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APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS

DOUGLAS N. ARNOLD, DANIELE BOFFI, AND RICHARD S. FALK

Abstract. We consider the approximation properties of finite element spaces
on quadrilateral meshes. The finite element spaces are constructed starting
with a given finite dimensional space of functions on a square reference ele-
ment, which is then transformed to a space of functions on each convex quadri-
lateral element via a bilinear isomorphism of the square onto the element. It
is known that for affine isomorphisms, a necessary and sufficient condition for
approximation of order r + 1 in Lp and order r in W 1

p is that the given space
of functions on the reference element contain all polynomial functions of total
degree at most r. In the case of bilinear isomorphisms, it is known that the
same estimates hold if the function space contains all polynomial functions of
separate degree r. We show, by means of a counterexample, that this latter
condition is also necessary. As applications, we demonstrate degradation of the
convergence order on quadrilateral meshes as compared to rectangular meshes
for serendipity finite elements and for various mixed and nonconforming finite
elements.

1. Introduction

Finite element spaces are often constructed starting with a finite dimensional
space V̂ of shape functions given on a reference element K̂ and a class S of isomor-
phic mappings of the reference element. If F ∈ S, we obtain a space of functions
VF (K) on the image element K = F (K̂) as the compositions of functions in V̂ with
F−1. Then, given a partition T of a domain Ω into images of K̂ under mappings in
S, we obtain a finite element space as a subspace1 of the space V T of all functions
on Ω which restrict to an element of VF (K) on each K ∈ T.

For example, if the reference element K̂ is the unit triangle, the reference space V̂
is the space Pr(K̂) of polynomials of degree at most r on K̂, and the mapping class
S is the space Aff(K̂) of affine isomorphisms of K̂ into R2, then V T is the familiar
space of all piecewise polynomials of degree at most r on an arbitrary triangular
mesh T. When S = Aff(K̂), as in this case, we speak of affine finite elements.

If the reference element K̂ is the unit square, then it is often useful to take S equal
to a larger space than Aff(K̂), namely the space Bil(K̂) of all bilinear isomorphisms
of K̂ into R2. Indeed, if we allow only affine images of the unit square, then we
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1The subspace is typically determined by some interelement continuity conditions. The impo-

sition of such conditions through the association of local degrees of freedom is an important part
of the construction of finite element spaces, but, not being directly relevant to the present work,

will not be discussed.
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obtain only parallelograms, and we are quite limited as to the domains that we can
mesh (e.g., it is not possible to mesh a triangle with parallelograms). On the other
hand, with bilinear images of the square we obtain arbitrary convex quadrilaterals,
which can be used to mesh arbitrary polygons.

The above framework is also well suited to studying the approximation properties
of finite element spaces (e.g., see [2] and [1]). A fundamental result holds in the
case of affine finite elements: S = Aff(K̂). Under the assumption that the reference
space V̂ ⊇ Pr(K̂), the following result is well known: if T1, T2, . . . is any shape-
regular sequence of triangulations of a domain Ω and u is any smooth function
on Ω, then the Lp error in the best approximation of u by functions in V Tn is
O(hr+1) and the piecewise W 1

p error is O(hr), where h = h(Tn) is the maximum
element diameter. (Here, and throughout the paper, p can take any value between
1 and ∞, inclusive.) It is also true, even if less well-known, that the condition
that V̂ ⊇ Pr(K̂) is necessary if these estimates are to hold. In fact, the problem
of characterizing what is needed for optimal order approximation arises naturally
in the study of the finite element method and has been investigated for some time
(see [9]).

The above result does not restrict the choice of reference element K̂, so it applies
to rectangular and parallelogram meshes by taking K̂ to be the unit square. But it
does not apply to general quadrilateral meshes, since to obtain them we must choose
S = Bil(K̂), and the result only applies to affine finite elements. In this case there
is a standard result analogous to the positive result in the previous paragraph ([2],
[1], [4, Section I.A.2]). Namely, if V̂ ⊇ Qr(K̂), then for any shape-regular sequence
of quadrilateral partitions of a domain Ω and any smooth function u on Ω, we again
obtain that the error in the best approximation of u by functions in V Tn is O(hr+1)
in Lp and O(hr) in (piecewise) W 1

p . It turns out, as we shall show in this paper,
that the hypothesis that V̂ ⊇ Qr(K̂) is strictly necessary for these estimates to
hold. In particular, if V̂ ⊇ Pr(K̂) but V̂ + Qr(K̂), then the rate of approximation
achieved on general shape-regular quadrilateral meshes will be strictly lower than
is obtained using meshes of rectangles or parallelograms.

More precisely, we shall exhibit in Section 3 a domain Ω and a sequence, T1, T2,
. . . of quadrilateral meshes of it, and prove that whenever V (K̂) + Qr(K̂), then
there is a function u on Ω such that

inf
v∈V Tn

‖u− v‖Lp(Ω) 6= o(hr)

(and so, a fortiori, is 6= O(hr+1)). A similar result holds for W 1
p approximation.

The counterexample is far from pathological. Indeed, the domain Ω is as simple as
possible, namely a square; the mesh sequence Tn is simple and as shape-regular as
possible in that all elements at all mesh levels are similar to a single fixed trapezoid;
and the function u is as smooth as possible, namely a polynomial of degree r.2

The use of a reference space which contains Pr(K̂) but not Qr(K̂) is not unusual,
but the degradation of convergence order that this implies on general quadrilateral
meshes in comparison to rectangular (or parallelogram) meshes is not widely ap-
preciated.

2However, as discussed at the end of Section 3 and illustrated numerically in Section 4, for a
sequence of meshes which is asymptotically parallelogram (as defined at the end of Section 3), the

hypothesis V (K̂) ⊇ Pr(K̂) is sufficient for optimal order approximation.
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APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS 911

We finish this introduction by considering some examples. Henceforth we shall
always use K̂ to denote the unit square. First, consider finite elements with the
simple polynomial spaces as shape functions: V̂ = Pr(K̂). These of course yield
O(hr+1) approximation in Lp for rectangular meshes. However, since Pr(K̂) ⊇
Qbr/2c(K̂) but Pr(K̂) + Qbr/2c+1(K̂), on general quadrilateral meshes they only
afford O(hbr/2c+1) approximation.

A similar situation holds for serendipity finite element spaces, which have been
popular in engineering computation for thirty years. These spaces are constructed
using as reference shape functions the space Sr(K̂) which is the span of Pr(K̂)
together with the two monomials x̂r ŷ and ŷx̂r. (The purpose of the additional
two functions is to allow local degrees of freedom which can be used to ensure
interelement continuity.) For r = 1, S1(K̂) = Q1(K̂), but for r > 1 the situation is
similar to that for Pr(K̂), namely Sr(K̂) ⊇ Qbr/2c(K̂) but Sr(K̂) + Qbr/2c+1(K̂).
So, again, the asymptotic accuracy achieved for general quadrilateral meshes is only
about half that achieved for rectangular meshes: O(hbr/2c+1) in Lp and O(hbr/2c)
in W 1

p . In Section 4 we illustrate this with a numerical example. The fact that the
eight-node serendipity space S2 does not perform as well as the nine-node space Q2

on distorted meshes has been noted previously by several authors, often as a result
of numerical experiments. See, for example, [11, Section 8.7], [6], [5], [10].

While the serendipity elements are commonly used for solving second order differ-
ential equations, the pure polynomial spaces Pr can only be used on quadrilaterals
when interelement continuity is not required. This is the case in several mixed
methods. For example, a popular element choice to solve the stationary Stokes
equations is bilinearly mapped piecewise continuous Q2 elements for the two com-
ponents of velocity, and discontinuous piecewise linear elements for the pressure.
This is known to be a stable mixed method and gives second order convergence in
H1 for the velocity and L2 for the pressure. If one were to define the pressure space
instead by using the construction discussed above, namely by composing linear
functions on the reference square with bilinear mappings, then the approximation
properties of mapped P1 discussed above would imply that the method could be
at most first order accurate, at least for the pressures. Hence, although the use
of mapped P1 as an alternative to unmapped P1 pressure elements is sometimes
proposed [8], it is probably not advisable.

Another place where mapped Pr spaces arise is for approximating the scalar
variable in mixed finite element methods for second order elliptic equations. Al-
though the scalar variable is discontinuous, in order to prove stability it is generally
necessary to define the space for approximating it by composition with the mapping
to the reference element (while the space for the vector variable is defined by a con-
travariant mapping associated with the mapping to the reference element). In the
case of the Raviart–Thomas rectangular elements, the scalar space on the reference
square is Qr(K̂), which maintains full O(hr+1) approximation properties under bi-
linear mappings. By contrast, the scalar space used with the Brezzi-Douglas-Marini
and the Brezzi-Douglas-Fortin-Marini spaces is Pr(K̂). This necessarily results in
a loss of approximation order when mapped to quadrilaterals by bilinear mappings.

Another type of element which shares this difficulty is the simplest noncon-
forming quadrilateral element, which generalizes to quadrilaterals the well-known
piecewise linear nonconforming element on triangles, with degrees of freedom at
the midpoints of edges. On the square, a bilinear function is not well-defined by
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912 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

giving its value at the midpoint of edges (or its average on edges), because these
quantities do not comprise a unisolvent set of degrees of freedom (the function
(x̂− 1/2)(ŷ − 1/2) vanishes at the four midpoints of the edges of the unit square).
Hence, various definitions of nonconforming elements on rectangles replace the ba-
sis function x̂ŷ by some other function, such as x̂2− ŷ2. Consequently, the reference
space contains P1(K̂), but does not contain Q1(K̂), and so there is a degradation of
convergence on quadrilateral meshes. This is discussed and analyzed in the context
of the Stokes problem in [7].

As a final application, we remark that many of the finite element methods pro-
posed for the Reissner–Mindlin plate problem are based on mixed methods for
the Stokes equations and/or for second order elliptic problems. As a result, many
of them suffer from the same sort of degradation of convergence on quadrilateral
meshes. An analysis of a variety of these elements will appear in forthcoming work
by the present authors.

In Section 3, we prove our main result, the necessity of the condition that the
reference space containQr(K̂) in order to obtain O(hr+1) approximation on quadri-
lateral meshes. The proof relies on an analogous result for affine approximation on
rectangular meshes, where the space Pr(K̂) enters rather than Qr(K̂). While this is
a special case of known results, for the convenience of the reader we include an ele-
mentary proof in Section 2. Also in Section 3, we consider the case of asymptotically
parallelogram meshes and show that in this situation, an O(hr+1) approximation
is obtained if the reference space only contains Pr(K̂). In the final section, we
illustrate the results with numerical computations.

2. Approximation theory of rectangular elements

In this section, we prove some results concerning approximation by rectangular
elements which will be needed to prove the main results in Section 3. The results
in this section are essentially known, and many are true in far greater generality
than stated here.

If K is any square with edges parallel to the axes, then K = FK(K̂), where
FK(x̂) := xK + hK x̂ with xK ∈ R2 and hK > 0 the side length. For any function
u ∈ L1(K), we define ûK = u ◦ FK ∈ L1(K̂), i.e., ûK(x̂) = u(xK + hK x̂). Given a
subspace Ŝ of L1(K̂), we define the associated subspace on an arbitrary square K
by

S(K) = { u : K → R | ûK ∈ Ŝ }.

Finally, let Ω denote the unit square (Ω and K̂ both denote the unit square, but
we use the notation Ω when we think of it as a fixed domain, while we use K̂ when
we think of it as a reference element). For n = 1, 2, . . . , let Th be the uniform mesh
of Ω into n2 subsquares when h = 1/n, and define

Sh = { u : Ω→ R |u|K ∈ S(K) for all K ∈ Th }.

In this definition, when we write u|K ∈ S(K) we mean only that u|K agrees with
a function in S(K) almost everywhere, and so do not impose any interelement
continuity.

The following theorem gives a set of equivalent conditions for optimal order
approximation of a smooth function u by elements of Sh.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS 913

Theorem 1. Suppose 1 ≤ p ≤ ∞. Let Ŝ be a finite dimensional subspace of Lp(K̂),
and r a nonnegative integer. The following conditions are equivalent:

1. There is a constant C such that inf
v∈Sh
‖u− v‖Lp(Ω) ≤ Chr+1|u|W r+1

p (Ω) for all

u ∈W r+1
p (Ω).

2. inf
v∈Sh
‖u− v‖Lp(Ω) = o(hr) for all u ∈ Pr(Ω).

3. Pr(K̂) ⊂ Ŝ.

Proof. For the proof we assume that p < ∞, but the argument carries over to the
case p =∞ with obvious modifications. The first condition implies that

inf
v∈Sh
‖u− v‖Lp(Ω) = 0 for u ∈ Pr(Ω),

and so implies the second condition. The fact that the third condition implies the
first is a well-known consequence of the Bramble–Hilbert lemma. So we need only
show that the second condition implies the third.

The proof is by induction on r. First consider the case r = 0. We have

inf
v∈Sh
‖u− v‖pLp(Ω) =

∑
K∈Th

inf
vK∈S(K)

‖u− vK‖pLp(K) = h2
∑
K∈Th

inf
w∈Ŝ
‖ûK − w‖pLp(K̂)

,

(1)

where we have made the change of variable w = v̂K in the last step.
In particular, for u ≡ 1 on Ω, ûK ≡ 1 on K̂ for all K, so the quantity

c := inf
w∈Ŝ
‖ûK − w‖pLp(K̂)

is independent of K. Thus

inf
v∈Sh
‖u− v‖pLp(Ω) = h2

∑
K∈Th

c = c.

The hypothesis that this quantity is o(1) implies that c = 0, i.e., that the constant
function belongs to Ŝ.

Now we consider the case r > 0. We again apply (1), this time for u an arbitrary
homogeneous polynomial of degree r. Then

ûK(x̂) = u(xK + hx̂) = u(hx̂) + q(x̂) = hru(x̂) + q(x̂),(2)

where q ∈ Pr−1(K̂). Substituting in (1), and invoking the inductive hypothesis
that Ŝ ⊇ Pr−1(K̂), we get that

inf
v∈Sh
‖u− v‖pLp(Ω) = h2+pr

∑
K∈Th

inf
w∈Ŝ
‖u− w‖p

Lp(K̂)
= hpr inf

w∈Ŝ
‖u− w‖p

Lp(K̂)
,

where the last equality follows from the fact that the previous infimum is indepen-
dent of K. Since the last expression is o(hpr), we immediately deduce that u belongs
to Ŝ. Thus Ŝ contains all homogeneous polynomials of degree r and all polynomials
of degree less than r (by induction), so it indeed contains all polynomials of degree
at most r.

A similar theorem holds for gradient approximation. Since the finite elements are
not necessarily continuous, we write ∇h for the gradient operator applied piecewise
on each element.
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914 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

Theorem 2. Suppose 1 ≤ p ≤ ∞. Let Ŝ be a finite dimensional subspace of Lp(K̂),
and r a nonnegative integer. The following conditions are equivalent:

1. There is a constant C such that inf
v∈Sh
‖∇h(u − v)‖Lp(Ω) ≤ Chr|u|W r+1

p (Ω) for

all u ∈W r+1
p (Ω).

2. inf
v∈Sh
‖∇h(u − v)‖Lp(Ω) = o(hr−1) for all u ∈ Pr(Ω).

3. Pr(K̂) ⊂ P0(K̂) + Ŝ.

Proof. Again, we need only prove that the second condition implies the third. In
analogy to (1), we have

inf
v∈Sh

∑
K∈Th

‖∇(u− v)‖pLp(K) =
∑
K∈Th

inf
vK∈S(K)

‖∇(u− vK)‖pLp(K)

= h2−p
∑
K∈Th

inf
w∈Ŝ
‖∇(ûK − w)‖p

Lp(K̂)
,

(3)

where we have made the change of variable w = v̂K in the last step.
The proof proceeds by induction on r, the case r = 0 being trivial. For r > 0,

apply (3) with u an arbitrary homogeneous polynomial of degree r. Substituting
(2) in (3), and invoking the inductive hypothesis that P0(K̂) + Ŝ ⊇ Pr−1(K̂), we
get that

inf
v∈Sh
‖∇h(u− v)‖pLp(Ω) = h2−p+pr

∑
K∈Th

inf
w∈Ŝ
‖∇(u− w)‖p

Lp(K̂)

= hp(r−1) inf
w∈Ŝ
‖∇(u− w)‖p

Lp(K̂)
.

Since we assume that this quantity is o(hp(r−1)), the last infimum must be 0, so
u differs from an element of Ŝ by a constant. Thus P0(K̂) + Ŝ contains all ho-
mogeneous polynomials of degree r and all polynomials of degree less than r (by
induction), so it indeed contains all polynomials of degree at most r.

Remarks. 1. If Ŝ contains P0(K̂), which is usually the case, then the third condition
of Theorem 2 reduces to that of Theorem 1.

2. A similar result holds for higher derivatives (replace ∇h by ∇mh in the first
two conditions, and P0(K̂) by Pm−1(K̂) in the third).

3. Approximation theory of quadrilateral elements

In this, the main section of the paper, we consider the approximation properties
of finite element spaces defined with respect to quadrilateral meshes using bilinear
mappings starting from a given finite dimensional space of polynomials V̂ on the
unit square K̂ = [0, 1] × [0, 1]. For simplicity, we assume that V̂ ⊇ P0(K̂). For
example, V̂ might be the space Pr(K̂) of polynomials of total degree at most r,
or the space Qr(K̂) of polynomials of degree at most r in each variable separately,
or the serendipity space Sr(K̂) spanned by Pr(K̂) together with the monomials
x̂r1x̂2 and x̂1x̂

r
2. Let F be a bilinear isomorphism of K̂ onto a convex quadrilateral

K = F (K̂). Then for u ∈ L1(K) we define ûK,F ∈ L1(K̂) by ûK,F = u ◦F , and set

VF (K) = { u : K → R | ûK,F ∈ V̂ }.
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APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS 915

(Note that we have changed notation slightly from Section 2 to include the mapping
F , since various definitions depend on the particular choice of the bilinear isomor-
phism F of K̂ onto K. Whenever the space V̂ is invariant under the symmetries of
the square, which is usually the case in practice, this will not be so.) We also note
that the functions in VF (K) need not be polynomials if F is not affine, i.e., if K is
not a parallelogram.

Given a quadrilateral mesh T of some domain, Ω, we can then construct the
space of functions V T consisting of functions on the domain which when restricted
to a quadrilateral K ∈ T belong to VFK (K), where FK is a bilinear isomorphism of
K̂ onto K. (Again, if V̂ is not invariant under the symmetries of the square, the
space V T will depend on the specific choice of the maps FK .)

It follows from the results of the previous section that if we consider the sequence
of meshes of the unit square into congruent subsquares of side length h = 1/n, then
each of the approximation estimates

inf
v∈V Th

‖u− v‖Lp(Ω) ≤ Chr+1|u|W r+1
p (Ω) for all u ∈W r+1

p (Ω),(4)

inf
v∈V Th

‖∇h(u− v)‖Lp(Ω) ≤ Chr|u|W r+1
p (Ω) for all u ∈W r+1

p (Ω)(5)

holds if and only if Pr(K̂) ⊂ V̂ . It is not hard to extend these estimates to shape-
regular sequences of parallelogram meshes as well. However, in this section we show
that for these estimates to hold for more general quadrilateral mesh sequences, a
stronger condition on V̂ is required, namely that V̂ ⊇ Qr(K̂).

The positive result, that when V̂ ⊇ Qr(K̂), then the estimates (4) and (5) hold
for any shape-regular sequence of quadrilateral meshes Th, is known. See, e.g., [2],
[1], or [4, Section I.A.2]. We wish to show the necessity of the condition V̂ ⊇ Qr(K̂).

As a first step, we show that the condition VF (K) ⊇ Pr(K) is necessary and
sufficient to have that V̂ ⊇ Qr(K̂) whenever F is a bilinear isomorphism of K̂ onto
a convex quadrilateral. This is proven in the following two theorems.

Theorem 3. Suppose that V̂ ⊇ Qr(K̂). Let F be any bilinear isomorphism of K̂
onto a convex quadrilateral. Then VF (K) ⊇ Pr(K).

Proof. The components of F (x̂, ŷ) are linear functions of x̂ and ŷ, so if p is a
polynomial of total degree at most r, then p(F (x̂, ŷ)) is of degree at most r in x̂

and ŷ separately, i.e., p ◦ F ∈ Qr(K̂) ⊂ V̂ . Therefore p ∈ VF (K).

The reverse implication holds even under the weaker assumption that VF (K)
contains Pr(K) just for the two specific bilinear isomorphisms

F̃ (x̂, ŷ) = (x̂, ŷ(x̂+ 1)), F̄ (x̂, ŷ) = (ŷ, x̂(ŷ + 1)),

both of which map K̂ isomorphically onto the quadrilateral K ′ with vertices (0, 0),
(1, 0), (0, 1), and (1, 2). This fact is established below.

Theorem 4. Let V̂ be a vector space of functions on K̂. Suppose that VF̃ (K ′) ⊇
Pr(K ′) and VF̄ (K ′) ⊇ Pr(K ′). Then V̂ ⊇ Qr(K̂).

Proof. We prove that V̂ ⊇ Qr(K̂) by induction on r. The case r = 0 being true by
assumption, we consider r > 0 and show that the monomials x̂r ŷs and x̂sŷr belong
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916 D. N. ARNOLD, D. BOFFI, AND R. S. FALK

Figure 1. a. A partition of the square into four trapezoids. b. A
mesh composed of translated dilates of this partition.

to V̂ for s = 0, 1, . . . , r. From the identity

x̂r ŷs = x̂r−s[ŷ(x̂ + 1)]s −
s∑
t=1

(
s

t

)
x̂r−tŷs

= F̃1(x̂, ŷ)r−sF̃2(x̂, ŷ)s −
s∑
t=1

(
s

t

)
x̂r−tŷs,

(6)

we see that for 0 ≤ s < r, the monomial x̂r ŷs is the sum of a polynomial which
clearly belongs to V̂ (since F̃1(x̂, ŷ)r−sF̃2(x̂, ŷ)s = xr−sys ∈ Pr(K ′) ⊂ VF̃ (K ′))
and a polynomial in Qr−1(K̂), which belongs to V̂ by induction. Thus each of the
monomials x̂r ŷs with 0 ≤ s < r belongs to V̂ , and, using F̄ , we similarly see that
all the monomials x̂sŷr, 0 ≤ s < r, belong to V̂ . Finally, from (6) with s = r, we
see that x̂r ŷr is a linear combination of an element of V̂ and monomials x̂sŷr with
s < r, so it too belongs to V̂ .

We now combine this result with those of the previous section to show the ne-
cessity of the condition V̂ ⊇ Qr(K̂) for optimal order approximation. Let V̂ be
some fixed finite dimensional subspace of Lp(K̂) which does not include Qr(K̂).
Consider the specific division of the unit square K̂ into four quadrilaterals shown
on the left in Figure 1. For definiteness we place the vertices of the quadrilaterals
at (0, 1/3), (1/2, 2/3) and (1, 1/3) and the midpoints of the horizontal edges and
the corners of K̂.

The four quadrilaterals are mutually congruent and affinely related to the specific
quadrilateral K ′ defined above. Therefore, by Theorem 4, we can define for each
of the four quadrilaterals K ′′ shown in Figure 1 an isomorphism F ′′ from the unit
square so that VF ′′(K ′′) + Pr(K ′′). If we let Ŝ be the subspace of Lp(K̂) consisting
of functions which restrict to elements of VF ′′(K ′′) on each of the four quadrilaterals
K ′′, then certainly Ŝ does not contain Pr(K̂), since even its restriction to any one
of the quadrilaterals K ′′ does not contain Pr(K ′′).

Next, for n = 1, 2, . . . consider the mesh T′h of the unit square Ω shown in
Figure 1b, obtained by first dividing it into a uniform n × n mesh of subsquares,
n = 1/h, and then dividing each subsquare as in Figure 1a. Then the space of
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APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS 917

functions u on Ω whose restrictions on each subsquare K ∈ Th satisfy ûK(x̂) =
u(xK +hx̂) with ûK ∈ Ŝ is precisely the same as the space V (T′h) constructed from
the initial space V̂ and the mesh T′h. In view of Theorems 1 and 2 and the fact that
Ŝ + Pr(K̂), the estimates (4) and (5) do not hold. In fact, neither of the estimates

inf
v∈V (Th)

‖u− v‖Lp(Ω) = o(hr)

nor

inf
v∈V (Th)

‖∇(u− v)‖Lp(Ω) = o(hr−1)

holds, even for u ∈ Pr(Ω).
While the condition V̂ ⊇ Qr(K̂) is necessary for O(hr+1) approximation on

general quadrilateral meshes, the condition V̂ ⊇ Pr(K̂) suffices for meshes of par-
allelograms. Naturally, the same is true for meshes whose elements are sufficiently
close to parallelograms. We conclude this section with a precise statement of this
result and a sketch of the proof. If V̂ ⊇ Pr(K̂) and K = F (K̂) with F ∈ Bil(K̂),
then by standard arguments, as in [1], we get

‖v − πKv‖Lp(K) ≤ C‖JF ‖1/pL∞(K̂)
|v ◦ F |W r+1

p (K̂),

where JF is the Jacobian determinant of F and πK denotes any convenient projec-
tion or interpolant satisfying (πKv) ◦F = πK̂(v ◦ F ), e.g., the L2 projection. Now,
using the formula for the derivative of a composition (as in, e.g., [3, p. 222]), and
the fact that F is quadratic, and so its third and higher derivatives vanish, we get
that

|v ◦ F |W r+1
p (K̂) ≤ C‖JF−1‖1/pL∞(K)‖v‖W r+1

p (K)

b(r+1)/2c∑
i=0

|F |r+1−2i

W 1
∞(K̂)

|F |i
W 2
∞(K̂)

.

Now,

‖JF ‖L∞(K̂) ≤ Ch
2
K , ‖JF−1‖L∞(K̂) ≤ Ch

−2
K , |F |W 1

∞(K̂) ≤ ChK ,

where hK is the diameter of K and C depends only on the shape-regularity of K.
We thus get

‖v − πKv‖Lp(K) ≤ C‖v‖W r+1
p (K)

∑
i

hr+1−2i
K |F |i

W 2
∞(K̂)

.

It follows that if |F |W 2
∞(K̂) = O(h2

K), we get the desired estimate

‖v − πKv‖Lp(K) ≤ Chr+1
K ‖v‖W r+1

p (K).

Following [7], we measure the deviation of a quadrilateral from a parallelogram
by the quantity σK := max(|π − θ1|, |π − θ2|), where θ1 is the angle between the
outward normals of two opposite sides of K and θ2 is the angle between the outward
normals of the other two sides. Thus 0 ≤ σK < π, with σK = 0 if and only if K is a
parallelogram. As pointed out in [7], |F |W 2

∞(K̂) ≤ ChK(hK + σK). This motivates
the definition that a family of quadrilateral meshes is asymptotically parallelogram
if σK = O(hK), i.e., if σK/hK is uniformly bounded for all the elements in all
the meshes. From the foregoing considerations, if the reference space contains
Pr(K̂) we obtain O(hr+1) convergence for asymptotically parallelogram, shape-
regular meshes.
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Figure 2. Three sequences of meshes of the unit square: square,
trapezoidal, and asymptotically parallelogram. Each is shown for
n = 2, 4, 8, and 16.

As a final note, we remark that any polygon can be meshed by an asymptoti-
cally parallelogram, shape-regular family of meshes with mesh size tending to zero.
Indeed, if we begin with any mesh of convex quadrilaterals, and refine it by divid-
ing each quadrilateral in four by connecting the midpoints of the opposite edges,
and continue in this fashion, as in the last row of Figure 2, the resulting mesh is
asymptotically parallelogram and shape-regular.

4. Numerical results

In this section, we report on results from a numerical study of the behavior of
piecewise continuous mapped biquadratic and serendipity finite elements on quadri-
lateral meshes (i.e., the finite element spaces are constructed starting from the
spaces Q2(K̂) and S2(K̂) on the reference square and then imposing continuity).
We present the results of two test problems. In both we solve the Dirichlet problem
for Poisson’s equation

−∆u = f in Ω, u = g on ∂Ω,(7)

where the domain Ω is the unit square. In the first problem, f and g are taken so
that the exact solution is the quartic polynomial

u(x, y) = x3 + 5y2 − 10y3 + y4.

Tables 1 and 2 show results for both types of elements using meshes from each of the
first two mesh sequences shown in Figure 2. The first sequence of meshes consists
of uniform square subdivisions of the domain into n×n subsquares, n = 2, 4, 8, . . . .
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Table 1. L2 errors and rates of convergence for the test problem
with polynomial solution.

Mapped biquadratic elements

square meshes trapezoidal meshes

‖u− uh‖L2 ‖∇(u− uh)‖
L2 ‖u− uh‖L2 ‖∇(u− uh)‖

L2
n err. % rate err. % rate err. % rate err. % rate

2 3.5e−02 2.877 4.5e−01 37.253 4.8e−02 3.951 5.9e−01 48.576
4 4.4e−03 0.360 3.0 1.1e−01 9.333 2.0 5.8e−03 0.475 3.1 1.5e−01 12.082 2.0
8 5.5e−04 0.045 3.0 2.8e−02 2.329 2.0 7.1e−04 0.058 3.0 3.7e−02 3.017 2.0

16 6.9e−05 0.006 3.0 7.1e−03 0.583 2.0 8.7e−05 0.007 3.0 9.2e−03 0.753 2.0
32 8.6e−06 0.001 3.0 1.8e−03 0.146 2.0 1.1e−05 0.001 3.0 2.3e−03 0.188 2.0
64 1.1e−06 0.000 3.0 4.4e−04 0.036 2.0 1.3e−06 0.000 3.0 5.7e−04 0.047 2.0

Serendipity elements

square meshes trapezoidal meshes

‖u− uh‖L2 ‖∇(u− uh)‖
L2 ‖u− uh‖L2 ‖∇(u− uh)‖

L2
n err. % rate err. % rate err. % rate err. % rate

2 3.5e−02 2.877 4.5e−01 37.252 5.0e−02 4.066 6.2e−01 51.214
4 4.4e−03 0.360 3.0 1.1e−01 9.333 2.0 6.7e−03 0.548 2.9 1.8e−01 14.718 1.8
8 5.5e−04 0.045 3.0 2.8e−02 2.329 2.0 9.7e−04 0.080 2.8 5.9e−02 4.836 1.6

16 6.9e−05 0.006 3.0 7.1e−03 0.583 2.0 1.6e−04 0.013 2.6 2.3e−02 1.890 1.4
32 8.6e−06 0.001 3.0 1.8e−03 0.146 2.0 3.3e−05 0.003 2.3 1.0e−02 0.842 1.2
64 1.1e−06 0.000 3.0 4.4e−04 0.036 2.0 7.4e−06 0.001 2.1 4.9e−03 0.401 1.1

Meshes in the second sequence are partitions of the domain into n × n congruent
trapezoids, all similar to the trapezoid with vertices (0, 0), (1/2, 0), (1/2, 2/3), and
(0, 1/3). In Tables 1 and 2 we report the errors in L2 and L∞, respectively, for the
finite element solution and its gradient both in absolute terms and as a percentage of
the norm of the exact solution and its gradient, and we also report the apparent rate
of convergence based on consecutive meshes in a sequence. For this test problem,
the rates of convergence are very clear: for either mesh sequence, the mapped
biquadratic elements converge with the expected order 3 for the solution and 2 for
its gradient. The same is true for the serendipity elements on the square meshes,
but, as predicted by the theory given above, for the trapezoidal mesh sequence
the order of convergence for the serendipity elements is reduced by 1 both for the
solution and for its gradient.

As a second test example we again solved the Dirichlet problem (7), but this
time choosing the data so that the solution is the sharply peaked function

u(x, y) = exp
(
−100[(x− 1/4)2 + (y − 1/3)2]

)
.

As seen in Table 3, in this case the loss of convergence order in the L2 norm for
the serendipity elements on the trapezoidal mesh is not nearly as clear. Some loss
is evident, but apparently very fine meshes (and very high precision computation)
would be required to see the final asymptotic orders.

Similar results hold when the error in the L∞ norm is considered, as shown in
Table 4.

Finally we return to the first test problem, and consider the behavior of the
serendipity elements on the third mesh sequence shown in Figure 2. This mesh
sequence begins with the same mesh of four quadrilaterals as in previous case, and
continues with systematic refinement as described at the end of the last section,
and so is asymptotically parallelogram. Therefore, as explained there, the rate of
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Table 2. L∞ errors and rates of convergence for the test problem
with polynomial solution.

Mapped biquadratic elements

square meshes trapezoidal meshes

‖u− uh‖L∞ ‖∇(u− uh)‖L∞ ‖u− uh‖L2 ‖∇(u− uh)‖L∞
n err. % rate err. % rate err. % rate err. % rate

2 5.0e-02 4.175 7.3e-01 60.472 1.1e-01 8.833 1.3e+00 111.803
4 6.4e-03 0.532 3.0 1.9e-01 15.529 2.0 1.4e-02 1.133 3.0 3.6e-01 29.843 1.9
8 8.0e-04 0.067 3.0 4.7e-02 3.940 2.0 1.7e-03 0.145 3.0 9.5e-02 7.888 1.9

16 1.0e-04 0.008 3.0 1.2e-02 0.993 2.0 2.2e-04 0.018 3.0 2.5e-02 2.052 1.9
32 1.3e-05 0.001 3.0 3.0e-03 0.249 2.0 2.8e-05 0.002 3.0 6.3e-03 0.523 2.0
64 1.6e-06 0.000 3.0 7.5e-04 0.062 2.0 3.5e-06 0.000 3.0 1.6e-03 0.132 2.0

Serendipity elements

square meshes trapezoidal meshes

‖u− uh‖L2 ‖∇(u− uh)‖
L2 ‖u− uh‖L2 ‖∇(u− uh)‖

L2
n err. % rate err. % rate err. % rate err. % rate

2 5.0e-02 4.150 7.3e-01 60.882 9.6e-02 8.017 1.6e+00 134.810
4 6.4e-03 0.533 3.0 1.9e-01 15.610 2.0 1.3e-02 1.050 2.9 6.0e-01 50.024 1.4
8 8.0e-04 0.067 3.0 4.7e-02 3.948 2.0 2.8e-03 0.237 2.1 2.8e-01 23.217 1.1

16 1.0e-04 0.008 3.0 1.2e-02 0.993 2.0 7.3e-04 0.061 2.0 1.4e-01 11.859 1.0
32 1.3e-05 0.001 3.0 3.0e-03 0.249 2.0 2.0e-04 0.017 1.8 7.2e-02 6.012 1.0
64 1.6e-06 0.000 3.0 7.5e-04 0.062 2.0 5.4e-05 0.004 1.9 3.6e-02 3.021 1.0

Table 3. L2 errors and rates of convergence for the test problem
with exponential solution.

Mapped biquadratic elements

square meshes trapezoidal meshes

‖u− uh‖L2 ‖∇(u− uh)‖
L2 ‖u− uh‖L2 ‖∇(u− uh)‖

L2
n err. % rate err. % rate err. % rate err. % rate

2 2.8e−01 224.000 3.0e+00 169.630 2.6e−01 204.800 2.8e+00 159.208
4 1.2e−01 93.600 1.3 1.5e+00 87.322 1.0 2.1e−01 169.600 0.3 1.8e+00 99.305 0.7
8 1.7e−02 13.520 2.8 4.6e−01 25.809 1.8 2.3e−02 18.160 3.2 5.9e−01 33.185 1.6

16 1.1e−03 0.920 3.9 1.0e−01 5.860 2.1 1.3e−03 1.048 4.1 1.2e−01 6.819 2.3
32 1.3e−04 0.101 3.2 2.5e−02 1.424 2.0 1.5e−04 0.124 3.1 3.2e−02 1.794 1.9
64 1.5e−05 0.012 3.1 6.3e−03 0.354 2.0 1.9e−05 0.015 3.0 7.9e−03 0.448 2.0

128 1.9e−06 0.002 3.0 1.6e−03 0.088 2.0 2.4e−06 0.002 3.0 2.0e−03 0.112 2.0

Serendipity elements

square meshes trapezoidal meshes

‖u− uh‖L2 ‖∇(u− uh)‖
L2 ‖u− uh‖L2 ‖∇(u− uh)‖

L2
n err. % rate err. % rate err. % rate err. % rate

2 2.0e−01 159.200 2.4e+00 133.372 2.1e−01 169.600 2.3e+00 130.340
4 1.2e−01 92.000 0.8 1.4e+00 80.531 0.7 2.1e−01 168.000 0.0 1.7e+00 93.819 0.5
8 1.7e−02 13.520 2.8 4.6e−01 26.293 1.6 2.4e−02 18.880 3.2 6.1e−01 34.564 1.4

16 1.1e−03 0.920 3.9 1.1e−01 5.948 2.1 1.5e−03 1.208 4.0 1.4e−01 7.737 2.2
32 1.3e−04 0.101 3.2 2.5e−02 1.432 2.1 2.0e−04 0.162 2.9 3.8e−02 2.156 1.8
64 1.5e−05 0.012 3.1 6.3e−03 0.354 2.0 2.7e−05 0.022 2.9 1.1e−02 0.597 1.9

128 1.9e−06 0.002 3.0 1.6e−03 0.088 2.0 3.7e−06 0.003 2.9 3.4e−03 0.191 1.6

convergence for serendipity elements is the same as for affine meshes. This is clearly
illustrated in Table 5.

While the asymptotic rates predicted by the theory are confirmed in these exam-
ples, it is worth noting that in absolute terms the effect of the degraded convergence
rate is not very pronounced. For the first example, on a moderately fine mesh of
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Table 4. L∞ errors and rates of convergence for the test problem
with exponential solution.

Mapped biquadratic elements

square meshes trapezoidal meshes

‖u− uh‖L∞ ‖∇(u− uh)‖L∞ ‖u− uh‖L∞ ‖∇(u− uh)‖L∞
n err. % rate err. % rate err. % rate err. % rate

2 1.0e+00 101.000 1.1e+01 89.987 8.9e-01 89.000 1.0e+01 83.134
4 1.0e-01 10.200 3.3 8.7e+00 71.985 0.3 6.1e-04 0.061 10.5 1.2e+01 99.020 -0.3
8 6.8e-02 6.810 0.6 3.2e+00 26.530 1.4 4.5e-02 4.520 -6.2 5.2e+00 43.052 1.2

16 1.2e-02 1.200 2.5 1.1e+00 8.855 1.6 1.3e-02 1.320 1.8 1.5e+00 12.663 1.8
32 1.3e-03 0.125 3.3 2.8e-01 2.291 2.0 1.6e-03 0.160 3.0 4.8e-01 3.987 1.7
64 1.5e-04 0.015 3.0 6.9e-02 0.566 2.0 2.1e-04 0.021 2.9 1.2e-01 0.978 2.0

128 1.9e-05 0.002 3.0 1.7e-02 0.142 2.0 2.8e-05 0.003 2.9 3.0e-02 0.248 2.0

Serendipity elements

square meshes trapezoidal meshes

‖u− uh‖L∞ ‖∇(u− uh)‖L∞ ‖u− uh‖L∞ ‖∇(u− uh)‖L∞
n err. % rate err. % rate err. % rate err. % rate

2 5.8e-01 58.100 1.0e+01 83.186 5.5e-01 54.500 8.5e+00 70.112
4 8.4e-02 8.420 2.8 6.8e+00 55.862 0.6 3.0e-03 0.302 7.5 8.7e+00 71.512 -0.0
8 5.7e-02 5.690 0.6 3.9e+00 32.111 0.8 4.3e-02 4.300 -3.8 5.2e+00 42.443 0.8

16 1.0e-02 1.030 2.5 1.1e+00 9.190 1.8 1.6e-02 1.620 1.4 1.8e+00 14.604 1.5
32 1.2e-03 0.123 3.1 2.9e-01 2.407 1.9 2.4e-03 0.239 2.8 6.3e-01 5.203 1.5
64 1.5e-04 0.015 3.0 7.1e-02 0.582 2.0 3.5e-04 0.035 2.8 2.2e-01 1.795 1.5

128 1.9e-05 0.002 3.0 1.8e-02 0.145 2.0 4.8e-05 0.005 2.9 7.8e-02 0.647 1.5

Table 5. L2 errors and rates of convergence for the test problem
with polynomial solution using serendipity elements on asymptot-
ically affine meshes.

‖u− uh‖L2 ‖∇(u− uh)‖
L2

n err. % rate err. % rate

2 5.0e−02 4.066 6.2e−01 51.214
4 6.2e−03 0.510 3.0 1.5e−01 12.109 2.1
8 7.6e−04 0.062 3.0 3.6e−02 2.948 2.0

16 9.4e−05 0.008 3.0 9.0e−03 0.735 2.0
32 1.2e−05 0.001 3.0 2.2e−03 0.183 2.0
64 1.5e−06 0.000 3.0 5.6e−04 0.046 2.0

128 1.9e−07 0.000 3.0 1.4e−04 0.012 2.0

16 × 16 trapezoids, the solution error with serendipity elements exceeds that of
mapped biquadratic elements by a factor of about 2, and the gradient error by a
factor of 2.5. Even on the finest mesh shown, with 64×64 elements, the factors are
only about 5.5 and 8.5, respectively. Of course, if we were to compute on finer and
finer meshes with sufficiently high precision, these factors would tend to infinity.
Indeed, on any quadrilateral mesh which contains a nonparallelogram element, the
analogous factors can be made as large as desired by choosing a problem in which
the exact solution is sufficiently close to—or even equal to—a quadratic function,
which the mapped biquadratic elements capture exactly, while the serendipity ele-
ments do not (such a quadratic function always exists). However, it is not unusual
that the serendipity elements perform almost as well as the mapped biquadratic
elements for reasonable, and even for quite small, levels of error. This, together
with their optimal convergence on asymptotically parallelogram meshes, provides
an explanation of why the lower rates of convergence have not been widely noted.
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