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Let L=(T) denote the complex Banach algebra of (equiva-
lence classes of) bounded measurable functions on the unit
circle T, relative to Lebesgue measure m. The norm || f||~ of
an f in L>=(T) is the essential supremum of | f| on 7. The
collection of all bounded holomorphic functions in the open
unit disc U forms a Banach algebra which can be identified
(via radial limits) with the norm-closed subalgebra H* of L=(T).

A function f in L(T) is unimodular if |f| =1 a.e., on
T. The inner functions are the unimodular members of H<.
It is well known that they play an important role in the
study of H=.

The main result (Theorem 1) is that the set of quotients
of inner functions is norm-dense in the set of unimodular
functions in L=(T). One consequence of this (Theorem 7) is
that the set of radial limits of holomorphic functions of bounded
characteristic in U is norm-dense in L=(T). It is also shown
(Theorem 3, 4) that the Gelfand transforms of the inner func-
tions separate points on the Silov boundary of H=, and this
is used to obtain a new proof (and generalization) of a theorem
of D. J. Newman (Theorem 4),

Our proof of the main result uses only one nontrivial property of
H=>, beyond the fact that H~ is a norm-closed subalgebra of L=. It
therefore applies, without any extra effort, to a much more general
gituation which we now describe.

Let now L> denote the Banach algebra of all bounded measurable
functions on some measure space X, normed by the essential supremum,
and let B be a norm-closed subalgebra of L=. We say that B has
the annulus property if the following is true:

If X s the union of disjoint measurable sets E, and E, and if
0 < r < r,< «, then there exists h in B such that

(1) 1/h is in B, and

2 |h|=r ae., on E, for i=1,2.

That H= (in the classical setting described above) has the annulus
property is well known: to see it, put v =, on E; (now T = FE,UFE)),
and define

T 6 i
h(z) = exp {% S_T—gg—il—z— log u(e*")dﬁ} (ze U).

Then % maps U into the annulus {w:r < |w| < 7}, and the radial
limits of % have modulus »; a.e., on E,.
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Furthermore, the H=-algebras associated with weak*-Dirichlet
algebras also have the annulus property. This is a special case of
Lemma 2.4.3 of [11]. We shall have no opportunity to use any other
property of these algebras, and will therefore not even define them
here. An excellent account of them is given in [11].

In order to avoid repetition we now state what our standing as-
sumptions will be. Theorems 1 to 5 will deal with the general situa-
tion just described. H= will simply denote some subalgebra of some
L», the only other hypothesis being that H*= has the annulus pro-
perty. The “inner functions” will again be the unimodular members
of H=. Theorems 6, 7, 8 are more special and deal with the classical
situation of the unit circle.

THEOREM 1. The set of all quotients of imner functions is norm-
dense in the set of all unimodular functions in L.

Proof. Since the measurable unimodular functions taking finitely
many values are norm-dense in the set of all unimodular functions in
L=, and since each function of the latter type is a product of finitely
many unimodular functions each taking at most two values, it is
sufficient to prove the following.

PROPOSITION. If E, and E, are disjoint measurable subsets of X
whose union is X, if N, and N, are complex numbers of modulus 1,
and if € > 0, then there exist inner functions ¢, and ¢, such that

N — ¢u@)/g(w) | < e a.e., on E(t=1,2).

It involves no loss of generality to assume that A\, = A,. Let a,
and «, be closed disjoint subarcs of T, of length less than ¢, contain-
ing A, and X, respectively. Let Q be the complement of a, U @, in
the Riemann sphere. Then there is an annulus

D={zir, <|z| <1y

and a continuous function @ on its closure D whose restriction to D
is a one-to-one conformal map of D onto Q ([2], p. 247). If |z] = r;
then @(z) is in a;(1 = 1,2). The reflection principle shows that @ is
holomorphic on D, except for a simple pole at some point z, in D. By
a theorem of Ahlfors [1] there exists a function @,, holomorphic on
D, such that @, has a zero at z, and |@,z)| = 1 on 0D. Define @, =
@-@,. Then @, is holomorphic on D, |@,(z)| =1 on 6D, and @ = @,/9,.

By the annulus property which H*= satisfies, there exists & in H>
such that |[A| = r; a.e., on E;, and 1/ is in H*. Thus & maps X
into oD, ||k ||. = 7, and ||1/h||. = 1/r,.. Since @, and @, are holomor-
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phic on D, their Laurent expansions converge uniformly on D. Since
H= is norm-closed, this implies that the compositions ¢, = @,k and
¢, = @,0h are in H=. C(learly, they are also inner. Finally, ¢,/¢, =
@oh, and (@oh)(x) is in a; for almost every x in F,(z = 1, 2).

This proves the proposition, and hence Theorem 1.

THEOREM 2. Let Q be the set of all functions of the form ¢,
where v is a finite linear combination of inner functions and ¢ is
innmer. Then Q is norm-dense in L=,

Proof. By Theorem 1, the norm-closure Q of @ contains all
unimodular functions in L=. Let y, be the characteristic function of
a measurable set £ C X. Note that 2y, —1 is unimodular, and hence
is in Q. Since @ is a linear space, it follows that y, is in @ for
every measurable £ X, and hence Q = L~.

Since @ is the algebra generated by the inner functions and their
complex conjugates, Theorem 2 may be restated as follows:

COROLLARY. The self-adjoint algebra generated by the inner
Sunctions is norm-dense in L=.

REMARK. The subgroup G consisting of those unimodular func-
tions which are quotients of inner functions has already occurred in
certain studies ([5], [7, p. 12]). Theorem 1 shows how delicate the
question of membership in G is. Note that G Q (see Theorem 2)
and that Q — Q, where Q denotes the set of those functions in L=
which are of the form ¢+, where ¢ and + are in H=. In the classi-
cal situation, every nonconstant f in @ satisfies

ST10g|f]dm> —oo,

We doubt that this necessary condition is also sufficient (even for
unimodular f) but we have no counterexample.

In connection with Theorem 2, we recall that it is still an open
question whether the closure J of the set of finite linear combinations
of inner functions is H*= (cf. [3], p. 348). Actually, J is a subalgebra
of H= which in the classical case of the circle has the same maximal
ideal space and Silov boundary as H= (see the footnote to Theorem 3
and the proof of Theorem 4).

We now consider the maximal ideal space M of H=. The annulus
property implies that 1 is in H=, so M is compact. The Gelfand
transform f of an f in H*= is a continuous function of M, such that
W1l = 1| flle, where || f|| denotes the maximum of | 7| on M, and || |l
is the essential supremum of |f]| on X. We shall use the following
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notations:
If ¢ is inner, then

K,={reM:|¢(v)| =1}.
If, ¥ is a set of inner functions, then

K:=NK,.
per
If ¥ is the set of all inner functions in H=, we write K in place
of K;. g
The Silov boundary of H= will be denoted by o.

THEOREM 3. The Gelfand transforms of the inmer functions
separate points on K.W

Proof. Let v, and v, be distinct points of K. There exists f in
H> with f(v,) = 0 and f(v,) = 1. By Theorem 2, one can find ¢ and
4 such that ¢ is inner, - is a finite linear combination of inner
functions, and || ¢f — ¥ |l. < 1/3. Hence

|FONF) — F) | <+
for every ve M, in particular for v, and v,. So |v(v)]| < 1/3, and
[+(v,) | > 2/3 since |$(v,) | = 1. This shows that -} separates v, and 7,.

Theorem 3 leads directly to a generalization of a theorem which
D. J. Newmann proved in the classical case [9] and which characterizes
the Silov boundary ¢ of H= in terms of inner functions:

THEOREM 4. 0 = K.

Proof. Let ¢ be inner. Choose f in H*, not identically 0. Since
lg|=1on X, |[félle=1|flle= IIfll. There exists v, in M at which
| f6| attains its maximum, || f$|l., so that

WA = [ Fe)der) | < | Fllel gy | < I FII

This implies that [$(7,)| =1 (i.e., 7, is in K,) and that | f(v,)| = || F]|
Thus every | 7 | attains its maximum (relative to M) at some point of
K,. This says: 0 C K,. Since K is the intersection of all K,, we
have 0 C K.
To prove that o fills all K, let F be a proper compact subset of
K, choose 7, in K but not in E. It then follows from Theorem 3 that
1 Kenneth Hoffman has communicated to us a proof which together with Theorem

3 shows that in the classical case of the circle the inner functions separate points
on all of M.
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there exist finitely many inner functions, say g, ---, ¢,, such that
¢i(v) =1 for 1 <7 < n, but

inf Re ¢,(v) < 1 for every v in E .

Then f=1+ ¢, + -+ + ¢, isin H*, () =n + 1= fl|, but |f(7)| <
n'+ 1 for every v in E. Hence E does not contain 9. This completes
the proof.

The following result about function algebras was stated without
proof in [4] by the first author. We point out that it does not de-
pend on the annulus property.

LEMMA. Let X be a multiplicative semigroup of inner functions.
Let U, be the norm-closed subalgebra of L= which is generated by
H= and the complex conjugates of the members of 3,. Then the
maximal ideal space My of s can be identified with the set K; C M.

Proof. Let I' be a multiplicative linear functional on ;. Res-
tricting I" to H>=, we see that to each such I" corresponds a unique
v in M, denoted by z(I'), such that I'(f) = f(7) for all f in H*=.

Suppose v = z(I") and ¢ is in 3. Since ¢¢ = 1, we have

(@) = I'(¢™) = YI'(g) = 1/3(v) .

This shows that I" is determined by v, so 7: M;— M is one-to-one. It
is easy to see that r is continuous. Since both spaces are compact
and Hausdorff, 7 is a homeomorphism. Furthermore, 7(M;) C K;, for
if v =), then |¢(v)| < ||¢|l- = 1, and also

1YgN | = IT@ = l1glla=1,

so that [§(7)| = 1 for every ¢ in 3 and every v in =(M;).

We want to prove that 7(M;) = K;. To do this, we fix v in Kj,
and show that v is in ().

For + in H* and ¢ in X, define

Lvd) = F(1)/3(7) .

If y.§, = y.5,, then yg, = vug,, Which implies (7)3.(7) = F:.(MNE(),
and since v is in K, it follows that I'y(v.@,) = I'(vy$.). In other-
words, I, is well defined on a dense subalgebra of U,. It is easy to
check that I', is linear and multiplicative on this subalgebra. Finally
(using the fact that v is in K, once more),

| L@ | = | FDEN | = [FD S WMl = |V ]l s
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so that I, is bounded and can therefore be extended to a multiplica-
tive linear functional 7" on A,. It is clear that «(I") = v, and the
proof is complete.

As a consequence, we obtain a theorem of I. J. Schark ([10], [8,
p. 174]) which Srinivasan and Wang [11, p. 232] have extended to the
context of Weak*-Dirichlet algebras:

THEOREM 5. The Silov boundary 6 of H* can be identified with
the maximal ideal space M, of L=.

Proof. Let X be the set of all inner functions. Then
3=K=KZ:M;:M°¢,.

The first of these equalities is Theorem 4, the second is the definition
of K, the third is the preceding lemma, and the fourth follows from
Theorem 2, since the latter asserts that U, = L.

We now return to the classical situation, i.e., to the unit circle.
Recall that an inner function in the open unit disc U is said to be
singular if it has no zero in U.

THEOREM 6. Suppose f is in L>(T), | f|=1,0<e < 1.
(a) There exist Blaschke products B, and B, such that

lif" Bl/Bsz <e.

(b) There exist inner functions ¢, and ¢, with ¢, singular such
that

ILf = 6/g:lle <e.

Of course, the expression B,/B, in (a) refers to the radial limit
function of the quotient of the two Blaschke products, and the norm
is the essential supremum over 7.

Proof. (a) is an immediate consequence of Theorem 1, because of
Frostman’s Theorem (6, pp. 112-113], [8, p. 175]) which asserts that
the Blaschke products are norm-dense in the set of all inner functions.

By Theorem 1, it suffices to prove (b) for the case f = 1/4, where
¢ is inner. Define

w+1}
w—1

u(w) = exp {c

where ¢ > 0 is so chosen that 3u(0) < ¢, and put
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u(w) — u(0)
w[l — w(0)u(w)]

u1(w) =

Then u, is inner, and one checks easily that
[u(w) — wu,(w)| < e (welU).

Put w = +(2) in this inequality, define ¢, = 4,0+ and ¢, = uo+. Then
¢, and ¢, are inner, ¢, has no zero in U, and

|6:(2) — ¥(2)pu(2) [ <e  (2eU).

To complete the proof, take radial limits in the last inequality and

divide by +g,.
Because of Theorem 6(b), Theorem 2 now takes the following form:

THEOREM 7. If f is in L>(T) and € >0, then there is a singular
wnner function ¢ and a finite linear combination  of inner func-
tions, such that

Nf=vlglle <e.

Note that /¢ is a holomorphic function in U, of bounded charac-
teristic (being a quotient of two H=-functions). Thus the radial limits
of holomorphic functions of bounded characteristic are norm-dense in

L=(T).

We conclude with the observation that the set KX which was de-
scribed prior to Theorem 3 can be defined (in the classical case) by
means of the stngular inner functions alone:

THEOREM 8. If v in M is such that |y(v)| <1 for some inner
Function b, then there is a singular inner function ¢ with |$(v)| < L.

Proof. By Theorem 6(b), with ¢ =1 — | ()|, there are inner
functions ¢, and ¢,, with ¢, singular, such that
|87) — VMG | = {16 — Vol <1 — [F(M) ],
which implies that
18N | < [FMEM |+ 1 — [ = 1.

Theorem 8 adds an eighth equivalent condition to the seven that
are listed on p. 179 of [8].
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