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1. Let $\{\delta(n)\}$ be a sequence of non-negative numbers. J. W. S. Cassels [1]

proved that the set of real numbers $x$ in $0\leqq x<1$ for which

(1) $|x-\frac{m}{n}|<\delta(n)$

for infinitely many integers $m,$ $n$ has measure $0$ or 1. R. J. Duffin and A. C.
Schaeffer [2] had shown that for some sequences $\{\delta(n)\}$ , this set has measure
1 while the set of $x$ for which (1) holds for infinitely many relatively prime
integers $m,$ $n$ has measure $0$ . Using an extension of Cassels’ method, we will
prove

THEOREM 1. For each sequence of non-negative numbers $\{\delta(n)\}$ , the set $\mathcal{E}$ of
$x$ in $0\leqq x<1$ for which

(2) $|x-\frac{m}{n}|<\delta(n)$ , $(m, n)=1$

for infinitely many $m,$ $n$ has measure $0$ or 1.
We may suppose in the proof that $\delta(n)\rightarrow 0$ . Otherwise each $x$ satisfies (2)

for infinitely many $n$ . In fact, suppose that $ n_{1}<n_{2}<\cdots$ is a sequence for
which $\delta(n_{\nu})\geqq\delta>C$ . For (2) to be satisfied with $n=n$. it is sufficient for there
to exist an $m$ prime to $n_{J}$ in the interval n.x–m $|<n_{\nu}\delta$ . The existence of
such an $m$ , for all $x$ and all large $\nu$ , follows from the following lemma.

LEMMA 1. The length $L_{n}$ of the longest interval of consecutive integers not
prime to $n$ satisfies $L_{n}=o(n)$ .

PROOF. Let $(m, n)>1$ for $m_{1}<m\leqq m_{2}$ . Then

$0=\sum_{m_{1}<m\leqq m_{*}}a|(nn)^{l}\sum_{\prime}.u(d)=\sum_{dn}\mu(d)\sum_{d|m.m_{1}<m\leqq m_{2}}1$

$=\sum_{d[n}\mu(d)([\frac{m_{2}}{d}]-[\frac{m_{1}}{d}])=(m_{2}-m_{1})\sum_{d|n}\frac{\mu(d)}{d}+O(d(n))$

$=(m_{2}-m_{1})\frac{\phi(n)}{n}+O(d(n))$ .

Here $d(n)$ is the number of divisors of $n$ . It is known that $d(n)=O(n^{e})$ , and
$n\phi(n)^{-1}=O(n^{\epsilon})$ . Choosing $m_{1}$ and $m_{2}$ so that $m_{2}-m_{1}=L_{n}$, we have $L_{n}=o(n)$ .
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2 In this section we give two lemmas which are used in-the proof. The
first is due to Cassels [1]. The measure of a measurable set $d$ will be denoted
by $|d|$ .

LEMMA 2. Let $\{I_{k}\}$ be a sequence of intervals and let $\{U_{k}\}$ be a sequence
of measurable sets such that, for some positive $\epsilon<1$ ,

(3) $U_{k}\subset I_{k}$ , $|U_{k}|\geqq\epsilon|I_{k}|$ , $|I_{k}|\rightarrow 0$ .
Then the set of points which belong to infinitely many of the $I_{k}$ has the same
measure as the set of points which belong to in.finitely many of the $U_{k}$ .

PROOF. Let

$J=\bigcap_{K=1}^{\infty}\bigcup_{k\geqq K}I_{k}$ , $c_{U_{k}=\bigcup_{k\geqq K}U_{k}}$
$g_{k}=j-c_{U_{k}}$ .

The lemma states that $\cup 9_{k}$ has measure $0$ . In fact, each $9_{k}$ has measure $0$ .
If not, let $x_{0}$ be a density point of $g)_{k}$ in $9_{k}$ . Then since $x_{0}\in I_{k}$ for infinitely
many $k$ , and $|I_{k}|\rightarrow 0$,

(4) $|9_{k}\cap I_{k}|\sim|I_{k}|$ as $ k\rightarrow\infty$ , $x_{0}\in I_{k}$ .
On the other hand, let $k\geqq K$. Then $9_{k}\cap U_{k}=\phi$ , so $U_{k}$ and $g)_{k\cap I_{k}}$ are dis-
joint subsets of $I_{k}$ . Therefore,

$|I_{k}|\geqq|U_{k}|+|9_{k\cap}I_{k}|\geqq\epsilon|I_{k}|+|9_{k}\cap I_{k}|$ ,

or
(5) $|9_{k}\cap I_{k}|\leqq(1-\epsilon)|I_{k}|$ , $k\geqq K$ ,
contrary to (4).

A transformation of $0\leqq x<1$ into itself is metrically transitive if each
measurable subset which goes into itself under the transformation has measure
$0$ or 1.

LEMMA 3. For each pair of integers $q,$ $s$ with $q\geqq 2$ , the transformation

$x\rightarrow qx+_{q}^{S}-$ $(mod 1)$

is metrically transitive.
PROOF. Let $d$ be a measurable set which goes into itself under this trans-

formation. Then $d$ also goes into itself under the $\nu$ -th iterate $x\rightarrow q^{\nu}x+\frac{s}{q}$

$(mod 1)$ . Letting $\phi$ be the characteristic function of .,4, we have $\phi(x)\leqq$

$\phi(q^{\nu}x+\frac{s}{q})$ .
Suppose $|_{\llcorner}fl|>0$ . Let $x_{0}$ be a density point of (

$\Lambda$ , and let $I_{11}$ be the inter-
val of length $q^{-\nu}$ centered at $x_{0}$ , Then

$|d\cap I_{\nu}|=\int_{I_{\nu}}\phi(x)dx\leqq\int_{I_{y}}\phi(q^{\nu}x+\frac{s}{q})dx=\frac{1}{q^{\nu}}\int_{0^{1}}\phi(x)dx=|I_{\nu}|\cdot|d|$ .

Since $x_{0}$ is a density point of $\llcorner\ell$, and $I_{\nu}\rightarrow 0$, the left side is asymptotically $|I_{\nu}|$ .
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Therefore $|d|=1$ .
3. PROOF OF THEOREM 1. For each prime number $p$ , and each integer

$\nu\geqq 1$ , we consider the approximation

(6) $|x-\frac{m}{n}|<p^{\nu-1}\delta(n)$ $(m, n)=1$

and define two increasing sequences of sets $d(p^{\nu})$ and $9(p^{\nu})$ as follows:
$x\in d(p^{\nu})$ if $x$ satisfies (6) for infinitely many $n$ with $p,\dagger^{\prime}n$ ;
$x\in \mathscr{D}(p^{\nu})$ if $x$ satisfies (6) for infinitely many $n$ with $p\Vert n$ .

The sets $d(p),$ $\mathscr{Q}(p)$ are subsets of $\mathcal{E}$.
By Lemma 2, since $\delta(n)\rightarrow 0$ we have $|d(p^{\nu})|=|a(p)|$ . Therefore the union

$d^{*}(p)$ of the $\leftrightarrow q(p^{\nu})$ also has measure $|d(p)|$ .
If $x$ satisfies (6) with $p\mathcal{X}n$ , then

$|p_{X}-\frac{pm}{n}|<p^{\nu}\delta(n)$ , $(pm, n)=1$ .

It follows that the transformation $x\rightarrow px(mod 1)$ takes $\propto q(p^{\nu})$ into $d(p^{\nu\perp}1)$ and
thus takes $d^{*}(p)$ into itself. By Lemma 3, $d^{*}(p)$ has measure $0$ or 1. There-
fore $d(p)$ has measure $0$ or 1.

A similar argument shows that $\mathscr{D}(p)$ has measure $0$ or 1. One uses the

transformation $x\rightarrow px+\frac{1}{p}(mod 1)$ : If $x$ satisfies (6) with $p\Vert n$, then

$|p_{X}+\frac{1}{p}-\frac{pm+\frac{n}{p}}{n}|<p^{\nu}\delta(n)$

, $(pm+_{p}^{n}--,$ $?l)=1$ .

Should either $d(p)$ or $\mathscr{Q}(p)$ have positive measure for some prime $p$ , then
$|\mathcal{E}|=1$ and the proof is complete. Therefore we may suppose that for all $p$,

(7) $|d(p)|=0$, $|\mathscr{D}(p)|=0$ .
Now let $c(p)$ be the set of $x$ for which (2) holds for infinitely many $n$

with $p^{2}|n$ .
Obviously $\epsilon=d(p)U\mathscr{Q}(p)Uc(p)$ . It follows from (7) that for all $p$ ,

$|c|=|c(p)|$ .
If $m,$ $n$ and $x$ satisfy (2) with $p^{2}|n$ , then

$|x\pm\frac{1}{p}-\frac{m\pm\frac{n}{p}}{n}|<\delta(n)$, $(m\pm\frac{n}{p},$ $n)=1$ .

Therefore the set $c(p)$ has period $\frac{1}{p}$ Since $\mathcal{E}$ differs from $c(p)$ by a set of

measure $0$, if follows that for each interval $I_{p}$ of length $\frac{1}{p}$ ,

$|\mathcal{E}\cap I_{p}|=|I_{p}|\cdot|\mathcal{E}|$ .
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Now suppose $|\mathcal{E}|>0$ . Let $x_{0}$ be a density point of $\mathcal{E}$. Let $\{I_{p}\}$ be the

sequence of intervals of length $\frac{1}{p},$ $centeredatx_{0}$ . By the density point theorem,

$|\mathcal{E}\cap I_{p}|\sim|I_{p}|$ as $ p\rightarrow\infty$ .
Therefore $|\mathcal{E}|=1$ . This completes the proof.

The result of this paper is part of the author’s dissertation, Princeton
(1959). The author wishes to express here his thanks to Professor D. C.
Spencer for his kind encouragement.

Massachusetts Institute of Technology
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