APPROXIMATION AND SHAPE PRESERVING PROPERTIES OF THE NONLINEAR FAVARD-SZÁSZ-MIRAKJAN OPERATOR OF MAX-PRODUCT KIND

Barnabás Bede ${ }^{1}$, Lucian Coroianu ${ }^{2}$ and Sorin G. Gal ${ }^{3}$

Abstract

Starting from the study of the Shepard nonlinear operator of max-prod type in [6], [7], in the book [8], Open Problem 5.5.4, pp. 324-326, the Favard-Szász-Mirakjan max-prod type operator is introduced and the question of the approximation order by this operator is raised. In the recent paper [1], by using a pretty complicated method to this open question an answer is given by obtaining an upper pointwise estimate of the approximation error of the form $C \omega_{1}(f ; \sqrt{x} / \sqrt{n})$ (with an unexplicit absolute constant $C>0$) and the question of improving the order of approximation $\omega_{1}(f ; \sqrt{x} / \sqrt{n})$ is raised. The first aim of this note is to obtain the same order of approximation but by a simpler method, which in addition presents, at least, two advantages : it produces an explicit constant in front of $\omega_{1}(f ; \sqrt{x} / \sqrt{n})$ and it can easily be extended to other max-prod operators of Bernstein type. Also, we prove by a counterexample that in some sense, in general this type of order of approximation with respect to $\omega_{1}(f ; \cdot)$ cannot be improved. However, for some subclasses of functions, including for example the bounded, nondecreasing concave functions, the essentially better order $\omega_{1}(f ; 1 / n)$ is obtained. Finally, some shape preserving properties are obtained.

1 Introduction

Starting from the study of the Shepard nonlinear operator of max-prod type in [6], [7], by the Open Problem 5.5.4, pp. 324-326 in the recent monograph [8], the following nonlinear Favard-Szász-Mirakjan max-prod operator is introduced (here \bigvee means maximum)

$$
F_{n}^{(M)}(f)(x)=\frac{\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right)}{\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!}}
$$

[^0]for which by a pretty complicated method in [1], Theorem 8 , the order of pointwise approximation $\omega_{1}(f ; \sqrt{x} / \sqrt{n})$ is obtained. Also, by Remark 9,2$)$ in the same paper [1], the question if this order of approximation could be improved is raised.

The first aim of this note is to obtain the same order of approximation but by a simpler method, which in addition presents, at least, two advantages : it produces an explicit constant in front of $\omega_{1}(f ; \sqrt{x} / \sqrt{n})$ and it can easily be extended to various max-prod operators of Bernstein type, see [2] - [5]. Also, one proves by a counterexample that in some sense, in general this type of order of approximation with respect to $\omega_{1}(f ; \cdot)$ cannot be improved, giving thus a negative answer to a question raised in [1] (see Remark 9, 2) there). However, for some subclasses of functions, including for example the bounded, nondecreasing concave functions, the essentially better order $\omega_{1}(f ; 1 / n)$ is obtained. This allows us to put in evidence large classes of functions (e.g. bounded, nondecreasing concave polygonal lines on $[0, \infty)$) for which the order of approximation given by the max-product Favard-Szász-Mirakjan operator, is essentially better than the order given by the linear Favard-Szász-Mirakjan operator. Finally, some shape preserving properties are presented.

Section 2 presents some general results on nonlinear operators, in Section 3 we prove several auxiliary lemmas, Section 4 contains the approximation results, while in Section 5 we present some shape preserving properties.

2 Preliminaries

For the proof of the main result we need some general considerations on the socalled nonlinear operators of max-prod kind. Over the set of positive reals, \mathbb{R}_{+}, we consider the operations \vee (maximum) and \cdot, product. Then $\left(\mathbb{R}_{+}, \vee, \cdot\right)$ has a semiring structure and we call it as Max-Product algebra.

Let $I \subset \mathbb{R}$ be a bounded or unbounded interval, and

$$
C B_{+}(I)=\left\{f: I \rightarrow \mathbb{R}_{+} ; f \text { continuous and bounded on } I\right\}
$$

The general form of $L_{n}: C B_{+}(I) \rightarrow C B_{+}(I)$, (called here a discrete max-product type approximation operator) studied in the paper will be

$$
L_{n}(f)(x)=\bigvee_{i=0}^{n} K_{n}\left(x, x_{i}\right) \cdot f\left(x_{i}\right)
$$

or

$$
L_{n}(f)(x)=\bigvee_{i=0}^{\infty} K_{n}\left(x, x_{i}\right) \cdot f\left(x_{i}\right)
$$

where $n \in \mathbb{N}, f \in C B_{+}(I), K_{n}\left(\cdot, x_{i}\right) \in C B_{+}(I)$ and $x_{i} \in I$, for all i. These operators are nonlinear, positive operators and moreover they satisfy a pseudolinearity condition of the form

$$
L_{n}(\alpha \cdot f \vee \beta \cdot g)(x)=\alpha \cdot L_{n}(f)(x) \vee \beta \cdot L_{n}(g)(x), \forall \alpha, \beta \in \mathbb{R}_{+}, f, g: I \rightarrow \mathbb{R}_{+}
$$

In this section we present some general results on these kinds of operators which will be useful later in the study of the Favard-Szász-Mirakjan max-product kind operator considered in Introduction.

Lemma 2.1. ([1]) Let $I \subset \mathbb{R}$ be a bounded or unbounded interval,

$$
C B_{+}(I)=\left\{f: I \rightarrow \mathbb{R}_{+} ; f \text { continuous and bounded on } I\right\},
$$

and $L_{n}: C B_{+}(I) \rightarrow C B_{+}(I), n \in \mathbb{N}$ be a sequence of operators satisfying the following properties:
(i) if $f, g \in C B_{+}(I)$ satisfy $f \leq g$ then $L_{n}(f) \leq L_{n}(g)$ for all $n \in N$;
(ii) $L_{n}(f+g) \leq L_{n}(f)+L_{n}(g)$ for all $f, g \in C B_{+}(I)$.

Then for all $f, g \in C B_{+}(I), n \in N$ and $x \in I$ we have

$$
\left|L_{n}(f)(x)-L_{n}(g)(x)\right| \leq L_{n}(|f-g|)(x) .
$$

Proof. Since is very simple, we reproduce here the proof in [1]. Let $f, g \in C B_{+}(I)$. We have $f=f-g+g \leq|f-g|+g$, which by the conditions $(i)-(i i)$ successively implies $L_{n}(f)(x) \leq L_{n}(|f-g|)(x)+L_{n}(g)(x)$, that is $L_{n}(f)(x)-L_{n}(g)(x) \leq L_{n}(\mid f-$ $g \mid)(x)$.

Writing now $g=g-f+f \leq|f-g|+f$ and applying the above reasonings, it follows $L_{n}(g)(x)-L_{n}(f)(x) \leq L_{n}(|f-g|)(x)$, which combined with the above inequality gives $\left|L_{n}(f)(x)-L_{n}(g)(x)\right| \leq L_{n}(|f-g|)(x)$.

Remarks. 1) It is easy to see that the Favard-Szász-Mirakjan max-product operator satisfy the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i) it satisfies the stronger condition

$$
L_{n}(f \vee g)(x)=L_{n}(f)(x) \vee L_{n}(g)(x), f, g \in C B_{+}(I)
$$

Indeed, taking in the above equality $f \leq g, f, g \in C B_{+}(I)$, it easily follows $L_{n}(f)(x) \leq L_{n}(g)(x)$.
2) In addition, it is immediate that the Favard-Szász-Mirakjan max-product operator is positive homogenous, that is $L_{n}(\lambda f)=\lambda L_{n}(f)$ for all $\lambda \geq 0$.

Corollary 2.2. ([1]) Let $L_{n}: C B_{+}(I) \rightarrow C B_{+}(I), n \in N$ be a sequence of operators satisfying the conditions (i)-(ii) in Lemma 1 and in addition being positive homogenous. Then for all $f \in C B_{+}(I), n \in N$ and $x \in I$ we have

$$
\left|f(x)-L_{n}(f)(x)\right| \leq\left[\frac{1}{\delta} L_{n}\left(\varphi_{x}\right)(x)+L_{n}\left(e_{0}\right)(x)\right] \omega_{1}(f ; \delta)_{I}+f(x) \cdot\left|L_{n}\left(e_{0}\right)(x)-1\right|
$$

where $\delta>0, e_{0}(t)=1$ for all $t \in I, \varphi_{x}(t)=|t-x|$ for all $t \in I, x \in I$, $\omega_{1}(f ; \delta)_{I}=\max \{|f(x)-f(y)| ; x, y \in I,|x-y| \leq \delta\}$ and if I is unbounded then we suppose that there exists $L_{n}\left(\varphi_{x}\right)(x) \in \mathbb{R}_{+} \bigcup\{+\infty\}$, for any $x \in I, n \in \mathbb{N}$.

Proof. The proof is identical with that for positive linear operators and because of its simplicity we reproduce it below. Indeed, from the identity

$$
L_{n}(f)(x)-f(x)=\left[L_{n}(f)(x)-f(x) \cdot L_{n}\left(e_{0}\right)(x)\right]+f(x)\left[L_{n}\left(e_{0}\right)(x)-1\right],
$$

it follows (by the positive homogeneity and by Lemma 2.1)

$$
\begin{gathered}
\left|f(x)-L_{n}(f)(x)\right| \leq\left|L_{n}(f(x))(x)-L_{n}(f(t))(x)\right|+|f(x)| \cdot\left|L_{n}\left(e_{0}\right)(x)-1\right| \leq \\
L_{n}(|f(t)-f(x)|)(x)+|f(x)| \cdot\left|L_{n}\left(e_{0}\right)(x)-1\right|
\end{gathered}
$$

Now, since for all $t, x \in I$ we have

$$
|f(t)-f(x)| \leq \omega_{1}(f ;|t-x|)_{I} \leq\left[\frac{1}{\delta}|t-x|+1\right] \omega_{1}(f ; \delta)_{I}
$$

replacing above we immediately obtain the estimate in the statement.
An immediate consequence of Corollary 2.2 is the following.
Corollary 2.3. ([1]) Suppose that in addition to the conditions in Corollary 2.2, the sequence $\left(L_{n}\right)_{n}$ satisfies $L_{n}\left(e_{0}\right)=e_{0}$, for all $n \in N$. Then for all $f \in C B_{+}(I)$, $n \in N$ and $x \in I$ we have

$$
\left|f(x)-L_{n}(f)(x)\right| \leq\left[1+\frac{1}{\delta} L_{n}\left(\varphi_{x}\right)(x)\right] \omega_{1}(f ; \delta)_{I}
$$

3 Auxiliary Results

Since it is easy to check that $F_{n}^{(M)}(f)(0)-f(0)=0$ for all n, notice that in the notations, proofs and statements of the all approximation results, that is in Lemmas 3.1-3.3, Theorem 4.1, Lemma 4.2, Corollary 4.4, Corollary 4.5, in fact we always may suppose that $x>0$.

For each $k, j \in\{0,1,2, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$, let us denote $s_{n, k}(x)=\frac{(n x)^{k}}{k!}$,

$$
M_{k, n, j}(x)=\frac{s_{n, k}(x)\left|\frac{k}{n}-x\right|}{s_{n, j}(x)}, m_{k, n, j}(x)=\frac{s_{n, k}(x)}{s_{n, j}(x)} .
$$

It is clear that if $k \geq j+1$ then

$$
M_{k, n, j}(x)=\frac{s_{n, k}(x)\left(\frac{k}{n}-x\right)}{s_{n, j}(x)}
$$

and if $k \leq j-1$ then

$$
M_{k, n, j}(x)=\frac{s_{n, k}(x)\left(x-\frac{k}{n}\right)}{s_{n, j}(x)}
$$

Lemma 3.1. For all $k, j \in\{0,1,2, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$ we have

$$
m_{k, n, j}(x) \leq 1
$$

Proof. We have two cases : 1) $k \geq j$ and 2) $k \leq j$.

Case 1). Since clearly the function $h(x)=\frac{1}{x}$ is nonincreasing on $[j / n,(j+1) / n]$, it follows

$$
\frac{m_{k, n, j}(x)}{m_{k+1, n, j}(x)}=\frac{k+1}{n} \cdot \frac{1}{x} \geq \frac{k+1}{n} \cdot \frac{n}{j+1}=\frac{k+1}{j+1} \geq 1
$$

which implies $m_{j, n, j}(x) \geq m_{j+1, n, j}(x) \geq m_{j+2, n, j}(x) \geq \ldots$
Case 2). We get

$$
\frac{m_{k, n, j}(x)}{m_{k-1, n, j}(x)}=\frac{n x}{k} \geq \frac{n}{k} \cdot \frac{j}{n}=\frac{j}{k} \geq 1,
$$

which immediately implies

$$
m_{j, n, j}(x) \geq m_{j-1, n, j}(x) \geq m_{j-2, n, j}(x) \geq \ldots \geq m_{0, n, j}(x) .
$$

Since $m_{j, n, j}(x)=1$, the conclusion of the lemma is immediate.
Lemma 3.2. Let $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.
(i) If $k \in\{j+1, j+3, \ldots$,$\} is such that k-\sqrt{k+1} \geq j$, then $M_{k, n, j}(x) \geq$ $M_{k+1, n, j}(x)$.
(ii) If $k \in\{1,2, \ldots j-1\}$ is such that $k+\sqrt{k} \leq j$, then $M_{k, n, j}(x) \geq M_{k-1, n, j}(x)$.

Proof. (i) We observe that

$$
\frac{M_{k, n, j}(x)}{M_{k+1, n, j}(x)}=\frac{k+1}{n} \cdot \frac{1}{x} \cdot \frac{\frac{k}{n}-x}{\frac{k+1}{n}-x} .
$$

Since the function $g(x)=\frac{1}{x} \cdot \frac{\frac{k}{n}-x}{\frac{k+1}{n}-x}$ clearly is nonincreasing, it follows that $g(x) \geq$ $g\left(\frac{j+1}{n}\right)=\frac{n}{j+1} \cdot \frac{k-j-1}{k-j}$ for all $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

Then, since the condition $k-\sqrt{k+1} \geq j$ implies $(k+1)(k-j-1) \geq(j+1)(k-j)$, we obtain

$$
\frac{M_{k, n, j}(x)}{M_{k+1, n, j}(x)} \geq \frac{k+1}{n} \cdot \frac{n}{j+1} \cdot \frac{k-j-1}{k-j} \geq 1
$$

(ii) We observe that

$$
\frac{M_{k, n, j}(x)}{M_{k-1, n, j}(x)}=\frac{n}{k} \cdot x \cdot \frac{x-\frac{k}{n}}{x-\frac{k-1}{n}} .
$$

Since the function $h(x)=x \cdot \frac{x-\frac{k}{n}}{x-\frac{k-1}{n}}$ is nondecreasing, it follows that $h(x) \geq h\left(\frac{j}{n}\right)=$ $\frac{j}{n} \cdot \frac{j-k}{j-k+1}$ for all $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

Then, since the condition $k+\sqrt{k} \leq j$ implies $j(j-k) \geq k(j-k+1)$, we obtain

$$
\frac{M_{k, n, j}(x)}{M_{k-1, n, j}(x)} \geq \frac{n}{k} \cdot \frac{j}{n} \cdot \frac{j-k}{j-k+1} \geq 1
$$

which proves the lemma.
Also, a key result in the proof of the main result is the following.

Lemma 3.3. Denoting $s_{n, k}(x)=\frac{(n x)^{k}}{k!}$, we have

$$
\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!}=s_{n, j}(x), \text { for all } x \in\left[\frac{j}{n}, \frac{j+1}{n}\right], j=0,1, \ldots,
$$

Proof. First we show that for fixed $n \in \mathbb{N}$ and $0 \leq k$ we have

$$
0 \leq s_{n, k+1}(x) \leq s_{n, k}(x), \text { if and only if } x \in[0,(k+1) / n]
$$

Indeed, the inequality one reduces to

$$
0 \leq \frac{(n x)^{k+1}}{(k+1)!} \leq \frac{(n x)^{k}}{k!}
$$

which after simplifications is obviously equivalent to

$$
0 \leq x \leq \frac{k+1}{n}
$$

By taking $k=0,1, .$. , in the inequality just proved above, we get

$$
\begin{aligned}
& s_{n, 1}(x) \leq s_{n, 0}(x), \text { if and only if } x \in[0,1 / n] \\
& s_{n, 2}(x) \leq s_{n, 1}(x), \text { if and only if } x \in[0,2 / n] \\
& s_{n, 3}(x) \leq s_{n, 2}(x), \text { if and only if } x \in[0,3 / n]
\end{aligned}
$$

so on,

$$
s_{n, k+1}(x) \leq s_{n, k}(x), \text { if and only if } x \in[0,(k+1) / n]
$$

and so on.
From all these inequalities, reasoning by recurrence we easily obtain :

$$
\begin{aligned}
& \text { if } x \in[0,1 / n] \text { then } s_{n, k}(x) \leq s_{n, 0}(x) \text {, for all } k=0,1, \ldots, \\
& \text { if } x \in[1 / n, 2 / n] \text { then } s_{n, k}(x) \leq s_{n, 1}(x) \text {, for all } k=0,1, \ldots, \\
& \text { if } x \in[2 / n, 3 / n] \text { then } s_{n, k}(x) \leq s_{n, 2}(x) \text {, for all } k=0,1, \ldots,
\end{aligned}
$$

and so on, in general

$$
\text { if } x \in[j / n,(j+1) / n] \text { then } s_{n, k}(x) \leq s_{n, j}(x) \text {, for all } k=0,1, \ldots \text {, }
$$

which proves the lemma.

4 Approximation Results

If $F_{n}^{(M)}(f)(x)$ represents the nonlinear Favard-Szász-Mirakjan operator of maxproduct type defined in Introduction, then the main result is the following.

Theorem 4.1. Let $f:[0, \infty) \rightarrow \mathbb{R}_{+}$be bounded and continuous on $[0, \infty)$. Then we have the estimate

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq 8 \omega_{1}\left(f, \frac{\sqrt{x}}{\sqrt{n}}\right), \text { for all } n \in \mathbb{N}, x \in[0, \infty)
$$

where

$$
\omega_{1}(f, \delta)=\sup \{|f(x)-f(y)| ; x, y \in[0, \infty),|x-y| \leq \delta\}
$$

Proof. It is easy to check that the max-product Favard-Szász-Mirakjan operators fulfil the conditions in Corollary 2.3 and we have

$$
\begin{equation*}
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq\left(1+\frac{1}{\delta_{n}} F_{n}^{(M)}\left(\varphi_{x}\right)(x)\right) \omega_{1}\left(f, \delta_{n}\right), \tag{1}
\end{equation*}
$$

where $\varphi_{x}(t)=|t-x|$. So, it is enough to estimate

$$
E_{n}(x):=F_{n}^{(M)}\left(\varphi_{x}\right)(x)=\frac{\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!}\left|\frac{k}{n}-x\right|}{\bigvee_{k=0}^{\infty} \frac{(n x)^{k}}{k!}}, x \in[0, \infty)
$$

Let $x \in[j / n,(j+1) / n]$, where $j \in\{0,1, \ldots$,$\} is fixed, arbitrary. By Lemma 3.3$ we easily obtain

$$
E_{n}(x)=\max _{k=0,1, \ldots,}\left\{M_{k, n, j}(x)\right\}, x \in[j / n,(j+1) / n] .
$$

In all what follows we may suppose that $j \in\{1,2, \ldots$,$\} , because for j=0$ we get $E_{n}(x) \leq \frac{\sqrt{x}}{\sqrt{n}}$, for all $x \in[0,1 / n]$. Indeed, in this case we obtain $M_{k, n, 0}(x)=$ $\frac{(n x)^{k}}{k!}\left|\frac{k}{n}-x\right|$, which for $k=0$ gives $M_{k, n, 0}(x)=x=\sqrt{x} \cdot \sqrt{x} \leq \sqrt{x} \cdot \frac{1}{\sqrt{n}}$. Also, for any $k \geq 1$ we have $\frac{1}{n} \leq \frac{k}{n}$ and we obtain

$$
M_{k, n, 0}(x) \leq \frac{(n x)^{k}}{k!} \cdot \frac{k}{n}=\sqrt{x} \cdot \frac{n^{k-1} x^{k-1 / 2}}{(k-1)!} \leq \sqrt{x} \cdot \frac{n^{k-1}}{(k-1)!n^{k-1 / 2}} \leq \frac{\sqrt{x}}{\sqrt{n}}
$$

So it remains to obtain an upper estimate for each $M_{k, n, j}(x)$ when $j=1,2, \ldots$, is fixed, $x \in[j / n,(j+1) / n]$ and $k=0,1, \ldots$, . In fact we will prove that

$$
\begin{equation*}
M_{k, n, j}(x) \leq \frac{4 \sqrt{x}}{\sqrt{n}}, \text { for all } x \in[j / n,(j+1) / n], k=0,1, \ldots \tag{2}
\end{equation*}
$$

which immediately will imply that

$$
E_{n}(x) \leq \frac{4 \sqrt{x}}{\sqrt{n}}, \text { for all } x \in[0, \infty), n \in \mathbb{N}
$$

and taking $\delta_{n}=\frac{4 \sqrt{x}}{\sqrt{n}}$ in (1) we immediately obtain the estimate in the statement.
In order to prove (2) we distinguish the following cases :

1) $k=j$; 2) $k \geq j+1$ and 3) $k \leq j-1$.

Case 1). If $k=j$ then $M_{j, n, j}(x)=\left|\frac{j}{n}-x\right|$. Since $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$, it easily follows that $M_{j, n, j}(x) \leq \frac{1}{n}$. Now, since $j \geq 1$ we get $x \geq \frac{1}{n}$, which implies $\frac{1}{n}=\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}} \leq$ $\sqrt{x} \cdot \frac{1}{\sqrt{n}}$.

Case 2). Subcase a). Suppose first that $k-\sqrt{k+1}<j$. We get

$$
\begin{aligned}
M_{k, n, j}(x)= & m_{k, n, j}(x)\left(\frac{k}{n}-x\right) \leq \frac{k}{n}-x \leq \frac{k}{n}-\frac{j}{n} \leq \\
& \frac{k}{n}-\frac{k-\sqrt{k+1}}{n}=\frac{\sqrt{k+1}}{n} .
\end{aligned}
$$

But we necessarily have $k \leq 3 j$. Indeed, if we suppose that $k>3 j$, then because $g(x)=x-\sqrt{x+1}$ is nondecreasing, it follows $j>k-\sqrt{k+1} \geq 3 j-\sqrt{3 j+1}$, which implies the obvious contradiction $j>3 j-\sqrt{3 j+1}$.

In conclusion, we obtain

$$
M_{k, n, j}(x) \leq \frac{\sqrt{k+1}}{n} \leq \frac{\sqrt{3 j+1}}{n} \leq 2 \frac{\sqrt{j}}{n} \leq 2 \frac{\sqrt{x}}{\sqrt{n}}
$$

taking into account that $\sqrt{x} \geq \frac{\sqrt{3}}{\sqrt{n}}$.
Subcase b). Suppose now that $k-\sqrt{k+1} \geq j$. Since the function $g(x)=$ $x-\sqrt{x+1}$ is nondecreasing on the interval $[0, \infty)$ it follows that there exists $\bar{k} \in$ $\{1,2, \ldots$,$\} , of maximum value, such that \bar{k}-\sqrt{\bar{k}+1}<j$. Then for $k_{1}=\bar{k}+1$ we get $k_{1}-\sqrt{k_{1}+1} \geq j$ and

$$
\begin{aligned}
M_{\bar{k}+1, n, j}(x) & =m_{\bar{k}+1, n, j}(x)\left(\frac{\bar{k}+1}{n}-x\right) \leq \frac{\bar{k}+1}{n}-x \leq \frac{\bar{k}+1}{n}-\frac{j}{n} \\
& \leq \frac{\bar{k}+1}{n}-\frac{\bar{k}-\sqrt{\bar{k}+1}}{n}=\frac{\sqrt{\bar{k}+1}+1}{n} \leq 3 \frac{\sqrt{x}}{\sqrt{n}}
\end{aligned}
$$

The last above inequality follows from the fact that $\bar{k}-\sqrt{\bar{k}+1}<j$ necessarily implies $\bar{k} \leq 3 j$ (see the similar reasonings in in the above subcase a)). Also, we have $k_{1} \geq j+1$. Indeed, this is a consequence of the fact that g is nondecreasing and because is easy to see that $g(j)<j$.

By Lemma 3.2, (i) it follows that $M_{\bar{k}+1, n, j}(x) \geq M_{\bar{k}+2, n, j}(x) \geq \ldots$. We thus obtain $M_{k, n, j}(x) \leq 3 \frac{\sqrt{x}}{\sqrt{n}}$ for any $k \in\{\bar{k}+1, \bar{k}+2, \ldots$,$\} .$

Case 3). Subcase a). Suppose first that $k+\sqrt{k}>j$. Then we obtain

$$
\begin{aligned}
M_{k, n, j}(x) & =m_{k, n, j}(x)\left(x-\frac{k}{n}\right) \leq \frac{j+1}{n}-\frac{k}{n} \leq \frac{k+\sqrt{k}+1}{n}-\frac{k}{n} \\
& =\frac{\sqrt{k}+1}{n} \leq \frac{\sqrt{j-2}+1}{n}=\frac{1}{\sqrt{n}} \cdot \frac{\sqrt{j-2}+1}{\sqrt{n}} \leq 2 \frac{\sqrt{x}}{\sqrt{n}}
\end{aligned}
$$

taking into account that $\frac{\sqrt{j-2}+1}{\sqrt{n}} \leq 2 \frac{\sqrt{j}}{\sqrt{n}} \leq 2 \sqrt{x}$.
Subcase b). Suppose now that $k+\sqrt{k} \leq j$. Let $\widetilde{k} \in\{0,1,2, \ldots$,$\} be the minimum$ value such that $\widetilde{k}+\sqrt{\widetilde{k}}>j$. Then $k_{2}=\widetilde{k}-1$ satisfies $k_{2}+\sqrt{k_{2}} \leq j$ and

$$
\begin{aligned}
M_{\widetilde{k}-1, n, j}(x) & =m_{\widetilde{k}-1, n, j}(x)\left(x-\frac{\widetilde{k}-1}{n}\right) \leq \frac{j+1}{n}-\frac{\widetilde{k}-1}{n} \\
& \leq \frac{\widetilde{k}+\sqrt{\widetilde{k}}+1}{n}-\frac{\widetilde{k}-1}{n}=\frac{\sqrt{\widetilde{k}}+2}{n} \leq 4 \frac{\sqrt{x}}{\sqrt{n}} .
\end{aligned}
$$

For the last inequality we used the obvious relationship $\widetilde{k}-1=k_{2} \leq k_{2}+\sqrt{k_{2}} \leq j$, which implies $\widetilde{k} \leq j+1$ and $\sqrt{\widetilde{k}}+2 \leq \sqrt{j+1}+2 \leq 4 \sqrt{j}$. Also, because $j \geq 1$ it is immediate that $k_{2} \leq j-1$.

By Lemma 3.2, (ii) it follows that $M_{\tilde{k}-1, n, j}(x) \geq M_{\tilde{k}-2, n, j}(x) \geq \ldots \geq M_{0, n, j}(x)$. We thus obtain $M_{k, n, j}(x) \leq 4 \frac{\sqrt{x}}{\sqrt{n}}$ for any $k \leq j-2$ and $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

Collecting all the above estimates we get (2), which completes the proof.
Remark. It is clear that on each compact subinterval $[0, a]$, with arbitrary $a>0$, the order of approximation in Theorem 4.1 is $\mathcal{O}(1 / \sqrt{n})$. In what follows, we will prove that this order cannot be improved. In this sense, first we observe that

$$
\begin{aligned}
M_{k, n, j}(x) & =(n x)^{k-j} \frac{j!}{k!}\left|\frac{k}{n}-x\right|=(n x)^{k-j} \frac{1}{(j+1)(j+2) \ldots k}\left|\frac{k}{n}-x\right| \\
& \geq(n x)^{k-j} \frac{1}{k^{k-j}}\left|\frac{k}{n}-x\right|=\left(\frac{n x}{k}\right)^{k-j}\left|\frac{k}{n}-x\right|
\end{aligned}
$$

for any $k>j$.
Now, for $n \in \mathbb{N}$ and $a>0$, let us denote $j_{n}=[n a], k_{n}=[n a]+[\sqrt{n}], x_{n}=\frac{[n a]}{n}$. Then

$$
\begin{aligned}
M_{k_{n}, n, j_{n}}\left(x_{n}\right) & \geq\left(\frac{[n a]}{[n a]+[\sqrt{n}]}\right)^{[\sqrt{n}]} \frac{[\sqrt{n}]}{n}>\left(\frac{n a-1}{n a+\sqrt{n}}\right)^{\sqrt{n}} \frac{\sqrt{n}-1}{n} \\
& \geq\left(\frac{n a-1}{n a+\sqrt{n}}\right)^{\sqrt{n}} \frac{1}{2 \sqrt{n}}
\end{aligned}
$$

for any $n \geq \max \{4,1 / a\}$. Because $\lim _{n \rightarrow \infty}\left(\frac{n a-1}{n a+\sqrt{n}}\right)^{\sqrt{n}}=e^{-1 / a}$ it follows that there exists $n_{0} \in \mathbb{N}, n_{0} \geq \max \{4,1 / a\}$, such that

$$
\left(\frac{n a-1}{n a+\sqrt{n}}\right)^{\sqrt{n}} \geq e^{-1-1 / a}
$$

for any $n \geq n_{0}$. Then we get

$$
M_{k_{n}, n, j_{n}}\left(x_{n}\right) \geq \frac{1}{2} e^{-1-1 / a} \frac{1}{\sqrt{n}}
$$

Since $x_{n} \leq a$ and $\lim _{n \rightarrow \infty} x_{n}=a$, we get $x_{n} \in[0, a]$ for any $n \in \mathbb{N}$, and combining that with the relationship (2) in the proof of Theorem 4.1, it easily implies that $\frac{1}{\sqrt{n}}$, the order of $\max _{x \in[0, a]}\left\{E_{n}(x)\right\}$, cannot be made smaller. Finally, this implies that the order of approximation $\omega_{1}(f ; 1 / \sqrt{n})$ on $[0, a]$ obtained by the statement of Theorem 4.1, cannot be improved.

In what follows we will prove that for some subclasses of functions f, the order of approximation $\omega_{1}(f ; \sqrt{x} / \sqrt{n})$ in Theorem 4.1 can essentially be improved to $\omega_{1}(f ; 1 / n)$.

For this purpose, for any $k, j \in\{0,1, \ldots$,$\} , let us define the functions f_{k, n, j}$: $\left[\frac{j}{n}, \frac{j+1}{n}\right] \rightarrow \mathbb{R}$,

$$
f_{k, n, j}(x)=m_{k, n, j}(x) f\left(\frac{k}{n}\right)=\frac{s_{n, k}(x)}{s_{n, j}(x)} f\left(\frac{k}{n}\right)=\frac{j!}{k!} \cdot(n x)^{k-j} f\left(\frac{k}{n}\right) .
$$

Then it is clear that for any $j \in\{0,1, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$ we can write

$$
F_{n}^{(M)}(f)(x)=\bigvee_{k=0}^{\infty} f_{k, n, j}(x)
$$

Also, we need the following auxiliary lemmas.
Lemma 4.2. Let $f:[0, \infty) \rightarrow[0, \infty)$ be bounded and such that

$$
F_{n}^{(M)}(f)(x)=\max \left\{f_{j, n, j}(x), f_{j+1, n, j}(x)\right\} \text { for all } x \in[j / n,(j+1) / n]
$$

Then

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq \omega_{1}\left(f ; \frac{1}{n}\right), \text { for all } x \in[j / n,(j+1) / n]
$$

where $\omega_{1}(f ; \delta)=\max \{|f(x)-f(y)| ; x, y \in[0, \infty),|x-y| \leq \delta\}<\infty$.
Proof. We distinguish two cases :
Case (i). Let $x \in[j / n,(j+1) / n]$ be fixed such that $F_{n}^{(M)}(f)(x)=f_{j, n, j}(x)$. Because by simple calculation we have $0 \leq x-\frac{j}{n} \leq \frac{1}{n}$ and $f_{j, n, j}(x)=f\left(\frac{j}{n}\right)$, it follows that

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq \omega_{1}\left(f ; \frac{1}{n}\right)
$$

Case (ii). Let $x \in[j / n,(j+1) / n]$ be such that $F_{n}^{(M)}(f)(x)=f_{j+1, n, j}(x)$. We have two subcases :
$\left(i i_{a}\right) F_{n}^{(M)}(f)(x) \leq f(x)$, when evidently $f_{j, n, j}(x) \leq f_{j+1, n, j}(x) \leq f(x)$ and we immediately get

$$
\begin{aligned}
\left|F_{n}^{(M)}(f)(x)-f(x)\right| & =\left|f_{j+1, n, j}(x)-f(x)\right| \\
& =f(x)-f_{j+1, n, j}(x) \leq f(x)-f(j / n) \leq \omega_{1}\left(f ; \frac{1}{n}\right)
\end{aligned}
$$

$\left(i i_{b}\right) F_{n}^{(M)}(f)(x)>f(x)$, when

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right|=f_{j+1, n, j}(x)-f(x)=m_{j+1, n, j}(x) f\left(\frac{j+1}{n}\right)-f(x)
$$

$$
\leq f\left(\frac{j+1}{n}\right)-f(x)
$$

Because $0 \leq \frac{j+1}{n}-x \leq \frac{1}{n}$ it follows $f\left(\frac{j+1}{n}\right)-f(x) \leq \omega_{1}\left(f ; \frac{1}{n}\right)$, which proves the lemma.

Lemma 4.3. If the function $f:[0, \infty) \rightarrow[0, \infty)$ is concave, then the function $g:(0, \infty) \rightarrow[0, \infty), g(x)=\frac{f(x)}{x}$ is nonincreasing.

Proof. Let $x, y \in(0, \infty)$ be with $x \leq y$. Then

$$
f(x)=f\left(\frac{x}{y} y+\frac{y-x}{y} 0\right) \geq \frac{x}{y} f(y)+\frac{y-x}{y} f(0) \geq \frac{x}{y} f(y),
$$

which implies $\frac{f(x)}{x} \geq \frac{f(y)}{y}$.
Corollary 4.4. If $f:[0, \infty) \rightarrow[0, \infty)$ is bounded, nondecreasing and such that the function $g:(0, \infty) \rightarrow[0, \infty), g(x)=\frac{f(x)}{x}$ is nonincreasing, then

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq \omega_{1}\left(f ; \frac{1}{n}\right), \text { for all } x \in[0, \infty)
$$

Proof. Since f is nondecreasing it follows (see the proof of Theorem 5.4 in the next section)

$$
F_{n}^{(M)}(f)(x)=\bigvee_{k \geq j}^{\infty} f_{k, n, j}(x), \text { for all } x \in[j / n,(j+1) / n]
$$

Let $x \in[0, \infty)$ and $j \in\{0,1, \ldots$,$\} such that x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$. Let $k \in\{0,1, \ldots$,$\} be with$ $k \geq j$. Then

$$
f_{k+1, n, j}(x)=\frac{j!}{(k+1)!}(n x)^{k+1-j} f\left(\frac{k+1}{n}\right)=\frac{(n x) j!}{(k+1)!}(n x)^{k-j} f\left(\frac{k+1}{n}\right) .
$$

Since $g(x)$ is nonincreasing we get $\frac{f\left(\frac{k+1}{n+1}\right.}{\frac{k+1}{n}} \leq \frac{f\left(\frac{k}{k}\right)}{\frac{k}{n}}$ that is $f\left(\frac{k+1}{n}\right) \leq \frac{k+1}{k} f\left(\frac{k}{n}\right)$. From $x \leq \frac{j+1}{n}$ it follows

$$
f_{k+1, n, j}(x) \leq \frac{(j+1)!}{(k+1)!}(n x)^{k-j} \cdot \frac{k+1}{k} f\left(\frac{k}{n}\right)=f_{k, n, j}(x) \frac{j+1}{k} .
$$

It is immediate that for $k \geq j+1$ we have $f_{k, n, j}(x) \geq f_{k+1, n, j}(x)$. Thus we obtain

$$
f_{j+1, n, j}(x) \geq f_{j+2, n, j}(x) \geq \ldots \geq f_{n, j, n}(x) \geq \ldots
$$

that is

$$
F_{n}^{(M)}(f)(x)=\max \left\{f_{j, n, j}(x), f_{j+1, n, j}(x)\right\}, \text { for all } x \in[j / n,(j+1) / n],
$$

and from Lemma 4.2 we obtain

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq \omega_{1}\left(f ; \frac{1}{n}\right) .
$$

Corollary 4.5. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a bounded, nondecreasing concave function. Then

$$
\left|F_{n}^{(M)}(f)(x)-f(x)\right| \leq \omega_{1}\left(f ; \frac{1}{n}\right), \text { for all } x \in[0, \infty)
$$

Proof. The proof is immediate by Lemma 4.3 and Corollary 4.4.
Remarks. 1) If we suppose, for example, that in addition to the hypothesis in Corollary 4.5, $f:[0, \infty) \rightarrow[0, \infty)$ is a Lipschitz function, that is there exists $M>0$ such that $|f(x)-f(y)| \leq M|x-y|$, for all $x, y \in[0, \infty)$, then it follows that the order of uniform approximation on $[0, \infty)$ by $F_{n}^{(M)}(f)(x)$ is $\frac{1}{n}$, which is essentialy better than the order $\frac{a}{\sqrt{n}}$ obtained from Theorem 4.1 on each compact subinterval $[0, a]$ for f Lipschitz function on $[0, \infty)$.
2) It is known that for the linear Favard-Szász-Mirakjan operator given by

$$
F_{n}(f)(x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f(k / n)
$$

the best possible uniform approximation result is given by the equivalence (see [10]), $\left\|F_{n}(f)-f\right\| \sim \omega_{2}^{\varphi}(f ; 1 / \sqrt{n})$, where $\|f\|=\sup \{|f(x)| ; x \in[0, \infty)\}$ and $\omega_{2}^{\varphi}(f ; \delta)$ is the Ditzian-Totik second order modulus of smoothness on $[0, \infty)$ given by
$\omega_{2}^{\varphi}(f ; \delta)=\sup \left\{\sup \left\{|f(x+h \varphi(x))-2 f(x)+f(x-h \varphi(x))| ; x \in\left[h^{2}, \infty\right)\right\}, h \in[0, \delta]\right\}$, with $\varphi(x)=\sqrt{x}, \delta \leq 1$.

Now, if f is, for example, a nondecreasing concave polygonal line on $[0, \infty)$, constant on an interval $[a, \infty)$, then by simple reasonings we get that $\omega_{2}^{\varphi}(f ; \delta) \sim \delta$ for $\delta \leq 1$, which shows that the order of approximation obtained in this case by the linear Favard-Szász-Mirakjan operator is exactly $\frac{1}{\sqrt{n}}$. On the other hand, since such of function f obviously is a Lipschitz function on $[0, \infty$) (as having bounded all the derivative numbers) by Corollary 4.5 we get that the order of approximation by the max-product Favard-Szász-Mirakjan operator is less than $\frac{1}{n}$, which is essentially better than $\frac{1}{\sqrt{n}}$. In a similar manner, by Corollary 4.4 we can produce many subclasses of functions for which the order of approximation given by the max-product Favard-Szász-Mirakjan operator is essentially better than the order of approximation given by the linear Favard-Szász-Mirakjan operator. Intuitively, the max-product Favard-Szász-Mirakjan operator has better approximation properties than its linear counterpart, for non-differentiable functions in a finite number of points (with the graphs having some "corners"), as for example for functions defined as a maximum of a finite number of continuous functions on $[0, \infty)$.
3) Since it is clear that a bounded nonincreasing concave function on $[0, \infty)$ necessarily one reduces to a constant function, the approximation of such functions is not of interest.

5 Shape Preserving Properties

In this section we will present some shape preserving properties. First we have the following simple result.

Lemma 5.1. For any arbitrary bounded function $f:[0, \infty) \rightarrow \mathbb{R}_{+}$, the maxproduct operator $F_{n}^{(M)}(f)(x)$ is positive, bounded, continuous on $[0, \infty)$ and satisfies $F_{n}^{(M)}(f)(0)=f(0)$.

Proof. The positivity of $F_{n}^{(M)}(f)(x)$ is immediate. Also, if $f(x) \leq K$ for all $x \in[0, \infty)$ it is immediate that $F_{n}^{(M)}(f)(x) \leq K$, for all $x \in[0, \infty)$.

From Lemma 3.3, taking into account that $s_{n, j}((j+1) / n)=s_{n, j+1}((j+1) / n)$, we immediately obtain that the denominator is a continuous function on $(0, \infty)$. Also, since $s_{n, k}(x)>0$ for all $x \in(0, \infty), n \in \mathbb{N}, k \in\{0,1, \ldots$,$\} , it follows that the$ denominator $\bigvee_{k=0}^{\infty} s_{n, k}(x)>0$ for all $x \in(0, \infty)$ and $n \in \mathbb{N}$.

To prove the continuity on $[0, \infty)$ of the numerator, let us denote $h(x)=$ $\bigvee_{k=0}^{\infty} s_{n, k}(x) f(k / n)$, and for each $m \in \mathbb{N}, h_{m}(x)=\bigvee_{k=0}^{m} s_{n, k}(x) f(k / n)$. It is clear that for each $m \in \mathbb{N}$, the function $h_{m}(x)$ is continuous on $[0, \infty)$, as a maximum of finite number of continuous functions. Also, fix $a>0$ arbitrary and consider $x \in[0, a]$. First, since

$$
\begin{gathered}
0 \leq h(x)=\max \left\{\bigvee_{k=0}^{m} s_{n, k}(x) f(k / n), \bigvee_{k=m+1}^{\infty} s_{n, k}(x) f(k / n)\right\} \leq \\
\bigvee_{k=0}^{m} s_{n, k}(x) f(k / n)+\bigvee_{k=m+1}^{\infty} s_{n, k}(x) f(k / n),
\end{gathered}
$$

it follows that for all $m \in \mathbb{N}$ we have

$$
0 \leq h(x)-h_{m}(x) \leq \bigvee_{k=m+1}^{\infty} s_{n, k}(x) f(k / n) \leq \bigvee_{k=m+1}^{\infty} \frac{(n a)^{k}}{k!} K, \text { for all } x \in[0, a]
$$

where $0 \leq f(x) \leq K$ for all $x \in[0, \infty)$.
Now, fix $\varepsilon>0$. Since $\frac{s_{n, k+1}(a)}{s_{n, k}(a)}=\frac{n a}{k+1}$, there exists an index $k_{0}>0$ (independent of x), such that $\frac{n a}{k+1}<\varepsilon$, for all $k \geq k_{0}$. Choose now $m=k_{0}$. It is immediate that $\bigvee_{k=m+1}^{\infty} \frac{(n a)^{k}}{k!} K<\varepsilon \cdot \frac{K(n a)^{k_{0}}}{k_{0}!}$, which implies that

$$
0 \leq h(x)-h_{m}(x)<\varepsilon \cdot \frac{K(n a)^{k_{0}}}{k_{0}!}, \text { for all } x \in[0, a] \text { and } m \geq k_{0}
$$

This implies that the numerator $h(x)$ is the uniform limit (as $m \rightarrow \infty$) of a sequence of continuous functions on $[0, a], h_{m}(x), m \in \mathbb{N}$, which implies the continuity of $h(x)$ on $[0, a]$. Because $a>0$ was chosen arbitrary, it follows the continuity of $h(x)$ on $[0, \infty)$.

As a first conclusion, we get the continuity of $F_{n}^{(M)}(f)(x)$ on $(0, \infty)$.
To prove now the continuity of $F_{n}^{(M)}(f)(x)$ at $x=0$, we observe that $s_{n, k}(0)=0$ for all $k \in\{1,2, \ldots$,$\} and s_{n, k}(0)=1$ for $k=0$, which implies that $\bigvee_{k=0}^{\infty} s_{n, k}(x)=1$ in the case of $x=0$. The fact that $F_{n}^{(M)}(f)(x)$ coincides with $f(x)$ at $x=0$ immediately follows from the above considerations, proving the theorem.

Remark. Note that because of the continuity of $F_{n}^{(M)}(f)(x)$ on $[0, \infty)$, it will suffice to prove the shape properties of $F_{n}^{(M)}(f)(x)$ on $(0, \infty)$ only. As a consequence, in the notations and proofs below we always may suppose that $x>0$.

As in Section 4, for any $k, j \in\{0,1, \ldots$,$\} , let us consider the functions f_{k, n, j}$: $\left[\frac{j}{n}, \frac{j+1}{n}\right] \rightarrow \mathbb{R}$,

$$
f_{k, n, j}(x)=m_{k, n, j}(x) f\left(\frac{k}{n}\right)=\frac{s_{n, k}(x)}{s_{n, j}(x)} f\left(\frac{k}{n}\right)=\frac{j!}{k!} \cdot(n x)^{k-j} f\left(\frac{k}{n}\right) .
$$

For any $j \in\{0,1, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$ we can write

$$
F_{n}^{(M)}(f)(x)=\bigvee_{k=0}^{\infty} f_{k, n, j}(x)
$$

Lemma 5.2. If $f:[0, \infty) \rightarrow \mathbb{R}_{+}$is a nondecreasing function then for any $k, j \in\{0,1, \ldots$,$\} with k \leq j$ and $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$ we have $f_{k, n, j}(x) \geq f_{k-1, n, j}(x)$.

Proof. Because $k \leq j$, by the proof of Lemma 3.1, case 2), it follows that $m_{k, n, j}(x) \geq m_{k-1, n, j}(x)$. From the monotonicity of f we get $f\left(\frac{k}{n}\right) \geq f\left(\frac{k-1}{n}\right)$. Thus we obtain

$$
m_{k, n, j}(x) f\left(\frac{k}{n}\right) \geq m_{k-1, n, j}(x) f\left(\frac{k-1}{n}\right)
$$

which proves the lemma.
Corollary 5.3. If $f:[0, \infty) \rightarrow \mathbb{R}_{+}$is nonincreasing then $f_{k, n, j}(x) \geq f_{k+1, n, j}(x)$ for any $k, j \in\{0,1, \ldots, \infty\}$ with $k \geq j$ and $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

Proof. Because $k \geq j$, by the proof of Lemma 3.1, case 1), it follows that $m_{k, n, j}(x) \geq m_{k+1, n, j}(x)$. From the monotonicity of f we get $f\left(\frac{k}{n}\right) \geq f\left(\frac{k+1}{n}\right)$. Thus we obtain

$$
m_{k, n, j}(x) f\left(\frac{k}{n}\right) \geq m_{k+1, n, j}(x) f\left(\frac{k+1}{n}\right)
$$

which proves the corollary.
Theorem 5.4. If $f:[0, \infty) \rightarrow \mathbb{R}_{+}$is nondecreasing and bounded on $[0, \infty)$ then $F_{n}^{(M)}(f)$ is nondecreasing (and bounded).

Proof. Because $F_{n}^{(M)}(f)$ is continuous (and bounded) on $[0, \infty)$, it suffices to prove that on each subinterval of the form $\left[\frac{j}{n}, \frac{j+1}{n}\right]$, with $j \in\{0,1, \ldots\},, F_{n}^{(M)}(f)$ is nondecreasing.

So let $j \in\{0,1, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$. Because f is nondecreasing, from Lemma 5.2 it follows that

$$
f_{j, n, j}(x) \geq f_{j-1, n, j}(x) \geq f_{j-2, n, j}(x) \geq \ldots \geq f_{0, n, j}(x)
$$

But then it is immediate that

$$
F_{n}^{(M)}(f)(x)=\bigvee_{k \geq j}^{\infty} f_{k, n, j}(x)
$$

for all $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$. Clearly that for $k \geq j$ the function $f_{k, n, j}$ is nondecreasing and since $F_{n}^{(M)}(f)$ is defined as supremum of nondecreasing functions, it follows that it is nondecreasing.

Corollary 5.5. If $f:[0, \infty) \rightarrow \mathbb{R}_{+}$is nonincreasing then $F_{n}^{(M)}(f)$ is nonincreasing.

Proof. By hypothesis, f implicitly is bounded on $[0, \infty)$. Because $F_{n}^{(M)}(f)$ is continuous and bounded on $[0, \infty)$, it suffices to prove that on each subinterval of the form $\left[\frac{j}{n}, \frac{j+1}{n}\right]$, with $j \in\{0,1, \ldots\},, F_{n}^{(M)}(f)$ is nonincreasing.

So let $j \in\{0,1, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$. Because f is nonincreasing, from Corollary 5.3 it follows that

$$
f_{j, n, j}(x) \geq f_{j+1, n, j}(x) \geq f_{j+2, n, j}(x) \geq \ldots
$$

But then it is immediate that

$$
F_{n}^{(M)}(f)(x)=\bigvee_{k \geq 0}^{j} f_{k, n, j}(x)
$$

for all $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$. Clearly that for $k \leq j$ the function $f_{k, n, j}$ is nonincreasing and since $F_{n}^{(M)}(f)$ is defined as the maximum of nonincreasing functions, it follows that it is nonincreasing.

In what follows, let us consider the following concept generalizing the monotonicity and convexity.

Definition 5.6. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous on $[0, \infty)$. One says that f is quasi-convex on $[0, \infty)$ if it satisfies the inequality

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}, \text { for all } x, y \in[0, \infty) \text { and } \lambda \in[0,1] .
$$

(see e.g. the book [8], p. 4, (iv)).
Remark. By [9], the continuous function f is quasi-convex on the bounded interval $[0, a]$, equivalently means that there exists a point $c \in[0, a]$ such that f is nonincreasing on $[0, c]$ and nondecreasing on $[c, a]$. But this property easily can be extended to continuous quasiconvex functions on $[0, \infty)$, in the sense that there exists $c \in[0, \infty](c=\infty$ by convention for nonincreasing functions on $[0, \infty))$ such that f is nonincreasing on $[0, c]$ and nondecreasing on $[c, \infty)$. This easily follows
from the fact that the quasiconvexity of f on $[0, \infty)$ means the quasiconvexity of f on any bounded interval $[0, a]$, with arbitrary large $a>0$.

The class of quasi-convex functions includes the both classes of nondecreasing functions and of nonincreasing functions (obtained from the class of quasi-convex functions by taking $c=0$ and $c=\infty$, respectively). Also, it obviously includes the class of convex functions on $[0, \infty)$.

Corollary 5.7. If $f:[0, \infty) \rightarrow \mathbb{R}_{+}$is continuous, bounded and quasi-convex on $[0, \infty)$ then for all $n \in \mathbb{N}, F_{n}^{(M)}(f)$ is quasi-convex on $[0, \infty)$.

Proof. If f is nonincreasing (or nondecreasing) on $[0, \infty)$ (that is the point $c=\infty$ (or $c=0$) in the above Remark) then by the Corollary 5.5 (or Theorem 5.4, respectively) it follows that for all $n \in \mathbb{N}, F_{n}^{(M)}(f)$ is nonincreasing (or nondecreasing) on $[0, \infty)$.

Suppose now that there exists $c \in(0, \infty)$, such that f is nonincreasing on $[0, c]$ and nondecreasing on $[c, \infty)$. Define the functions $F, G:[0, \infty) \rightarrow \mathbb{R}_{+}$by $F(x)=$ $f(x)$ for all $x \in[0, c], F(x)=f(c)$ for all $x \in[c, \infty)$ and $G(x)=f(c)$ for all $x \in[0, c], G(x)=f(x)$ for all $x \in[c, \infty)$.

It is clear that F is nonincreasing and continuous on $[0, \infty), G$ is nondecreasing and continuous on $[0, \infty)$ and that $f(x)=\max \{F(x), G(x)\}$, for all $x \in[0, \infty)$.

But it is easy to show (see also Remark 1 after the proof of Lemma 2.1) that

$$
F_{n}^{(M)}(f)(x)=\max \left\{F_{n}^{(M)}(F)(x), F_{n}^{(M)}(G)(x)\right\}, \text { for all } x \in[0, \infty)
$$

where by the Corollary 5.5 and Theorem $5.4, F_{n}^{(M)}(F)(x)$ is nonincreasing and continuous on $[0, \infty)$ and $F_{n}^{(M)}(G)(x)$ is nondecreasing and continuous on $[0, \infty)$. We have two cases : 1) $F_{n}^{(M)}(F)(x)$ and $F_{n}^{(M)}(G)(x)$ do not intersect each other ; 2) $F_{n}^{(M)}(F)(x)$ and $F_{n}^{(M)}(G)(x)$ intersect each other.

Case 1). We have $\max \left\{F_{n}^{(M)}(F)(x), F_{n}^{(M)}(G)(x)\right\}=F_{n}^{(M)}(F)(x)$ for all $x \in$ $[0, \infty)$ or $\max \left\{F_{n}^{(M)}(F)(x), F_{n}^{(M)}(G)(x)\right\}=F_{n}^{(M)}(G)(x)$ for all $x \in[0, \infty)$, which obviously proves that $F_{n}^{(M)}(f)(x)$ is quasi-convex on $[0, \infty)$.

Case 2). In this case it is clear that there exists a point $c^{\prime} \in[0, \infty)$ such that $F_{n}^{(M)}(f)(x)$ is nonincreasing on $\left[0, c^{\prime}\right]$ and nondecreasing on $\left[c^{\prime}, \infty\right)$, which by the considerations in the above Remark implies that $F_{n}^{(M)}(f)(x)$ is quasiconvex on $[0, \infty)$ and proves the corollary.

It is of interest to exactly calculate $F_{n}^{(M)}(f)$ for $f(x)=e_{0}(x)=1$ and for $f(x)=e_{1}(x)=x$. In this sense we can state the following.

Lemma 5.8. For all $x \in[0, \infty)$ and $n \in \mathbb{N}$ we have $F_{n}^{(M)}\left(e_{0}\right)(x)=1$ and $F_{n}^{(M)}\left(e_{1}\right)(x)=x$.

Proof. The formula $F_{n}\left(e_{0}\right)(x)=1$ is immediate by the definition of $F_{n}^{(M)}(f)(x)$. To find the formula for $F_{n}^{(M)}\left(e_{1}\right)(x)$, we observe that

$$
\bigvee_{k=0}^{\infty} s_{n, k}(x) \frac{k}{n}=\bigvee_{k=1}^{\infty} s_{n, k}(x) \frac{k}{n}=x \cdot \bigvee_{k=1}^{\infty} s_{n, k-1}(x)=x \bigvee_{j=0}^{\infty} s_{n, j}(x)
$$

which implies

$$
F_{n}^{(M)}\left(e_{1}\right)(x)=x \cdot \frac{\bigvee_{j=0}^{\infty} s_{n, j}(x)}{\bigvee_{k=0}^{\infty} s_{n, k}(x)}=x .
$$

Also, we can prove the interesting property that for any arbitrary function f, the max-product Bernstein operator $F_{n}^{(M)}(f)$ is piecewise convex on $[0, \infty)$. In this sense the following result holds.

Theorem 5.9. For any function $f:[0, \infty) \rightarrow[0, \infty), F_{n}^{(M)}(f)$ is convex on any interval of the form $\left[\frac{j}{n}, \frac{j+1}{n}\right], j=0,1, \ldots$, .

Proof. For any $k, j \in\{0,1, \ldots$,$\} let us consider the functions f_{k, n, j}:\left[\frac{j}{n}, \frac{j+1}{n}\right] \rightarrow$ \mathbb{R},

$$
f_{k, n, j}(x)=m_{k, n, j}(x) f\left(\frac{k}{n}\right)=\frac{j!(n x)^{k-j}}{k!} f\left(\frac{k}{n}\right)
$$

Clearly we have

$$
F_{n}^{(M)}(f)(x)=\bigvee_{k=0}^{\infty} f_{k, n, j}(x)
$$

for any $j \in\{0,1, \ldots$,$\} and x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.
We will prove that for any fixed j, each function $f_{k, n, j}(x)$ is convex on $\left[\frac{j}{n}, \frac{j+1}{n}\right]$, which will imply that $F_{n}^{(M)}(f)$ can be written as a supremum of some convex functions on $\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

Since $f \geq 0$ and $f_{k, n, j}(x)=\frac{j!\cdot n^{k-j}}{k!} \cdot x^{k-j} \cdot f(k / n)$, it suffices to prove that the functions $g_{k, j}:[0,1] \rightarrow \mathbb{R}_{+}, g_{k, j}(x)=x^{k-j}$ are convex on $\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

For $k=j, g_{j, j}$ is constant so is convex.
For $k=j+1$ we get $g_{j+1, j}(x)=x$ for any $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$, which obviously is convex.

For $k=j-1$ it follows $g_{j-1, j}(x)=\frac{1}{x}$ for any $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$. Then $g_{j-1, j}^{\prime \prime}(x)=$ $\frac{2}{x^{3}}>0$ for any $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.

If $k \geq j+2$ then $g_{k, j}^{\prime \prime}(x)=(k-j)(k-j-1) x^{k-j-2}>0$ for any $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.
If $k \leq j-2$ then $g_{k, j}^{\prime \prime}(x)=(k-j)(k-j-1) x^{k-j-2}>0$, for any $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right]$.
Since all the functions $g_{k, j}$ are convex on $\left[\frac{j}{n}, \frac{j+1}{n}\right]$, we get that $F_{n}^{(M)}(f)$ is convex on $\left[\frac{j}{n}, \frac{j+1}{n}\right]$ as maximum of these functions, proving the theorem.

References

[1] B. Bede, S. G. Gal, Approximation by nonlinear Bernstein and Favard-SzászMirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 8 (2010), No. 2, 193-207.
[2] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the Bernstein operator of max-product kind, Intern. J. Math. and Math. Sci., volume 2009, Article ID 590589, 26 pages, doi:10.1155/2009/590589.
[3] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the nonlinear Meyer-König and Zeller operator of max-product kind, Numerical Functional Analysis and Optimization, 31 (2010), No. 3, 232-253.
[4] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the nonlinear Bleimann-Butzer-Hahn operators of max-product kind, Comment. Math. Univ. Carol., (accepted for publication).
[5] B. Bede, L. Coroianu, S. G. Gal, Approximation and shape preserving properties of the nonlinear Baskakov operator of max-product kind, Studia Univ. BabesBolyai (Cluj), ser. math., 2010, (accepted for publication).
[6] B. Bede, H. Nobuhara, J. Fodor, K. Hirota, Max-product Shepard approximation operators, Journal of Advanced Computational Intelligence and Intelligent Informatics, 10 (2006), 494-497.
[7] B. Bede, H. Nobuhara, M. Daňková, A. Di Nola, Approximation by pseudolinear operators, Fuzzy Sets and Systems, 159 (2008) 804-820.
[8] S. G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston-Basel-Berlin, 2008.
[9] T. Popoviciu, Deux remarques sur les fonctions convexes, Bull. Soc. Sci. Acad. Roumaine, 220 (1938), 45-49.
[10] V. Totik, Approximation by Bernstein polynomials, Amer. J. Math., 116 (1994), 995-1018.

Addresses:

Barnabás Bede
Department of Mathematics, The University of Texas-Pan American, 1201 West University, Edinburg, Tx, 78539, USA
E-mail: bedeb@utpa.edu
Lucian Coroianu and Sorin G. Gal:
Department of Mathematics and Computer Science, University of Oradea, Str. Universitatii No. 1, 410087 Oradea, Romania
E-mails: lcoroianu@uoradea.ro and galso@uoradea.ro

[^0]: 2010 Mathematics Subject Classifications. 41A30, 41A25, 41A29.
 Key words and Phrases. Nonlinear Favard-Szász-Mirakjan operator of max-product kind, degree of approximation, shape preserving properties.

 Received: May 20, 2010
 Communicated by Dragan S. Djordjević

