breadth-first manner. As

soon as we find a subformula as vacuous, we no longer scan its subtree (subformulas).

4.1.2 Query solving

For query solving, we noticed that, in the analysis of state-transition models, many problems

reduce to questions of the type: “What are all the states thatsatisfy a propertyϕ?” which are

not readily expressed in temporal logic and usually requirespecialized algorithms, but we can

formulate them as queries.

One example is finding the reachable states, which is often needed in a pre-analysis step

to restrict further analysis only to those states. These states are typically found by computing

a forward transitive closure of the transition relation [32]. We can see reachable states as

solutions toEF ?.

Another example is the computation of “procedure summaries”. A procedure summary

is a relation between states, representing the input/output behavior of a procedure. The sum-

mary answers the question of which inputs lead to which outputs as a result of executing the

procedure. They are computed in the form of “summary edges” in the control-flow graphs of

programs [86, 7]. We can obtain procedure summaries by solvingEF ((pc = PROC END) ∧ ?),

wherepc = PROC END holds in the return statement of the procedure.

Yet another example is the algorithm for findingdominators/postdominatorsin program

analysis, proposed in [3]. A statet is a postdominator of a states if all paths froms eventually

reacht, andt is a dominator ofs if all paths tos pass throught. Dominators/postdominators
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are solutions to the queryAF ? (i.e., what propositional formulas eventually hold on all paths).

This insight gives us a uniform formulation of these problems and allows for easy creation

of solutions to other, similar, problems. For example, a problem reported in genetics re-

search [21, 44] called for findingstable statesof a model, that are those states which, once

reached, are never left by the system. This is easily formulated asEFAG ?, meaning “what

are the reachable states in which the system will remain forever?”.

With our point of view, we can characterize an important class of useful problems by a

common requirement: solutions to queries are single statesof the model. For example, a query

AF ? on the model in Figure 4.4 has solutions(p ∧ ¬q ∧ r) and(q ∧ r). The first corresponds

to the states0 and is a state solution. The second corresponds to a set of states{s1, s2} but

neithers1 nors2 is a solution by itself. When only state solutions are needed, we can formulate

a restrictedstate queryby constraining the solutions to be single states, rather than arbitrary

propositional formulas (that representsetsof states). A naive state-query solving algorithm is

to repeatedly substitute each state of the model for the placeholder, and return those for which

the resulting CTL formula holds. This approach is linear in the size of the state space and in

the cost of CTL model checking. While significantly more efficient than general query solving,

this approach is not “fully” symbolic, since it requires many runs of a model-checker.

Similarly to vacuity detection, [60] proposes a lattice of query solutions and a multi-valued

model checking algorithm over that lattice for solving general queries. We provide a symbolic

algorithm, called TLQ, for solving the state queries that approximates the general query-solving

approach of [60], by using only a simpler lattice of state solutions. We also describe a mini-

malist implementation which only modifies the interface of the model-checker NuSMV [32].

While the complexity of our approach is the same as in the corresponding naive approach, we

show empirically that TLQ can perform better than the naive, using a case study from genet-

ics [44]. We also describe an iterative refinement techniquein which queries are asked about

gradually more atomic propositions. We solve first the queryover as few propositions as fea-

sible, then use the solutions found with those propositionsto restrict a next run that asks the
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query over the atomic propositions just considered plus fewothers, and so on.

4.1.3 Outline

In Section 4.2, we provide additional background in latticetheory and multi-valued model

checking. In Sections 4.3 and 4.4 we review the formulationsof vacuity detection and query

solving as multi-valued checks. Section 4.5 describes our general approximation framework.

The particular approximations and algorithms for both problems, with their implementations

and evaluations are in Sections 4.6 and 4.7. We conclude and discuss future work in Section 4.8.

4.2 Background

Lattice theory

Definition 3 (Finite lattice) A finite latticeis a pair (L, ⊑), whereL is a finite set and⊑ is a

partial order onL, such that every finite subsetB ⊆ L has a least upper bound (calledjoin

and written⊔B) and a greatest lower bound (calledmeetand written⊓B).

Definition 4 (Minimal, maximal elements) An elementb ∈ B ⊆ L is minimal(maximal)if

for all a ∈ B, if a ⊑ b(b ⊑ a), thena = b. For any finite lattice there exist ‘top’⊤ = ⊔L and

‘bottom’⊥ = ⊓L, that are themaximumand respectivelyminimumelements in the lattice.

When the ordering⊑ is clear from the context, we simply refer to the lattice asL.

Definition 5 A lattice isdistributiveif meet and join distribute over each other, i.e., for any

a, b, c ∈ L:

a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c)

a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c)

Definition 6 (DeMorgan Algebra) A De Morganalgebra is a triple(L,⊑,¬), where(L,⊑)

is a finite distributive lattice and¬ is any operation that is an involution, i.e.,¬¬ℓ = ℓ, and

satisfies De Morgan laws.
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Propositional formulas form a lattice we commonly work with. For a set of atomic propo-

sitionsP , let F(P ) be the set of propositional formulas overP . For example,F({p}) =

{true, false, p,¬p}. This set forms a finite lattice ordered by implication (see Figure 4.1(a)).

Sincep⇒ true, p is undertrue in this lattice. Meet and join in this lattice correspond to logical

operators∧ and∨, respectively.

Definition 7 (Up-set, Down-set)A subsetB ⊆ L is calledupward closedor an up-set, if for

anya, b ∈ L, if b ∈ B andb ⊑ a, thena ∈ B. In that case,B can be identified by the setN of

its minimal elements, and we writeB = ↑N .

A subsetB ⊆ L is calleddownward closedor a down-set, if for anya, b ∈ L, if b ∈ B and

a ⊑ b, thena ∈ B. In that case,B can be identified by the setN of its maximal elements, and

we writeB = ↓N .

For example, for the lattice(F({p}),⇒) shown in Figure 4.1(a),↑{p,¬p} = {p,¬p, true}.

The set{p,¬p} is not an up-set, whereas{p,¬p, true} is. For singletons, we write↑a for ↑{a},

and the same for down-sets.

Definition 8 (Up-set lattice) For any A ⊆ L, ↑A = ↑M , whereM is the set of minimal

elements inA. We writeU(L) for the set of all upsets ofL, i.e.,A ⊆ L iff ↑A ∈ U(L). U(L) is

closed under union and intersection, and therefore forms a lattice ordered by set inclusion. We

call (U(L),⊆) theup-set latticeof L.

The up-set lattice ofF({p}) is shown in Figure 4.1(b).

Definition 9 (Join-irreducible element) An elementj in a latticeL is join-irreducibleif j 6=

⊥ andj cannot be decomposed as the join of other lattice elements, i.e., for anyx andy in L,

j = x ⊔ y impliesj = x or j = y.

Every element of a finite distributive lattice has a unique representation as a join of join-

irreducible elements.



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 46

true

false

p ¬p

↑{}

↑true

↑p ↑¬p

↑{p,¬p}

↑false

{p,¬p}

∅

{p} {¬p}

(a) (b) (c)

Figure 4.1: Lattices forP = {p}: (a) (F(P ),⇒); (b) (U(F(P )),⊆); (c) (2M(P ),⊆).

For example, the join-irreducible elements of the lattice in Figure 4.1(a) arep and¬p, and of

the one in Figure 4.1(b) —↑true, ↑p, ↑¬p, and↑false.

Definition 10 (Minterm) In the lattice of propositional formulasF(P ), a join-irreducible el-

ement is a conjunction in which every atomic proposition ofP appears, positive or negated.

Such conjunctions are calledmintermsand we denote their set byM(P ).

For example,

M({p, q}) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}.

Multi-valued CTL model checking

Consider the classical CTL fixpoint semantics given in Chapter 1. Recall that a formulaϕ holds

in a Kripke structureM , writtenM |= ϕ, if it holds in the initial state,i.e., [[ϕ]](s0) = true.

The complexity of model-checking a CTL formulaϕ on a Kripke structureM isO(|M |× |ϕ|),

where|M | = |S|+ |R|.

Multi-valuedCTL model checking [26] is a generalization of model checking from a clas-

sical logic to an arbitraryDe Morganalgebra. Conjunction and disjunction are the meet and
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join operations of(L,⊑), respectively. When the ordering and the negation operation of an

algebra(L,⊑,¬) are clear from the context, we refer to it asL. In our work, we only use a ver-

sion of multi-valued model checking where the model remainsclassical,i.e., both the transition

relation and the atomic propositions are two-valued, whereBoolean valuestrue and false are

replaced by the⊤ and⊥ of L, respectively. Only the properties are specified in a multi-valued

extension of CTL over a given De Morgan algebraL, calledχCTL(L). The logicχCTL(L)

has the same syntax as CTL, except that the allowed constantsare allℓ ∈ L. The semantics of

χCTL(L) is analogous to that of CTL;[[ϕ]] is extended to[[ϕ]] : S → L as follows:

[[ℓ]](s) , ℓ, for ℓ ∈ L

[[a]](s) , ⊤, if a ∈ I(s) else⊥

[[¬ϕ]](s) , ¬[[ϕ]](s)

[[ϕ ∧ ψ]](s) , [[ϕ]](s) ⊓ [[ψ]](s)

[[ϕ ∨ ψ]](s) , [[ϕ]](s) ⊔ [[ψ]](s)

[[EX ϕ]](s) ,
⊔

t∈S(R(s, t) ⊓ [[ϕ]](t))

[[EG ϕ]](s) , [[νZ.ϕ ⊓ EXZ]](s)

[[E[ϕ U ψ]]](s) , [[µZ.ψ ⊔ (ϕ ⊓ EXZ)]](s)

The complexity of model checking aχCTL(L) formulaϕ on a Kripke structureM is still

O(|M |×|ϕ|) as for classical CTL,provided thatmeet, join, and quantification can be computed

in constant time, which depends on the lattice [26].

4.3 Vacuity Detection as a Multi-Valued Check

We review here the lattice of mutual vacuity information andthe symbolic mutual vacuity

detection algorithm from [59].

The discussion is in terms of atomic propositions but it applies to any non-overlapping

subformulas of a formula. We treat multiple occurrences of the same subformula as different

subformulas. Letϕ be a CTL formula with atomic propositionsa, b, each occurring once,
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(f, f)

(a, f) (f, b)

(t, f) (a, b) (f, t)

(t, b) (a, t)

(t, t)

Figure 4.2: Lattice of replacements for(a, b).

positively. Thus,ϕ is monotonic in botha andb. According to the definition of vacuity of

Kupferman and Vardi (see Chapter 3), in order to compute the value ofϕ in a given model and

decide if it is vacuous ina, we need to model check witnessesϕ, ϕ[a ← true], ϕ[a ← false].

In other words, the replacements fora area, true, false, respectively. Similarly forb we have

replacementsb, true, false. These create the latticeL = {false, a, true} × {false, b, true} of

possible replacements for(a, b). These replacements are ordered according to the way they

affect the value ofϕ. For example, if(false, false) makesϕ false,(false, b) and(false, true)

can only makeϕ truer an truer, sinceϕ is monotonic inb anda stays the same; that is,

ϕ[a← false, b← false] ⊑ ϕ[a← false] ⊑ ϕ[a← false, b← true]

in the boolean order. Thus,

(false, false) ⊑ (false, b) ⊑ (false, true)

in the lattice of replacements. LatticeL is shown in Figure 4.2, where we use for shortt,f for

true, false.

For the same reason of monotonicity, if a replacement makesϕ true, all the replacements

above it inL makeϕ true as well. In other words, all the replacements in↑(x, y) makeϕ true if

(x, y) makes it true. Similarly, if(x, y) makesϕ false, all replacements in↓(x, y) makeϕ false.
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↓{(t, b), (a, t)}

↓{(t, f), (a, t)} ↓{(t, b), (f, t)}

VFb↓(a, t) ↓{(t, f), (a, b), (f, t)} ↓(t, b)VFa

↓{(a, b), (f, t)} ↓{(t, f), (a, b)}

↓(a, b)

↑(a, b)

↑{(t, f), (a, b)} ↑{(a, b), (f, t)}

VTb↑(a, f) ↑{(t, f), (a, b), (f, t)} ↑(f, b)VTa

↑{(a, f), (f, t)} ↑{(f, b), (t, f)}

↑{(a, f), (f, b))}

↑(f, f)

∅

tr
ue

fa
ls

e
Figure 4.3: Mutual vacuity lattice of up-(down-)sets of replacements for(a, b).

This induces the lattice of sets of replacements that makeϕ true/false shown in Figure 4.3 and

that we refer to as themutual vacuity lattice. Note that we changed the presentation of the

lattice from [59] to have the bottom half in term of down-setsof replacements that make the

formula false, rather than upsets that make formula true. In[59], the lattice of sets is ordered

by set inclusion. In our presentation, the upper half is ordered by set inclusion, whereas the

bottom half is ordered by reverse set inclusion. The presentation we give here makes it easier

to define our approximation later on. Even if in our representation the mutual vacuity lattice is

not the up-set lattice forL, it is still isomorphic to the up-set lattice, so we abuse notation and

still denote it byU(L).

The elements of this lattice give information about the value ofϕ and the vacuity ofa, b.

All values in the upper half indicateϕ is true, and all those in the bottom half are indicate
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ϕ is false. Any value above or below the dotted boundaries in the two halves indicate some

vacuity: if the value is above↑(a, f), it indicates thatϕ is vacuous inb: ↑(a, f) includes all

replacements wherea stays andb is replaced byfalse, b, true, all makingϕ true, which by

definition meansb is vacuous; for this reason, we denote↑(a, f) by VTb (‘Vacuously True in

b’); similarly, any value above↑(f, b) indicatesϕ is vacuous ina, so↑(f, b) is VTa (‘Vacuously

True ina’). A similar discussion applies to values below the dotted boundary in the bottom

half. Values↑{(a, f), (f, b)} and↑{(a, t), (t, b)} meanϕ is vacuous in botha andb separately,

while ↑(f, f) and↑(t, t) showa, b are vacuous at the same time (mutually).

To compute the truth value and the vacuity ofϕ using this lattice, a new semantics is given

to the atomsa and b in the formula, in terms of their truth values and vacuity as formulas

by themselves, based on the following case analysis. Proposition a, as a formula by itself, is

either true, and then it is vacuously true inb sinceb does not occur ina, or it is false, and still

vacuously so inb. We can encode this symbolically as(a∧VTb)∨ (¬a∧VFb) or, equivalently,

a∧VTb∨VFb. To see why the two expressions are equivalent, consider thetwo possible values

for a, and the fact that⊥ � VFb � VTb: whena is true or ⊤, both expressions evaluate to

VTb, and whena is false or⊥, they both evaluate toVFb). Similarly, for b, its truth and vacuity

semantics isb ∧ VTa ∨ VFa. Thus the algorithm for vacuity detection using the mutual vacuity

lattice works by model checking

ϕ′ = ϕ[a← a ∧ VTb ∨ VFb, b← b ∧ VTa ∨ VFa]

over this lattice.

A naive approach to detect mutual vacuity is: for every possible subset of atomic proposi-

tions, to replace all the propositions in the set simultaneously with constantsfalse or true, and

check the resulting formulas sequentially, as checking thewitnesses for individual vacuity in

the approach of Kupferman and Vardi. This requires a number of calls to a classical model

checker that is exponential in the number of atomic propositions.

The correctness of this algorithm follows from the fact shown in [57] that model checking

ϕ′ is equivalent to checking classicallyj ⊑ ϕ′, for all join-irreduciblesj of the lattice. The
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Figure 4.4: A simple Kripke structure.

intuition is that any value of the lattice can be guessed by asking ‘yes/no’ questions about how

it compares to the join-irreducibles, since any value in thelattice can be written as a join of

join-irreducible elements (see Chapter 3. Intuitively, this is the generalization to lattice orders

of the game of guessing a natural number (the set of the naturals has a linear order) by asking

repeatedly the question: ‘is the number grater thanx’, and adjustingx accordingly in the next

question. The⊑ operator commutes with the temporal and propositional operators so that all

checksj ⊑ ϕ′ eventually reduce to the checks of witnesses as in the naive approach. For

example,VTb is a join-irreducible of the mutual vacuity lattice. When wetakej ⊑ ϕ′, we get

ϕ[a← (VTb ⊑ a)∧(VTb ⊑ VTb)∨(VTb ⊑ VFb), b← (VTb ⊑ b)∧(VTb ⊑ VTa)∨(VTb ⊑ VFa)]

which isϕ[b← false], sincea, b map to either⊤ or⊥. This is one of the witnesses!

Implementing this algorithm efficiently depends on finding an efficient implementation of

the lattice operations with up-(down-)sets. It is not clearhow these could be implemented in

constant-time. Also, it is not clear how to compute the negation efficiently, in either represen-

tation: ours, with up- and down-sets, or that of [59] with allup-sets.

4.4 Query Checking as a Multi-Valued Check

Let M be a Kripke structure with a setA of atomic propositions. Recall that a CTL query,

denoted byϕ[?], is a CTL formula containing aplaceholder“?” for a propositional subformula
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(over the atomic propositions inA). The CTL formula obtained by substituting the placeholder

in ϕ[?] by a formulaα ∈ F(A) is denoted byϕ[α]. A formulaα is a solution to a query if its

substitution into the query results in a CTL formula that holds onM , i.e., if M |= ϕ[α]. For

example,(p ∧ ¬q ∧ r) and(q ∧ r) are among the solutions to the queryAF ? on the model of

Figure 4.4, whereas¬r is not.

In our work, we consider queries innegation normal form, where negation is applied only

to the atomic propositions, or to the placeholder. We further restrict our attention to queries

with a single placeholder, although perhaps with multiple occurrences. For a queryϕ[?], a

substitutionϕ[α] means that all occurrences of the placeholder are replaced by α. For example,

if ϕ[?] = EF (? ∧ AX ?), thenϕ[p ∨ q] = EF ((p ∨ q) ∧ AX (p ∨ q)). We assume that

occurrences of the placeholder are either non-negated everywhere, or negated everywhere,i.e.,

the query is eitherpositiveor negative, respectively. For now, we limit the presentation to

positive queries.

The general CTL query-solving problem is: given a CTL query on a model, find all its

propositional solutions. For instance, the answer to the queryAF ? on the model in Figure 4.4

is the set consisting of(p∧¬q∧ r), (q∧ r) and every other formula implied by these, including

p, (q∨r), andtrue. If α is a solution to a query, then anyβ such thatα⇒ β (i.e., any weakerβ)

is also a solution, due to the monotonicity of positive queries [25]. Thus, the set of all possible

solutions is an up-set; it is sufficient for the query-checker to output the strongest solutions,

since the rest can be inferred from them.

One can restrict a query to a subsetP ⊆ A [17]. We then denote the query byϕ[?P ], and

its solutions become formulas inF(P ). For instance, solvingAF ?{p, q} on the model of

Figure 4.4 should result in(p ∧ ¬q) andq as the strongest solutions, together with all those

implied by them. We writeϕ[?] for ϕ[?A].

If P consists ofn atomic propositions, there are22n

possible distinct solutions toϕ[?P ].

A “naive” method for finding all solutions would model checkϕ[α] for every possible propo-

sitional formulaα overP , and collect all thoseα’s for which ϕ[α] holds in the model. The
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complexity of this naive approach is22n

times that of usual model-checking.

A symbolic algorithm for solving the general query-solvingproblem was described in [60]

and has been implemented in the TLQSolver tool [28]. We review this approach below.

Since an answer toϕ[?P ] is an upset, the up-set latticeU(F(P )) is the space of all possible

answers [17]. For instance, the lattice forAF ?{p} is shown in Figure 4.1(b). In the model

in Figure 4.4, the answer to this query is{p, true}, encoded as↑{p}, sincep is the strongest

solution.

Symbolic query solving is implemented by model checking over the up-set lattice. The

algorithm is based on a state semantics of the placeholder. Suppose query?{p} is evaluated in

a states. Eitherp holds ins, in which case the answer to the query should be↑p, or¬p holds,

in which case the answer is↑¬p. Thus we have:

[[?{p}]](s) =















↑p if p ∈ I(s),

↑¬p if p 6∈ I(s).

This case analysis can be logically encoded by the formula(p ∧ ↑p) ∨ (¬p ∧ ↑¬p).

Let us now consider a general query?P in a states (where? ranges over a set of atomic

propositionsP ). We note that the case analysis corresponding to the one above can be given in

terms of minterms. Minterms are the strongest formulas thatmay hold in a state; they also are

mutually exclusive and complete — exactly one mintermj holds in any states, and then↑j is

the answer to?P ats. This semantics is encoded in the following translation of the placeholder:

T (?P ) =
∨

j∈M(P )

(j ∧ ↑j).

The symbolic algorithm is defined as follows: given a queryϕ[?P ], first obtainϕ[T (?P )],

which is aχCTL formula (over the latticeU(F(P ))), and then model check this formula. The

semantics of the formula is given by a function fromS to U(F(P )), as described in Section

4.2. Thus model checking this formula results in a value fromU(F(P )). That value was shown

in [60] to represent all propositional solutions toϕ[?P ]. For example, the queryAF ? on the
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model of Figure 4.4 becomes

AF ((p ∧ q ∧ r ∧ ↑(p ∧ q ∧ r))∨

(p ∧ q ∧ ¬r ∧ ↑(p ∧ q ∧ ¬r))∨

(p ∧ ¬q ∧ r ∧ ↑(p ∧ ¬q ∧ r))∨

(p ∧ ¬q ∧ ¬r ∧ ↑(p ∧ ¬q ∧ ¬r))∨

. . .).

The result of model-checking this formula is↑{p ∧ ¬q ∧ r, q ∧ r}.

The complexity of this algorithm is the same as in the naive approach. In practice, however,

TLQSolver was shown to perform better than the naive algorithm [60, 28].

4.5 Approximations

The efficiency of model checking over a lattice is determinedby the complexity of the lattice

operations. In this section, we show a general approximation framework for reasoning over

any lattice of sets. The framework defines sufficient conditions for finding a simpler lattice

from a complex one, so that model checking over the simpler lattice gives an approximation of

the answer over the complex one. This allows to still obtain partial solutions to problems such

as vacuity detection and query solving that have intractable lattices in general. We later show

how our approximations for these two problems are instancesof this general framework.

Let U be any finite set. Its powerset lattice is(2U ,⊆). Let (L,⊆) be any sublattice of the

powerset lattice,i.e., L ⊆ 2U .

Definition 11 (Approximation) A functionf : L→ 2U is anapproximationif:

1. it satisfiesf(B) ⊆ B for anyB ∈ L (i.e.,f(B) is an under-approximation ofB), and

2. it is a lattice homomorphism, i.e., it respects the lattice operations:f(B ∩C) = f(B)∩

f(C), andf(B ∪ C) = f(B) ∪ f(C).
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From the definition off , the imagef(L) of L throughf is a sublattice of2U , havingf(⊤) and

f(⊥) as its maximum and minimum elements, respectively.

We consider an approximation to be correct if it is preservedby model checking: reasoning

over the smaller lattice is the approximation of reasoning over the larger one. Letϕ be apositive

χCTL(L) formula, i.e., which does not contain negation. We define its translationA(ϕ) into

f(L) recursively on the structure of the formula as expected, eventually replacing any constant

B ∈ L occurring inϕ by f(B). The following theorem simply states that the result of model

checkingA(ϕ) is the approximation of the result of model checkingϕ. Its proof follows by

structural induction from the semantics ofχCTL, and uses the fact that approximations are

homomorphisms. [66] proves a similar result, albeit in a somewhat different context.

Theorem 1 (Correctness of approximations)LetM be a classical Kripke structure,L be a

finite distributive lattice of sets,f be an approximation function onL, andϕ be a positive

χCTL(L) formula. LetA(ϕ) be the translation ofϕ into f(L). Then for any states ofM ,

f([[ϕ]](s)) = [[A(ϕ)]](s).

Proof:

By induction on the structure of ϕ.

For B ∈ L, with f(B) = C ⊆ B, f([[B]](s)) = f(B) = C = [[C]](s) = C.

For a ∈ A, f([[a]](s)) = [[a]](s) = [[A(a)]](s) (approximation preserves ⊤ and ⊥, which are

the possible values of [[a]](s), and A(a) = a).

For ϕ ∧ ψ and EXϕ, the claim follows from the fact that f preserves ⊓ and ⊔ (second

condition of Definition 11) and that the transition relation of the model is classical:

f([[ϕ ∧ ψ]](s)) = f([[ϕ]](s) ⊓ [[ψ]](s)) = [[A(ϕ)]](s) ⊓ [[A(ψ)]](s) = [[A(ϕ ∧ ψ)]](s)

f([[EXϕ]](s)) =
⊔

t∈S

{R(t, s) ⊓ [[A(ϕ)]](s)} = [[A(EXϕ)]](s)

(the translation applies recursively on the structure of formulas).



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 56

The cases for the fixpoints are similar, noting that a fixpoint is computed in a finite number

of iterations stating from Z = ⊤ for the greatest fixpoint (EG), or Z = ⊥ for the least fixpoint

EU . If we expand those iterations for the fixpoints, we get formulas with the other operators

already considered in this proof.

Note that since models are classical and formulas are positive, we do not require the lattice

to be a DeMorgan algebra. We leave the treatment of negation dependent on the particular

instance and application of the framework.

4.6 Approximation and Refinement for Vacuity Detection

4.6.1 Vacuity detection algorithm

We first present our vacuity lattice and our algorithm VAQUOT independently, then show how

they are an instance of the general approximation frameworkapplied to the vacuity lattice from

Section 4.3. As before, the presentation is in terms of atomic propositions, but it applies to any

subset of non-overlapping subformulas of a formula.

As in the approach described in Section 4.3, the basis of VAQUOT is a multi-valued “vacu-

ity” lattice and a translation of CTL formulas into this lattice. Instead of the formulas being

interpreted over the Boolean lattice({true, false},≤), they are interpreted over thevacuity lat-

ticeLV = ({true, false}×2A,⊑), where2A is the powerset of the setA of atomic propositions.

An element(t, s) ∈ LV is a possible result of vacuity detection, showing that the formula has

truth valuet, and the largest subset of its atomic propositions that are vacuous iss. For any

u, v ∈ 2A, (false, u) ⊑ (true, v), (true, u) ⊑ (true, v) iff u ⊆ v, and(false, u) ⊑ (false, v)

iff v ⊆ u (note the reversal of set inclusion). The top element ofLV is (true, A), or Vac-

uously True in all propositions. The bottom element is(false, A), or Vacuously False in all

propositions. The vacuity lattices for two and three atomicpropositionsa, b, c are depicted in

Figure 4.5.

In VAQUOT, we replace each atomic propositiona of ϕ by ((a ∧ VTA\a) ∨ VFA\a), where
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(b)

(true, {b})

(false, ∅)

(true, ∅)

(false, {a, b})

(true, {a, b})

(true, {a})

(false, {a}) (false, {b})

(true, {a, b, c})

(true, {a, b}) (true, {a, c})

(true, ∅)

(true, ∅)

(true, {b}) (true, {c})

(false, {c})(false, {b})(false, {a})

(true, {a})

(true, {b, c})

(false, {a, b, c})

(false, {a, c}) (false, {b, c})(false, {a, b})

(a)

Figure 4.5: Vacuity lattices for a) two and b) three atomic propositions.

VTA\a and VFA\a denote lattice values(true, A \ {a}), and (false, A \ {a}), respectively.

All replacements are done simultaneously. The resulting multi-valued formula is then model

checked.

4.6.2 Correctness of approximation

Our lattice is isomorphic to the lattice obtained from the mutual vacuity latticeU(L) from Sec-

tion 4.3 by an approximation that keeps from every set ofU(L) only the elements representing

independent vacuous propositions. If the set of atomic propositions isA = {a1, . . . , ak}, for all

i = 1, . . . , k, the replacement(a1, . . . , ai−1, false, ai+1, . . . , ak) represents ‘Vacuously True in

ai’, that we denote byVTi. Similarly, (a1, . . . , ai−1, true, ai+1, . . . , ak) represents ‘Vacuously

False inai’, denoted byVFi. Let VT = {VTi | i = 1, . . . , k}, andVF = {VFi | i = 1, . . . , k}.



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 58

Formally, we define the approximation functionfV : U(L)→ 2VT∪ 2VF by:

fV (W ) =















W ∩ VT if W is an up-set

W ∩ VF if W is a down-set.

The isomorphism simply maps a set of replacements of the form(a1, . . . , ai−1, false, ai+1, . . . , ak)

or (a1, . . . , ai−1, true, ai+1, . . . , ak) to (true, B) or (false, B), respectively, whereB is the set

of propositions whose vacuity the replacements represent.Formally,g : 2VT ∪ 2VF → LV is

defined by

g(U) =















(true, {ai | i ∈ T}) if U ⊆ VT, T = {i ∈ {1, . . . , k} | VTi ∈ U}

(false, {ai | i ∈ T}) if U ⊆ VF, T = {i ∈ {1, . . . , k} | VFi ∈ U}.

Theorem 2 (Correctness of vacuity approximation withVAQUOT) LetM be a Kripke struc-

ture, andϕ a CTL formula (not necessarily positive), with translationsϕ′ into the mutual vacu-

ity latticeU(L) andϕ′′ into our vacuity latticeLV . If the result of model checkingϕ′ over the

mutual vacuity latticeU(L) is the setl of replacements indicating that the formula is true/false

with (independent or mutual) vacuity of a subsetB of propositions, the result ofVAQUOT

checkingϕ′′ is (true, B) or (false, B), indicating that the formula is true/false respectively, and

propositions inB are independently vacuous.

Proof:

The approximation fV , as defined, satisfies the conditions in the general approximation frame-

work (Section 4.5, as it maps sets to their subsets and preserves set operations. The isomor-

phism introduces truth values that do not affect the approximation, so they also respect the

operations, including negation. Thus, Theorem 1 applies, and we obtain the correctness of

our algorithm, stating that the result of VAQUOT correctly indicates the truth value of ϕ and the

independent vacuity of its atomic propositions.

Intuitively, by approximation we lose the information about themutualityof the vacuity. We

later show how we can recover some of this information running VAQUOT iteratively with re-

finement of subformulas. Our vacuity lattice leads immediately to an efficient implementation
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with a classical model checker, as we describe next. Thus, itprovides a feasible approximation

to the otherwise very hard problem of detecting mutual vacuity.

4.6.3 Implementation

In our implementation, we encode each value of the vacuity lattice LV as a 32-bit word. The

least-significant bit represents the truth:1 for true, 0 for false. The other bits represent the

vacuity: 0 for vacuous,1 for non-vacuous. For instance, for a formulaϕ with atomic proposi-

tionsa, b, c, the lattice value(true, {a, c}) is represented by the word00 . . . 00101, where the

rightmost bits0101 mean, respectively, thata andc are vacuous,b is not, and the truth value is

true. Thus, lattice operations can be efficiently implemented bitwise. The fixed word length,

which could be increased from32 to 64 or 128, limits the number of atomic propositions in the

formulas we can check efficiently to31, 63, 127, respectively. Bit vectors of arbitrary length

could be used, at the cost of increasing the complexity of lattice operations.

The implementation of VAQUOT is built on top of NuSMV, which uses the CUDD pack-

age for the implementation of binary decision diagrams (BDDs) [32]. We have implemented

multi-valued decision diagrams using CUDD ADDs which allowintegers in their leaves, and

changed the interface between NuSMV and CUDD so that our multi-valued operations are per-

formed instead of their BDD counterparts. These modifications do not affect the complexity of

decision diagram operations or fixpoint computations, but they may affect performance, since

the decision diagrams may be larger. Our changes are compatible with the various NuSMV

optimizations (e.g., cone of influence, dynamic reordering, partitioning). Thetool is available

as a patch for NuSMV v. 2.1.2, fromwww.cs.toronto.edu/fm/vaquot.html.

4.6.4 Experiments

A few experiments comparing VAQUOT with basic model checking and with a naive approach

to vacuity detection are reported in Table 4.1. The naive approach according to Kupferman
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Table 4.1: Experimental results with VAQUOT.

Model
Formulas Basic MC Naive VD

VAQUOT

Total Vacuous Memory Time Witnesses Time

elevator3l 45 26 43.5 1690.16 399 5228.94 1441.22

guidance 23 16 10 54.18 244 306.99 274.81

production 15 15 7.2 42.41 187 228.87 184.08

-cell

abp10 4 3 10.6 83.18 26 316.63 304.51

fgs5 6 2 106 189.57 82 239.04 191.92

msi wtrans 15 3 10.3 30.21 81 53.63 83.98

luckySeven 4 0 12.9 469.33 20 1257.11 842.48

eisenberg 5 4 3 11.31 25 35.77 39.77

ticTacToe 42 3 8.9 15.81 363 68.72 102.51

and Vardi consists of separately replacing each atomic proposition by true and then byfalse

and check the resulting formulas, in addition to the original formula; all these formulas are

calledwitnesses. The number of witnesses reported in Table 4.1 is the actual number of for-

mulas checked in the naive approach, which we implemented ontop of NuSMV as well. The

experiments were performed on a Dell PC with a 2.4 GHz Intel Celeron CPU and 512 MB

of RAM, running Linux 2.4.20. Modelsguidance, production-cell, abp10, and

msi wtrans, and most of their properties are from the NuSMV distribution. elevator3l

is a model of a three-floor elevator system written by a student taking the Automated Verifica-

tion class at Univ. of Toronto, andfgs5 is a proprietary model for a flight-guidance system.

ModelsluckySeven,eisenberg, andticTacToe are SMV translations of their Verilog

counterparts distributed with the VIS model checker. For each model, we report the total num-

ber of formulas checked and how many were found vacuous (Formulas), the total memory (in

MB) and time (in seconds) used by model-checking without vacuity detection (Basic MC), the

total number of witnesses and the time used by the naive vacuity detection (Naive VD), and the
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running time of VAQUOT. As it can be seen, VAQUOT performs better than the naive approach

in most cases, and by a considerable margin in some: our algorithm avoids much of the redun-

dant work performed by the naive approach. In the cases whereVAQUOT performs worse, we

observed that the sizes of the decision diagrams are the bottleneck, and we are investigating

ways to overcome this. It may seem surprising that such many formulas were found vacuous

for theelevator3l andguidance models, and not for the others. A reason for this would

be that those providing the properties for these models did not understand the models well: in

the former case, the student did not write a good model, and did not formalize the properties

correctly; in the latter case, the person writing the properties and submitting them with the

model to the NuSMV archive was not very familiar with the model or the application domain

(as can be inferred from the case documentation in the NuSMV archive).

4.6.5 Refinement

VAQUOT can detect vacuity in any subset of non-overlapping subformulas of a formula. Vacu-

ity of larger subformulas is more useful to be reported to users than vacuity of smaller subfor-

mulas. Thus, it is important to find the largest subformulas that are vacuous in a formula. This

is the main motivation behind the mutual vacuity defined by [59]. We can solve this problem

using VAQUOT iteratively on gradually larger subformulas. We proceed by scanning the parse

tree of the formula (built by the model checker) top-down in breadth-first manner. At each

level, we consider the set of subformulas at that level, which are non-overlapping. We replace

them with fresh names and run VAQUOT on them as if they were the atomic propositions. For

the subformulas found vacuous among them, we do not need to explore their subtrees further,

and we report them. For those not found vacuous, we proceed deeper in the tree and repeat the

process. This iterative refinement technique is less prone to suffer from BDD explosion if it

prunes much of the parse tree.
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4.6.6 Comparison with related work

The method of [84] is the closest to ours, from related work. In [84], witnesses are gener-

ated and checked in parallel and compositionally, by a bottom-up exploration of the parse tree

of a formula, with explicit caching of intermediate results. The representation of witnesses is

explicit as well. All these are implicit in the multi-valueddecision diagrams in our implementa-

tion. True and false formulas are treated differently, whereas VAQUOT handles both uniformly

in one pass. Extensive experiments and comparisons betweenthe two methods remain for fu-

ture work; the results shown in Table 4.1, specifically, for the last three examples (used also

in [84]), indicate that both tools exhibit a similar improvement over the naive approach, but for

eisenberg andticTacToe, VAQUOT found more vacuous passes.

Complementary to our vacuity checking of CTL formulas usingBDD-based techniques,

the work of [92] addresses vacuity checking of LTL formulas,implemented using SAT-based

methods. In a parallel development, [27] re-examines the meaning of vacuity in terms of

system versus environment behavior, and argues that current vacuity checking methodology

produces too many false positives, that is, cases of vacuitythat do not indicate problems. As

an alternative, that work proposes checking when formulas pass/fail solely due to errors in the

environment model, and shows on a realistic case study that this new methodology discovers

truly problematic cases of vacuity. Similar concerns are addressed in [31, 14].

4.7 Approximation and Refinement for Query Solving

4.7.1 State solutions to queries

Without loss of generality, we consider only CTL formulas innegation normal form, where

negation is applied only to atomic propositions [35].

LetM be a Kripke structure with a setA of atomic propositions. In general query solving,

solutions to queries are arbitrary propositional formulas. On the other hand, forstate queries,
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solutions are restricted to be single states. To represent asingle state, a propositional formula

needs to be a minterm overA. In symbolicmodel checking, any states of M is uniquely

represented by the minterm that holds ins. For example, in the model of Figure 4.4, states0 is

represented by(p∧¬q∧r), states2 by (p∧q∧r), etc. Thus, for a state query, an answer to the

query is a set of minterms, rather than an upset of propositional formulas. For instance, for the

queryAF ?, on the model of Figure 4.4, the state-query answer is{p ∧ ¬q ∧ r}, whereas the

general query answer is↑{r∧q, p∧¬q∧r}. While it is still true that ifj is a solution, everything

in ↑j is also a solution, we no longer view answers as upsets, sincewe are interested only in

minterms, andj is the only minterm in the set↑j (minterms are incomparable by implication).

We can thus formulate state-query solving asminterm-query solving: given a CTL query on a

model, find all its minterm solutions. We show how to solve this for any queryϕ[?P ], and any

subsetP ⊆ A. WhenP = A, the minterms obtained are the state solutions.

Given a queryϕ[?P ], a naive algorithm would model checkϕ[α] for every mintermα. If n

is the number of atomic propositions inP , there are2n possible minterms, and this algorithm

has complexity2n times that of model-checking. Minterm query solving is thusmuch easier to

solve than general query solving.

Of course, any algorithm for general query solving, such as the symbolic approach de-

scribed in Section 4.4, solves minterm queries as well: fromthe answer with all solutions, we

can extract only those which are minterms. This approach, however, is much more expensive

than needed. Below, we propose a method that is tailored to just minterm-query solving, while

remaining symbolic.

4.7.2 Minterm-query solving

Since an answer to a minterm query is a set of minterms, the space of all answers is the powerset

2M(P ) that forms a lattice ordered by set inclusion. For example, the lattice2M({p}) is shown

in Figure 4.1(c). Our symbolic algorithm evaluates queriesover this lattice. We first adjust

the semantics of the placeholder to minterms. Suppose we evaluate?{p} in a states. Eitherp
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holds ins, and then the answer should be{p}, or¬p holds, and then the answer is{¬p}. Thus,

we have

[[?{p}]](s) =















{p} if p ∈ I(s),

{¬p} if p 6∈ I(s).

This is encoded by the formula(p∧{p})∨(¬p∧{¬p}). In general, for a query?P , exactly one

mintermj holds ins, and in that case{j} is the answer to the query. This gives the following

translation of placeholder:

Am(?P ) ,
∨

j∈M(P )

(j ∧ {j}).

Our minterm-query solving algorithm, TLQ, is now defined as follows: given a queryϕ[?P ]

on a modelM , computeϕ[Am(?P )], and then model check this over2M(P ).

For example, forAF ?, on the model of Figure 4.4, we model check

AF ((p ∧ q ∧ r ∧ {p ∧ q ∧ r})∨

(p ∧ q ∧ ¬r ∧ {p ∧ q ∧ ¬r})∨

(p ∧ ¬q ∧ r ∧ {p ∧ ¬q ∧ r})∨

(p ∧ ¬q ∧ ¬r ∧ {p ∧ ¬q ∧ ¬r})∨

. . .),

and obtain the answer{p ∧ ¬q ∧ r}, that is indeed the only minterm solution for this model.

4.7.3 Correctness of approximation

To prove our algorithm correct, we need to show that its answer is the set of all minterm

solutions. We prove this claim by relating our algorithm to the general algorithm in Section 4.4.

We show that, while the general algorithm computes the setB ∈ U(F(P )) of all solutions,

ours results in the subsetN ⊆ B that consists of only the minterms fromB. We first establish

an approximation mapping fromU(F(P )) to 2M(P ) that, for any upsetB ∈ U(F(P )), returns

the subsetN ⊆ B of minterms.
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Definition 12 (Minterm approximation) Let P be a set of atomic propositions.Minterm

approximationfm : U(F(P ))→ 2M(P ) is fm(B) , B ∩M(P ), for anyB ∈ U(F(P )).

With this definition,Am(?P ) is obtained fromT (?P ) by replacing↑j with fm(↑j) = {j}.

The minterm approximation preserves set operations; this follows immediately from the fact

that any set of propositional formulas can be partitioned into minterms and non-minterms.

Proposition 1 The minterm approximationfm : U(F(P )) → 2M(P ) is a lattice homomor-

phism, i.e., it preserves the set operations: for anyB,B′ ∈ U(F(P )), fm(B) ∪ fm(B′) =

fm(B ∪B′) andfm(B) ∩ fm(B′) = fm(B ∩ B′).

By Proposition 1, and since model checking is performed using only set operations, we can

show that the approximation preserves model-checking results. Model checkingϕ[Am(?P )] is

the minterm approximation of checkingϕ[T (?P )]. In other words, our algorithm results in set

of all minterm solutions, which concludes the correctness argument.

Theorem 3 (Correctness of minterm approximation) For any states ofM ,

fm([[ϕ[T (?P )]]](s)) = [[ϕ[Am(?P )]]](s).

Proof:

The claim is a corollary to Theorem 1. Our minterm approximation satisfies condition (1) of

Definition 11, since fm(B) = B∩M(P ) ⊆ B, and it also satisfies condition (2) by Proposition 1.

Thus, fm is an approximation to which Theorem 1 applies, yielding Theorem 3.

In summary, forP = A, we have the following correct symbolic state-query solving algo-

rithm : given a queryϕ[?] on a modelM , translate it toϕ[Am(?A)], and then model check this

over2M(A).

The worst-case complexity of TLQ is the same as that of the naive approach. With an

efficient encoding of the approximate lattice, however, ourapproach can outperform the naive

one in practice, as we show in Section 4.7.7.



CHAPTER 4. VACUITY DETECTION AND QUERY SOLVING 66

4.7.4 Implementation

Although TLQ is defined as model checking over a lattice, we can implement it using a classical

symbolic model checker. This is done by encoding the latticeelements in2M(P ) such that

lattice operations are already implemented by a symbolic model checker. The key observation

is that the lattice(2M(P ),⊆) is isomorphic to the lattice of propositional formulas(F(P ),⇒).

This can be seen, for instance, by comparing the lattices in Figures 4.1(a) and 4.1(c). Thus,

the elements of2M(P ) can be encoded as propositional formulas, and the operations become

propositional disjunction and conjunction. A symbolic model checker, such as NuSMV [32],

which we used in our implementation, already has data structures for representing propositional

formulas and algorithms to compute their disjunction and conjunction — BDDs [94]. The only

modifications we made to NuSMV were parsing the input and reporting the result.

While parsing the queries, we implemented the translationAm defined in Section 4.7.2. In

this translation, for every mintermj, we give a propositional encoding to{j}. We cannot sim-

ply usej to encode{j}. The lattice elements need to beconstantswith respect to the model,

andj is not a constant — it is a propositional formula that contains model variables. We can,

however, obtain an encoding for{j}, by renamingj to a similar propositional formula over

fresh variables. For instance, we encode{p∧¬q ∧ r} asx∧¬y ∧ z. The lattice operations are

correctly implemented with this encoding since they are Boolean set operations that are imple-

mented as Boolean formula operations. Thus, our query translation results in a CTL formula

with double the number of propositional variables comparedto the model. For example, the

translation ofAF ?{p, q} is

AF ((p ∧ q ∧ x ∧ y)∨

(p ∧ ¬q ∧ x ∧ ¬y)∨

(¬p ∧ q ∧ ¬x ∧ y)∨

(¬p ∧ ¬q ∧ ¬x ∧ ¬y)).

We input this formula into NuSMV, and obtain the set of minterm solutions as a propositional

formula over the encoding variablesx, y, . . .. ForAF ?{p, q}, on the model in Figure 4.4, we
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obtain the resultx ∧ ¬y, corresponding to the only minterm solutionp ∧ ¬q.

4.7.5 Exactness of minterm approximation

In this section, we address the applicability of minterm-query solving to general query solving.

When the minterm solutions are the strongest solutions to a query, minterm-query solving

solves the general query solving problem as well, as all solutions to that query can be inferred

from the minterms. In that case, we say that the minterm approximation isexact. We would

like to identify those CTL queries that admit exact minterm approximations, independently of

the model. The next proposition follows easily from the factthat any propositional formula is

a disjunction of minterms.

Proposition 2 A positive queryϕ[?P ] has an exact minterm approximation in any model iff

ϕ[?P ] is distributive over disjunction, i.e.,ϕ[α ∨ β] = ϕ[α] ∨ ϕ[β].

Proof:

Any propositional formula can be written as a disjunction of minterms. Thus, if a formula

is a solution to a query, and the query is distributive over disjunction, the minterms in the

representation of the formula are all solutions to the query. Thus the strongest solutions of

such a query are minterms.

An example of a query that admits an exact approximation isEF ?; its strongest solutions

are always minterms, representing the reachable states. In[25], Chan showed that deciding

whether a query is distributive overconjunctionis EXPTIME-complete. We obtain a similar

result.

Theorem 4 Deciding whether a CTL query is distributive over disjunction is EXPTIME-complete.

Proof:

By duality, from the result of [25].
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Since the decision problem is hard, it would be useful to havea grammar that is guaranteed

to generate queries which distribute over disjunction. Chan defined a grammar for queries

distributive over conjunction, that was later corrected bySamer and Veith [88]. We can obtain

a grammar for queries distributive over disjunction, from the grammar in [88], by duality.

4.7.6 Negative queries

The minterm approximation defined in Section 4.7.2 is restricted to positive queries. The gen-

eral approximation framework defined above makes it easy to derive a minterm approximation

for negative queries. We denote a negative query byϕ[¬?P ]. To obtain the minterm solutions

to ϕ[¬?P ], we can checkϕ[?P ], that is, ignore the negation and treat the query as positive.

For example, to check the negative queryAF ¬?{p, q}, we checkAF ?{p, q} instead. The

minterm solutions to the original negative query are the duals of the maxtermsolutions to

ϕ[?P ]. A maxterm is adisjunctionwhere all the atomic propositions are, positive or negated.

We denote byX (P ) the set of maxterms over a setP of atomic propositions. For example,

X ({p, q}) = {p ∨ q, p ∨ ¬q,¬p ∨ q,¬p ∨ ¬q}. A mintermj is a solution toϕ[¬?P ] iff its

negation¬j is a maxterm solution toϕ[?P ]. We thus need to define amaxterm approximation

fx : U(F(P ))→ 2X (P ) for positive queries. We definefx such that, for any upsetB, it returns

the subset of maxterms in that set,i.e., fx(B) = B ∩ X (P ). According to Definition 11,fx

is an approximation: (1) holds byfx’s definition, and (2) follows from the fact that any set

of propositional formulas can be partitioned into maxtermsand non-maxterms. We define the

translation:

Ax(?P ) ,
∨

j∈M(P )

(j ∧ fx(↑j)).

Then, by Theorem 1, model-checkingϕ[Ax(?P )] results in all the maxterm solutions toϕ[?P ].

By negating every resulting maxterm, we obtain all minterm solutions toϕ[¬?P ]. For example,

maxterm solutions toAF ?{p, q} for the model of Figure 4.4 is the setX ({p, q}); thus, the

minterm solutions toAF ¬?{p, q} are the entire setM({p, q}).
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4.7.7 Case study

In this section, we study the problem of finding stable statesof a model, and evaluate the per-

formance of our implementation by comparing it to the naive approach to state-query solving.

In a study published in plant research, a model of gene interaction has been proposed to

compute the “stable states” of a system of genes [44]. This work defined stable states as reach-

able gene configurations that no longer change, and used discrete dynamical systems to find

such states. A different publication, [21], advocated the use of Kripke structures as appropriate

models of biological systems, where model checking can answer some of the relevant ques-

tions about their behaviour. [21] also noted that query solving might be useful as well, but did

not report any applications of this technique. Motivated by[21], we repeated the study of [44]

using our state-query solving approach.

The model of [44] consists of 15 genes, each with a “level of expression” that is either

boolean (0 or 1), or ternary (0,1, or 2). The laws of interaction among genes have been es-

tablished experimentally and are presented as logical tables. The model was translated into a

NuSMV model with 15 variables, one per gene, of which 8 are boolean and the rest are ternary,

turning the laws into NuSMV next-state relations. The modelhas 559,872 states and is in the

Appendix.

The problem of finding all stable states of the model and the initial states leading to them is

formulated as the minterm-query solving ofEFAG?, where? ranges over all variables. Perfor-

mance of our symbolic algorithm (Section 4.7.1) and the naive state-query solving algorithm

for this query is summarized in the top row of the Table 4.2, where the times are reported in

minutes. Our algorithm was implemented using NuSMV as described in Section 4.7.4. The

naive algorithm was also implemented using NuSMV by generating all possible minterms over

the model variables, replacing each for the placeholder inEFAG? and calling NuSMV to

check the resulting formulas. Both algorithms were run on a Pentium 4 processor with 2.8GHz

and 1 GB of RAM. Our algorithm gave an answer in under two hours, being about 20% faster

than the naive.
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Table 4.2: Experimental results for query solving.

Algorithms

Model Query TLQ Naive

1 original EF AG ? 117 145

2 mutant 1 EF AG ? 116 144

3 mutant 2 EF AG ? 117 145

4 mutant 3 EF AG ? 117 146

5 original AG ? 116 145

6 original EF ? 118 146

7 original AF ? 117 145

To have a larger basis of comparison between the two algorithms, we varied the model (see

rows 2-4), and the checked queries (see rows 5-7). Each “mutant” was obtained by permanently

switching a different gene off, as indicated in [44]. The performance gain of our algorithm is

robust to these changes.

4.7.8 Refinement

Performance improvements observed in our case study may notbe attainable for every model.

If the model is sufficiently small, our algorithm is likely tobe faster. As models grow, how-

ever, our algorithm may suffer from BDD size explosion sinceit doubles the number of states

variables.

To handle this problem, we envision an iterative refinement scheme. Suppose we are in-

terested in checking a queryAF ? with two propositions,a andb. We first checkAF ?{a}

andAF ?{b}. If no value is found for a proposition, then the query has no minterm solutions.

Otherwise, the results correspond to the values each proposition has in all minterm solutions.

For example, suppose we obtaina = false, whereasb can be eithertrue or false. We proceed

by checking a query for each pair of propositions, using for the placeholder replacement only
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those values found in the previous step. For example, we check AF ?{a, b}, replacing? by

(¬a ∧ b ∧ {¬a ∧ b}) ∨ (¬a ∧ ¬b ∧ {¬a ∧ ¬b}). We continue with checking triples of propo-

sitions using the valued obtained for pairs, and so on, untilthe query is checked on all atomic

propositions, or it has been established that no answer exists.

4.7.9 Comparison with related work

While several approaches have been proposed to solve general query solving, none are effec-

tive for solving the state queries. The original algorithm of Chan [25] was very efficient (same

cost as CTL model checking), but was restricted tovalid queries,i.e., queries whose solutions

can be characterized by a single propositional formula. This is too restrictive for our purposes.

For example, neither of the queriesEF ?, AF ?, nor the stable states queryEF AG ? are

valid. Bruns and Godefroid [17] generalized query solving to all CTL queries by proposing

an automata-based CTL model checking algorithm over a lattice of sets of all possible solu-

tions. This algorithm is exponential in the size of the statespace. Gurfinkel and Chechik [60]

have also provided a symbolic algorithm for general query solving. The algorithm is based

on reducing query solving to multi-valued model checking and is implemented in a tool TLQ-

Solver [28]. While empirically faster than the corresponding naive approach of substituting

every propositional formula for the placeholder, this algorithm still has the same worst-case

complexity as that in [17], and remains applicable only to modest-sized query-solving prob-

lems. An algorithm proposed by Hornus and Schnoebelen [63] finds solutions to any query,

one by one, with increasing complexity: a first solution is found in time linear in the size of the

state space, a second, in quadratic time, and so on. However,since the search for solutions is

not controlled by their shape, finding all state solutions can still take exponential time. Other

query-solving methods do not apply directly to solve our state queries, as it is exclusively con-

cerned either with syntactic characterizations of queries[89], or with extensions, rather than

restrictions, of query solving [90, 96].

There is a also a very close connection between query solvingand sanity checks such
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paper

author

ChandraMerlin

title

“A Paper Title”

Figure 4.6: An XML example (adapted from [54]).

as vacuity and coverage [68]. All these problems require checking several “mutants” of the

property or of the model to obtain the final solution. The algorithm for solving state queries

presented in this paper bears many similarities to the algorithms described in [68]. Since query

solving is more general, we believe it can provide a uniform framework for studying all these

problems.

4.8 Conclusions and Future Work

We have identified and formalized approximate answers to vacuity detection and to query solv-

ing, which are of practical interest and can be solved more efficiently than the general versions

of these problems. We have presented symbolic algorithms that compute these approxima-

tions, and described their implementations using the NuSMVmodel checker. We showed the

efficiency of our implementations by experimental evaluation on practical cases. We have also

described iterative refinement techniques that consider incrementally larger lattices to handle

the size explosion of the problems.

We have presented a new application of query solving, and in particular, of our state-query

solving, to finding stable states in gene networks. In the rest of this section we present another

possible application open for investigation.

State query solving can be applied to querying XML documents, which are modeled as

trees. A simple example, of a fragment from a document containing information about research

papers and adapted from [54], is shown in Figure 4.6. An example query is “what are the titles
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of all papers authored by Chandra?”. Viewing tree nodes as states and edges as transitions

yields a state-transition model, on which CTL properties can be evaluated [76]. Unfortunately,

our example, like many other XML queries, needs to refer to both past and future, and is

expressed as a CTL+Past formula as follows [54]:

EXpast (title ∧ EXpast (paper∧EX (author∧ EX Chandra))).

Such formulas cannot be evaluated without modifying the internals of standard model-checkers.

Formulating this question as a query yields

paper∧ EX (title ∧EX ?) ∧EX (author∧ EX Chandra),

whose desired solutions are states (here, the node labeled “A Paper Title”), and which avoids the

use of the past and can be solved by our approach without modifying existing model checkers.

The main direction of investigation remains finding new interesting applications of the

existing approximations or applications that require other similar approximations. We also

expect to fine-tune our algorithms to fit new classes of practical problems.



Chapter 5

Assumption Generation

5.1 Introduction

This chapter presents our contributions to the automatic generation of assumptions for com-

positional verification in the assume-guarantee style. These contributions consist of intro-

ducing new iterative refinement techniques and demonstrating that they significantly improve

upon current automated assumption generation methods. This material has been published

in [49, 82, 16].

5.1.1 Interface alphabet refinement

Our first contribution is related to the way the interfaces between components are handled dur-

ing assumption generation. Interfaces consist ofall communication points through which the

components may influence each other’s behavior. Our assumption is that good design prac-

tice encourages system architectures with small components, and therefore the complexity of

a system resides not in the individual components, but in theinter-component communica-

tion. Since interfaces determine this communication, our intuition is to manage complexity by

managing the interfaces. In the learning framework of [42],the alphabet of the assumption au-

tomata being built includesall the actions in the component interface. A case study presented

74
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in [81] shows, however, a smaller alphabet that is sufficientto prove a property. This smaller

alphabet is determined through manual inspection and with it, assume-guarantee reasoning

achieves orders of magnitude improvement over monolithic (i.e., non-compositional) model

checking [81]. Motivated by the successful use of a smaller alphabet in learning, we show how

to automate the process of discovering a smaller alphabet that is sufficient for checking the

desired properties. Smaller alphabet means smaller interface between components, which may

lead to smaller assumptions, and hence to smaller verification problems.

We introduce a novel technique calledalphabet refinementthat extends the learning frame-

work so that it starts with a small subset of the interface alphabet and adds actions into it as

necessary, until a required property is shown to hold or to beviolated in the system. Actions

to be added are discovered by analysis of the counterexamples obtained from model checking

the components. We study the properties of alphabet refinement and show experimentally that

it leads to significant time and memory savings as compared tothe original learning frame-

work [42] and achieves better scalability than monolithic model checking.

We have implemented our algorithm within the LTSA model checking tool [72], but the

algorithm is applicable to and may benefit any of the previouslearning-based approaches

[2, 79, 91], and it may also benefit other compositional analysis techniques. Compositional

Reachability Analysis (CRA), for example, computes abstractions of component behaviors

based on their interfaces. In the context of property checking [30], smaller interfaces may re-

sult in more compact abstractions, leading to smaller statespaces when components are put

together.

5.1.2 Abstraction refinement

Our second contribution provides an alternative to the learning-based assumption generation

techniques. Recall that the simplest assume-guarantee rule checks if a system composed of

componentsM1 andM2 satisfies a propertyϕ by checking thatM1 under assumptionA sat-

isfiesϕ (Premise 1) and dischargingA on the environmentM2 (Premise 2). Learning-based
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approaches using L* [42, 2, 22] work by iteratively making conjectures in the form of automata

that represent intermediate assumptions. Each conjectured assumptionA is used to check the

two premises of the rule. The process ends ifA passes both premises of the rule, in which case

the property holds in the system, or if we uncover a real violation. Otherwise, a counterexam-

ple is returned, and L* modifies the conjecture. The work in [56] uses sampling rather than L*

to learn the assumptions in a similar way.

We propose an alternative called AGAR (Assume-Guarantee Abstraction Refinement), that

replaces the iterative assumption refinement using learning with iterative abstraction refine-

ment. It follows from the observation that for universal properties,Premise 2amounts to

checking thatA is a conservative abstraction ofM2, i.e., an abstraction that preserves all of

M2’s execution paths. The algorithm works by iteratively computing assumptions as conser-

vative abstractions of the interface behavior ofM2, i.e., the behavior that only concerns the

interaction withM1. In each iteration, the computed assumptionA satisfiesPremise 2of the

assume-guarantee rule by construction, and is only checkedfor Premise 1. If the check is

successful, we conclude thatM1 ‖ M2 satisfies the property; if the check fails, we get a coun-

terexample trace that we analyze to see if it corresponds to areal error inM1 ‖ M2 or it is

spurious due to the over-approximation in the abstraction.If it is spurious, we used it to refine

A and then repeat the entire process.

Unlike learning-based assumption generation, AGAR does not constrain assumptions to

be deterministic. It is well-known that a deterministic automaton can be, in the worst case,

exponentially larger than a non-deterministic one accepting the same language. Therefore, the

assumptions constructed with AGAR in the worst case can be exponentially smaller than those

obtained with learning, resulting in smaller verification problems. To reduce the assumption

sizes even further, we also combine the abstraction refinement with our previousinterface

alphabet refinement, which extends AGAR so that initially it constructs the abstractionA with

a small subset of the interface alphabet and adds actions to the alphabet as necessary until the

required property is shown to hold or to be violated in the system. Actions to be added are
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discovered also by counterexample analysis.

We have implemented AGAR with alphabet refinement in the explicit state model checker

LTSA [72] and performed a series of experiments which demonstrate that it can achieve better

performance than L*.

5.1.3 Outline

We introduce some necessary background about LTSA and learning-based assume-guarantee

reasoning in Section 5.2. We present our alphabet refinementalgorithm, its properties, and

evaluation, in Section 5.3. Section 5.4 presents our algorithm for abstraction refinement in

assumption generation, and its evaluation. We conclude thechapter and give some pointers to

future work in Section 5.5.

5.2 Background

5.2.1 Labeled Transition Systems (LTSs) Analysis (LTSA)

LTSA is an explicit-state model checker that analyzes finite-state systems modeled as labeled

transition systems (LTSs). LetA be the universal set of observable actions and letτ denote

the unobservable action. LetM = 〈Q,αM, δ, q0〉, be an LTS, where:Q is the set of states;

αM ⊆ A is the set of observable actions called thealphabetofM ; δ ⊆ Q×(αM∪{τ})×Q is

the transition relation, andq0 is the initial state. The LTSM is non-deterministicif it contains

τ -transitions or if∃(q, a, q′), (q, a, q′′) ∈ δ such thatq′ 6= q′′. Otherwise,M is deterministic.

We useπ to denote a specialerror statethat has no outgoing transitions, andΠ to denote the

LTS 〈{π},A, ∅, π〉. For the parallel composition of LTSsM1 andM2, if any of them isΠ, then

the compositionM = M1 ‖M2 is alsoΠ.
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Paths and traces

Recall that apath in an LTSM = 〈Q,Σ, δ, q0〉 is a sequencep of alternating states and (ob-

servable or unobservable actions) ofM , p = qi0 , a0, qi1 , a1, . . . , an−1, qin such that for every

k ∈ {0, . . . , n− 1} we have(qik , ak, qik+1
) ∈ δ.

Thetrace of pathp, denotedσ(p) is the sequenceb0, b1, . . . , bl of actions alongp, obtained

by removing allτ from a0, . . . , an−1. A stateq reachesa stateq′ in M with a sequence of

actionst, denotedq
t
⇒ q′, if there exists a pathp from q to q′ in M whose trace ist, i.e.,

σ(p) = t. A trace ofM is the trace of a path inM starting fromq0. The set of all traces ofM

forms thelanguageof M , denotedL(M). For any tracet = a0, a1, . . . , an−1, a trace LTScan

be constructed whose only transitions areq0
a0→ q1

a1→ q2 . . .
an−1

→ qn. We sometimes abuse the

notation and denote byt both a trace and its trace LTS. The meaning should be clear from the

context. ForΣ′ ⊆ Σ, t↓Σ′ is the trace obtained by removing fromt all actionsa /∈ Σ. Similarly,

M↓Σ′ is an LTS overΣ obtained fromM by renaming toτ all the action labels not inΣ. Let

t1, t2 be two traces. LetΣ1, Σ2 be the sets of actions occurring int1, t2, respectively. By the

symmetric differenceof t1 andt2 we mean the symmetric difference of setsΣ1 andΣ2.

Safety properties

We call a deterministic LTS not containingπ a safety LTS. A safety propertyϕ is specified as

asafety LTSwhose languageL(ϕ) defines the set of acceptable behaviors overαϕ.

An LTSM = 〈Q,Σ, δ, q0〉 satisfiesϕ = 〈Qϕ,Σϕ, δϕ, q
ϕ
0 〉, denotedM |= ϕ, iff ∀t ∈ L(M) ·

t↓Σϕ∈ L(ϕ). For checking a propertyϕ, its safety LTS iscompletedby adding error stateπ

and transitions on all the missing outgoing actions from allstates intoπ so that the resulting

transition relation is (left-)total (when seen as in(Q× (Σ ∪ {τ}))×Q) and deterministic; the

resulting LTS is denoted byϕerr. LTSA checksM |= ϕ by computingM ‖ ϕerr and checking

if π is reachable in the resulting LTS.

As an example (from [42], consider a simple communication channel that consists of two

components whose LTSs are shown in Fig. 5.1(a). Note that theinitial state of all LTSs in this
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a) b)

Input:
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Figure 5.1: (a) Example LTSs; (b)Order property.

work is state0. TheInputLTS receives an input on actioninput, then sends it to theOutputLTS

on actionsendand then receives an acknowledgement on actionack. After being sent some

data on actionsend, Outputproduces some output on actionoutputand acknowledges that it

has finished on actionack. At this point, both LTSs return to their initial states so the process

can be repeated. For an example of a safety property, theOrder LTS in Fig. 5.1(b) captures

a desired behavior of the communication channel from Fig. 5.1(a). The property comprises

states0 and1, and the transitions denoted by solid arrows. It expresses the fact that inputs and

outputs come in matched pairs, with the input always preceding the output. The dashed arrows

represent transitions to the error state that were added to obtainOrdererr.

5.2.2 Assume-guarantee rules

Recall that in the assume-guarantee paradigm a formula is a triple 〈A〉M〈ϕ〉, whereM is a

component,ϕ is a property, andA is an assumption aboutM ’s environment. The formula

is true if wheneverM is part of a system satisfyingA, then the system must also guarantee

ϕ [55]. In LTSA, checking〈A〉M〈ϕ〉 reduces to checkingA ‖ M |= ϕ [72]. We work with a

number of symmetric and asymmetric rules for assume-guarantee reasoning.

Recall the simple rule from Chapter 2:
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Rule ASYM

1 : 〈A〉M1 〈ϕ〉

2 : 〈true〉M2 〈A〉

〈true〉M1 ‖M2 〈ϕ〉

Soundness of the rule follows from the fact that〈true〉M2 〈A〉 implies〈true〉M1 ‖M2 〈A〉

and from the definition of assume-guarantee triples. Completeness holds trivially, by substi-

tutingM2 for A. Note that the rule is not symmetric in its use of the two components, and

does not support circularity. Despite the simplicity of therule, automating the discovery of the

assumptionA even for this rule has been a long-standing challenge until recently.

Another rule is similar to ASYM but involves some form of circular reasoning. It appears

originally in [55] for reasoning about two components. We extend it to reasoning aboutn ≥ 2

components.

Rule CIRC-N

1 : 〈A1〉M1 〈ϕ〉

2 : 〈A2〉M2 〈A1〉

...

n : 〈An〉Mn 〈An−1〉

n + 1 : 〈true〉M1 〈An〉

〈true〉M1 ‖ · · · ‖Mn 〈ϕ〉

Soundness and completeness of this rule follow from [55]. Note that this rule is similar to

the rule ASYM applied recursively forn+1 components, where the first and the last component

coincide (hence the term “circular”).

Although sound and complete, the rules presented so far are not always satisfactory since

they are not symmetric in the use of the components. The work in [9] proposes a set of sym-

metric rules that are sound and complete. They are symmetricin the sense that they establish

and discharge assumptions for each component at the same time.
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In the next rule, the co-assumptioncoAi forMi is the complement ofAi, i.e., an LTS whose

language is the complement of the language ofAi.

Rule SYM -N

1 : 〈A1〉M1 〈ϕ〉

...

n : 〈An〉Mn 〈ϕ〉

n + 1 : L (coA1 ‖ · · · ‖ coAn) ⊆ L (ϕ)

〈true〉M1 ‖ · · · ‖Mn 〈ϕ〉

We requireαϕ ⊆ αM1∪· · ·∪αMn and fori ∈ {1, . . . , n},αAi ⊆ (αM1∩· · ·∩αMn)∪αϕ.

Informally, eachAi is a postulated environment assumption for the componentMi to satisfy

propertyϕ.

5.2.3 The L* learning algorithm

L* was developed by Angluin [4] and later improved by Rivest and Shapire [87]. It learns

an unknown regular languageU over alphabetΣ and produces a deterministic finite state au-

tomaton (DFA) that accepts it. L* interacts with aMinimally Adequate Teacherthat answers

two types of questions from L*. The first type is amembership queryasking whether a string

s ∈ Σ∗ is in U . For the second type, the learning algorithm generates aconjectureA and asks

whetherL(A) = U . If L(A) 6= U the Teacher returns a counterexample, which is a strings

in the symmetric difference ofL(A) andU . L* is guaranteed to terminate with a minimal au-

tomatonA for U . If A hasn states, L* makes at mostn− 1 incorrect conjectures. The number

of membership queries made by L* isO(kn2 + n logm), wherek is the size ofΣ, n is the

number of states in the minimal DFA forU , andm is the length of the longest counterexample

returned when a conjecture is made.
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5.2.4 Interface alphabet and weakest assumption

In the framework of [42], an important notion is that of theweakest assumption[53] depending

on the interface between the component and its environment.

Definition 13 (Weakest Assumption forΣ) LetM1 be an LTS for a component,ϕ be a safety

LTS for a property required ofM1, andΣ be the interface of the component to the environment.

The weakest assumptionAw,Σ ofM1 for Σ and for propertyϕ is a deterministic LTS such that:

1) αAw,Σ = Σ, and 2) for any componentM2,M1 ‖ (M2↓Σ) |= ϕ iff M2 |= Aw,Σ

Projection ofM2 to Σ forcesM2 to communicate with our module only throughΣ (second

condition above). [53] showed that the weakest assumptionsexist for components expressed

as LTSs and safety properties and provided an algorithm for computing these assumptions.

The definition above refers toany environment componentM2 that interacts with com-

ponentM1 via an alphabetΣ. WhenM2 is given, there is a natural notion of the complete

interfacebetweenM1 and its environmentM2, when propertyϕ is checked.

Definition 14 (Interface Alphabet) Let M1 andM2 be component LTSs, andϕ be a safety

LTS. The interface alphabetΣI ofM1 (with respect toM2 andϕ) is defined as:ΣI = (αM1 ∪

αϕ) ∩ αM2.

Definition 15 (Weakest Assumption)GivenM1,M2 andϕ as above, the weakest assumption

Aw is defined asAw,ΣI
.

Note that, to deal with any system-level property, properties in definition 14 are allowed to

include actions that are not inαM1 but are inαM2. These actions need to be in the interface

since they are controllable byM2. Moreover, from the above definitions, it follows that the

assumptionAw is indeed theweakest: it characterizes all the environmentsM2 that, together

with M1, satisfy propertyϕ, i.e.,M1 ‖M2 |= ϕ iff M2 |= Aw.
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(assumptionA)

Output:M1||M2 6|= ϕ

(counterexc)

t↓Σ

〈A〉M1〈ϕ〉

Figure 5.2: Learning framework (from [81]).

5.2.5 Learning framework

With Rule ASYM

The original learning framework from [42] was given for RuleASYM and is illustrated in

Figure 5.2. The framework checksM1 ‖ M2 |= ϕ by checking the two premises of the

assume-guarantee rule separately, and using the conjecturesA from L* as assumptions. The

automatonA output by L* is, in the worst case, theweakest assumptionAw. The alphabet

given to the learner is fixed toΣ = ΣI .

The Teacher is implemented using model checking. For membership queries on strings,

the Teacher uses LTSA to check〈s〉M1〈ϕ〉. If true, thens ∈ L(Aw), so the Teacher returns true.

Otherwise, the answer to the query is false. The conjecturesreturned by L* are intermediate

assumptionsA. The Teacher implements twooracles: Oracle 1guides L* towards a conjecture

that makes〈A〉M1〈ϕ〉 true. Once this is accomplished,Oracle 2is invoked to dischargeA on

M2. If this is true, then the assume guarantee rule guarantees thatϕ holds onM1 ‖ M2. The
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〈true〉M1 ‖ · · · ‖Mn 〈ϕ〉

true

true

false

refine
L*
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〈An〉Mn 〈ϕ〉

L (coA1 ‖ · · · ‖ coAn) ⊆ L (ϕ)
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· · ·

true

true
false
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〈A1〉M1 〈ϕ〉

A1

Output:

Output:

is false

Figure 5.3: Learning framework for rule SYM -N (from [9]).

Teacher then returns true and the computed assumptionA. Note thatA is not necessarilyAw,

it can bestrongerthanAw, i.e., L(A) ⊆ L(Aw), but the computed assumption is good enough

to prove that the property holds or is violated. If model checking returns a counterexample,

further analysis is needed to determine ifϕ is indeed violated inM1 ‖M2 or if A is imprecise

due to learning, in which caseA needs to be modified.

Counterexample analysis. Tracet is the counterexample from Oracle 2 obtained by model

checking〈true〉M2〈A〉. To determine ift is a real counterexample,i.e., if it leads to error

on M1 ‖ M2 |= ϕ, the Teacher analyzest on M1 ‖ ϕerr. In doing so, the Teacher needs

to first projectt onto the assumption alphabetΣ, that is the interface ofM2 to M1 ‖ ϕerr.

Then the Teacher uses LTSA to check〈t↓Σ〉M1〈ϕ〉. If the error state is not reached during

the model checking,t is not a real counterexample, andt↓Σ is returned to the learner L* to

modify its conjecture. If the error state is reached, the model checker returns a counterexample

c that witnesses the violation ofϕ onM1 in the context oft↓Σ. With the assumption alphabet

Σ = ΣI , c is guaranteed to be a real error trace onM1 ‖ M2 ‖ ϕerr [42]. However, as we

shall see in the next section, ifΣ ⊂ ΣI , c is not necessarily a real counterexample and further

analysis is needed.
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With Rule SYM -N

The framework has been extended to other rules in [9]; for Rule SYM -N, it is illustrated in

Fig. 5.3. To obtain appropriate assumptions, the frameworkapplies the compositional rule

in an iterative fashion. At each iteration L* is used to generate appropriate assumptions for

each component, based on querying the system and on the results of the previous iteration.

Each assumption is then checked to establish the premises ofRule SYM -N. We use separate

instances of L* to iteratively learnAw1, . . . Awn.

As before, the Teacher needed by L* is implemented with callsto the model checker. The

conjectures returned by L* are the intermediate assumptionsA1, . . .An. The Teacher imple-

mentsn+ 1 oracles, one for each premise in the SYM -N rule:

• Oracles1, . . . n guide the corresponding L* instances towards conjectures that make the

corresponding premise of rule SYM -N true. Once this is accomplished,

• Oraclen+ 1 is invoked to check the last premise of the rule,i.e.,

L (coA1 ‖ · · · ‖ coAn) ⊆ L (ϕ)

If this is true, rule SYM -N guarantees thatM1 ‖ · · · ‖Mn satisfiesϕ.

If the result ofOracle n + 1 is false (with counterexample tracet), by counterexample

analysis we identify either thatϕ is indeed violated inM1 ‖ · · · ‖Mn or that some of the

candidate assumptions need to be modified. If (some of the) assumptions need to be refined in

the next iteration, then behaviors must be added to those assumptions. The result will be that

at least the behavior that the counterexample represents will be allowed by those assumptions

during the next iteration. The new assumptions may of coursebe too abstract, and therefore

the entire process must be repeated.

Counterexample analysis. Counterexamplet is analyzed in a way similar to the analysis for

Rule ASYM , i.e., we analyzet to determine whether it indeed corresponds to a violation in
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M1 ‖ · · · ‖ Mn. This is checked by simulatingt on Mi ‖ coϕ, for all i = 1 . . . n. The

following cases arise:

• If t is a violating trace of all componentsM1, . . .Mn, thenM1 ‖ · · · ‖Mn indeed violates

ϕ, which is reported to the user.

• If t is not a violating trace of at least one componentMi, then we uset to weaken the

corresponding assumption(s).

5.2.6 Experimental data

Models

In our experiments, we use the following case studies (all these models were analyzed before,

using the original assume guarantee framework, without refinement):

• Gas Station[41] describes a self-serve gas station consisting ofk customers, two pumps,

and an operator, fork = 3, 4, 5.

• Chiron [41] models a graphical user interface consisting ofk “artists”, a wrapper, a

manager, a client initialization module, a dispatcher, andtwo event dispatchers, fork =

2...5.

• MER [81] models flight software component for JPL’s Mars Exploration Rovers. It con-

tainsk users competing for resources that are managed by a resourcearbiter, fork = 2..6.

• Rover Executive[42] is a model of a subsystem for the Ames K9 Rover. The model is

comprised of a main component ‘Executive’ and an ‘ExecCondChecker’ component that

is responsible for monitoring state conditions.
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Decompositions

We use the decompositions of these models into components asgiven with their original de-

scriptions, that we calln-way decompositions, but also their decompositions into two super-

components obtained by grouping the given modules. We call the latter2-way decompositions,

and for Gas Station and Chiron they are the decompositions found in [41] to be the best for the

performance of the learning framework. For Gas Station, thedecomposition is: the operator

and the first pump in one component, and the rest of the modulesin the other. For Chiron, the

event dispatchers are one component, and the rest of the modules are the other. For MER we

use the decomposition where half of the users are in one component, and the other half with

the arbiter in the other. For the Rover we use the two components as described in [42].

Properties

In [41], 4 properties for Gas Station and 9 properties for Chiron were checked, to study how

various 2-way model decompositions affect the performanceof learning (without alphabet

refinement). For most of these properties, the learning approach performs better than non-

compositional verification and it produces small (one-state) assumptions. For some other

properties, learning does not perform that well, and produces much larger assumptions. To

stress-test our approaches, we selected the latter, more challenging, properties for our study

here:

• For Gas Station, we check the property that the operator correctly gives change to a

customer for the pump that he/she used.

• For Chiron, we check Property 1, stating that the dispatchernotifies artists of an event

before receiving a next event, and Property 2, stating that the dispatcher only notifies

artists of an event after it receives that event.

• For MER, we check a mutual exclusion property stating that communication and driving

cannot happen at the same time as they share common resources.
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Figure 5.4: Client-Server example: (a) complete interfaceand (b) derived assumption with a

subset of the interface alphabet.

• For Rover, the property we check states that for a specific shared variable, if the Exec-

utive reads its value, then the ExecCondChecker should not read it before the Executive

clears it first.

Also note that for Gas station and Chiron we used the same configurations (values fork) as

reported in [41].

5.3 Alphabet Refinement

In this section we present our algorithm for interface alphabet refinement, motivated first by an

example. We also present some theoretical properties of thealgorithm and then an experimental

evaluation. We conclude after further comparison with related work.

5.3.1 Motivating example

To illustrate the benefits of smaller interface alphabets for assume guarantee reasoning, con-

sider a simple client-server application (from [81]). It consists of aservercomponent and two

identicalclient components that communicate through shared actions. Each client sendsre-

questsfor reservations to use a common resource, waits for the server togrant the reservation,
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Figure 5.5: Example LTS for (a) a client and (b) a mutual exclusion property (b)).

Figure 5.6: Client-Server example: LTS for Server (as displayed by the LTSA tool).

uses the resource, and thencancelsthe reservation. For example, the LTS of a client is shown

in Figure 5.5(a), wherei = 1, 2.

The server cangrantor denya request, ensuring that the resource is used only by one client

at a time. The LTS of the server is in Figure 5.6.

The mutual exclusion property in Figure 5.5(b) captures thedesired behaviour of the client-

server application discussed earlier.. To check the property in a compositional way, assume that
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Figure 5.7: Client-Server example: assumption obtained with the complete interface alphabet

(as displayed by the LTSA tool).

we break up the system into:M1 = Client1 ‖ Client2 andM2 = Server. Thecompletealphabet

of the interface betweenM1 ‖ ϕ andM2 (see Figure 5.4(a)) is:{client1.cancel, client1.grant,

client1.deny, client1.request, client2.cancel, client2.grant, client2.deny, client2.request}.

Using this alphabet and the learning method of [42] yields anassumption with 8 states,

as shown in Figure 5.7. However, a (much) smaller assumptionis sufficient for proving the

mutual exclusion property (see Figure 5.4(b)). The assumption alphabet is{client1.cancel,

client1.grant,client2.cancel, client2.grant}, which is a strict subset of the complete interface

alphabet (and is, in fact, the alphabet of the property). This assumption has just 3 states,

and enables more efficient verification than the 8-state assumption obtained with the complete

alphabet. In the following sections, we present techniquesto infer smaller interface alphabets

(and the corresponding assumptions) automatically.



CHAPTER 5. ASSUMPTION GENERATION 91

5.3.2 Algorithm

Let M1 andM2 be components,ϕ be a property,ΣI be the interface alphabet, andΣ be an

alphabet such thatΣ ⊂ ΣI . Assume that we use the learning framework of the previous

section with Rule ASYM , but we now set this smallerΣ to be the alphabet of the assumption

that the framework learns. From the soundness of Rule ASYM , if the framework reports true,

M1 ‖ M2 |= ϕ. When it reports false, it is because it finds a tracet in M2 that falsifies

〈t↓Σ〉M1〈ϕ〉. This, however, does not necessarily mean thatM1 ‖ M2 6|= ϕ. Real violations

are discovered by our original framework only when the alphabet isΣI , and are tracest′ ofM2

that falsify〈t′↓ΣI
〉M1〈ϕ〉

1.

We illustrate this with the client-server example. AssumeΣ = {client1.cancel, client1.grant,

client2.grant}, smaller thanΣI = {client1.cancel, client1.grant, client1.deny, client1.request,

client2.cancel, client2.grant, client2.deny, client2.request}. Learning withΣ produces trace:

t = 〈client2.request, client2.grant, client2.cancel, client1.request, client1.grant〉. Projected toΣ,

this becomest↓Σ= 〈client2.grant, client1.grant〉. In the context oft↓Σ, M1 = Clients violates

the property since Client1 ‖ Client2 ‖ ϕerr contains the following behavior (see Figure 5.4):

(0, 0, 0)
client1.request
−→ (1, 0, 0)

client2.request
−→ (1, 1, 0)

client2.grant
−→ (1, 2, 2)

client1.grant
−→ (2, 2, error).

Learning therefore reportsfalse. This behavior is not feasible, however, in the context oft↓ΣI
=

〈client2.request, client2.grant, client2.cancel, client1.request, client1.grant〉. This trace requires

a client2.cancel to occur before the client1.grant. Thus, in the context ofΣI the above violating

behavior would be infeasible. We conclude that when applying the learning framework with

alphabets smaller thatΣI , if true is reported then the property holds in the system, but violations

reported may be spurious.

We propose a technique calledalphabet refinement, which extends the learning framework

to deal with smaller alphabets thanΣI while avoiding spurious counterexamples. The steps of

the algorithm are as follows (see Figure 5.8 (a)):

1In the assume guarantee triples:t↓Σ, t′↓ΣI
are trace LTSs with alphabetsΣ, ΣI respectively.
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Figure 5.8: (a) Learning with alphabet refinement and (b) additional counterexample analysis.

1. Initialize Σ to a setS such thatS ⊆ ΣI .

2. Use the classic learning framework forΣ. If the framework returnstrue, then reporttrue

and go to step 4 (END). If the framework returns false with counterexamplesc (andt),

go to the next step.

3. Performextended counterexample analysisfor c. If c is a real counterexample, then

report falseand go to step 4 (END). Ifc is spurious, thenrefine Σ, which consists of

adding toΣ actions fromΣI . Go to step 2.

4. END of algorithm.

When spurious counterexamples are detected, the refiner extends the alphabet with actions

in the alphabet of the weakest assumption and the learning ofassumptions is restarted. In the

worst case,ΣI is reached, and as proved in our previous work, learning thenonly reports real

counterexamples. In the above high-level algorithm, the highlighted steps 1) alphabet initial-

ization, 2) extended counterexample analysis and 3) alphabet refinement are further specified

in the following.

Alphabet initialization . The correctness of our algorithm is insensitive to the initial alphabet.
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We implement two options: 1) we set the initial alphabet to the empty set to allow the algorithm

to only take into account actions that it discovers, and 2) weset the initial alphabet to those

actions in the alphabet of the property that are also inΣI ,i.e., αϕ ∩ ΣI (in the experiments we

use the latter). The intuition for the latter option is that these interface actions are likely to be

significant in proving the property, since they are involvedin its definition. A good initial guess

of the alphabet may achieve big savings in terms of time sinceit results in fewer refinement

iterations.

Extended counterexample analysis. An additional counterexample analysis is appended to

our original learning framework as illustrated in Figure 5.8(a). The steps of this analysis are

shown in Figure 5.8(b). The extension takes as inputs both the counterexamplet returned by

Oracle 2, and the counterexamplec that is returned by the original counterexample analysis.

We modified our “classic” learning framework (Figure 5.2) toreturn bothc and t to be used

in alphabet refinement (as explained below). As discussed,c is obtained because〈t↓Σ〉M1〈ϕ〉

does not hold. The next step is to check whether in factt uncovers a real violation in the system.

As illustrated by our client-server example, the results ofcheckingM1 ‖ ϕerr in the context

of t projected to different alphabets may be different. The correct results are obtained by

projectingt on the alphabetΣI of the weakest assumption. Counterexample analysis therefore

calls LTSA to check〈t↓ΣI
〉M1〈ϕ〉. If LTSA finds an error, the resulting counterexamplec is a

real counterexample. If error is not reached, the alphabetΣ needs to be refined. Refinement

proceeds as described next.

Alphabet refinement. When spurious counterexamples are detected, we need to enrich the

current alphabetΣ so that these counterexamples are eventually eliminated. Acounterexample

c is spurious if in the context oft↓ΣI
it would not be obtained. Our refinement heuristics are

therefore based on comparingc andt↓ΣI
to discover actions inΣI to be added to the learning

alphabet (for this reasonc is also projected onΣI in the refinement process). We have currently

implemented the following heuristics:
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AllDiff: adds all the actions in the symmetric difference oft↓ΣI
andc↓ΣI

; a potential problem

is that is that it may add too many actions too soon, but if it happens to add useful actions,

it may terminate after fewer iterations;

Forward: scans the traces in parallel from beginning to end looking for the first indexi where

they disagree; if such ani is found, both actionst↓ΣI
(i), c↓ΣI

(i) are added to the

alphabet.

Backward: same as Forward but scans from the end of the traces to the beginning.

So far, we have discussed our algorithm for two components. We have extended alphabet

refinement ton modulesM1, . . .Mn, for anyn ≥ 2. Previous work extended learning (without

refinement) ton components [42, 81]. To check ifM1 ‖ . . . ‖Mn satisfiesϕ, we decompose it

into: M1 andM ′
2 = M2 ‖ ... ‖ Mn and the learning algorithm (without refinement) is invoked

recursively for checking the second premise of the assume-guarantee rule.

Learning with alphabet refinement uses recursion in a similar way. At each recursive invo-

cation forMj , we solve the following problem: find assumptionAj and alphabetΣAj
such that

the rule premises hold:

Oracle 1:Mj ‖ Aj |= Aj−1

Oracle 2:Mj+1 ‖ ... ‖Mn |= Aj

HereAj−1 is the assumption forMj−1 and plays the role of the property for the current re-

cursive call. Thus, the alphabet of the weakest assumption for this recursive invocation is

Σj
I = (αMj ∪ αAj−1) ∩ (αMj+1 ∪ . . . ∪ αMn). If Oracle 2 returns a counterexample, then

the counterexample analysis and alphabet refinement proceed exactly as in the 2 component

case. At a new recursive call forMi with a newAi−1, the alphabet of the weakest assumption

is recomputed.
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5.3.3 Properties of alphabet refinement

In this section, we prove the main properties of our algorithm. We first re-state the correctness

and termination of learningwithoutrefinement as proven in [42].

Theorem 5 (Termination and correctness [42])Given componentsM1 andM2, and prop-

erty ϕ, the learning framework in [42] terminates and it returns true ifM1 ‖ M2 |= ϕ and

false otherwise.

For correctness and termination of learning with alphabet refinement, we first show progress

of refinement, meaning that at each refinement stage, new actions are discovered to be added

to Σ.

Proposition 3 (Progress of alphabet refinement)LetΣ ⊂ ΣI be the alphabet of the assump-

tion at the current alphabet refinement stage. Lett be a trace ofM2 ‖ Aerr such thatt↓Σ leads

to error onM1 ‖ ϕerr by an error tracec, but t↓ΣI
does not lead to error onM1 ‖ ϕerr. Then

t↓ΣI
6= c↓ΣI

and there exists an action in their symmetric difference that is not inΣ.

Proof:

We prove by contradiction that t↓ΣI
6= c↓ΣI

. Suppose t↓ΣI
= c↓ΣI

. We know that c is an error

trace on M1 ‖ ϕ. Since actions of c that are not in ΣI are internal to M1 ‖ ϕ, then c↓ΣI
also

leads to error on M1 ‖ ϕerr. But then t↓ΣI
leads to error on M1 ‖ ϕerr, which is a contradiction.

We now show that there exists an action in the difference between t↓ΣI
and c↓ΣI

that is

not in Σ (this action will be added to Σ by alphabet refinement). Trace t↓ΣI
is t↓Σ, with some

interleaved actions from ΣI . Similarly, c↓ΣI
is t↓Σ with some interleaved actions from ΣI , since

c is obtained by composing the trace LTS t↓Σ with M1 ‖ ϕerr. Thus t↓Σ= c↓Σ. We again

proceed by contradiction. If all the actions in the symmetric difference between t↓ΣI
and c↓ΣI

were in Σ, we would have t↓ΣI
= t↓Σ= c↓Σ= c↓ΣI

, which contradicts t↓ΣI
6= c↓ΣI

.

Intuitively, correctness for two (andn) components follows from the assume guarantee rule and

the extended counterexample analysis. Termination follows from termination of the original
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framework, from the progress property and also from the finiteness ofΣI and ofn. Moreover,

from the progress property it follows that the refinement algorithm for two components has at

most|ΣI | iterations.

In order to formally prove termination and correctness of learning with alphabet refinement,

we use the following lemma.

Lemma 1 For any componentM1, propertyϕ, and interface alphabetΣ, 〈Aw,Σ〉〈M1〉〈ϕ〉

holds.

Proof:

Aw,Σ↓Σ= Aw,Σ. If in Definition 13 we substitute Aw,Σ for M2, we obtain that: M1 ‖ Aw,Σ1
|= ϕ

if and only if Aw,Σ1
|= Aw,Σ. But the latter holds trivially, so we conclude that M1 ‖ Aw,Σ1

|= ϕ,

which is equivalent to 〈Aw,Σ〉〈M1〉〈ϕ〉, always holds.

Theorem 6 (Termination and correctness with alphabet refinement – 2 components)Given

componentsM1 andM2, and propertyϕ, the algorithmwith alphabet refinementterminates

and returns true ifM1 ‖M2 |= ϕ and false otherwise.

Proof:

Correctness: When the teacher returns true, then correctness is guaranteed by the assume-

guarantee compositional rule. If the teacher returns false, the extended counterexample anal-

ysis reports an error for a trace t ofM2, such that t↓ΣI
in the context ofM1 violates the property

(the same test is used in the algorithm from [42]) hence M1 ‖M2 violates the property.

Termination: From the correctness of L*, we know that at each refinement stage (with

alphabet Σ), if L* keeps receiving counterexamples, it is guaranteed to generate Aw,Σ. At that

point, Oracle 1 will return true (from Lemma 1). Therefore, Oracle 2 will be applied, which will

return either true, and terminate, or a counterexample t. This counterexample is a trace that

is not in L(Aw,Σ). It is either a real counter example (in which case the algorithm terminates)

or it is a trace t such that t↓Σ leads to error on M1 ‖ ϕerr by an error trace c, but t↓ΣI
does not

lead to error on M1 ‖ ϕerr. Then from Theorem 3, we know that t↓ΣI
6= c↓ΣI

and there exists
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an action in their symmetric difference that is not in Σ. The refiner will add this action (or more

actions depending on the refinement strategy) to Σ and the learning algorithm is repeated for

this new alphabet. Since ΣI is finite, in the worst case, Σ grows into ΣI , for which termination

and correctness follow from Theorem 5.

Theorem 7 (Termination and correctness with alphabet refinement –n components) Given

componentsM1, . . . ,Mn and propertyϕ, the recursive algorithmwith alphabet refinementter-

minates and returns true ifM1 ‖ . . . ‖Mn |= ϕ and false otherwise.

Proof:

The proof proceeds by induction on n and it follows from theorem above.

We also note a property of weakest assumptions, which statesthat by adding actions to

an alphabetΣ, the corresponding weakest assumption becomesweaker(i.e., contains more

behaviors) than the previous one.

Proposition 4 Assume componentsM1 andM2, propertyϕ and the corresponding interface

alphabetΣI . Let Σ,Σ′ be sets of actions such that:Σ ⊂ Σ′ ⊂ ΣI . Then: L(Aw,Σ) ⊆

L(Aw,Σ′) ⊆ L(Aw,ΣI
).

Proof:

Since Σ ⊆ Σ′, we know that Aw,Σ↓Σ′= Aw,Σ. By substituting, in Definition 13, Aw,Σ for M2,

we obtain that: 〈true〉M1 ‖ (Aw,Σ)〈ϕ〉 if and only if 〈true〉Aw,Σ〈Aw,Σ′〉. From Proposition 1

we know that 〈true〉M1 ‖ (Aw,Σ)〈ϕ〉. Therefore, 〈true〉Aw,Σ〈Aw,Σ′〉 holds, which implies that

L(Aw,Σ) ⊆ L(Aw,Σ′). Similarly, L(Aw,Σ′) ⊆ L(Aw,ΣI
).

With alphabet refinement, our framework adds actions to the alphabet, which translates into

adding more behaviors to the weakest assumption that L* tries to prove. This means that at

each refinement stagei, when the learner is started with a new alphabetΣi such thatΣi−1 ⊂ Σi,

the learner will try to learn an assumptionAw,Σi
that is weaker thanAw,Σi−1

, which was the goal

of the learner in the previous stage. Moreover, all these assumptions areunder-approximations
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of the weakest assumptionAw,ΣI
that is necessary and sufficient to prove the desired property.

Of course, as mentioned before, at each refinement stage the learner might stop earlier,i.e.,

before computing the corresponding weakest assumption. The above property allows re-use of

learning results across refinement stages: when learningAw,Σ′, the learner can start from the

table computed forAw,Σ in the previous refinement stage (instead of starting from scratch).

5.3.4 Extensions to other rules

Alphabet refinement also applies to the rules CIRC-N and SYM -N. As mentioned, CIRC-N is a

special case of the recursive application of rule ASYM for n + 1 components, where the first

and last component coincide. Therefore alphabet refinementapplies to CIRC-N as we described

here.

For rule SYM -N, the counterexample analysis for the error tracet obtained from checking

premisen + 1 is extended for each componentMi, for i = 1 . . . n. The extension works

similarly to that for ASYM discussed earlier in this section. The error tracet is simulated on

eachMi ‖ coϕ with the current assumption alphabet:

• if t is violating for somei, then we check whethert, with the entire alphabet of the

weakest assumption fori is still violating. If it is, thent is a real error trace forMi.

If it is not, the alphabet of the current assumption fori is refined with actions from the

alphabet of the corresponding weakest assumption;

• if t is a real error trace for alli, then it is reported as a real violation of the property on

the entire system.

If alphabet refinement takes place for somei, the learning of the assumption for thisi

is restarted with the refined alphabet, and premisen + 1 is re-checked with the new learned

assumption fori.
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5.3.5 Experiments

We implemented alphabet refinement for learning with rules ASYM , SYM -N, CIRC-N in LTSA

and compared to learning without alphabet refinement on the models and properties described

in Section 5.2. The goal of the evaluation was to assess the effect of alphabet refinement on

learning, to compare this effect for the different rules, and to also assess the effect of alphabet

refinement on the scalability of compositional verificationby learning, as compared to non-

compositional verification.

Experimental set-up

We performed five sets of experiments.

1. We compared the different alphabet refinement heuristics for Rule ASYM and2-wayde-

compositions (using an experimental set-up similar to [41]).

2. We used the same setup and the best heuristic found in the firstset, to compare learningwith

alphabet refinementto learningwithoutalphabet refinement.

3. We compared the recursive implementation of the refinement algorithm for the same rule,

with monolithic (non-compositional) verification, for increasing number of components.

4. We used the same setup as in the third set of experiments for Rules CIRC-N and

5. SYM -N, omitting monolithic verification since these rules do not outperform ASYM .

For the first two sets of experiments, we used 2-way decompositions as described in Sec-

tion 5.2. For the next two sets, we implemented an additionalheuristic for computing the

ordering in which the modules are considered by the recursive learning with refinement. The

heuristic is meant to minimize the interface between modules and follows from the observa-

tion that the ordering of the modules in the sequenceM1, . . . ,Mn influences the sizes of the

interface alphabetsΣ1
I , . . .Σ

n
I that are used by the recursive algorithm. We generated offline all
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possible orders and associated interface alphabets and chose the order that minimizes the sum
∑

j=1..n |Σ
j
I |.

All experiments were performed on a Dell PC with a 2.8 GHz Intel Pentium 4 CPU and 1.0

GB RAM, running Linux Fedora Core 4 and using Sun’s Java SDK version 1.5.

Experimental results

The results are shown in Tables 5.1,5.2, 5.3, 5.4, and 5.5. Inthe tables,|A| is the max-

imum assumption size reached during learning, ‘Mem.’ is themaximummemory used by

LTSA to check assume-guarantee triples, measured in MB, and‘Time’ is the total CPU run-

ning time, measured in seconds. Column ‘Monolithic’ reports the memory and run-time of

non-compositional model checking. We set a limit of 30 minutes for each run. The sign ‘–’

indicates that the limit of 1GB of memory or the time limit hasbeen exceeded. For these cases,

the data is reported as it was when the limit was reached.

In Table 5.1, we show the performance of the different alphabet refinement heuristics, for

two-way decompositions of the systems we studied. As these results indicate that ‘bwd’ heuris-

tic is slightly better than the others, we used this heuristic for alphabet refinement in the rest of

the experiments.

Table 5.2 shows the effect of alphabet refinement on learning.

Table 5.3 shows the performance of the recursive implementation of learning with rule

ASYM , with and without alphabet refinement, as well as that of monolithic (non-compositional)

verification, for increasing number of components.

The results for rules CIRC-N and SYM -N are in Tables 5.4 and 5.5, respectively.

Discussion. The results in all tables show that alphabet refinement improves learning signif-

icantly. Table 5.2 shows that alphabet refinement improved the assumption size in all cases,

and in a few, up to two orders of magnitude (see Gas Station with k = 2, 3, Chiron, Property

2, with k = 5, MER with k = 3). It improved memory consumption in 10 out of 15 cases. It

also improved running time, as for Gas Station and for MER with k = 3, 4 learning without
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Table 5.1: Comparison of three different alphabet refinement heuristics for Rule ASYM and

2-way decompositions.

Case k
Refinement + bwd Refinement + fwd Refinement + allDiff

|A| Mem. Time |A| Mem. Time |A| Mem. Time

Gas 3 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76

Station 4 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72

5 8 248.17 183.70 20 414.19 – 18 360.04 530.71

Chiron, 2 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90

Prop. 1 3 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32

5 110 – 300 110 – 300 110 – 300

Chiron, 2 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74

Prop. 2 3 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67

5 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99

MER 2 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01

3 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85

4 10 514.41 1193.53 10 514.41 1225.95 10 514.41 1226.80

Rover 2 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

refinement did not finish within the time limit, whereas with refinement it did. The benefit

of alphabet refinement is even more obvious in Table 5.3 where‘No refinement’ exceeded

the time limit in all but one case, whereas refinement completed in 14 of 16 cases, producing

smaller assumption sizes in all the cases, and up to two orders of magnitude smaller in a few;

the memory consumption was also improved in all cases, and upto two orders of magnitude in

a few of them.

The results in Table 5.3 indicate that learning with refinement scales better than without

refinement for increasing number of components. Also, ask increases, the memory and time
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Table 5.2: Comparison of learning for 2-way decompositionsand Rule ASYM , with and with-

out alphabet refinement.

Case k
No refinement Refinement + bwd

|A| Mem. Time |A| Mem. Time

Gas 3 177 4.34 – 8 3.29 2.70

Station 4 195 100.21 – 8 24.06 19.58

5 53 263.38 – 8 248.17 183.70

Chiron, 2 9 1.30 1.23 8 1.22 3.53

Prop. 1 3 21 5.70 5.71 20 6.10 23.82

4 39 27.10 28.00 38 44.20 154.00

5 111 569.24 607.72 110 – 300

Chiron, 2 9 116 110 3 1.05 0.73

Prop. 2 3 25 4.45 6.39 3 2.20 0.93

4 45 25.49 32.18 3 8.13 1.69

5 122 131.49 246.84 3 163.85 18.08

MER 2 40 6.57 7.84 6 1.78 1.01

3 377 158.97 – 8 10.56 11.86

4 38 391.24 – 10 514.41 1193.53

Rover 2 11 2.65 1.82 4 2.37 2.53

consumption for ‘Refinement’ grows slower than that of ‘Monolithic’. For Gas Station, Chi-

ron (Property 2), and MER, for small values ofk, ‘Refinement’ consumes more memory than

‘Monolithic’, but as k increases, the gap is narrowing, and for the largest value ofk ‘Re-

finement’ becomes better than ‘Monolithic’. This leads to cases where, for a large enough

parameter value, ‘Monolithic’ runs out of memory, whereas ‘Refinement’ succeeds, as it is the

case for MER withk = 6.

Tables 5.5 and 5.4 indicate that the effect of alphabet refinement is insensitive to the rule

being used.
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Table 5.3: Comparison of recursive learning for ASYM with and without alphabet refinement,

and monolithic verification.

Case k
ASYM ASYM + ref Monolithic

|A| Mem. Time |A| Mem. Time Mem. Time

Gas 3 473 109.97 – 25 2.41 13.29 1.41 0.034

Station 4 287 203.05 – 25 3.42 22.50 2.29 0.13

5 268 283.18 – 25 5.34 46.90 6.33 0.78

Chiron, 2 352 343.62 – 4 0.93 2.38 0.88 0.041

Prop. 1 3 182 114.57 – 4 1.18 2.77 1.53 0.062

4 182 116.66 – 4 2.13 3.53 2.75 0.147

5 182 115.07 – 4 7.82 6.56 13.39 1.202

Chiron, 2 190 107.45 – 11 1.68 40.11 1.21 0.035

Prop. 2 3 245 68.15 – 114 28 – 1.63 0.072

4 245 70.26 – 103 23.81 – 2.89 0.173

5 245 76.10 – 76 32.03 – 15.70 1.53

MER 2 40 8.65 21.90 6 1.23 1.60 1.04 0.024

3 501 240.06 – 8 3.54 4.76 4.05 0.111

4 273 101.59 – 10 9.61 13.68 14.29 1.46

5 200 78.10 – 12 19.03 35.23 14.24 27.73

6 162 84.95 – 14 47.09 91.82 – 600

Chiron, Property 2, was a challenging case for learning with(or without) alphabet refine-

ment and asymmetric rules. We looked at it more closely. After inspecting the models, we

noticed that several modules do not influence Property 2. However, these modules do commu-

nicate with the rest of the system through actions that appear in the counterexamples reported

by our framework. As a result, alphabet refinement introduces ‘un-necessary’ actions. If we

eliminate these modules, the property still holds in the remaining system. The performance

of learning with refinement is greatly improved when appliedto this reduced system (e.g., for

k = 3, the size of the largest assumption is 13) and is better than monolithic. We may be able
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Table 5.4: Comparison of learning for CIRC-N with and without alphabet refinement.

Case k
CIRC-N CIRC-N + ref

|A| Mem. Time |A| Mem. Time

Gas 3 205 108.96 – 25 2.43 15.10

Station 4 205 107.00 – 25 3.66 25.90

5 199 105.89 – 25 5.77 58.74

Chiron, 2 259 78.03 – 4 0.96 2.71

Prop. 1 3 253 77.26 – 4 1.20 3.11

4 253 77.90 – 4 2.21 3.88

5 253 81.43 – 4 7.77 7.14

Chiron, 2 67 100.91 – 327 44.17 –

Prop. 2 3 245 75.76 – 114 26.61 –

4 245 77.93 – 103 23.93 –

5 245 81.33 – 76 32.07 –

MER 2 148 597.30 – 6 1.89 1.51

3 281 292.01 – 8 3.53 4.00

4 239 237.22 – 10 9.60 10.64

5 221 115.37 – 12 19.03 27.56

6 200 88.00 – 14 47.09 79.17

to develop refinement heuristics that are less sensitive to such problems, but we cannot expect

heuristics to always produce the optimal alphabet. Therefore, in the future, we also plan to

investigate slicing-like techniques to eliminate modulesthat do not affect a given property. It

is worth noting that for the symmetric rule this case becomeseasy, so there is value in using

different rules, even if ASYM shows the best performance overall.

5.3.6 Comparison with related work

Since the original work framework of [53, 42], several otherframeworks that use L* for learn-

ing assumptions have been developed – [2] presents a symbolic BDD implementation using
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Table 5.5: Comparison of learning for SYM -N with and without alphabet refinement.

Case k
SYM -N SYM -N + ref

|A| Mem. Time |A| Mem. Time

Gas 3 7 1.34 – 83 31.94 874.39

Station 4 7 2.05 – 139 38.98 –

5 7 2.77 – 157 52.10 –

Chiron, 2 19 2.21 – 21 4.56 52.14

Prop. 1 3 19 2.65 – 21 4.99 65.50

4 19 4.70 – 21 6.74 70.40

5 19 17.65 – 21 28.38 249.3

Chiron, 2 7 1.16 – 8 0.93 6.35

Prop. 2 3 7 1.36 – 16 1.43 9.40

4 7 2.29 – 32 3.51 16.00

5 7 8.20 – 64 20.90 57.94

MER 2 40 6.56 9.00 6 1.69 1.64

3 64 11.90 25.95 8 3.12 4.03

4 88 1.82 83.18 10 9.61 9.72

5 112 27.87 239.05 12 19.03 22.74

6 136 47.01 608.44 14 47.01 47.90

NuSMV. This symbolic version was extended in [79] with algorithms that decompose models

using hypergraph partitioning, to optimize the performance of learning on resulting decompo-

sitions. Different decompositions are also studied in [41]where the best two-way decompo-

sitions are computed for model-checking with the LTSA and FLAVERS tools. We follow a

direction orthogonal to the latter two approaches and try toimprove learning not by automat-

ing and optimizing decompositions, but rather by discovering small interface alphabets. Our

approach can be combined with the decomposition approaches, by applying interface alpha-

bet refinement in the context of the discovered decompositions. L* has also been used in [1]

to synthesize interfaces for Java classes, and in [91] to check component compatibility after
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component updates.

A similar idea to our alphabet refinement for L* in the contextof assume-guarantee veri-

fication has been developed independently in [24]. In that work, L* is started with an empty

alphabet, and, similar to our approach, the assumption alphabet is refined when a spurious

counterexample is obtained. At each refinement stage, a new minimal alphabet is computed

that eliminates all spurious counterexamples seen so far. The computation of such a minimal

alphabet is shown to be NP-hard. In contrast, we use much cheaper heuristics, but do not guar-

antee that the computed alphabet is minimal. The approach presented in [93] improves upon

assume-guarantee learning for systems that communicate based on shared memory, by using

SAT based model checking and alphabet clustering.

The theoretical results in [73] show that circular assume-guarantee rules can not be both

sound and complete. These results do not apply to rules such as ours that involve additional

assumptions which appear only in the premises and not in the conclusions of the rules. Note

that completeness is not required by our framework (howeverincompleteness may lead to

inconclusive results).

Our approach is similar in spirit to counterexample-guidedabstraction refinement (CE-

GAR) [36]. CEGAR computes and analyzes abstractions of programs (usually using a set

of abstraction predicates) and refines them based on spurious counter-examples. However,

there are some important differences between CEGAR and our algorithm. Alphabet refine-

ment works on actions rather than predicates, it is applied compositionally in an assume-

guarantee style and it computes under-approximations (of assumptions) rather than behavioral

over-approximations (as it happens in CEGAR).

The work of [61] proposes a CEGAR approach to interface synthesis for Java libraries.

This work does not use learning, nor does it address the use ofthe resulting interfaces in

assume-guarantee verification.

Generating assumptions for a component is similar to generating component interfaces to

handle intermediate state explosion in compositional reachability analysis. Several approaches
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have been defined to automatically abstract a component’s environment to obtain interfaces [29,

67, 30]. These approaches do not address the incremental refinement of interfaces, and they

could benefit from our new approach.

5.4 Assumption Generation by Abstraction Refinement

In this section we present our algorithm AGAR, including an adaptation of CEGAR to LTSs

with interfaces, a motivating example showing that AGAR canlead to smaller assumptions

in fewer iterations than a learning-based approach, and extensions of AGAR with alphabet

refinement and with recursive application ton > 2 components. We then show an experimental

comparison with learning-based approaches, and other comparison with related work, after

which we conclude.

5.4.1 Motivating example

We motivate our approach using the input-output example from Section 5.2. We show that

even on this simple example AGAR leads to smaller assumptions in fewer iterations than the

learning approach, and therefore it potentially leads faster to smaller verification problems.

Let M1 = Input, M2 = Output, andϕ = Order. As mentioned, we aim to automatically

compute an assumption according to Rule ASYM . Instead of “guessing” an assumption and

then checking both premises of the rule, as in the learning approaches, webuild an abstraction

that satisfiesPremise 2by construction. Therefore, all that needs to be checked isPremise 1.

The initial abstractionA of Output is illustrated in Figure 5.9(a). Its alphabet consists of

the interface betweenInput and theOrder property on one side, andOutputon the other,i.e.,

the alphabet ofA is ΣI = {(ΣInput ∪ ΣOrder) ∩ ΣOutput. The LTSA is constructed simply by

mapping all concrete states inOutput to the same abstract state0 which has a self-loop on

every action inΣI and no other transitions. By construction,A is an overapproximation ofM2,

i.e., L(M2↓ΣI
) ⊆ L(A), and thereforePremise 2〈true〉M2 〈A〉 holds. CheckingPremise 1
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Figure 5.9: Assumptions computed (a) with AGAR and (b) with L*.

of the assume-guarantee rule usingA as the assumption fails, with abstract counterexample:

0, output, 0. We simulate this counterexample onM2 and find that it is spurious (i.e., it does

not correspond to a trace inM2), thereforeA needs to be refined so that the refined abstraction

no longer contains this trace. We split abstract state0 into two new abstract states: abstract

state0, representing concrete states0 and2 that do not have anoutputaction, and abstract state

1, representing concrete state1 that has anoutputaction, and adjust the transitions accordingly.

The refined abstractionA′, shown in Figure 5.9(a), is checked again forPremise 1and this time

it passes, therefore AGAR terminates and reports that the property holds.

The sequence of assumptions learned with L* is shown in Figure 5.9(b). The assumption

computed by AGAR, even if still deterministic, has half the number of states and is computed

in half the number of iterations than that obtained from learning. It is possible to obtain a

smaller (deterministic) assumption than in learning, evenif learning is guaranteed to produce

a minimal automaton: the minimum is taken over all possible automata for the same language.
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In our example, the languages of the assumptions resulting from AGAR and L* are different.

For instance,A′ does not accept the trace: ack, output, which is a trace inA3. Note also the

different initial assumptions computed by the two algorithms. L* builds its initial assumption

by collecting all the singleton tracesa, for a ∈ ack, send, output that do not lead to error in

M1 ‖ ϕ. Note also that our algorithm acts monotonically in terms ofassumption traces: it

removes spurious traces, whereas L* both adds and removes traces: it can add traces that later

on may be removed following a failure ofPremise 2, or can remove traces that later on may be

added for passingPremise 1.

5.4.2 Assume-Guarantee Abstraction Refinement (AGAR)

The abstraction refinement presented here is an adaptation of the CEGAR framework of [36],

with the following notable differences: 1) abstraction refinement is performed in the context

of LTSs; abstract transitions for LTSs are computed usingclosurewith respect to actions that

are not in their interface alphabet, and 2) counterexample analysis is performed in an assume-

guarantee style: a counterexample obtained from model checking one component is used to

refine abstractions of a different component.

In this section, we start by describing, independently of the assume-guarantee rule, abstrac-

tion refinement as applied to LTSs. We then describe how we usethis abstraction refinement in

an iterative algorithm (AGAR) that computes assumptions for Rule ASYM . Later on, we com-

bine AGAR with an orthogonal algorithm that performs iterative refinement of the interface

alphabet between the analyzed components.

Abstraction refinement for LTSs

Abstraction. LetC = 〈QC ,ΣC , δ
C, qC

0 〉 be an LTS that we refer to asconcrete. Let alphabet

ΣA be such thatΣA ⊆ ΣC . An abstractionA of C is an LTS〈QA,ΣA, δ
A, qA

0 〉 such that there

exists a surjectionα : QC → QA, called theabstractionfunction, that maps eachconcrete state

qC ∈ QC to anabstract stateqA ∈ QA; qA
0 must be such thatα(qC

0 ) = qA
0 . Theconcretization
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functionγ : QA → 2QC is defined for anyqA ∈ QA asγ(qA) = {qC ∈ QC | α(qC) = qA}.

Note thatγ induces a partition onQC , namely{γ(qA) | qA ∈ QA}.

To define the abstract transition relationδA, we first introduce the notion of reachability

with respect to a subset alphabet. ForqC ∈ C, a ∈ ΣC , we define the setReachableC(qC , a,ΣA)

of concrete statesqC
i reachable fromqC on actiona, under the transitive closure ofδC over ac-

tions in(ΣC \ ΣA) ∪ {τ}:

ReachableC(qC , a,ΣA) = {qC
i ∈ C|∃t, t

′ ∈ ((ΣC \ ΣA) ∪ {τ})∗ · qC t
⇒ qC

i or qC t,b,t′

⇒ qC
i }.

We define the abstraction to beexistential, but usingReachableC instead of the usual tran-

sition relation ofC [36]: ∃(qA
i , a, q

A
j ) ∈ δA iff

∃qC
i , q

C
j ∈ C · α(qC

i ) = qA
i , α(qC

j ) = qA
j , andqC

j ∈ ReachableC(qC
i , a,ΣA) (5.1)

From the above definition and that of weak simulation [77], itfollows that the abstraction

defines a weak simulation relation betweenC↓ΣA
andA. It is known that weak simulation

implies trace inclusion [77]. We therefore have the following:

Proposition 5 Given concrete LTSC and its abstractionA defined as above,L(C↓ΣA
) ⊆

L(A), and consequently〈true〉 C 〈A〉 hold.

The CEGAR algorithm for LTSs is defined by Algorithm 1. It takes as inputs a concrete

systemC, an abstractionA (as defined above), and an abstract counterexample pathp (in A).

The algorithm analyzes the counterexample (lines 1–6) to see if it is real, in which case it is

returned (line 13) or spurious, in which case it is used to refine the abstraction (lines 7–11).

The refined abstractionA′ is such that it no longer containsp. We discuss Algorithm 1 in more

detail below.

Analysis of abstract counterexamples. Suppose we have obtained anabstract counterexam-

ple in the form of a pathp = qA
0 , a1, q

A
1 , a2, . . . , an, q

A
n in the abstractionA of C. We want to

determine if it corresponds to a concrete path inC. For this we need to “play” (i.e. symboli-

cally simulate)p in C from the initial stateqC
0 . We do so considering thatΣA ⊆ ΣC and thus

we useReachableC again.
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We first extendReachableC to sets: forS ⊆ QC , ReachableC(S, a,ΣA) = {qC
j ∈ C |

∃qC
i ∈ S.q

C
j ∈ Reachable(qC

i , a,ΣA)}. We play the abstract counterexamplep following [36].

We start at step0 with the setS0 = {qC
0 } of concrete states, and the first transitionqA

0
a1→ qA

1

from p. Note thatS0 = {qC
0 } ∩ γ(q

A
0 ). At each stepi ∈ {1, . . . , n}, we compute the setSi =

γ(qA
i )∩ReachableC(Si−1, ai,ΣA). If, for somei ≤ n, Si is empty, the abstract counterexample

is spurious and we need to refine the abstraction to eliminateit. Otherwise, the counterexample

corresponds to a concrete path.

Abstraction refinement. The abstraction refinement is performed in lines 8–10 of Algo-

rithm 1: p is spurious because abstract stateqA
i−1 does not distinguish between two disjoint,

non-empty sets of concrete states [36]: (i) those that reach, with actionai, states in the con-

cretization ofqA
i (these are the states defined asγ(xA

i−1) in line 8) and (ii) those reached so far

from qC
0 with the prefixa1, a2, . . . , ai−1, i.e., the states inSi−1.

To eliminate the spurious abstract path, we need to refineA by splitting its stateqA
i−1 into

(at least) two new abstract states that separate the (concrete) states of types (i) and (ii) (line 9).

We splitqA
i−1 into xA

i−1 whereγ(xA
i−1) contains the set of states in (i) andzA

i−1 whereγ(zA
i−1)

contains the set of states in (ii) and any remaining states inγ(qA
i−1). Note that this results in

a finer partition of the concrete states. After the splitting, we update the abstract transitions

in line 10. The refined abstractionA′ has the same transitions asA except for those incoming

or outgoing for the split stateqA
i−1: they are readjusted to point to or from the statesxA

i−1, z
A
i−1

according to condition 5.1. We therefore can conclude that:

Lemma 2 If a counterexamplep input to Algorithm 1 is spurious, the returned abstractionA′

results in a strictly finer partition thanA and does not containp.

The AGAR algorithm

The pseudocode that combines Algorithm 1 with Rule ASYM is given in Algorithm 2. Recall

that ΣI denotes the alphabet(ΣM1
∪ Σϕ) ∩ ΣM2

of the interface betweenM1 andM2, with

respect toϕ. The algorithm checks thatM1 ‖ M2 satisfiesϕ using Rule ASYM . It builds
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Algorithm 1 CEGAR for LTSs with respect to subset alphabets
Inputs: Concrete LTSC, its abstractionA, and an abstract counterexamplep =

qA
0 , a1, q

A
1 , a2, . . . , an, q

A
n in A.

Outputs: a concrete counterexamplet, if p is not spurious, or a refined abstractionA′ without

pathp, if p is spurious.

1: i← 0

2: S0 ← {q
C
0 }

3: while Si 6= ∅ ∧ i ≤ n− 1 do

4: i← i+ 1

5: Si ← γ(qA
i ) ∩ ReachableC(Si−1, ai,ΣA)

6: end while

7: if Si = ∅ then

8: split qA
i−1 into two new abstract statesxA

i−1, z
A
i−1 s.t. γ(xA

i−1) = γ(qA
i−1) ∩ {q

C |

ReachableC(qC , ai,ΣA) ∩ qA
i 6= ∅}, γ(z

A
i−1) = γ(qA

i−1) \ γ(x
A
i−1)

9: build new abstractionA′ with QA′ = QA \ {q
A
i−1} ∪ {x

A
i−1, z

A
i−1}

10: change only incoming and outgoing transitions forqA
i−1 in A to/from {xA

i−1, z
A
i−1} in

refined abstractionA′, according to Definition 5.1

11: return A′

12: else

13: return concrete tracet← σ(p)

14: end if

abstractionsA of M2 in an iterative fashion (while loop at lines 2–15); these abstractions

are used to checkPremise 1of the assume guarantee rule using model checking (lines 3–

5). If the check is successful, then, according to the rule (and sinceA satisfiesPremise 2

by construction),ϕ indeed holds inM1 ‖ M2 and the algorithm returns ”true”. Otherwise,

a counterexamplep is obtained from model checkingPremise 1(line 7) and Algorithm 1 is

invoked to check ifp corresponds to a real path inM2 (in which case it meansp is a real error
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Algorithm 2 AGAR: assume-guarantee verification by abstraction-refinement
Inputs: Component LTSsM1,M2, safety property LTSϕ, and alphabetΣA = ΣI .

Outputs: true if M1 ‖M2 satisfiesϕ, false with a counterexample, otherwise.

Uses: Algorithm 1

1: Compute initial abstractionA ofM2, with a single stateqA
0 having self-loops on all actions

in ΣA

2: while true do

3: CheckPremise 1: 〈A〉M1 〈ϕ〉

4: if successfulthen

5: return true

6: else

7: Get counterexampleo = q0, b1, q1, b2, . . . , bl, ql from line 3, where eachqi =

(qA
i , q

1
i , pi)

8: Projecto onA to geto′ = qA
0 , b1, q

A
1 , b2, q

A
2 , . . . bl, q

A
l

9: Projecto′ onΣA to get abstract counterexamplep = qA
0 , a1, q

A
1 , . . . , an, q

A
n in A.

10: end if

11: Call Algorithm 1 with inputs:M2, A, p

12: if Algorithm 1 returned real counterexamplet then

13: return false with counterexamplet

14: else

15: A = A′

16: end if

17: end while

in M1 ‖ M2 and this is reported to the user in line 11). Ifp is spurious, Algorithm 1 returns a

refined abstractionA′ for which we repeat the whole process starting from checkingPremise

1.

Obtaining an abstract counterexample.As mentioned, we use counterexamples from failed
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checks of Premise 1 (that involves checking componentM1) to refine abstractions ofM2. Ob-

taining an abstract counterexample involves several steps(lines 7–9). First, a counterexample

from line 4 is a patho = q0, b1, q1, b2, . . . , bl, ql in A ‖ M1 ‖ ϕerr. Thus, for everyi ∈ {0, l},

qi is a triple of states(qA
i , q

1
i , pi) from A × M1 × ϕerr. We first project every triple onA to

obtain the sequenceo′ = qA
0 , b1, q

A
1 , b2, q

A
2 , . . . , blq

A
l ; o′ is not yet a path inA as it may contain

actions fromM1 andϕerr that are not observable toA; those actions have to be between the

same consecutive abstract states in the sequence, since they do not change the state ofA; we

eliminate fromo′ those actions and the duplicate abstract states that they connect, and finally

obtainp that we pass to Algorithm 1.

Theorem 8 Our algorithm (AGAR) computes a sequence of increasingly refined abstractions

of M2 until both premises of RuleASYM are satisfied, and we conclude that the property is

satisfied byM1 ‖M2, or a real counterexample is found that shows the violation of the property

onM1 ‖M2.

Proof:

Correctness The algorithm terminates when Premise 1 is satisfied by the current abstraction

or when a real counterexample is returned by Algorithm 1. In the former case, since the ab-

straction satisfies Premise 2 by construction (Proposition 5), Rule ASYM ensures thatM1 ‖M2

indeed satisfies ϕ, so AGAR correctly returns answer ”true”. In the latter case, the counterex-

ample returned by Algorithm 1 is a common trace of M1 and of M2 that leads to error in ϕerr.

This shows that property ϕ is violated on M1 ‖ M2 and in this case again AGAR correctly

returns answer ”false”.

Termination AGAR continues to refine the abstraction until a real counterexample is reported

or the property holds. Refining the abstraction always results in a finer partition of its states

(Lemma 2), and is thus guaranteed to terminate since in the worst case it converges to M2

which is finite-state.

If M2 hasn states, AGAR makes at mostn refinement iterations, and in each itera-

tion, counterexample analysis performs at mostm transitive closure operations (for computing
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ReachableM2
), each of costO(n3), wherem is the length of the longest counterexample ana-

lyzed. This bound is not very tight as the closure steps are done on-the-fly to seldom exhibit

worst-case behavior, and actually involve only parts ofM2’s transition relation as needed.

AGAR with alphabet refinement

In [49] we introduced analphabet refinementtechnique to reduce the alphabet of the assump-

tions learned with L*. This technique improved significantly the performance of compositional

verification. We show here how alphabet refinement can be similarly introduced in AGAR. In-

stead of the full interface alphabetΣI , we start AGAR from a small subsetΣA ⊆ ΣI . A good

strategy is to start from those actions inΣI that appear in the property to be verified, since the

verification should depend on them. We then run Algorithm 2 with this smallΣA. Alphabet

refinement introduces an extra layer of approximation, due to the smaller alphabet being used.

The pseudocode is in Algorithm 3. This algorithm adds an outer loop to AGAR (lines 1–

15). At each iteration, it invokes AGAR (line 2) for the current alphabetΣA. If AGAR returns

”true”, it means that alphabetΣA is enough for proving the property (and ”true” is returned to

the user). Otherwise, the returned counterexample needs tobe further analyzed (lines 5–13) to

see if it corresponds to a real error (which is returned to theuser in line 9) or it is spurious due

to the approximation introduced by the smaller interface alphabet, in which case it is used to

refine this alphabet (lines 11–12).

Additional counterexample analysisAs explained in [49], whenΣA ⊂ ΣI , the counterexam-

ples obtained by applying Rule ASYM may be spurious, in which caseΣA needs to be extended.

Intuitively, a counterexample is real if it is still a counterexample when considered withΣI .

For counterexample analysis, we modify Algorithm 2 to also output the traces = σ(o′) of

actions along the intermediate patho′ obtained at its line 8. Sincep is a path obtained fromo′

by eliminating transitions labeled with actions fromΣI \ΣA (See Section 5.4.2) andt = σ(p),

it follows thats is an “extension” oft to ΣI .

We check whethers↓ΣI
is a trace ofM2 by making it into a trace LTS ending with the error
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Algorithm 3 AGAR with alphabet refinement
Inputs: Component LTSsM1,M2, safety property LTSϕ, and alphabetΣA ⊆ ΣI .

Outputs: true if M1 ‖M2 satisfiesϕ, false with a counterexample, otherwise.

Uses: Algorithm 2

1: while true do

2: Call Algorithm 2 withM1,M2, ϕ,ΣA.

3: if Algorithm 2 returnedtrue then

4: return true

5: else

6: Obtain counterexamplet = a1, . . . , an from Algorithm 2and traces = σ(o′) from

line 8 of Algorithm 2.

7: Check if error reachable inserr↓ΣI
‖ M2 whereserr↓ΣI

is the trace-LTS ending with

an extra transition into error stateπ

8: if error reachedthen

9: return false with counterexamples↓ΣI

10: else

11: Comparet to s↓ΣI
to find difference action setΣ

12: ΣA ← ΣA ∪ Σ

13: end if

14: end if

15: end while

stateπ, and whose alphabet isΣI (line 7). SinceM2 does not containπ, the only way to reach

error is if s↓ΣI
is a trace ofM2; if we reach error, the counterexamplet is real. If s↓ΣI

is not

a trace ofM2, sincet is, we need to refine the current alphabetΣA. At this point we have two

traces,s↓ΣI
andt that agree with respect toΣA and only differ on the actions fromΣI \ ΣA;

since one trace is inM2 and the other is not, we are guaranteed to find in their symmetric

difference at least an action that we can add toΣA to eliminate the spurious counterexample



CHAPTER 5. ASSUMPTION GENERATION 117

t. We include the new action(s) and then repeat AGAR with the new alphabet. Termination

follows from the fact that the interface alphabet is finite.

5.4.3 Evaluation

We implemented AGAR with alphabet refinement for Rule 1 in theLTSA tool. We compared

AGAR with learning based assume guarantee reasoning, for Rule ASYM and 2-way decompo-

sitions using the same data and experimental setup as in Section 5.3. We report the maximum

assumption size (i.e., number of states) reached ‘|A|’), the memory consumed (‘Mem.’) in MB,

and the time (‘Time’) in seconds. A ‘–’ indicates that the limit of 1G of memory or 30 minutes

has been exceeded. For those cases, the other quantities areshown as they were when the limit

was reached. We also highlight in bold font the best results.

The results for the first set of experiments are shown in Tables 5.6 and 5.7. AGAR shows

better results than learning in about 75% of the cases without alphabet refinement, and in

slightly more than half of the cases with alphabet refinement. We noticed that the relative sizes

ofM1 ‖ ϕerr andM2 seem to influence the performance of the two algorithms. The numbers of

states on each side of the two-way decompositions are in Table 5.8 in rows ‘S1’ and ‘S2’, where

S1 is|M1 ‖ ϕerr| and S2 is|M2|. ForGas Station, whereM2 is consistently smaller, AGAR is

consistently better, while forChiron, as the size ofM2 becomes much larger, the performance

of AGAR seems to degrade. Furthermore, we observed that the learning runs exercise more

the first component, whereas AGAR exercises both. We therefore considered a second set

of experiments were we tried to compare the relative performance of the two approaches for

two-way system decompositions that are more balanced in terms of number of states.

We generated off-line all the possible two-way decompositions and chose those minimizing

the difference in number of states betweenM1 ‖ ϕerr andM2. The rest of the setup remained

the same. The sizes for the balanced decompositions we foundare in Table 5.9, and the results

for these new decompositions are in Tables 5.10 and 5.11 (forMER, in only one case we found

a more balanced partition than previously; for Rover there are no other decompositions than
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Table 5.6: Comparison of AGAR and learning for Rule ASYM and 2-way decompositions,

without alphabet refinement.

Case k
AGAR Learning

|A| Mem. Time |A| Mem. Time

Gas 3 16 4.11 3.33 177 42.83 –

Station 4 19 37.43 23.12 195 100.17 –

5 22 359.53 278.63 45 206.61 –

Chiron, 2 10 1.30 0.92 9 1.30 1.69

Prop. 1 3 36 2.59 5.94 21 5.59 7.08

4 160 8.71 152.34 39 27.1 32.05

5 4 55.14 – 111 569.23 676.02

Chiron, 2 4 1.07 0.50 9 1.14 1.57

Prop. 2 3 8 1.84 1.60 25 4.45 7.72

4 16 4.01 18.75 45 25.49 36.33

5 4 52.53 – 122 134.21 271.30

MER 2 34 1.42 11.38 40 6.75 9.89

3 67 8.10 247.73 335 133.34 –

4 58 341.49 – 38 377.21 –

Rover 10 4.07 1.80 11 2.70 2.35

the given one).

These results show that, with these new decompositions, AGAR is consistently better in

terms of time, memory and assumption size in almost all of thecases without alphabet re-

finement, and in slightly fewer cases with alphabet refinement2. The results are somewhat

non-uniform ask increases because for each larger value ofk we re-computed balanced de-

compositions independently of those for smaller values. This is why we even found smaller

components for larger parameter, as for Chiron, Property 1,k = 3 vs. k = 4. All our results

2We did not count the cases when both algorithms ran out of limits.
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Table 5.7: Comparison of AGAR and learning for Rule ASYM and 2-way decompositions,

with alphabet refinement.

Case k
AGAR Learning

|A| Mem. Time |A| Mem. Time

Gas 3 5 2.99 2.09 8 3.28 3.40

Station 4 5 22.79 12.80 8 25.21 19.46

5 5 216.07 83.34 8 207.29 188.98

Chiron, 2 10 1.30 1.56 8 1.22 5.17

Prop. 1 3 36 2.44 10.23 20 6.00 30.75

4 160 8.22 252.06 38 41.50 180.82

5 3 58.71 – 110 – 386.6

Chiron, 2 4 1.23 0.62 3 1.06 0.91

Prop. 2 3 8 2.00 3.65 3 2.28 1.12

4 16 5.08 107.50 3 7.30 1.95

5 1 81.89 – 3 163.45 19.43

MER 2 5 1.42 5.02 6 1.89 1.28

3 9 11.09 180.13 8 8.78 12.56

4 9 532.49 – 10 489.51 1220.62

Rover 3 2.62 2.07 4 2.46 3.30

also indicate that the benefits of alphabet refinement are more pronounced for learning.

We compared AGAR with the best learning implementation in the line work done at NASA.

Our results do not transfer directly to other learning approaches for the simple reason that

other implementations are different from the NASA implementation; they use symbolic BDD

representations, or implement learning of general automata rather than just LTSs. Comparisons

of AGAR with other learning implementations remain for future work.
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Table 5.8: Original component sizes.

Case Gas Station Chiron Prop. 1 Chiron Prop. 2

k 3 4 5 2 3 4 5 2 3 4 5

S1 1960 16464 134456 237 449 804 2030 258 482 846 2084

S2 643 1623 3447 102 1122 5559 129228 102 1122 5559 129228

Case MER
Rover

k 2 3 4

S1 143 6683 307623 544

S2 1270 7138 22886 41

Table 5.9: Balanced component sizes.

Case Gas Station Chiron Prop. 1 Chiron Prop. 2 MER

k 3 4 5 2 3 4 5 2 3 4 5 4

S1 1692 4608 31411 906 6104 1308 11157 168 4240 4156 16431 10045

S2 1942 6324 32768 924 6026 1513 11748 176 4186 4142 16840 66230

5.4.4 Comparison with related work

AGAR is a variant of the well-known CEGAR (Counter Example-Guided Abstraction Refine-

ment) [36] with the notable differences that the computed abstractions keep information only

about the interface behavior ofM2 that concerns the interaction withM1 while it abstracts away

its internal behavior, and that the counterexamples used for the refinement ofM2’s abstractions

are obtained in an assume-guarantee style by model checkingthe other component,M1.

CEGAR has been used before in compositional reasoning in [23]). In that work, a conser-

vative abstraction of every component is constructed and then all the resulting abstractions are

composed and checked. If the check passes, the verification concludes successfully, otherwise

the resulting abstract counterexample is analyzed on everyabstraction that is refined if needed.
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Table 5.10: Comparison of AGAR and learning for balanced decompositions without alphabet

refinement.

Case k
AGAR Learning

|A| Mem. Time |A| Mem. Time

Gas 3 10 3.35 3.36 294 367.13 –

Station 4 269 174.03 – 433 188.94 –

5 7 47.91 184.64 113 82.59 –

Chiron, 2 41 2.45 5.46 140 118.59 395.56

Prop. 1 3 261 81.24 710.1 391 134.57 –

4 54 7.11 37.91 354 383.93 –

5 402 73.74 – 112 90.22 –

Chiron, 2 2 0.98 0.37 40 5.21 8.30

Prop. 2 3 88 15.45 102.93 184 284.83 –

4 2 5.60 2.65 408 222.54 –

5 79 44.16 405.03 179 104.25 –

MER 4 9 27.62 – 311 104.72 –

The work does not use assume-guarantee reasoning, it does not address the reduction of the

interface alphabets and it has not been compared with learning-based techniques.

A comparison of learning and CEGAR-based techniques has been performed in [15] but for

a different problem: the ‘interface synthesis’ for a singlecomponent whose environment is un-

known. In our context, this would mean generating an assumption that passesPremise 1, in the

absence of a second component against which to checkPremise 2. The interface being synthe-

sized by the CEGAR-based algorithm in [15] is built as an abstraction ofM1. The work does

not apply reduction to interface alphabets, nor does it address the verification of the generated

interfaces against other components,i.e., completing the assume-guarantee reasoning.
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Table 5.11: Comparison of AGAR and learning for balanced decompositions with alphabet

refinement.

Case k
AGAR Learning

|A| Mem. Time |A| Mem. Time

Gas 3 5 2.16 3.06 59 11.14 81.19

Station 4 10 15.57 191.96 5 9.25 4.73

5 2 47.48 – 15 52.41 71.29

Chiron, 2 9 1.91 3.89 17 2.73 13.09

Prop. 1 3 79 39.94 663.53 217 36.12 –

4 45 9.55 121.66 586 213.78 –

5 33 19.66 157.35 46 30.05 686.37

Chiron, 2 2 1.02 0.49 3 1.04 0.91

Prop. 2 3 46 41.40 115.77 3 5.97 2.26

4 2 6.14 11.90 20 9.33 7.44

5 42 42.04 430.47 3 21.94 7.00

MER 4 2 27.60 – 10 65.42 35.78

5.5 Conclusions and Future Work

We have introduced a novel technique for automatic and incremental refinement of interface

alphabets in compositional model checking. Our approach extends an existing framework for

learning assumption automata in assume-guarantee reasoning. The extension consists of using

interface alphabets smaller than the ones previously used in learning, and using counterex-

amples obtained from model checking the components to add actions to these alphabets as

needed. We have studied the properties of the new learning algorithm and have experimented

with various refinement heuristics. Our experiments show improvement with respect to pre-

vious learning approaches in terms of the sizes of resultingassumptions, and memory and

time consumption, and with respect to non-compositional model checking, as the sizes of the

checked models increase.
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We have also introduced an assume-guarantee abstraction-refinement technique (AGAR)

as an alternative to learning-based approaches. AGAR constructs assumptions as abstractions

ofM2 and thus satisfiesPremise 2of Rule ASYM by construction. It composes the abstraction

with M1 and checks the given property. If the property fails, it usesthe counterexample to

refine the abstraction and repeat the verification. Our preliminary results clearly indicate that

AGAR is a feasible alternative to current approaches.

In future work we will address further algorithmic optimizations. Currently, after one al-

phabet refinement stage, we restart the learning or the abstraction process from scratch. The

property formulated in Proposition 4 in Section 5.3.3 facilitates reuse of query answers ob-

tained during learning. A query asks whether a trace projected on the current assumption

alphabet leads to error onM1 ‖ ϕerr. If the answer is ‘no’, by Proposition 4 the same trace

will not lead to error when the alphabet is refined. Thus, we could cache these query answers.

Another feasible direction is to reuse the learning table asdescribed in [91]. Similar optimiza-

tions are possible for AGAR. We also plan to use multiple counterexamples for refinement.

This may enable faster discovery of relevant interface actions and smaller alphabets. Finally,

we plan to perform more experiments to fully evaluate our techniques.

We can also extend AGAR with the following rule (for reasoning aboutn components).

(Premise 1) 〈A1〉M1 〈ϕ〉

(Premise 2) 〈A2〉M2 〈A1〉

. . .

(Premise n) 〈true〉Mn 〈An−1〉

〈true〉M1 ‖ . . . ‖Mn 〈ϕ〉

(5.2)

Learning with this rule and alphabet refinement overcomes the intermediate state explosion

related to two-way decompositions (i.e., when components are larger than the entire system)

and demonstrates better scalability of compositional vs. non-compositional verification which

we believe to be the ultimate test of any compositional technique. We expect to achieve similar

results for AGAR.
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The implementation of AGAR for Rule 5.2 involves the creation of n − 1 instancesARi

of our abstraction-refinement code for computing eachAi as an abstraction ofMi+1 ‖ Ai+1,

except forAn−1 which abstractsMn . Counterexamples obtained from(Premise 1)are used

to refine the intermediate abstractionsA1, . . . , An−1. WhenAi is refined, all the abstractions

A1, . . . , Ai−1 are refined as well to eliminate the spurious trace.

We also plan to explore extensions of alphabet refinement andAGAR to liveness prop-

erties, in a way similar to CEGAR with the analysis of lasso-shaped counterexamples [36].

Learning with L* and without alphabet refinement has been extended to liveness properties

in [45].



Chapter 6

Conclusions and Future Work

We have introduced new approximation and iterative refinement techniques for several prob-

lems arising in model checking and have demonstrated that they make these, otherwise com-

putationally hard problems, tractable on practical cases.

6.1 Summary of Contributions

For vacuity detection and query solving, we have formulateda general approximation frame-

work that gives sufficient conditions to obtain simpler lattices of solutions, and have instan-

tiated this framework to obtain specific approximation algorithms for the two problems. We

have implemented our algorithms and evaluated our implementation, showing the benefit of our

approximations on a number of cases. We have also described iterative refinement techniques

that consider incrementally larger lattices to compute theapproximations gradually.

6.1.1 Vacuity detection

In vacuity detection, the approximation consists of findingsubformulas that are vacuous in a

formula, independently of each other. The approximation iswith respect to the problem of

finding subformulas that are mutually or simultaneously vacuous. By approximation we lose

125
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the mutuality of vacuity. But the mutually vacuous subformulas are among the sets of indepen-

dently vacuous formulas. In this sense, we computed over-approximations of mutually vacuous

sets of subformulas. Iterative refinement runs our algorithm repeatedly, at each iteration, on the

subformulas at the same level of the parse tree of the formula, in a top-to-bottom, breadth-first

traversal of this tree. It stops exploring subtrees of subformulas found vacuous. Thus, we find

the largest vacuous subformulas.

6.1.2 Query solving

For query solving, we identified a class of problems that require query solutions to be single

states of a model. In general, query solving finds solutions that represent sets of states (and it

is not true that individual states in a set that is a solution are solutions themselves). Finding

state solutions is an exponentially easier problem than general query solving. We prescribed

a symbolic algorithm for solving it, by approximating the lattice used in a general symbolic

algorithm. The approximation selects from each possible set of solutions only those that are

single states. Thus the intractable lattice of all query answers is collapsed to a lattice that leads

to an efficient implementation. We also described an iterative refinement scheme which asks

the queries about more and more atomic propositions, using solutions obtained in one iteration

to restrict the query asked in a next iteration.

We have presented experimental evaluations which demonstrate that our approximation

algorithms for both vacuity detection and query solving perform better than naive algorithms.

6.1.3 Assumption generation

For assumption generation, we introduced two new iterativerefinement techniques. One is

designed to refine the alphabet of the assumptions generatedwith learning-based techniques.

The refinement process starts from an initial alphabet containing actions referred to in the

property to be verified, which are usually few. Fixing the current alphabet, learning proceeds as
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usual with that alphabet, but it may find counterexamples dueto the alphabet being insufficient

to conclude the verification. In that case, by an extended counterexample analysis, we find

actions to be added to the alphabet, and restart learning with the new alphabet. Furthermore, we

introduced an abstraction refinement technique that replaced the learning algorithm. Our new

algorithm constructs abstractions that satisfy one of the premises of the assume-guarantee rule

by construction, and it only remains to verify another premise. If the verification fails, we use

the counterexamples to refine the abstraction. We have performed an extensive experimental

evaluation of our new refinement techniques which shows thatthey improve significantly upon

previous learning-based assumption generation.

6.2 Future Work

Future work needs to address first some extensions of our algorithms and their implementa-

tions. For vacuity detection, the current implementation does not generate counterexamples

when properties fail, nor does it provide any kind of witnessin cases of non-vacuity. For

query solving, we need to implement an interface that allowsmore applications, such as XML

queries. The iterative refinement for both vacuity detection and query solving remains to be im-

plemented and evaluated. For assumption generation, both alphabet refinement and abstraction

refinement work only for safety properties. They need to be extended to liveness properties.

Alphabet refinement is currently model-independent: it discovers actions by simply comparing

traces. We could investigate slicing techniques or use multiple counterexamples to discover the

actions on which the satisfaction of a property depends. Abstraction refinement should also be

extended to use ann-component rule. More extensive evaluation is needed to study the perfor-

mance of all of our algorithms. For vacuity detection and query solving, we need to find more

cases where our approximations are useful, or find interesting cases where our approximations

do not apply and we need to find other approximations. Our abstraction refinement needs to be

compared to non-compositional verification.
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Apart from the technical improvement of our techniques, we need to explore other ways

to address the complexity of the problems we addressed here.We pointed out that current

definitions of vacuity are not fully satisfying for practical uses. A good direction to follow

in this sense is to define vacuity so that it is both easier to check and useful to users. The

same applies to query solving. We envision most future work in this area to revolve around

the needs of the users rather than mathematical generalizations. For assumption generation

and compositional verification in general, the main challenge remains to show its benefits in

comparison to non-compositional verification. Here also webelieve that future improvements

should be guided by cases coming from practice. Our work so far has considered cases that

are practical, but have very abstract models, with not much information to be exploited when

performing refinement. With richer models, coming from software programs, more complex

dependency analysis is possible, to guide the refinement steps.
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