
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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APPROXIMATION AND SHAPE PRESERVING
PROPERTIES OF THE NONLINEAR

FAVARD-SZÁSZ-MIRAKJAN OPERATOR
OF MAX-PRODUCT KIND

Barnabás Bede1, Lucian Coroianu2 and Sorin G. Gal3

Abstract
Starting from the study of the Shepard nonlinear operator of max-prod

type in [6], [7], in the book [8], Open Problem 5.5.4, pp. 324-326, the Favard-
Szász-Mirakjan max-prod type operator is introduced and the question of the
approximation order by this operator is raised. In the recent paper [1], by
using a pretty complicated method to this open question an answer is given
by obtaining an upper pointwise estimate of the approximation error of the
form Cω1(f ;

√
x/
√

n) (with an unexplicit absolute constant C > 0) and the
question of improving the order of approximation ω1(f ;

√
x/
√

n) is raised.
The first aim of this note is to obtain the same order of approximation but
by a simpler method, which in addition presents, at least, two advantages :
it produces an explicit constant in front of ω1(f ;

√
x/
√

n) and it can easily
be extended to other max-prod operators of Bernstein type. Also, we prove
by a counterexample that in some sense, in general this type of order of
approximation with respect to ω1(f ; ·) cannot be improved. However, for some
subclasses of functions, including for example the bounded, nondecreasing
concave functions, the essentially better order ω1(f ; 1/n) is obtained. Finally,
some shape preserving properties are obtained.

1 Introduction

Starting from the study of the Shepard nonlinear operator of max-prod type in [6],
[7], by the Open Problem 5.5.4, pp. 324-326 in the recent monograph [8], the
following nonlinear Favard-Szász-Mirakjan max-prod operator is introduced (here∨

means maximum)

F (M)
n (f)(x) =

∞∨
k=0

(nx)k

k! f
(

k
n

)

∞∨
k=0

(nx)k

k!

,

2010 Mathematics Subject Classifications. 41A30, 41A25, 41A29.
Key words and Phrases. Nonlinear Favard-Szász-Mirakjan operator of max-product kind,

degree of approximation, shape preserving properties.
Received: May 20, 2010
Communicated by Dragan S. Djordjević
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for which by a pretty complicated method in [1], Theorem 8, the order of pointwise
approximation ω1(f ;

√
x/
√

n) is obtained. Also, by Remark 9, 2) in the same paper
[1], the question if this order of approximation could be improved is raised.

The first aim of this note is to obtain the same order of approximation but by
a simpler method, which in addition presents, at least, two advantages : it pro-
duces an explicit constant in front of ω1(f ;

√
x/
√

n) and it can easily be extended
to various max-prod operators of Bernstein type, see [2] – [5]. Also, one proves
by a counterexample that in some sense, in general this type of order of approxi-
mation with respect to ω1(f ; ·) cannot be improved, giving thus a negative answer
to a question raised in [1] (see Remark 9, 2) there). However, for some subclasses
of functions, including for example the bounded, nondecreasing concave functions,
the essentially better order ω1(f ; 1/n) is obtained. This allows us to put in ev-
idence large classes of functions (e.g. bounded, nondecreasing concave polygonal
lines on [0,∞)) for which the order of approximation given by the max-product
Favard-Szász-Mirakjan operator, is essentially better than the order given by the
linear Favard-Szász-Mirakjan operator. Finally, some shape preserving properties
are presented.

Section 2 presents some general results on nonlinear operators, in Section 3 we
prove several auxiliary lemmas, Section 4 contains the approximation results, while
in Section 5 we present some shape preserving properties.

2 Preliminaries

For the proof of the main result we need some general considerations on the so-
called nonlinear operators of max-prod kind. Over the set of positive reals, R+,
we consider the operations ∨ (maximum) and ·, product. Then (R+,∨, ·) has a
semiring structure and we call it as Max-Product algebra.

Let I ⊂ R be a bounded or unbounded interval, and

CB+(I) = {f : I → R+; f continuous and bounded on I}.

The general form of Ln : CB+(I) → CB+(I), (called here a discrete max-product
type approximation operator) studied in the paper will be

Ln(f)(x) =
n∨

i=0

Kn(x, xi) · f(xi),

or

Ln(f)(x) =
∞∨

i=0

Kn(x, xi) · f(xi),

where n ∈ N, f ∈ CB+(I), Kn(·, xi) ∈ CB+(I) and xi ∈ I, for all i. These
operators are nonlinear, positive operators and moreover they satisfy a pseudo-
linearity condition of the form

Ln(α · f ∨ β · g)(x) = α · Ln(f)(x) ∨ β · Ln(g)(x), ∀α, β ∈ R+, f, g : I → R+.



Nonlinear Favard-Szász-Mirakjan Operator of Max-Product Kind 57

In this section we present some general results on these kinds of operators which
will be useful later in the study of the Favard-Szász-Mirakjan max-product kind
operator considered in Introduction.

Lemma 2.1. ([1]) Let I ⊂ R be a bounded or unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},

and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of operators satisfying the
following properties :

(i) if f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g) for all n ∈ N ;
(ii) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f, g ∈ CB+(I), n ∈ N and x ∈ I we have

|Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x).

Proof. Since is very simple, we reproduce here the proof in [1]. Let f, g ∈ CB+(I).
We have f = f − g + g ≤ |f − g|+ g, which by the conditions (i)− (ii) successively
implies Ln(f)(x) ≤ Ln(|f−g|)(x)+Ln(g)(x), that is Ln(f)(x)−Ln(g)(x) ≤ Ln(|f−
g|)(x).

Writing now g = g − f + f ≤ |f − g| + f and applying the above reasonings,
it follows Ln(g)(x) − Ln(f)(x) ≤ Ln(|f − g|)(x), which combined with the above
inequality gives |Ln(f)(x)− Ln(g)(x)| ≤ Ln(|f − g|)(x). ¤

Remarks. 1) It is easy to see that the Favard-Szász-Mirakjan max-product
operator satisfy the conditions in Lemma 2.1, (i), (ii). In fact, instead of (i) it
satisfies the stronger condition

Ln(f ∨ g)(x) = Ln(f)(x) ∨ Ln(g)(x), f, g ∈ CB+(I).

Indeed, taking in the above equality f ≤ g, f, g ∈ CB+(I), it easily follows
Ln(f)(x) ≤ Ln(g)(x).

2) In addition, it is immediate that the Favard-Szász-Mirakjan max-product
operator is positive homogenous, that is Ln(λf) = λLn(f) for all λ ≥ 0.

Corollary 2.2. ([1]) Let Ln : CB+(I) → CB+(I), n ∈ N be a sequence of
operators satisfying the conditions (i)-(ii) in Lemma 1 and in addition being positive
homogenous. Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1
δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω1(f ; δ)I + f(x) · |Ln(e0)(x)− 1|,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t − x| for all t ∈ I, x ∈ I,
ω1(f ; δ)I = max{|f(x)− f(y)|; x, y ∈ I, |x− y| ≤ δ} and if I is unbounded then we
suppose that there exists Ln(ϕx)(x) ∈ R+

⋃{+∞}, for any x ∈ I, n ∈ N.
Proof. The proof is identical with that for positive linear operators and because

of its simplicity we reproduce it below. Indeed, from the identity

Ln(f)(x)− f(x) = [Ln(f)(x)− f(x) · Ln(e0)(x)] + f(x)[Ln(e0)(x)− 1],
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it follows (by the positive homogeneity and by Lemma 2.1)

|f(x)− Ln(f)(x)| ≤ |Ln(f(x))(x)− Ln(f(t))(x)|+ |f(x)| · |Ln(e0)(x)− 1| ≤

Ln(|f(t)− f(x)|)(x) + |f(x)| · |Ln(e0)(x)− 1|.
Now, since for all t, x ∈ I we have

|f(t)− f(x)| ≤ ω1(f ; |t− x|)I ≤
[
1
δ
|t− x|+ 1

]
ω1(f ; δ)I ,

replacing above we immediately obtain the estimate in the statement. ¤
An immediate consequence of Corollary 2.2 is the following.
Corollary 2.3. ([1]) Suppose that in addition to the conditions in Corollary 2.2,

the sequence (Ln)n satisfies Ln(e0) = e0, for all n ∈ N . Then for all f ∈ CB+(I),
n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤
[
1 +

1
δ
Ln(ϕx)(x)

]
ω1(f ; δ)I .

3 Auxiliary Results

Since it is easy to check that F
(M)
n (f)(0) − f(0) = 0 for all n, notice that in the

notations, proofs and statements of the all approximation results, that is in Lemmas
3.1-3.3, Theorem 4.1, Lemma 4.2, Corollary 4.4, Corollary 4.5, in fact we always
may suppose that x > 0.

For each k, j ∈ {0, 1, 2, ..., } and x ∈ [ j
n , j+1

n ], let us denote sn,k(x) = (nx)k

k! ,

Mk,n,j(x) =
sn,k(x)

∣∣ k
n − x

∣∣
sn,j(x)

, mk,n,j(x) =
sn,k(x)
sn,j(x)

.

It is clear that if k ≥ j + 1 then

Mk,n,j(x) =
sn,k(x)( k

n − x)
sn,j(x)

and if k ≤ j − 1 then

Mk,n,j(x) =
sn,k(x)(x− k

n )
sn,j(x)

.

Lemma 3.1. For all k, j ∈ {0, 1, 2, ..., } and x ∈ [ j
n , j+1

n ] we have

mk,n,j(x) ≤ 1.

Proof. We have two cases : 1) k ≥ j and 2) k ≤ j.
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Case 1). Since clearly the function h(x) = 1
x is nonincreasing on [j/n, (j +1)/n],

it follows
mk,n,j(x)

mk+1,n,j(x)
=

k + 1
n

· 1
x
≥ k + 1

n
· n

j + 1
=

k + 1
j + 1

≥ 1,

which implies mj,n,j(x) ≥ mj+1,n,j(x) ≥ mj+2,n,j(x) ≥ ....
Case 2). We get

mk,n,j(x)
mk−1,n,j(x)

=
nx

k
≥ n

k
· j

n
=

j

k
≥ 1,

which immediately implies

mj,n,j(x) ≥ mj−1,n,j(x) ≥ mj−2,n,j(x) ≥ ... ≥ m0,n,j(x).

Since mj,n,j(x) = 1, the conclusion of the lemma is immediate. ¤
Lemma 3.2. Let x ∈ [ j

n , j+1
n ].

(i) If k ∈ {j + 1, j + 3, ..., } is such that k − √
k + 1 ≥ j, then Mk,n,j(x) ≥

Mk+1,n,j(x).
(ii) If k ∈ {1, 2, ...j− 1} is such that k +

√
k ≤ j, then Mk,n,j(x) ≥ Mk−1,n,j(x).

Proof. (i) We observe that

Mk,n,j(x)
Mk+1,n,j(x)

=
k + 1

n
· 1
x
·

k
n − x

k+1
n − x

.

Since the function g(x) = 1
x ·

k
n−x

k+1
n −x

clearly is nonincreasing, it follows that g(x) ≥
g( j+1

n ) = n
j+1 · k−j−1

k−j for all x ∈ [ j
n , j+1

n ].
Then, since the condition k−√k + 1 ≥ j implies (k+1)(k−j−1) ≥ (j+1)(k−j),

we obtain
Mk,n,j(x)

Mk+1,n,j(x)
≥ k + 1

n
· n

j + 1
· k − j − 1

k − j
≥ 1.

(ii) We observe that

Mk,n,j(x)
Mk−1,n,j(x)

=
n

k
· x · x− k

n

x− k−1
n

.

Since the function h(x) = x · x− k
n

x− k−1
n

is nondecreasing, it follows that h(x) ≥ h( j
n ) =

j
n · j−k

j−k+1 for all x ∈ [ j
n , j+1

n ].
Then, since the condition k +

√
k ≤ j implies j(j − k) ≥ k(j − k + 1), we obtain

Mk,n,j(x)
Mk−1,n,j(x)

≥ n

k
· j

n
· j − k

j − k + 1
≥ 1,

which proves the lemma. ¤
Also, a key result in the proof of the main result is the following.
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Lemma 3.3. Denoting sn,k(x) = (nx)k

k! , we have

∞∨

k=0

(nx)k

k!
= sn,j(x), for all x ∈

[
j

n
,
j + 1

n

]
, j = 0, 1, ..., .

Proof. First we show that for fixed n ∈ N and 0 ≤ k we have

0 ≤ sn,k+1(x) ≤ sn,k(x), if and only if x ∈ [0, (k + 1)/n].

Indeed, the inequality one reduces to

0 ≤ (nx)k+1

(k + 1)!
≤ (nx)k

k!
,

which after simplifications is obviously equivalent to

0 ≤ x ≤ k + 1
n

.

By taking k = 0, 1, .., in the inequality just proved above, we get

sn,1(x) ≤ sn,0(x), if and only if x ∈ [0, 1/n],

sn,2(x) ≤ sn,1(x), if and only if x ∈ [0, 2/n],

sn,3(x) ≤ sn,2(x), if and only if x ∈ [0, 3/n],

so on,

sn,k+1(x) ≤ sn,k(x), if and only if x ∈ [0, (k + 1)/n],

and so on.
From all these inequalities, reasoning by recurrence we easily obtain :

if x ∈ [0, 1/n] then sn,k(x) ≤ sn,0(x), for all k = 0, 1, ...,

if x ∈ [1/n, 2/n] then sn,k(x) ≤ sn,1(x), for all k = 0, 1, ...,

if x ∈ [2/n, 3/n] then sn,k(x) ≤ sn,2(x), for all k = 0, 1, ...,

and so on, in general

if x ∈ [j/n, (j + 1)/n] then sn,k(x) ≤ sn,j(x), for all k = 0, 1, ...,

which proves the lemma. ¤
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4 Approximation Results

If F
(M)
n (f)(x) represents the nonlinear Favard-Szász-Mirakjan operator of max-

product type defined in Introduction, then the main result is the following.
Theorem 4.1. Let f : [0,∞) → R+ be bounded and continuous on [0,∞). Then

we have the estimate

|F (M)
n (f)(x)− f(x)| ≤ 8ω1

(
f,

√
x√
n

)
, for all n ∈ N, x ∈ [0,∞),

where
ω1(f, δ) = sup{|f(x)− f(y)|; x, y ∈ [0,∞), |x− y| ≤ δ}.

Proof. It is easy to check that the max-product Favard-Szász-Mirakjan operators
fulfil the conditions in Corollary 2.3 and we have

|F (M)
n (f)(x)− f(x)| ≤

(
1 +

1
δn

F (M)
n (ϕx)(x)

)
ω1(f, δn), (1)

where ϕx(t) = |t− x|. So, it is enough to estimate

En(x) := F (M)
n (ϕx)(x) =

∞∨
k=0

(nx)k

k!

∣∣ k
n − x

∣∣
∞∨

k=0

(nx)k

k!

, x ∈ [0,∞).

Let x ∈ [j/n, (j + 1)/n], where j ∈ {0, 1, ..., } is fixed, arbitrary. By Lemma 3.3 we
easily obtain

En(x) = max
k=0,1,...,

{Mk,n,j(x)}, x ∈ [j/n, (j + 1)/n].

In all what follows we may suppose that j ∈ {1, 2, ..., }, because for j = 0 we
get En(x) ≤

√
x√
n
, for all x ∈ [0, 1/n]. Indeed, in this case we obtain Mk,n,0(x) =

(nx)k

k!

∣∣ k
n − x

∣∣, which for k = 0 gives Mk,n,0(x) = x =
√

x · √x ≤ √
x · 1√

n
. Also, for

any k ≥ 1 we have 1
n ≤ k

n and we obtain

Mk,n,0(x) ≤ (nx)k

k!
· k

n
=
√

x · nk−1xk−1/2

(k − 1)!
≤ √

x · nk−1

(k − 1)!nk−1/2
≤
√

x√
n

.

So it remains to obtain an upper estimate for each Mk,n,j(x) when j = 1, 2, ..., is
fixed, x ∈ [j/n, (j + 1)/n] and k = 0, 1, ...,. In fact we will prove that

Mk,n,j(x) ≤ 4
√

x√
n

, for all x ∈ [j/n, (j + 1)/n], k = 0, 1, ..., (2)

which immediately will imply that

En(x) ≤ 4
√

x√
n

, for all x ∈ [0,∞), n ∈ N,
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and taking δn = 4
√

x√
n

in (1) we immediately obtain the estimate in the statement.
In order to prove (2) we distinguish the following cases :
1) k = j ; 2) k ≥ j + 1 and 3) k ≤ j − 1.
Case 1). If k = j then Mj,n,j(x) =

∣∣ j
n − x

∣∣ . Since x ∈ [ j
n , j+1

n ], it easily follows
that Mj,n,j(x) ≤ 1

n . Now, since j ≥ 1 we get x ≥ 1
n , which implies 1

n = 1√
n
· 1√

n
≤√

x · 1√
n
.

Case 2). Subcase a). Suppose first that k −√k + 1 < j. We get

Mk,n,j(x) = mk,n,j(x)(
k

n
− x) ≤ k

n
− x ≤ k

n
− j

n
≤

k

n
− k −√k + 1

n
=
√

k + 1
n

.

But we necessarily have k ≤ 3j. Indeed, if we suppose that k > 3j, then because
g(x) = x − √

x + 1 is nondecreasing, it follows j > k − √
k + 1 ≥ 3j − √

3j + 1,
which implies the obvious contradiction j > 3j −√3j + 1.

In conclusion, we obtain

Mk,n,j(x) ≤
√

k + 1
n

≤
√

3j + 1
n

≤ 2
√

j

n
≤ 2

√
x√
n

,

taking into account that
√

x ≥
√

j√
n
.

Subcase b). Suppose now that k − √
k + 1 ≥ j. Since the function g(x) =

x − √x + 1 is nondecreasing on the interval [0,∞) it follows that there exists k ∈
{1, 2, ..., }, of maximum value, such that k −

√
k + 1 < j. Then for k1 = k + 1 we

get k1 −
√

k1 + 1 ≥ j and

Mk+1,n,j(x) = mk+1,n,j(x)(
k + 1

n
− x) ≤ k + 1

n
− x ≤ k + 1

n
− j

n

≤ k + 1
n

− k −
√

k + 1
n

=

√
k + 1 + 1

n
≤ 3

√
x√
n

.

The last above inequality follows from the fact that k −
√

k + 1 < j necessarily
implies k ≤ 3j (see the similar reasonings in in the above subcase a) ). Also, we
have k1 ≥ j + 1. Indeed, this is a consequence of the fact that g is nondecreasing
and because is easy to see that g(j) < j.

By Lemma 3.2, (i) it follows that Mk+1,n,j(x) ≥ Mk+2,n,j(x) ≥ .... We thus

obtain Mk,n,j(x) ≤ 3
√

x√
n

for any k ∈ {k + 1, k + 2, ..., }.
Case 3). Subcase a). Suppose first that k +

√
k > j. Then we obtain

Mk,n,j(x) = mk,n,j(x)(x− k

n
) ≤ j + 1

n
− k

n
≤ k +

√
k + 1

n
− k

n

=

√
k + 1
n

≤
√

j − 2 + 1
n

=
1√
n
·
√

j − 2 + 1√
n

≤ 2
√

x√
n

,
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taking into account that
√

j−2+1√
n

≤ 2
√

j√
n
≤ 2

√
x.

Subcase b). Suppose now that k+
√

k ≤ j. Let k̃ ∈ {0, 1, 2, ..., } be the minimum

value such that k̃ +
√

k̃ > j. Then k2 = k̃ − 1 satisfies k2 +
√

k2 ≤ j and

Mk̃−1,n,j(x) = mk̃−1,n,j(x)(x− k̃ − 1
n

) ≤ j + 1
n

− k̃ − 1
n

≤ k̃ +
√

k̃ + 1
n

− k̃ − 1
n

=

√
k̃ + 2
n

≤ 4
√

x√
n

.

For the last inequality we used the obvious relationship k̃− 1 = k2 ≤ k2 +
√

k2 ≤ j,
which implies k̃ ≤ j + 1 and

√
k̃ + 2 ≤ √

j + 1 + 2 ≤ 4
√

j. Also, because j ≥ 1 it is
immediate that k2 ≤ j − 1.

By Lemma 3.2, (ii) it follows that Mk̃−1,n,j(x) ≥ Mk̃−2,n,j(x) ≥ ... ≥ M0,n,j(x).

We thus obtain Mk,n,j(x) ≤ 4
√

x√
n

for any k ≤ j − 2 and x ∈ [ j
n , j+1

n ].
Collecting all the above estimates we get (2), which completes the proof. ¤
Remark. It is clear that on each compact subinterval [0, a], with arbitrary

a > 0, the order of approximation in Theorem 4.1 is O(1/
√

n). In what follows, we
will prove that this order cannot be improved. In this sense, first we observe that

Mk,n,j(x) = (nx)k−j j!
k!

∣∣∣∣
k

n
− x

∣∣∣∣ = (nx)k−j 1
(j + 1)(j + 2)...k

∣∣∣∣
k

n
− x

∣∣∣∣

≥ (nx)k−j 1
kk−j

∣∣∣∣
k

n
− x

∣∣∣∣ =
(nx

k

)k−j
∣∣∣∣
k

n
− x

∣∣∣∣

for any k > j.
Now, for n ∈ N and a > 0, let us denote jn = [na], kn = [na] + [

√
n], xn = [na]

n .
Then

Mkn,n,jn(xn) ≥
(

[na]
[na] + [

√
n]

)[
√

n] [
√

n]
n

>

(
na− 1

na +
√

n

)√n √
n− 1
n

≥
(

na− 1
na +

√
n

)√n 1
2
√

n

for any n ≥ max{4, 1/a}. Because lim
n→∞

(
na−1

na+
√

n

)√n

= e−1/a it follows that there

exists n0 ∈ N, n0 ≥ max{4, 1/a}, such that

(
na− 1

na +
√

n

)√n

≥ e−1−1/a,

for any n ≥ n0. Then we get

Mkn,n,jn(xn) ≥ 1
2
e−1−1/a 1√

n
.
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Since xn ≤ a and limn→∞ xn = a, we get xn ∈ [0, a] for any n ∈ N, and combining
that with the relationship (2) in the proof of Theorem 4.1, it easily implies that
1√
n
, the order of maxx∈[0,a]{En(x)}, cannot be made smaller. Finally, this implies

that the order of approximation ω1(f ; 1/
√

n) on [0, a] obtained by the statement of
Theorem 4.1, cannot be improved.

In what follows we will prove that for some subclasses of functions f , the order
of approximation ω1(f ;

√
x/
√

n) in Theorem 4.1 can essentially be improved to
ω1(f ; 1/n).

For this purpose, for any k, j ∈ {0, 1, ..., }, let us define the functions fk,n,j :
[ j
n , j+1

n ] → R,

fk,n,j(x) = mk,n,j(x)f
(

k

n

)
=

sn,k(x)
sn,j(x)

f

(
k

n

)
=

j!
k!
· (nx)k−j

f

(
k

n

)
.

Then it is clear that for any j ∈ {0, 1, ..., } and x ∈ [ j
n , j+1

n ] we can write

F (M)
n (f)(x) =

∞∨

k=0

fk,n,j(x).

Also, we need the following auxiliary lemmas.
Lemma 4.2. Let f : [0,∞) → [0,∞) be bounded and such that

F (M)
n (f)(x) = max{fj,n,j(x), fj+1,n,j(x)} for all x ∈ [j/n, (j + 1)/n].

Then ∣∣∣F (M)
n (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ;

1
n

)
, for all x ∈ [j/n, (j + 1)/n],

where ω1 (f ; δ) = max{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ} < ∞.
Proof. We distinguish two cases :
Case (i). Let x ∈ [j/n, (j + 1)/n] be fixed such that F

(M)
n (f)(x) = fj,n,j(x).

Because by simple calculation we have 0 ≤ x − j
n ≤ 1

n and fj,n,j(x) = f( j
n ), it

follows that ∣∣∣F (M)
n (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ;

1
n

)
.

Case (ii). Let x ∈ [j/n, (j + 1)/n] be such that F
(M)
n (f)(x) = fj+1,n,j(x). We

have two subcases :
(iia) F

(M)
n (f)(x) ≤ f(x), when evidently fj,n,j(x) ≤ fj+1,n,j(x) ≤ f(x) and we

immediately get
∣∣∣F (M)

n (f)(x)− f(x)
∣∣∣ = |fj+1,n,j(x)− f(x)|

= f(x)− fj+1,n,j(x) ≤ f(x)− f(j/n) ≤ ω1

(
f ;

1
n

)
.

(iib) F
(M)
n (f)(x) > f(x), when

∣∣∣F (M)
n (f)(x)− f(x)

∣∣∣ = fj+1,n,j(x)− f(x) = mj+1,n,j(x)f(
j + 1

n
)− f(x)
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≤ f(
j + 1

n
)− f(x).

Because 0 ≤ j+1
n − x ≤ 1

n it follows f( j+1
n ) − f(x) ≤ ω1

(
f ; 1

n

)
, which proves the

lemma. ¤
Lemma 4.3. If the function f : [0,∞) → [0,∞) is concave, then the function

g : (0,∞) → [0,∞), g(x) = f(x)
x is nonincreasing.

Proof. Let x, y ∈ (0,∞) be with x ≤ y. Then

f(x) = f

(
x

y
y +

y − x

y
0
)
≥ x

y
f(y) +

y − x

y
f(0) ≥ x

y
f(y),

which implies f(x)
x ≥ f(y)

y . ¤
Corollary 4.4. If f : [0,∞) → [0,∞) is bounded, nondecreasing and such that

the function g : (0,∞) → [0,∞), g(x) = f(x)
x is nonincreasing, then

∣∣∣F (M)
n (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ;

1
n

)
, for all x ∈ [0,∞).

Proof. Since f is nondecreasing it follows (see the proof of Theorem 5.4 in the
next section)

F (M)
n (f)(x) =

∞∨

k≥j

fk,n,j(x), for all x ∈ [j/n, (j + 1)/n].

Let x ∈ [0,∞) and j ∈ {0, 1, ..., } such that x ∈ [ j
n , j+1

n ]. Let k ∈ {0, 1, ..., } be with
k ≥ j. Then

fk+1,n,j(x) =
j!

(k + 1)!
(nx)k+1−jf(

k + 1
n

) =
(nx)j!
(k + 1)!

(nx)k−jf(
k + 1

n
).

Since g(x) is nonincreasing we get f( k+1
n )

k+1
n

≤ f( k
n )

k
n

that is f(k+1
n ) ≤ k+1

k f( k
n ). From

x ≤ j+1
n it follows

fk+1,n,j(x) ≤ (j + 1)!
(k + 1)!

(nx)k−j · k + 1
k

f(
k

n
) = fk,n,j(x)

j + 1
k

.

It is immediate that for k ≥ j + 1 we have fk,n,j(x) ≥ fk+1,n,j(x). Thus we obtain

fj+1,n,j(x) ≥ fj+2,n,j(x) ≥ ... ≥ fn,j,n(x) ≥ ...

that is

F (M)
n (f)(x) = max{fj,n,j(x), fj+1,n,j(x)}, for all x ∈ [j/n, (j + 1)/n],

and from Lemma 4.2 we obtain
∣∣∣F (M)

n (f)(x)− f(x)
∣∣∣ ≤ ω1

(
f ;

1
n

)
.
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¤
Corollary 4.5. Let f : [0,∞) → [0,∞) be a bounded, nondecreasing concave

function. Then

∣∣∣F (M)
n (f)(x)− f(x)

∣∣∣ ≤ ω1

(
f ;

1
n

)
, for all x ∈ [0,∞).

Proof. The proof is immediate by Lemma 4.3 and Corollary 4.4. ¤
Remarks. 1) If we suppose, for example, that in addition to the hypothesis in

Corollary 4.5, f : [0,∞) → [0,∞) is a Lipschitz function, that is there exists M > 0
such that |f(x) − f(y)| ≤ M |x − y|, for all x, y ∈ [0,∞), then it follows that the
order of uniform approximation on [0,∞) by F

(M)
n (f)(x) is 1

n , which is essentialy
better than the order a√

n
obtained from Theorem 4.1 on each compact subinterval

[0, a] for f Lipschitz function on [0,∞).
2) It is known that for the linear Favard-Szász-Mirakjan operator given by

Fn(f)(x) = e−nx
∞∑

k=0

(nx)k

k!
f(k/n),

the best possible uniform approximation result is given by the equivalence (see [10]),
‖Fn(f) − f‖ ∼ ωϕ

2 (f ; 1/
√

n), where ‖f‖ = sup{|f(x)|; x ∈ [0,∞)} and ωϕ
2 (f ; δ) is

the Ditzian-Totik second order modulus of smoothness on [0,∞) given by

ωϕ
2 (f ; δ) = sup{sup{|f(x+hϕ(x))− 2f(x)+ f(x−hϕ(x))|; x ∈ [h2,∞)}, h ∈ [0, δ]},

with ϕ(x) =
√

x, δ ≤ 1.
Now, if f is, for example, a nondecreasing concave polygonal line on [0,∞),

constant on an interval [a,∞), then by simple reasonings we get that ωϕ
2 (f ; δ) ∼ δ

for δ ≤ 1, which shows that the order of approximation obtained in this case by
the linear Favard-Szász-Mirakjan operator is exactly 1√

n
. On the other hand, since

such of function f obviously is a Lipschitz function on [0,∞) (as having bounded
all the derivative numbers) by Corollary 4.5 we get that the order of approxima-
tion by the max-product Favard-Szász-Mirakjan operator is less than 1

n , which is
essentially better than 1√

n
. In a similar manner, by Corollary 4.4 we can produce

many subclasses of functions for which the order of approximation given by the
max-product Favard-Szász-Mirakjan operator is essentially better than the order
of approximation given by the linear Favard-Szász-Mirakjan operator. Intuitively,
the max-product Favard-Szász-Mirakjan operator has better approximation prop-
erties than its linear counterpart, for non-differentiable functions in a finite number
of points (with the graphs having some ”corners”), as for example for functions
defined as a maximum of a finite number of continuous functions on [0,∞).

3) Since it is clear that a bounded nonincreasing concave function on [0,∞)
necessarily one reduces to a constant function, the approximation of such functions
is not of interest.
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5 Shape Preserving Properties

In this section we will present some shape preserving properties. First we have the
following simple result.

Lemma 5.1. For any arbitrary bounded function f : [0,∞) → R+, the max-
product operator F

(M)
n (f)(x) is positive, bounded, continuous on [0,∞) and satisfies

F
(M)
n (f)(0) = f(0).

Proof. The positivity of F
(M)
n (f)(x) is immediate. Also, if f(x) ≤ K for all

x ∈ [0,∞) it is immediate that F
(M)
n (f)(x) ≤ K, for all x ∈ [0,∞).

From Lemma 3.3, taking into account that sn,j((j + 1)/n) = sn,j+1((j + 1)/n),
we immediately obtain that the denominator is a continuous function on (0,∞).
Also, since sn,k(x) > 0 for all x ∈ (0,∞), n ∈ N, k ∈ {0, 1, ..., }, it follows that the

denominator
∞∨

k=0

sn,k(x) > 0 for all x ∈ (0,∞) and n ∈ N.

To prove the continuity on [0,∞) of the numerator, let us denote h(x) =
∞∨

k=0

sn,k(x)f(k/n), and for each m ∈ N, hm(x) =
m∨

k=0

sn,k(x)f(k/n). It is clear

that for each m ∈ N, the function hm(x) is continuous on [0,∞), as a maximum
of finite number of continuous functions. Also, fix a > 0 arbitrary and consider
x ∈ [0, a]. First, since

0 ≤ h(x) = max

{
m∨

k=0

sn,k(x)f(k/n),
∞∨

k=m+1

sn,k(x)f(k/n)

}
≤

m∨

k=0

sn,k(x)f(k/n) +
∞∨

k=m+1

sn,k(x)f(k/n),

it follows that for all m ∈ N we have

0 ≤ h(x)− hm(x) ≤
∞∨

k=m+1

sn,k(x)f(k/n) ≤
∞∨

k=m+1

(na)k

k!
K, for all x ∈ [0, a],

where 0 ≤ f(x) ≤ K for all x ∈ [0,∞).
Now, fix ε > 0. Since sn,k+1(a)

sn,k(a) = na
k+1 , there exists an index k0 > 0 (independent

of x), such that na
k+1 < ε, for all k ≥ k0. Choose now m = k0. It is immediate that

∞∨
k=m+1

(na)k

k! K < ε · K(na)k0

k0!
, which implies that

0 ≤ h(x)− hm(x) < ε · K(na)k0

k0!
, for all x ∈ [0, a] and m ≥ k0.

This implies that the numerator h(x) is the uniform limit (as m →∞) of a sequence
of continuous functions on [0, a], hm(x),m ∈ N, which implies the continuity of h(x)
on [0, a]. Because a > 0 was chosen arbitrary, it follows the continuity of h(x) on
[0,∞).
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As a first conclusion, we get the continuity of F
(M)
n (f)(x) on (0,∞).

To prove now the continuity of F
(M)
n (f)(x) at x = 0, we observe that sn,k(0) = 0

for all k ∈ {1, 2, ..., } and sn,k(0) = 1 for k = 0, which implies that
∞∨

k=0

sn,k(x) = 1

in the case of x = 0. The fact that F
(M)
n (f)(x) coincides with f(x) at x = 0

immediately follows from the above considerations, proving the theorem. ¤
Remark. Note that because of the continuity of F

(M)
n (f)(x) on [0,∞), it will

suffice to prove the shape properties of F
(M)
n (f)(x) on (0,∞) only. As a consequence,

in the notations and proofs below we always may suppose that x > 0.
As in Section 4, for any k, j ∈ {0, 1, ..., }, let us consider the functions fk,n,j :

[ j
n , j+1

n ] → R,

fk,n,j(x) = mk,n,j(x)f
(

k

n

)
=

sn,k(x)
sn,j(x)

f

(
k

n

)
=

j!
k!
· (nx)k−j

f

(
k

n

)
.

For any j ∈ {0, 1, ..., } and x ∈ [ j
n , j+1

n ] we can write

F (M)
n (f)(x) =

∞∨

k=0

fk,n,j(x).

Lemma 5.2. If f : [0,∞) → R+ is a nondecreasing function then for any
k, j ∈ {0, 1, ..., } with k ≤ j and x ∈ [ j

n , j+1
n ] we have fk,n,j(x) ≥ fk−1,n,j(x).

Proof. Because k ≤ j, by the proof of Lemma 3.1, case 2), it follows that
mk,n,j(x) ≥ mk−1,n,j(x). From the monotonicity of f we get f

(
k
n

) ≥ f
(

k−1
n

)
.

Thus we obtain

mk,n,j(x)f
(

k

n

)
≥ mk−1,n,j(x)f

(
k − 1

n

)
,

which proves the lemma. ¤
Corollary 5.3. If f : [0,∞) → R+ is nonincreasing then fk,n,j(x) ≥ fk+1,n,j(x)

for any k, j ∈ {0, 1, ...,∞} with k ≥ j and x ∈ [ j
n , j+1

n ].
Proof. Because k ≥ j, by the proof of Lemma 3.1, case 1), it follows that

mk,n,j(x) ≥ mk+1,n,j(x). From the monotonicity of f we get f
(

k
n

) ≥ f
(

k+1
n

)
.

Thus we obtain

mk,n,j(x)f
(

k

n

)
≥ mk+1,n,j(x)f

(
k + 1

n

)
,

which proves the corollary. ¤
Theorem 5.4. If f : [0,∞) → R+ is nondecreasing and bounded on [0,∞) then

F
(M)
n (f) is nondecreasing (and bounded).

Proof. Because F
(M)
n (f) is continuous (and bounded) on [0,∞), it suffices to

prove that on each subinterval of the form [ j
n , j+1

n ], with j ∈ {0, 1, ..., }, F
(M)
n (f) is

nondecreasing.
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So let j ∈ {0, 1, ..., } and x ∈ [ j
n , j+1

n ]. Because f is nondecreasing, from Lemma
5.2 it follows that

fj,n,j(x) ≥ fj−1,n,j(x) ≥ fj−2,n,j(x) ≥ ... ≥ f0,n,j(x).

But then it is immediate that

F (M)
n (f)(x) =

∞∨

k≥j

fk,n,j(x),

for all x ∈ [ j
n , j+1

n ]. Clearly that for k ≥ j the function fk,n,j is nondecreasing and
since F

(M)
n (f) is defined as supremum of nondecreasing functions, it follows that it

is nondecreasing. ¤
Corollary 5.5. If f : [0,∞) → R+ is nonincreasing then F

(M)
n (f) is nonin-

creasing.
Proof. By hypothesis, f implicitly is bounded on [0,∞). Because F

(M)
n (f) is

continuous and bounded on [0,∞), it suffices to prove that on each subinterval of
the form [ j

n , j+1
n ], with j ∈ {0, 1, ..., }, F

(M)
n (f) is nonincreasing.

So let j ∈ {0, 1, ..., } and x ∈ [ j
n , j+1

n ]. Because f is nonincreasing, from Corollary
5.3 it follows that

fj,n,j(x) ≥ fj+1,n,j(x) ≥ fj+2,n,j(x) ≥ ...

But then it is immediate that

F (M)
n (f)(x) =

j∨

k≥0

fk,n,j(x),

for all x ∈ [ j
n , j+1

n ]. Clearly that for k ≤ j the function fk,n,j is nonincreasing and
since F

(M)
n (f) is defined as the maximum of nonincreasing functions, it follows that

it is nonincreasing. ¤
In what follows, let us consider the following concept generalizing the mono-

tonicity and convexity.
Definition 5.6. Let f : [0,∞) → R be continuous on [0,∞). One says that f

is quasi-convex on [0,∞) if it satisfies the inequality

f(λx + (1− λ)y) ≤ max{f(x), f(y)}, for all x, y ∈ [0,∞) and λ ∈ [0, 1].

(see e.g. the book [8], p. 4, (iv) ).
Remark. By [9], the continuous function f is quasi-convex on the bounded

interval [0, a], equivalently means that there exists a point c ∈ [0, a] such that f
is nonincreasing on [0, c] and nondecreasing on [c, a]. But this property easily can
be extended to continuous quasiconvex functions on [0,∞), in the sense that there
exists c ∈ [0,∞] (c = ∞ by convention for nonincreasing functions on [0,∞)) such
that f is nonincreasing on [0, c] and nondecreasing on [c,∞). This easily follows
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from the fact that the quasiconvexity of f on [0,∞) means the quasiconvexity of f
on any bounded interval [0, a], with arbitrary large a > 0.

The class of quasi-convex functions includes the both classes of nondecreasing
functions and of nonincreasing functions (obtained from the class of quasi-convex
functions by taking c = 0 and c = ∞, respectively). Also, it obviously includes the
class of convex functions on [0,∞).

Corollary 5.7. If f : [0,∞) → R+ is continuous, bounded and quasi-convex on
[0,∞) then for all n ∈ N, F

(M)
n (f) is quasi-convex on [0,∞).

Proof. If f is nonincreasing (or nondecreasing) on [0,∞) (that is the point
c = ∞ (or c = 0) in the above Remark) then by the Corollary 5.5 (or Theorem 5.4,
respectively) it follows that for all n ∈ N, F

(M)
n (f) is nonincreasing (or nondecreas-

ing) on [0,∞).
Suppose now that there exists c ∈ (0,∞), such that f is nonincreasing on [0, c]

and nondecreasing on [c,∞). Define the functions F,G : [0,∞) → R+ by F (x) =
f(x) for all x ∈ [0, c], F (x) = f(c) for all x ∈ [c,∞) and G(x) = f(c) for all
x ∈ [0, c], G(x) = f(x) for all x ∈ [c,∞).

It is clear that F is nonincreasing and continuous on [0,∞), G is nondecreasing
and continuous on [0,∞) and that f(x) = max{F (x), G(x)}, for all x ∈ [0,∞).

But it is easy to show (see also Remark 1 after the proof of Lemma 2.1) that

F (M)
n (f)(x) = max{F (M)

n (F )(x), F (M)
n (G)(x)}, for all x ∈ [0,∞),

where by the Corollary 5.5 and Theorem 5.4 , F
(M)
n (F )(x) is nonincreasing and

continuous on [0,∞) and F
(M)
n (G)(x) is nondecreasing and continuous on [0,∞).

We have two cases : 1) F
(M)
n (F )(x) and F

(M)
n (G)(x) do not intersect each other ;

2) F
(M)
n (F )(x) and F

(M)
n (G)(x) intersect each other.

Case 1). We have max{F (M)
n (F )(x), F (M)

n (G)(x)} = F
(M)
n (F )(x) for all x ∈

[0,∞) or max{F (M)
n (F )(x), F (M)

n (G)(x)} = F
(M)
n (G)(x) for all x ∈ [0,∞), which

obviously proves that F
(M)
n (f)(x) is quasi-convex on [0,∞).

Case 2). In this case it is clear that there exists a point c′ ∈ [0,∞) such that
F

(M)
n (f)(x) is nonincreasing on [0, c′] and nondecreasing on [c′,∞), which by the

considerations in the above Remark implies that F
(M)
n (f)(x) is quasiconvex on

[0,∞) and proves the corollary. ¤
It is of interest to exactly calculate F

(M)
n (f) for f(x) = e0(x) = 1 and for

f(x) = e1(x) = x. In this sense we can state the following.
Lemma 5.8. For all x ∈ [0,∞) and n ∈ N we have F

(M)
n (e0)(x) = 1 and

F
(M)
n (e1)(x) = x.

Proof. The formula Fn(e0)(x) = 1 is immediate by the definition of F
(M)
n (f)(x).

To find the formula for F
(M)
n (e1)(x), we observe that

∞∨

k=0

sn,k(x)
k

n
=

∞∨

k=1

sn,k(x)
k

n
= x ·

∞∨

k=1

sn,k−1(x) = x

∞∨

j=0

sn,j(x),
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which implies

F (M)
n (e1)(x) = x ·

∞∨
j=0

sn,j(x)

∞∨
k=0

sn,k(x)
= x.

¤
Also, we can prove the interesting property that for any arbitrary function f ,

the max-product Bernstein operator F
(M)
n (f) is piecewise convex on [0,∞). In this

sense the following result holds.
Theorem 5.9. For any function f : [0,∞) → [0,∞), F

(M)
n (f) is convex on any

interval of the form [ j
n , j+1

n ], j = 0, 1, ...,.
Proof. For any k, j ∈ {0, 1, ..., } let us consider the functions fk,n,j : [ j

n , j+1
n ] →

R,

fk,n,j(x) = mk,n,j(x)f(
k

n
) =

j!(nx)k−j

k!
f(

k

n
).

Clearly we have

F (M)
n (f)(x) =

∞∨

k=0

fk,n,j(x),

for any j ∈ {0, 1, ..., } and x ∈ [ j
n , j+1

n ].
We will prove that for any fixed j, each function fk,n,j(x) is convex on [ j

n , j+1
n ],

which will imply that F
(M)
n (f) can be written as a supremum of some convex func-

tions on [ j
n , j+1

n ].

Since f ≥ 0 and fk,n,j(x) = j!·nk−j

k! · xk−j · f(k/n), it suffices to prove that the
functions gk,j : [0, 1] → R+, gk,j(x) = xk−j are convex on [ j

n , j+1
n ].

For k = j, gj,j is constant so is convex.
For k = j + 1 we get gj+1,j(x) = x for any x ∈ [ j

n , j+1
n ], which obviously is

convex.
For k = j − 1 it follows gj−1,j(x) = 1

x for any x ∈ [ j
n , j+1

n ]. Then g′′j−1,j(x) =
2
x3 > 0 for any x ∈ [ j

n , j+1
n ].

If k ≥ j + 2 then g′′k,j(x) = (k − j)(k − j − 1)xk−j−2 > 0 for any x ∈ [ j
n , j+1

n ].
If k ≤ j − 2 then g′′k,j(x) = (k − j)(k − j − 1)xk−j−2 > 0, for any x ∈ [ j

n , j+1
n ].

Since all the functions gk,j are convex on [ j
n , j+1

n ], we get that F
(M)
n (f) is convex

on [ j
n , j+1

n ] as maximum of these functions, proving the theorem. ¤
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