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APPROXIMATION BY EQUIVARIANT HOMEOMORPHISMS. I

MARK STEINBERGER AND JAMES WEST

ABSTRACT. Locally linear (= locally smoothable) actions of finite groups on
finite dimensional manifolds are considered in which two incident components
of fixed point sets of subgroups either coincide or one has codimension at least
three in the other. For these actions, an equivariant a-approximation theorem
is proved using engulfing techniques. As corollaries are obtained equivariant
"fibrations are bundles" and "controlled /i-cobordism" theorems, as well as an
equivariant version of Edwards' cell-like mapping theorem and the vanishing
of the set of transfer-invariant G-homotopy topological structures, rel bound-
ary, on Tn x Dp (when Tn is the n-torus with trivial G action and Dp is a
representation disc).

Here we consider locally linear (locally smooth [Br]) PL and topological actions
of a finite group G on n-manifolds. In addition, we require that a G7-manifold,
M, have gaps of codimension > 3 (i.e., for H C G, if M^ is a component of
the //-fixed point set, MH, and M>H c M" is the subspace of points x for
which the isotropy subgroup, Gx, strictly contains H, then either M>H = M^
or M>H has codimension > 3 in M%)- We shall use the term "not necessarily
locally linear G7-manifold" when we wish to drop the local linearity hypothesis but
retain the property that if M" C Mf but M" / Mf then M" is a locally flat
(inequivariantly) submanifold of M£ of codimension at least three.

This, while self-contained, is the second in a series of papers [SWj.g,S] in
which we analyze the extent of failure of the topological invariance of equivari-
ant Whitehead torsion and the consequent failure of subgroups of the equivariant
Whitehead group Wh£L(M) of Illman [IU] (cf. Rothenberg [R]) to classify PL or
smooth G-/i-cobordisms up to topological equivalence (under our gap hypotheses
the arguments of Browder and Quinn [BQ] and Rothenberg [R] show that G-h-
cobordisms are classified up to PL or smooth equivalence by such subgroups). We
eventually conclude in [SW7, S] (cf. [SW2]) that the topological equivalence classes
of G-/i-cobordisms on a 67-manifold M that are products over the union of fixed
point components of M having dimension < 5 are classified by a group WhGop(M)
to which WhG (M) maps homomorphically. The image in WhGop(M) of the per-
tinent subgroup of WhGL(M) classifies up to equivariant homeomorphism, rel M,
those G-Zi-cobordisms on M that admit equivariant handlebody decompositions
relative to M. (This homomorphism is not generally surjective and there are G-h-
cobordisms that do not admit such handle decompositions (cf. [SW5,S]). In order
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298 MARK STEINBERGER AND JAMES WEST

to achieve our classification, we must develop a flexible tool for producing equivari-
ant homeomorphisms which does not depend on explicit handle manipulations.

This is what we do in this paper: we develop the full equivariant analogue of
the o-approximation theorem of Chapman and Ferry [CF] and draw the expected
corollaries, including an equivariant topological ''thin /i-cobordism theorem" with
control in the base of the cobordism. Our results are equivariant in the strong
sense that nonisovariant input data is used to produce G-homeomorphisms. Thus,
our results do not follow automatically from the inequivariant ones by induction on
strata. Moreover, many of the inequivariant arguments do not generalize directly,
as relevant equivariant obstruction groups are nonzero. For instance, as shown in
[SW2], even the topological Whitehead groups of the n-torus with the trivial action
are nonzero (as are KoG(Sn) for all n, and even ^^(S1)).

Our approach is to develop equivariant controlled engulfing techniques which
enable us both to deduce an equivariant cell-like mapping theorem (Theorem 3
below) from the inequivariant theorem of Siebenmann [Six] and to deduce the
equivariant o-approximation theorem from it by the Chapman "shuffle" as in [Ci].
In light of [E], in which Edwards gives a purely engulfing proof of the inequivariant
cell-like mapping theorem, our results may be derived entirely through engulfing
techniques.

We use "G-equivalence" to mean an equivariant homotopy equivalence. For an
open G-cover, a, of Y (i.e., gll E a for all U E a) we say that a G-equivalence
/: X —> Y is a G-a-equivalence provided / is proper and there is an equivariant
homotopy inverse for which the homotopies to the identity maps are limited by the
covers a of Y and f~la of X.

THEOREM 1 (EQUIVARIANT a-APPROXIMATION). Let TV™ be a not neces-
sarily locally linear G-manifold. Then for each open G-cover, a, of N there is an
open G-cover, \3, of TV such that every G-(3-equivalence, f: (Mn,dM) —> (N,dN),
from a (locally linear) G-manifold, M, of dimension n that restricts to a homeomor-
phism, f: M^ —► Nf, ,, on all fixed point components (of M or of dM) that have
dimension < 5 is equivariantly a-homotopic to an equivariant homeomorphism.

Addendum (Equivariant /?-Domination). By further restricting (3, we
need assume only that / be a proper G-/?-domination (cf. [F]), provided that
dimM^ = dim Ni1, , for each fixed-point component, M^, of M.

REMARK. The above theorem may be used to detect locally linear actions among
the topological ones satisfying our standing dimension and codimension hypotheses.

Amusingly, we may now deduce a surgery-theoretic result similar to that used
by Siebenmann in his proof of the cell-like mapping theorem. (See [KS, Essay V,
Appendix B] for a complete bibliography.)

COROLLARY 1. Let f : M —> Tn x Dp be a G-homotopy topological structure,
rel d, on the product of the n-torus with the trivial action and a representation
disc with codimension 3 gaps (i.e., M is a topological G-manifold and f is a G-
equivalence which restricts to a homeomorphism on the boundary). If dim D^ +n >
5, then there is a covering, p: Tn —> Tn such that the transfer

(p x lYf: (p x 1)*(M) -> Tn x Dp

is G-homotopic rel d to a G-homeomorphism.
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PROOF. Choose a cover (3 of Tn x Dp such that any G-/3-equivalence is G-
homotopic to a homeomorphism and such that near Tn x 0, f3 is of the form j3x x e for
some e, with /3X a cover ofT". Now choose p so that (pxl)*(M) ->TnxDp^lTn
is a G-/9i-equivalence, and radially deform (p x l)*f to be a homeomorphism over
T" x (Dp - (e/2)Dp).

We also get the expected equivariant analogue of the bundle theorem of [CF].
Here a G-fibration is a Hurewicz fibration in the category of G-spaces and a G-
bundle is a bundle with fiberwise G-action which admits equivariant trivializations
with the diagonal action over a cover by slices [LR]. We say that a G-space X is
equivariantly locally path connected if for each x E B and each slice neighborhood
U of x, there is a slice neighborhood V C U of x such that for each y EV there is
a path in UGy form y to x.

Theorem 2 (Equivariant Bundle Theorem). Let p: E -► B be a G-
fibration where E and B are locally compact metric spaces and B is locally finite
dimensional and equivariantly locally path connected. Suppose that each p~*b is
a compact Gb-manifold of dimension n for which each fixed-point component has
dimension > 5 and that the restriction of p to IJbes dp*0 is a G-bundle. Then p
is a G-bundle.

We also obtain an equivariant version of Ferry's proof [F] of a conjecture of Kirby
and Siebenmann. Here if /? is a G-cover of X, a G-/?-map /: X —► Y is a G-map
whose point inverses are limited by (3.

COROLLARY 2. Let a be an open G-cover of the G-manifold Mn. Then there
is an open G-cover f3 of M such that if Nn is a G-manifold and f: (M,dM) —►
(TV, dTV) is a proper G-(3-map which restricts to a homeomorphism on strata of
dimension less than 5, then f is G-homotopic to a G-homeomorphism through a-
maps.

Let /: X -»■ Y be a G-map between G-ANR's [J, L]. We say that / is G-
cell-like (abbreviated G-CE) if for each y E Y and each G^-neighborhood U of
f~ly, the inclusion f~xy C U is Gy-nullhomotopic. (Equivalently, for each orbit
G/H C Y and each G-neighborhood U of f'1(G/H), the inclusion f~1(G/H) C U
G-deforms onto an orbit.) When X and Y are additionally separable and metric
this is equivalent to / being an equivariant fine homotopy equivalence (i.e., a G-a-
equivalence for all open G-covers a of Y) [SW6], cf. [Hav].

We say that /: X —> Y is an equivariant near homeomorphism if for each open
G-cover a of Y there is a G-homeomorphism h: X —> Y which is a-close to /. Our
proof of Theorem 1 requires the following generalization of Siebenmann's cell-like
mapping theorem [Sii].

Theorem 3 (Equivariant Cell-Like Mapping Theorem).    Let f:
(M,dM) —* (TV, dTV) be a G-CE map (as pairs) from a G-manifold to a not nec-
essarily locally linear G-manifold which restricts to a homeomorphism on all fixed
point components M" of dimension less than 5.   Then f is an equivariant near
homeomorphism.

COMPLEMENT. For / as above and a any open G-cover on TV there is an
equivariant a-homotopy /t: M —> TV with fx = f and ft a G-homeomorphism for
all t < 1.
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In fact, we now get an equivariant version of Edwards CE mapping theorem [E]
as an immediate corollary to [E] and Theorem 3. For simplicity, we state only the
"manifold without boundary" case.

Corollary (Equivariant Edwards Theorem). Letx be a locally com-
pact G-ANR such that for each unequal pair X£ C Xf of fixed point components,
X^f has codimension > 3 and is 1 — LC in Xf. Then a G-CE map f: M —► X
of a G-manifold without boundary onto X that embeds M<5 may be approximated
relM<5 by equivariant homeomorphisms if and only if each fixed point component
X£f of dimension > 5 has the disjoint disks property.

(Here, M<5 = {M^ldimM,^ < 5}. A space Y has the disjoint discs property
if each pair of maps f,g:D2—*Y may be approximated by maps with disjoint
images.)

The stratum by stratum induction in our argument leads us through an inequi-
variant extension of the a-approximation theorem to locally flat manifold fc-ads,
which may be of independent interest. A locally flat manifold fc-ad, (TV; Nx,... ,Nk)
in a manifold TV™ is a collection of submanifolds Ni C N such that if x E (Yj=i ^ >
there is a chart ip: Rn —> TV (or ip: R™ —* TV) about x — ̂ (0) and a collection of
linear subspaces, Vi. C R™ such that ip \ Vij (or tp | Vi- fl R" ) is a chart for x in TV^
for 1 < j < p. Thus, (TV; TVi,..., TVfe, 3TV = TVfc+i) is a locally flat (k + l)-ad, as is
(<9TV; (9TV n TVi,..., 3TV n TVfe) a locally flat fc-ad. We say that (TV; TVi,..., TVfc) has
codimension 3 gaps if each inclusion between components of intersections of TV;'s
(including TV = TV0) is either the identity or has codimension at least three. Maps
and homotopies of fc-ads are required to preserve the ith term for each i.

Theorem 4 (a-approximation for locally flat manifold A;-ads).
Let (TV™; TVi,..., TVfc) be a locally flat manifold k-ad with codimension 3 gaps. Then
for each open cover, a, of TV there is an open cover, /3, of TV such that each (3-
equivalence,

f: (Mn;M1,...,Mk,Mk+i=dM)-+(N;N1,...,Nk,Nk+1 = dN),

of (k + l)-ads that restricts to a homeomorphism on all components of intersections
of Mi's with corresponding components in TV of dimension less than 5 is a-close to a
homeomorphism, h, ofk-ads. Moreover, if f is a homeomorphism onM„n. • -r\Mip,
h may be required to agree with it there.

REMARK. This is also true for locally flat G-manifold fc-ads. Finally, our
work in [SW2,4,5,t] requires the following controlled /i-cobordism theorem. Here,
(Wn+1, M") is a G-/i-cobordism if M and W are G-manifolds with M C dW a codi-
mension 0 submanifold with equivariantly bicollared boundary such that M —> W
and dW - M —► W are proper G-equivalences. We say that (W, M) is a G-a-h-
cobordism, for a a G-cover of M, if there is an equivariant o-deformation retraction
r: W —» M such that the identity map of dW — M is equivariantly (/?, l)-connected
over M with control map r (cf. [Qi]). (That is, r is a G-deformation retraction of
W onto M whose tracks are limited by r~la and for each equivariant commutative
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diagram
S -► dW - M

n

R —£-♦       M,
where (R, S) is an equivariant relative 2-complex, there is an equivariant o-lift of
/ into dW — MrelS.) We say that W is a G-a-product (with respect to r) if there
is a G-homeomorphism h: (M x I, M) —> (W, M) whose tracks m x I are limited
byr-^Ccf. [Qi.Ca]).

THEOREM 5 (EQUIVARIANT CONTROLLED /l-COBORDISM THEOREM). Let
a be an open G-cover of the G-manifold M. Then there is an open G-cover (3 of
M such that if (W,M) is a G-0-h-cobordism which is (coherently) a G-f3-product
on all strata (ofW) of dimension less than 6, then (W,M) is a G-a-product.

One of our main tools is an equivariant version of the deformation principle of
Edwards and Kirby [EK], as generalized by Siebenmann [Si2]. We discuss this and
its corollaries in §1.

We give our controlled (isovariant) engulfing theorems in §2 and apply them to
obtain a main engulfing lemma in §3. Theorems 3, 1, 2, and 5 are proven in §§4, 5,
7, and 8, respectively, with Corollary 2 and the addendum to Theorem 1 given in
§6.

We wish to thank Shmuel Weinberger for helpful conversations.
The results of this paper are true in greater generality. With adjustments of

the hypotheses to fit the new categories (e.g., proper or isovariant homotopy con-
ditions), they hold for (1) a certain class of locally universal G-actions on Hilbert
cube manifolds [SWe] and (2) for proper Lie group actions on n-manifolds either
with or without the codimensions hypothesis [SWg].

1. Deformation of embeddings. In this section and the next, our G-mani-
folds need not satisfy gap hypotheses. All function spaces are assumed equipped
with the compact-open topology. Given G-spaces X and Y', we consider the con-
jugation action of G on the space, Yx, of all maps from X to Y, i.e., (g*f)(x) =
gfg_1(x), for g E G, / E Yx, and x E X. Thus, the fixed point set is the sub-
space of equivariant maps. Note that composition, ZY x Yx —► Zx, is equivariant,
and that the space, #(X), of homeomorphisms of X is a group in the category of
G-spaces whenever composition and inversion are continuous.

We are concerned with equivariant deformations of G-subspaces of embeddings
of (locally linear) G-manifolds. In this context, the work of Edwards and Kirby
[EK] generalizes verbatim, as noted by Siebenmann [Si3]. We find Siebenmann's
setting of it in terms of stratified spaces convenient, but, not being concerned with
actions of connected groups and not always assuming isovariant data, we eventually
find it simplest for our purposes to work in the manifolds, rather than the orbit
spaces. Thus, we review parts of [S\2] in this context.

A G-stratified set is a metrizable G-space, X, equipped with a filtration by closed
G-subspaces, 0 = X(_1) C X<°) C • • • C X(n) C ■ • ■ C X, such that for each n > 0,
the components of X'™' -X'™-1) (which may be void) are open in X*n'. The depth
of the stratification is the length, if finite, of a maximal chain of components of pure
strata, X^™' - X*"-1), whose closures intersect.
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Such a space, X, is an equivariantly conelike stratified set (G-CS) provided that
(i) each component of X'™' — X^™-1' is inequivariantly an n-manifold without

boundary and has constant isotropy subgroup, and
(ii) each x E X^ — X^™-1' has an open slice neighborhood in X that is

isomorphic as a Gx-stratified set to the product of a slice neighborhood of x in
X(") - X^™-1) with the open cone, cL, on a compact Gx-stratified set, L, of finite
formal dimension (i.e., with a finite number of strata). More general definitions are
obviously possible, but this one is convenient and provides for simple proofs.

EXAMPLES, (i) Let M be a G-manifold, then M is a G-CS set with M(n) -
M("_1) the union of all components of all MH -M>H and dMH - (8M)>H which
have dimension n. Moreover, if X is any union of G-translates of components of
MH,s and (MH n c3M)'s, then X is a sub-G-CS set of M, as is dM. This is the
orbit type stratification of M.

(ii) Let TV C M be a G-submanifold which is equivariantly locally flat in the
sense that each point, x, in TV has a slice in M that is Gx-homeomorphic to the
product of a slice in TV with a Gx-representation. Then there is a G-CS structure
on M obtained by filtering both TV and M — TV as above. This generalizes in the
obvious way to locally flat G-manifold fc-ads.

(iii) Each locally compact G-simplicial complex is a G-CS set with the filtration
given by its skeleta.

We now proceed with [EK,Si2]. For C C U C X, all G-spaces, let £(U,C;X)
be the space of open embeddings of U in X which restrict to the inclusion on G.

PROPOSITION 1.1. Let U be an open G-neighborhood of a compact G-subspace,
C, of a G-CS set, X. Let A' be a closed G-neighborhood of the closed G-subspace,
A, of X. Then there is a G-neighborhood, W, of the inclusion, i: U —> X, in
£ (U, U fl A'; X) and a G-deformation,

ht: W - £(U,UnA;X),
of W into £(U,Un(ALiC); X) such that

(i) for f EW and x outside any preassigned compact G-neighborhood of C in U,
ht(f)(x) = f(x) for all t, and

(ii) for all sub-G-CS sets, Y, of X and all f EW preserving or fixing Y, each
ht(f) also preserves or fixes Y.

SKETCH OF PROOF. As in [Si2], it is enough to show that the proposition
holds for U an element of a G-basis for X, and the same pair of handle lemmas
will suffice, with X = G xH (Rm x cL), U = GxH (!0Bm x cX0L), and H acting
trivially on Rm. The remarks in the second paragraph of the section indicate that
Siebenmann's argument for X = H x# (Rm x cL) is //-equivariant, and the rest
follows by translation.

Recall that neighborhoods of a map, /: X —► Y, defined by majorant functions,
e: Y —► (0, oo), have a basis given by the subsets, Na(f) C Yx, of maps a-close to
/ as a ranges over the open covers of Y. If / is equivariant and a is a G-cover of
Y. then Na(f) is an invariant subset of Yx.

COROLLARY 1.2. Let X, U, A, A', be as above with i: U C X, but let C be
closed and not necessarily compact. Let a be an open G-cover of X, and let D be
a closed neighborhood of C in U.   Then there are an open G-cover, (3, of X and
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a G-deformation of N0(i) n £(U, U n A'; X) into £(U, U n (A U G); X), wiift Me
deformation taking place in NOc(i)0£(U,Uf)A; X) and satisfying (ii) above as well
as

(i') ht(f)(x) = f(x) for all t and for all x E X - D.

COROLLARY 1.3. The homeomorphism group, M(X), of a compact G-CS set,
X, is locally G-contractible. If X is a noncompact G-CS set, then for each G-cover,
a, of X, there is a G-cover, (3, of X such that in M(X),Np(e) is null-homotopic in
Na(e), e being the identity.

The following is a simple generalization of [Si2, Theorem 6.5]. In it, U and
X are G-CS sets, and G C U is a closed, invariant set with compact frontier.
£c(U;X) denotes the space of open embeddings, /: U —► X, for which f(C) is
closed, £(G;X) is the space of closed embeddings of G in X, and p: £c(U;X) —►
£(C;X) is restriction. If B is a G-space, we say that it is equivariantly (G-)
path-connected if BH is path-connected for each subgroup, H, of G. Given an
equivariant map, j: B —> £c(U; X), let /;, = pj(b), and define irb: M(X) —* £(C; X)
by Trb(h) = hfb.

Corollary 1.4 (Isotopy Extension Theorem). Let B be an equivari-
antly path-connected G-space, and let j: B —* £c(U;X) be an equivariant map. If
either X has finitely many components or B is G-locally connected, then the pull-
back (pJY^b is a G-locally trivial principal bundle with fiber )l(X,re\fb(C)), for
each b E BG. Moreover, the same conclusion holds for the subspaces of these map-
ping spaces comprised of those maps which preserve or fix any family of sub-G-CS
sets of X.

PROOF. Fix <pE BG. For arbitrary b E B, the argument in [Si2, Theorem 6.5
(I)] gives a G(,-equivariant section, sb, of (pj)*irb, defined on a slice neighborhood,
TV, of b. Thus, for x E N,sb(x) E H{X), and Sb(x)fb = fx. To get a local section
of 7T,/, on TV, we require a homeomorphism, Fb: X —► X, with Fbfcj, = fb- This will
follow from the argument for the usual isotopy extension theorem [Si2, Theorem
6.5 (II)] applied to a Gj-equivariant path from <f> to b.

Corollary 1.5 (Isotopy Factorization Theorem).    Let a be an open
G-cover of the G-CS set X. Let f: Dp —* -W(X) be equivariant and uniformly
compactly supported, where Dp is the unit disc of a linear representation R™ of G
over R. Then there are G-maps fx,..., fk: Dp —► M(X), with each /, supported on
a compact subset of some GUi with Ui E a, such that f(x)f(0)~l — fx(x)o- ■ -ofk(x)
for all x E Dp.

PROOF. Use an argument as given in [EK] for the zero dimensional representa-
tion and extend it by a Lebesgue number argument as in [Si2, Theorem 6.5 (II)],
employing Corollaries 1.2-1.4 as needed.

REMARKS. In the above, we may replace Dp by the universal G-Hilbert cube,
Qg (cf. [SWe]), and hence by any compact G-AR.

As in [Si2, Theorem 6.17] there is an equivariant extension of locally flat isotopies
theorem. However, local flatness is difficult to verify unless the isotopy is supported
on a stratum of the sub-G-CS set Y C X, in which case Corollary 1.5 yields a more
finely controlled conclusion.
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COROLLARY 1.6. Let Y be a sub-G-CS set of X and let f: Dp -> M(Y) be an
equivariant isotopy with support on a compact subspace K of a pure stratum ofY,
with /o = id. Then f extends to an equivariant isotopy F: Dp —> )/(X), Fr, = id,
with support on any preassigned compact neighborhood of K. Moreover, if s > 0 is
given, we may assume that each F(Dp)(x) is either constant or is contained in the
e-neighborhood of some F(Dp)(y). Moreover, for each 6 > 0 there is a neighborhood
Us ofY such that for each x E U$, there is a y EY such that F(—)(x) is 8-close
to f(—)(g) as functions Dp —* X.

PROOF. Apply Corollary 1.5 to / with respect to a small cover of K by charts.
Extend each of the resulting factors by an Alexander trick, damping them out
along the cone coordinate on the cone on the link, cL, in the given chart, to be the
constant isotopy outside of the ^-neighborhood of the cone point, where 7 depends
on the number of factors.

COROLLARY 1.7. The same conclusion holds, with e and 6 replaced by an
open G-cover a and (3 of X and with F supported on any closed neighborhood of
Y, if f is a finite composite of disjoint unions of isotopies supported on compact
subsets of pure strata ofY.

2. Controlled equivariant engulfing. Once again, our G-manifolds need not
satisfy gap hypotheses. Fix a G-manifold of dimension n and a proper, equivariant
control map, p: M —> B, where B is a locally compact finite-dimensional metrizable
space. In this section, we prove an isovariant engulfing theorem which combines
the conclusions of [Il2, Bi, and SGH].

Let P be a G-PL space and let /: P —* M be a proper, isovariant G-map. We say
that / is locally polyhedral if for each x E M there is a Gx-chart, a: R™ —► M, of M
around x such that on /_1(o;(R™)), the composite of / and a~l is Gx-equivariantly
PL.

The following trivially generalizes a lemma in [SGH].

LEMMA 2.1. The image, f(R), of a locally polyhedral map, /:/?—» M,
inherits unique equivariant PL structure such that /:/?—> f(R) is PL and f(R) C
M is locally polyhedral.

Let /: K —> M be a proper, isovariant map of a G-CW complex into M. We say
/ has coherent codimension > fc if dim M¥, , — dim Kf > k for each component
/Cf of KH.

Let p < n - 3, and let 7 be a family of orbit types occurring in M. An engulfing
structure, (M, U), on M, of type ((3,p, 7) consists of collections £/0 C • • • C Up and
M0 C • • • C Mp of open subspaces of M, with U{ C Mj, such that if /: (K, L) —►
(Mi, Ui) is a proper (in M) isovariant map of coherent codimension > 3, with (K, L)
a G-CW pair of relative dimension < p — i and K — L of type 7, then there is an
isovariant p_1/?-homotopy, ft, of /, relL in Ml+X to a map into Ui+X.

We first give a controlled version of the inequivariant engulfing theorem of
[SGH], and then give some equivariant versions. (A full generalization will re-
quire an equivariant version of the controlled taming theory of Miller [Mil], Bryant
[Bry], and Bryant and Seebeck [BS], and its applicability will depend on the ex-
istence of equivariant topological dual skeleta, due inequivariantly to Edwards (see
[SGH]).)
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The PL requirement in the last sentence of the following is due to the lack of an
e-taming theory for half-spaces.

Proposition 2.2 (Controlled topological engulfing). Let p <
n — 3 and let a be an open cover of the control space B. Then there is an open
cover (3 of B such that for each engulfing structure (M, U) on M of type (/?, p) and
each locally polyhedrally embedded pair (P, Q) < (Mr,, Uq) for which dim P < n — 3,
dimP - Q < p, P n dM C Q and P — Q C M is a proper map, there is a p~xa-
isotopy, ht, ve\Q, of the identity map of M, supported on a closed (in M) subspace
of Mp, with P C hx(Up). When M is PL and P C M is PL, the requirement that
P fl dM C Q may be replaced by the requirements that n > 5, dim(P n dM) <
n — 3, and that the homotopies ft given by the engulfing structure may be chosen
to preserve the boundary.

PROOF. For M topological, we may assume by passage to (M — dM, U — dM)
that dM = 0. For simplicity, we may assume that a is relatively compact, so that
any p_1o;-homotopy of a proper map is proper. We argue by induction on p. For
p < n — 3, the result is almost immediate, using the global controlled taming theory
of [SGH] to get the general position data to apply the proof of Bing's engulfing
Theorem A [Bi] (details below). Here, (3 may be any p-fold star refinement of a.
Briefly, let R = P-Q, let S = P x 0 U R x I and let h: S -* M, be induced by the
homotopy ft of the engulfing structure. Let H be a p~l(3-homotopy approximating
h relP x 0 which is locally polyhedral and in (Hudson-type [H]) general position
as in [SGH] and let L be the union of the vertical line segments through points
of the singular set of H. Since dimL < p, induction gives an isotopy kt limited
by the (p - l)-fold star, Stp_1(p-1/?), of p_1/3, with L c kx(Up). Removing the
interior of a regular neighborhood of L in (kxH)~1(Up), we may assume H is an
embedding, and engulf up the vertical skeleta of a cylindrical (projection onto P x 0
is simplicial) triangulation T of S whose simplices have small enough diameter that
the resulting isotopy is limited by p-1/?.

For p = n — 3, the proof is modeled on Bing's engulfing Theorem D [Bi]. Here,
(3 is a (p + d + l)-fold star refinement of a, where d = dim B, with the additional
property that (3 = (3X U • • • U fid+i where each /% is a discrete collection of subsets
of B. Here, dim S = n — 2, so we may not be able to obtain a locally polyhedral
approximation to h as above. We do obtain a p~* /J-homotopy, H, approximating
h, with the following properties with respect to a fine cylindrical triangulation T
of S as above.

(1) H is locally polyhedral and in general position on the (n — 3)-skeleton, T™-3,
ofT.

(2) For each (n — 2)-simplex, a, of T there is a chart for which H \ o U Tn~3 is
PL, and o — do is in general position with respect to Tn~3.

(3) H is simplicially nondegenerate on T (i.e., H embeds each simplex of T).
(4) There is a shadow L C S for H, i.e., if Xi is the closure of {x E S | H(x) —

H(y) for some y E T™~3} then L is a (p- l)-dimensional union of vertical segments,
containing Xi, such that if x,y E S with H(x) = H(y), then x E L if and only if
yeL.

This data is sufficient for the engulfing. Induction gives a Stp_1(p_1/3) isotopy
engulfing ((Pp~2 xI)C\S)UL, and the argument above (modeled on Bing's engulfing
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Theorem B) gives a further p~l(3 isotopy engulfing (Pp~l xI)C\S. The (embedded)
(n - 2)-simplices of T are now engulfed vertically in tracks along sets of (3i,/32, etc.,
giving a St (p_1/3)-isotopy engulfing T™~3.

We first show how to obtain (l)-(3). Start with a locally finite cover V = {V,}i>o
of M by charts. Choose a closure refinement of the cover h~1")) of S, and, via
simplicial neighborhoods, choose a cover C = {C2} of S by codimension zero PL
subspaces with bicollared frontiers, dCi (which thus have dimension < n - 3) such
that h(Ci) C Vj and ClC\CJ = dCiC\dCv Now choose a fine triangulation, Ti, of 5,
for which each G; is a subspace and choose an approximation, hx, of h, satisfying (1),
such that hx: C, —► Vi is PL (after a possible change in the PL structure of Vi) and
in general position. By Rushing's relative codimension 3 e-taming theorem [Ru,
Theorem (5.5.2)] there is a small homeomorphism g:Vi —* Vi, relGi fl T™~3, such
that <?_1 (Vi nT™-3) is PL. Using g both to alter the PL structure of V, and to shift
hx on the interior of the (n — 2)-simplices of d, a small shift on the (n — 2)-simplices,
reld, now achieves (1) and (2) for an approximation h2. Now choose a cylindrical
subdivision, T, of Tx for which each h2: Cx —► V, is simplicially nondegenerate
(guaranteed by general position) and repeat the taming moves above inductively
over the (n — 2)-simplices of Ti to regain (1) and (2) for the new triangulation,
obtaining an approximation, /13, satisfying (l)-(3).

Let fc = h^. By (1) and (2), Xi is a subpolyhedron of S of dimension < n—5, with
fc I Xi PL onto fc(T™~3). Let Lx be the union of the vertical segments through
X\. Make another set of taming moves relative to T™~3 so that each (n — 2)-
simplex is PL with respect to Lx and shift each (n — 2)-simplex fjrelfc(T™-3) so
that a— (6VU(<7nXi)) is in general position with respect to Lx. Call the new map
fci and note that we have not changed the intersections involving T™-3 and that fci
satisfies (l)-(3) with T™-3 replaced by T"_3uLi in (2). Let X2 be the singularities
of fci involving T™~3 U Lx and let L2 be the union of the vertical segments through
X2. Since dimZ-i < n — 4,dim(X2 — Xi) < n — 6. Repeat the process inductively
until Xy+i = Xj. The map kj will satisfy (l)-(4), with shadow Lj.

Corollary 2.3 (Controlled equivariant engulfing). Letp<n-2>
and let a be an open G-cover of the control space B. Then there is an open G-cover,
(3, of B, such that for each engulfing structure (M,U) on M of type (l3,p,7), the
following conditions on an equivariantly locally polyhedrally embedded pair (P, Q) C
(Mq,Uq) provide for the existence of a p~l(a)-G-isotopy, ht,ve\Q, of the identity
map of M, supported on a closed (in M) subspace of Mp, for which p C hx(Up).

(1) P C M has coherent codimension > 3, P — Q is of type 7 and of dimension
< p, P — Q C M is a proper map, and for any stratum, TV, of M or dM of
dimension less than 5, P fl TV C Q.

(2) If M is topological or if P C M is not PL, then each component of P — Q has
only one orbit type and P f) dM cQ. If M and P C M are PL and P n dM (fi Q
then POdM C dM satisfies (1), and the homotopies obtained from the engulfing
structure may be chosen to respect the boundary.

PROOF. When M and P C M are PL, the general positioning for the argument
above is given by Illman [H3]. In the general case, we may consider each stratum
of P — Q disjointly from the others, and by passage to the strata of (M, U), may
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assume that P itself has a single orbit type and simply extend equivariantly the
moves given by passage to the orbit space.

REMARKS. More general equivariant topological engulfing is at present use-
less, without the existence of equivariant topological dual skeleta. However, in
case of need, we may obtain more general engulfing by a sequence of engulfing
structures (M1 ,U1) C • • • C (Mk,Uk), where fc is the depth of the stratification
(by dimension) of M by orbit types, (M"1,7}1) is an engulfing structure of type
(13,pi, 7), where 7 is the family of fixed point components of a given dimension,
and(M;i,L/;i)c(M^+1,^+i).

3. The main lemma. Our main applications of controlled engulfing are given
by the following lemma. Here, we consider G-ANR's X. (An action of a finite group
G on a finite-dimensional space X is a G-ANR if X and each XH are ANR's.) We
denote by X* some closed, G-ANR subset of X containing \JH^X XH that is 1-LG
embedded in X, i.e., for all s > 0 there is 6 > 0 such that maps /: Sl —> X - X*
of diameter < 6 extend to maps of Dl+1 of diameter < e.

LEMMA 3.1. Let a be an open G-cover of the G-ANR TV and let V c N
be a G-neighborhood of TV*. Then there is an open G-cover j3 of TV and a G-
neighborhood V C V of TV* such that if Mn is a G-manifold and f: Mn —> TV™
is a G-(3-equivalence which restricts to a homeomorphism f: M* —+ TV*, and U
is a G-neighborhood of M*, then there is an equivariant /_1 a-isotopy, ht, of
the identity map of M, supported on a closed (in M) subset of f~1V — M*, with
r'mch^u).

REMARKS. In the special case where / is the identity map of TV, the statement
says precisely that the neighborhoods of TV* in TV satisfy a controlled equivari-
ant version of the /-axiom of [SGH]. Thus, /-regular neighborhoods may be used
(with control) to study situations where Quinn's mapping cylinder neighborhood
obstruction is nontrivial, which may be the case even for G-manifolds (e.g. [Q2,
2.1.4]).

PROOF OF LEMMA 3.1. For simplicity of notation we shall assume unless
stated otherwise that all inclusions of neighborhoods, V C W, have the property
that V C W.

We construct a sequence of neighborhoods of TV*, V — Vr,yn-2 c •••Vn,o C
V^o C • • • C Vi,2 = V on which the size of f3 will depend, such that for / and U as
above,

(a) There is a sequence, Wr, C • • • C W2 = U fl f~1V of neighborhoods of
M* such that taking Mi — f~lVx^ - M* and £/,• — Wi - M*, i = 0,1, 2, gives an
engulfing structure of type (rj, 2, {e}), where the size of n is determined by Corollary
2.3 and the argument below.

(b) Taking Mt = rxV0fi-M* and Ut = /-1(Vb,o-7o,,-+i) for « = 0,... ,n-3
gives an engulfing structure of type (n, n - 3, {e}).

To complete the proof, let s: M -* [0,oo) be equivariant, with £-1(0) = M*, so
that, on M = M*, the cover by £-balls refines both f~x{3 and the distance from
M*. Choose equivariant topological dual skeleta (by pullback from the orbit space
via [SGH]) S2 and Tn~3 for M - M* with respect to e.

Apply Corollary 2.3 via (a), with P = the largest subcomplex of 5 contained
in /^(V^o) and Q = the largest subcomplex of S contained in W0, obtaining an
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isotopy ht. Let W-X C Wo be a neighborhood of M* on which ht is the identity
and let W-2 C W-X be such that the e-neighborhood of M — W-X is contained
in M — W-2. The argument now proceeds as in [SGH, Theorem 2.1], with Z =
/_1Vo,o _ W-2 and Z equal to the closed e-neighborhood of Z: there is a small
isotopy, gt, of Im, supported on a closed subspace of f~lVb,o - M*, with ZC\T C
gx(M — f~1(V')). Successive applications of ht, an e-push, and g^1 engulfs /_1(V)
by W2.

We first construct Vi,o C • • • C Vii2. Choose /3X small with respect to n and
choose neighborhoods Nr, c ■■■ C Nxx = V of TV* such that each TV3j+i equivari-
antly /?i-deforms into TV* within N3l+2 by a deformation rn rel TV*. Such a sequence
exists because TV and TV* are G-ANR's. Let j32 be any refinement of (3X such that
the /^-neighborhood of each TV^ is contained in TVJ+i, and let /? be small enough
that any /^-equivalence / as stated is a /^-equivalence by maps and homotopies
which extend the given homeomorphism / | M* and its inverse (i.e., (3 is a star
refinement of (32). Write g for the homotopy inverse just described. Set Vi,o = TVo
and Vi,j = TV3i+3 for i = 1,2.

Given / and U as above, and for any choice of V C Vi0, choose neighborhoods
Z0 c • • • C Zj, = U fl /_1(V) of M* such that for each i < 3 there is an ambient
G-/_1/^-deformation, Dn, of MrelM*, supported on Zi+X, which carries Zi onto
M* (again by ANR-ness). Let ht: Im ~ gf be a /^-homotopy relM*. Then
successive applications of Du,ht and grltf to a map j: (K,L) —» (f~lN2,i,Zi)
provide a homotopy in (/_1TV3(2+1), Zi+X) to a map into Zl+X, with the homotopy
limited by /_1(St4(/?i)). Thus, there is a /_1(St8(/?i))-homotopy relative to L.
Take WQ = Z0 and Wi = Zi+X for i = 1,2.

As M* is 1-LG in M, the second two stages satisfy the hypothesis for an engulfing
structure, and we need only consider h: (K2,L) —> (/_1)Vii0 - M*, W0 -M*). Let
h: Kxl —> F~1N3 be the /_1(St8/?i)-homotopy given above, and triangulate Kxl
cylindrically so that each simplex is contained in a linear chart refining f~l(3. By
the fine 1-equivalence we may assume that the 2-skeleton of K x / misses M*, and
by coning in the chart neighborhoods we may assume that each 3-cell, o, meets TVf*
in at most one (interior) point &.

Let E = (J a and for simplicity assume that E C K x I —► K is an embedding,
and identify T,x I with the union of the vertical segments from T, = Ex0toKxl.

First adjust h so that each cj x I intersects M* only at o and E x (0,1] is locally
polyhedrally embedded in M — M*. Identifying / with the face vr,vx of the standard
2-simplex A2 = (vc,,vx,v2) let

h': (E x A2,E x vQv2i: x vxv2) -» (f-1v1,0;M*,W1)

be the extension of h \ E x / obtained from the /_1(St8/?i)-homotopy above, and
adjusted relE x (vqvx U v0v2) to embed E x (A2 - ^0^2) locally polyhedrally in
M - M*. Now approximate h: K x / - E -> /_1Vi,0 - M* relE x (0,1] so that
K x I -E x / is in general position with respect to h'(E x (A2 - vr,v2)) and the
approximation extends continuously via h \ E.

By a move reminiscent of the "Alexander trick," we may slide the arcs ox I along
the discs & x A2.rel<i, obtaining a new h whose intersection with M* is precisely
Ex/. Precomposing h with a slide in the domain which pulls K x / off a small
regular neighborhood of E x /, we obtain a homotopy as desired which misses M*.
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The choice of Vo,n-2 C • • • C Vo,o is similar to Quinn's construction of an
equivariant (n,n — 2,0) tame structure of the TV - TV* over TV* [Qi]. (Quinn
observes in [Q2, 2.2.1] that such a structure exists. We simply modify his proof
for our purposes, and refer the reader to [Qi] for the necessary definitions and
ingredients.) First choose Vn,o C Vii0, a retraction e: Vo,o —► TV*, and an open
G-cover n' of TV* so that e~1rj' refines n. By the locally compact version of Quinn's
eventual Hurewicz theorem [Qi, 5.2], there is an open G-cover, p, of TV*, such that
the composite of a suitable sequence of "relatively homologically (p, n — 3) trivial"
maps over TV* is "relatively (rj',n — 3) connected." Notice that since Quinn's proof
of the eventual Hurewicz theorem proceeds skeleton by skeleton it applies verbatim
to equivariant maps of free G-pairs over TV*. We only give the construction of
Vo,2 C Vo,i C Vo,o, as the others are built analogously.

As in [Qi, 5.3] it suffices to construct

Vo,o = V0)o,-2 ^ ^o,i,-i ^ Vo,!^ = Vo,i D Vb,i,i D ■• ■ D V0tX,2k+2 = Vbi2,

where fc = n — 3, such that
(1) each /_1(V0,i,t - V0,i,;+i) C /-1(V\i,t-i - V0,m+2) is (p, l)-connected

over TV*, and
(2) each /_1(V0,i,i+i) is (e/)~V-deformable xnl:o M*re\M*, with the defor-

mation taking place in /-1(Vb,i,i) (giving rise to a controlled homological tame
structure by the argument of [Qi, 3.1.1]).

Quinn shows how to do this [Qi, 5.4] when / is the identity map. We use
Quinn's argument in TV with a suitable refinement, //, of p, together with buffer
neighborhoods and /3-homotopy data as in the argumentation for case (a) above to
deduce that (1) and (2) hold in M.

4. Proof of the equivariant CE-mapping theorem. We first note that
both here and in the proof of the equivariant o-approximation theorem we may
assume, by passage to the double and Corollary 1.2, that our manifolds are without
boundary. We make this assumption both here and in §5.

As shown in [Sii], the complement follows from the main statement by Corollary
1.3, so it suffices to show approximability by homeomorphisms. We argue stratum
by stratum, noting that since a G-CE map /: M —*■ TV restricts on fixed-point
components f": M" —» TV^ to a W~,-CE map (where W^ is the isotropy subgroup
of 7 e tt0Mh under the action of W(H) = N(H)/H), the dimensions of M" and
TVT^ are equal by the Vietoris-Begle theorem [Sp].

Our argument uses the inequivariant CE mapping theorem [Sii], Lemma 3.1,
and the equivariant Bing shrinking criterion. The statement and proof of the latter
is a trivial generalization of the inequivariant version in Chapman [C3, Theorem
26.1].

LEMMA 4.1 (EQUIVARIANT BlNG SHRINKING CRITERION). Let f: X -> Y
be a proper surjective G-map between locally compact G-spaces. Then f is an equi-
variant near homeomorphism if and only if for each open G-cover U of X and each
open G-cover VofY there is an equivariant homeomorphism h: X —■> X such that
fh is V close to f and each h(f~l(y)) lies in some element ofll.
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Thus, assume, after taking a suitable approximation, that / is a homeomorphism
on all strata smaller that Mf/. We shall approximate / by a map which is a
homeomorphism M^ —► Nf/.

Let D be the decomposition of M whose only nontrivial elements are the sets
M/J n f'xy for y E N>H and their G-translates. Then / factors through a G-CE
map /: M/D —► TV. We shall show that the projection map n: M —* M/D is a
near homeomorphism, so that we may assume in the subsequent argument that
f-1N>HnM* = M>a.

Let U and V be covers of M and M/D as in the hypothesis of Lemma 4.1. Let
IT' be an equivariant collection of open sets in TV which covers GN>H, such that
/_1"V' refines V and let V be a G-neighborhood of GN>H in TV whose closure is
covered by V.

Let U be a G-neighborhood of GM>H in M such that U n /_1V refines U.
The main lemma provides a Vl^-equivariant /-11|/-isotopy, ht, of M// xe\M>H,
supported on /_1V, such that each set in D (1 M^ is contained in hx(U fl Mi/).
As ht is constructed from small pushes in Mf/ — M>H, Corollary 1.7 provides an
extension of h to an equivariant /_1"V'-isotopy of Im supported on /_1V (hence a
7r~11'-isotopy) ht. The required shrinking is given by hx   .

Thus, we shall assume that /_1TV>H n M^ = M>H. Let D' be the decompo-
sition of M whose only nontrivial elements are Mf D f~xy for y E TVTv* — N>H
and their G-translates. As above, is suffices to show that it: M —► M/Dx is a near
homeomorphism.

Given U and "V as above, choose refinements W and VofUn /_1(TV — GN>H)
and "V D /_1(TV — GN>H), respectively, with "V' sufficiently fine that any self-map
of M — f~lGN>H which is 7r_1T''-close to the identity map extends continuously
by the identity map of f~1GN>H.

Consider tt: M//-M>H — (M//-M>")/D = N//-N>H. Here, W^ acts freely
and the induced map of orbit spaces is CE. Lifting the homotopy obtained from the
inequivariant complement of the CE mapping theorem, we obtain a W^-equivariant
homotopy ft, with fx = f and ft a homeomorphism for 0 < t < 1, with the
homotopy limited by /-1V", for "V" a star refinement of V. Then for any to < 1,
Jq1 ft is a tt~1V '-isotopy from the identity map to /Q~1/t0. For t0 sufficiently close
to 1, frj1 ft0 shrinks sets in Dx into sets mil'. Moreover, the construction of /0~ ft
given by [Sii] is as a composite of compactly supported moves, so an equivariant
extension g: M —* M of frj1 ft0 exists by Corollary 1.7, and shrinks Dx as required.

5. Proof of the equivariant a-approximation theorem. As above, we may
assume that our manifolds are without boundary, and the following lemma gives
the dimension requirements for a stratum by stratum induction.

LEMMA 5.1. Let a be an open G-cover of the G-manifold TV™. Then there
is an open G-cover j3 of TV such that if f: Mn —► TV™ is a G-(3'-equivalence which
restricts to a homeomorphism on all strata of dimension less than 5, then the restric-
tion to each fixed-point component f//: M/f —» TV^ is a-close to an inequivariant
homeomorphism.

PROOF. Since f" is a !V^-/3-equivalence, [Ci, Theorem 1] provides that for /?
sufficiently small, ff/ is close to an inequivariant approximate fibration. Since the
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homotopy fiber of ff is trivial, this approximate fibration is a cell-like map. The
result follows from [Sii] and the Vietoris-Begle theorem [Sp].

In fact, this sketch is a paradigm for our argument. We show that if f>H is
already a homeomorphism, a is given, and (3 is sufficiently small, then f// is a-close
to a W~,-CE map. Our constructions extend equivariantly over M with control, and
the induction is completed by the (inductive) proof of the G-CE mapping theorem.

For simplicity, we replace Mf ,N/f ,M>H,N>H and W1 by M,TV,M*,TV* and
G, respectively.

As mentioned in the introduction, we shall adapt Chapman's argument [Ci] to
show that for any a there is a j3 such that if /: M —► TV is a G-(3-l equivalence,
with /*: M* —► TV* a homeomorphism, then for any open G-cover 7 of TV there is
a G-7-equivalence /': M —* TV which is a-close to /. The required G-CE map is
then obtained as a limit of a convergent sequence of such /'.

REMARKS. Our engulfing techniques permit a full equivariant analogue of Chap-
man's Theorem 1 (approximation by approximate fibrations) if M has "stable"
gaps (i.e., 2dimM>ff < dimTV/T^ whenever M>H ^ Mf), by using topological
dual skeleta of dimension less than the gap codimension and general position.

Our adaptation of Chapman's handle lemma [Ci, Theorem 5.2] is the following.
Here, generalized singular set corresponds to M*,N*, etc.

LEMMA 5.2. For each s > 0 and n > 0 there is a 6 > 0 such that for each
p. > 0 there exists v > 0 such that if Mn is a G-manifold and f: M —► Rn_fe x Rk
is a homeomorphism on generalized singular sets, an equivariant 6-equivalence over
5g~ x Dk and an equivariant v equivalence over Z?™_fc x (Dk — Dk,3), then there

is a map f:M^> Rn~k x Rk which is an equivariant p-fibration over Bx~k x Dx

and is equivariantly £-homotopic to fve\M — f~1(B$~k x Dk,3).

Here S"_fc is the unit ball of radius t in Rn~k and Dk is the unit ball of radius
t in R*.

The argument now follows by a standard induction down the dual handle struc-
ture in each element of a cover of TV by charts. For a cell an~k of type H, we apply
the handle lemma //-equivariantly to Rn~k x R*, where R* is the open dual cell
of o and R"~fc lies in the interior of a, and obtain G-equivariance by translation.
Thus, the induction starts with the action of the trivial group on R™. Here, there is
no statement about v, but a direct application of Chapman's Lemma 5.1 produces
a map which is a /z-fibration over Bx. In fact, by our codimension 3 gap hypothesis,
equivariance does not enter until fc = 3. At each stage, p is the v produced by the
previous stage and the /3-control has been relaxed by a factor of 2e. For a given
e and small enough (3, we get a small deformation to a /z-fibration for any p as
required.

The handle lemma is proven by Chapman's shuffle argument, in which the prob-
lem is first localized over an embedded Tn~k~l xRxRjc R"~fc x R* wrapped
up over Tn~k x Rk, and unfurled over R"~fc x Rk. Chapman uses the unfurled
map and a radial contraction of the base to get improved control over part of the
target, and controlled engulfing to cover a translation shifting the product of unit
balls into the region of improved control.
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The controlled engulfing for both this move and the wrapping up is accomplished
by the following lemma. Here we are given D = D™^1, and equivariant map
4>: D —* [0,oo), and an isotopy 0t: R —» R, t > 0, supported on [—1,1], with
9t = id for t > 1. Let 0:.DxR—>Z)xRbe given by 0(x,y) = (x,9^x)(y)), let
Dt = </>_1([0, t]) and let tt: D x R —► D by the projection.

LEMMA 5.3. For every e > 0 there is a 8 > 0 such that if f: Mn —> DxR is an
equivariant map which is a G-8-equivalence over D4 x [—4,4] and a homeomorphism
on generalized singular sets, then there is an equivariant (7r/)_1 £-isotopy Ot of the
identity map of M, supported on f~1(D2 x [—2,2]) such that fOx is £-close to
Of. Additionally, if p > 0 there is a v > 0 such that if f is a v-equivalence
over (D4 — -D1/3) x [—4,4], then we may require that fOx is p-close to Of over

(D4 - D2/3) x R.

PROOF. In [Ci, Theorem 3.6] Chapman works his analogue of this up from an
easier lemma by the method of partitioning [—1,1] as —1 = Xr, < ■ ■ ■ < xk = 1
and considering the laminae 9(D x [xt-X,Xi]) and the tubes 7r_1/3 for a sufficiently
fine open cover (3 of D. He obtains his homeomorphism 0X by using engulfing to
move each f~x(D x Xi) into f~l0(D x (xi-X,Xi)) with movement guided by the
tubes (-itf)~lf3. The result is, for sufficiently fine partitions and sufficiently fine 13,
sufficiently well controlled. (This is because the control is mediated by the thickness
of the laminae and by Stp/?, where p = p(n, fc) comes from repeated engulfing control
estimates. Thus, given p, we can choose a sufficiently fine partition, and choose /?
to be sufficiently fine near D — D2/3, that the laminar chambers of 7r_1(Stp/3) in

(D — D2/3) x R have diameter less than hp. If we now choose v so small that each

subset, A, of (D — D2/3) x [—1,1] of diameter < u is contained in (3i x [xi-X,xi\
for some (3i E (3, then the diameter of 0(A) < p and the ^-equivalence stays a
/i-equivalence.)

All of the above considerations go over verbatim to the equivariant context once
we establish the equivariant analogue of Chapman's simpler lemma [Ci, Lemma
3.4], which is as follows, using the notation of Lemma 5.3 above.

LEMMA 5.4. For every £ > 0 there is a8 > 0 such that iff: M™ —► DxR is an
equivariant map which is a G-8-equivalence over D x [—4,4] and a homeomorphism
on generalized singular sets, then there is an equivariant (nf)'1 £-isotopy, ht, of
the identity map of M, supported on f_1(D x [—3,3]) such that

f-\D x (-00,1]) C hxf-l(D x (-oo,0)).

PROOF. Let 7 > 0 be given. By induction up the strata of D*, applying Corol-
lary 1.7 to isotopies obtained by feathering out (by partitions of unity) piecewise
linear slides in the R-coordinate of D* x R = M*, we may assume given an equivari-
ant (tt/)-1 7-isotopy 0t of the identity map of M, supported on f^1(D x [—3,2])
such that on some neighborhood, U, of M*,

0X(U n f~l(D x [-2,oo))) c r\D x (l,oc)).
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By the proof of the main lemma, which works perfectly well "over D x [-4,4],"
there is a G-neighborhood, V, of D* x [—§,§] and a /3 > 0 such that if / is a
/^-equivalence over D x [—4,4] and U is as above, there is an equivariant /_17-
isotopy, A(, of the identity map of M, supported on f~l(D x [-3,3]), such that
Xx(f~xV)cU.

If / is a ^-equivalence over Dx [-4,4] and pt is any homotopy of lrjxR supported
on Dx [—4,4], then an equivariant (5-lift pt: M —► M will exist and will be isovariant
off f~l of the ^-neighborhood of D* x R. We can use this observation together with
our controlled engulfing (cf. [Ci, Lemma 3.2]) to produce a (7r/)_1 ^-isotopy, pt, of
the identity map of M, supported on f~l(Dx [—1,3] — Vi), for some neighborhood
Vi c V of D* x [-§, §] such that ~pif~l(D x [-l,oo)) n f~l(D x (-co, f]) is
contained in /_1V. (Here, £ depends on 8 via Corollary 2.3.)

Since At has control over DxR,a small choice of 7 will guarantee that

is in the complement of the support of 0t and that Xxpx(f~1(D x [—l,oo))) C
f~lD x [—2,00). Thus if 7, £ and 8 < (3 are small, successive applications of jut, At
and 0t provide the desired (7r/)_1 e-isotopy.

6. /^-dominations and /3-maps. Ferry proves the inequivariant versions of
the /^-domination theorem and Corollary 2 as a straightforward application of the
following two results. We shall state them and discuss the required modifications
of Ferry's proofs.

LEMMA 6.1. Let Y C X be a locally compact G-ANR pair with Y closed in
X. Then for any open G-cover a of X there is an open G-cover (3 of X such that
if g: X —> Z is a surjective proper G-(3-map, then there is a proper a-domination
of pairs f: (Z,g(Y)) —► (X, Y) with right a-inverse g.

LEMMA 6.2. Let a be an open G-cover of the G-manifold M™. Then there
is an open G-cover (3 of M such that if TV" is a G-manifold and f: (TV, dN) —>
(M,dM) is a proper G-(3-domination of pairs for which dimTVT^ = dimM¥, , for
all fixed-point components, Nff, of TV, then f is a G'-a-equivalence of pairs.

Ferry proves Lemma 6.1 using the convex structure of separable Hilbert space, l2,
and the fact that any locally compact (separable metric) ANR embeds as a closed
subspace of l2. The equivariant analogue is l2[G], the separable Hilbert space whose
basis is a free G-set. Embeddability of locally compact G-ANR's in l2[G] follows
from the usual arguments together with the embedding theory in Bredon [Br] (cf.
[SW6]).

The first requirement for generalizing Ferry's proof of Lemma 6.2 is that any
n-dimensional G-ANR be equivariantly /^-dominated by an n-dimensional G-CW
complex. This follows from the usual nerves-of-covers arguments. The only change
necessary is that the application of Ferry's eventual Hurewicz theorem [F, Proposi-
tions 3.1-3.3] requires a sequence of neighborhoods for each orbit type in the local
representaton Dp, as it will not necessarily be possible to select a single sequence of
G-connected neighborhoods. Thus, we argue by induction on orbit types and con-
sider only the restriction of the neighborhoods in question to the given fixed-point
set.
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7. The equivariant bundle theorem. Let p: E —* B be a proper equi-
variant surjection of locally compact, separable metric G-spaces. We say that p
is equivariantly completely regular if for each e > 0 and each x E B there is a
slice neighborhood U of x such that for each y E U there is a Gy -homeomorphism
P~X(y) ~* P~l(x) which is e-close to the inclusion p_1(y) C E.

We show that a G-fibration satisfying the hypothesis of Theorem 2 is equi-
variantly completely regular, and deduce Theorem 2 from Corollary 1.3 and the
following generalization of a theorem of Dyer and Hamstrom [DH], which is based
on Michael's selection theorem [M].

PROPOSITION 7.1. Let p: E —> B be equivariantly completely regular, with
B locally finite dimensional, and suppose that the homeomorphism group of each
p~x(x) is locally Gx-contractible. Then p is a G-bundle.

PROOF. We wish to find an equivariant local trivialization with the diagonal
action over a slice around x E B, so we may as well restrict attention to a slice
over which each p_1y is Gy-homeomorphic to p~~lx. For simplicity, call this slice
B, write G for Gx and write F for p_1x.

Let PE be the subspace of the space of maps from F to E which consists of
homeomorphisms from F to fibers of p and let it: PE —> B send h: F —► p_1y to
y. Let G act on PE by the diagonal action: (g ■ h)(z) = g(h(g~xz)). Then it is
equivariant, and if s: U —► PE is an equivariant section of it over a neighborhood
U of x in B, then there is an equivariant local trivialization (with diagonal action)
s: U x F —> p~lU given by s(y,z) = s(y)(z). Conversely, an equivariant local
trivialization induces a local section.

Let P'E C PE be the subspace consisting of those h: F —> p~ly which are
Gv-equivariant. Then the image of an equivariant local section of it always lies in
P'E. In fact, P'E n ir~ly is the Gy-fixed point set of ir~ly, and the restriction
it': P'E —» B of n is isovariant. Thus, the equivariant local sections of it' are in 1-1
correspondence to the local sections of the orbit map it'/G: P'E/G —* B/G.

We wish to apply Michael's selection theorem [M, Theorem 1.2]. In his language,
a selection for the carrier 4>(y) = (^'/G)~1(y) is precisely a section of n'/G. Local
sections will exist provided that <p is lower semicontinuous and that the family of
fibers of 7r'/G is equi-LC™ for n > dim B.

The former condition is equivalent to showing that 7r'/G is an open map. Since
projections to orbit spaces are open, it suffices to show that n' is open. Let V be an
open subspace of P'E and let {y,} be a sequence in B — n'(V) which converges to
y E B. By equivariant complete regularity, after possibly passing to a subsequence
of {y%}, there is a sequence of homeomorphisms /,: p"ly —► p-1t/i, such that fi
is Gy,-equivariant, which converges to the identity map of p~ly (recall that p is
proper). If y E ir'(V), there is a Gy-homeomorphism /: F —► p~xy in V. But then
{fif} converges to / in P'E.

It now suffices to show that the fibers of ir' are equivariantly equi-LC™ in P'E,
i.e., for each Gy-neighborhood U of / E n'~1y in P'E there is a Gy-neighborhood
V C U such that any map of a fc-sphere into V n ir'~ (z), fc < n, is nullhomotopic
in U D n'~ (z) for any z E B.

Let V be a Gy-neighborhood of / in PE such that V n P'E = V and let V be
a Gy-neighborhood of / in 7r_1t/ such that the e-neighborhood of V is contained
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in V for some e > 0. Let U' be a neighborhood of / in it~1y which Gy-contracts
in V and suppose that the 2(5-neighborhood of / in it~1y is contained in U' for
8 < £. Take U to be the intersection of the r5-ball around / with the inverse
image under it' of the neighborhood around y specified for 8 in the definition of
equivariant complete regularity. Since left translation by Gy<-homeomorphisms is
Gyi-equivariant in PE, the result follows.

We now show that a G-fibration as stated is equivariantly completely regular.
This follows from the equivariant a-approximation theorem, provided that p satis-
fies the obvious equivariant analogue of a strongly regular map (cf. [CF]), which
holds provided that over a compact neighborhood of each x E B there is an equivari-
ant lifting function such that for each e > 0 there is a 8 > 0 such that equivariant
(5-homotopies into B lift to equivariant e-homotopies into E. Since p is proper,
this will hold by a Lebesgue number argument for any equivariant regular lifting
function. Since B is metric, such a lifting function exists by the usual arguments
(cf. [SWi]).

REMARKS. In fact, Michael's argument has an obvious generalization to actions
by finite groups, which would provide equivariant sections of it directly.

8. The equivariant thin /i-cobordism theorem. Let (W, M) be a G-(3h-
cobordism with controlling deformation retraction r:W —► M. Let W be the union
of W with an external collar on M and let f: W —► M x I be r on W and the identity
map on the collar. Since r is close to the projection map on the low dimensional
strata, we may assume, with slight loss of control, that f is a homeomorphism there.
Thus, our thin /i-cobordism will follow from the a-approximation theorem provided
that f is a well enough controlled homotopy equivalence on the boundary.

It is enough to show that for f3 small, the inclusion dW — M c W is a G-r_17-
equivalence for 7 small. First, replace dW — M with Mx, the complement in dW
of the union of M with a small (with respect to /?) open collar on dM.

We shall apply the locally compact version of Quinn's eventual Hurewicz the-
orem. As before, since Quinn's argument is an induction on skeleta, it suffices to
show that Quinn's hypotheses hold simultaneously in each fixed-point set. For this
we note that since W is locally linear and local representations are constant along
isovariant arcs, a quick induction shows that each fixed-point component of W is
an equivariant /?-/i-cobordism between the pertinent components of M and Mx.

Consider the end r:W — M —> M and let Uq d ■ ■ ■ D U2n+3 be complements
of small collar neighborhoods of Mx in W. Then for /?' slightly larger than 0
there is a G-/?'-deformation retraction of each Ul onto M. Moreover, each inclusion
Uj — Uj+X C Uj-X—Uj+2 is equivariantly (/?', l)-connected because the identity map
of dW — M is ((3, l)-connected. Thus, as in [Qi, 5.3], there is a small equivariant
deformation of W — M rel Mx into a small collar around Mx.
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