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Approximation by Representative Functions on the
Complete Product of S3

Rodolfo Toledo

Abstract: This work summarizes some statements with respect to Fourier analysis on
the complete product of not necessarily commutative finite groups, achieved recently.
In particular we devotes attention to a concrete case: the complete product of the
symmetric group on 3 elements. The aim of this work is to emphasize the differences
between this noncommutative structure and the commutativecases.
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Paley system.

1 Introduction

SEVERAL RESULTS in Fourier analysis with respect to Walsh functions are ob-
tained viewing them as the characters of the dyadic group, i.e., the complete

product of the discrete cyclic group of order 2 with the product of topologies and
measures. Then we often order the Walsh functions in the Paley’s sense writing
them as the finite product of the Rademacher functions. It is named the Walsh-
Paley system. The above structure was generalized by Vilenkin [1] in 1947 study-
ing the complete product of arbitrary cyclic groups. The construction of the system
here is similar, taking the finite product of the characters of the cyclic groups as it
Paley did.

In [2] the authors generalize the above structures, taking the complete pro-
duct of not necessarily commutative finite groups. They use representation theory
in order to obtain orthonormal systems, which are named representative product
systems. These new structures were introduced in the following way.
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Denote byN, P, C the set of nonnegative, positive integers and complex num-
bers, respectively. Letm:= (mk, k∈ N) be a sequence of positive integers such that
mk ≥ 2 andGk a finite group with ordermk, (k∈ N). Suppose that each group has
discrete topology and normalized Haar measureµk. Let G be the compact group
formed by the complete direct product ofGk with the product of the topologies, op-
erations and measures(µ). Thus eachx∈ G consist of sequencesx := (x0,x1, ...),
wherexk ∈ Gk, (k∈ N). We call this sequence theexpansionof x. The compact to-
tally disconnected groupG is called abounded groupif the sequencem is bounded.
In order to simplicity we always use the multiplication to denote the group opera-
tion and use the symbole to denote the identity of the groups.

If M0 := 1 andMk+1 := mkMk, k ∈ N, then everyn ∈ N can be uniquely ex-
pressed as

n =
∞

∑
k=0

nkMk, (0≤ nk < mk, nk ∈ N).

This allows us to say that the sequence(n0,n1, . . . ) is the expansion ofn with re-
spect tom. We often use the following notations: let|n| := max{k ∈ N : nk 6= 0}
and

n(k) :=
k−1

∑
j=0

nkMk, n(k) :=
∞

∑
j=k

nkMk.

The notation which we used to construct orthonormal systemsis similar to the
one appeared in [3]. Denote byΣk the dual object of the finite groupGk (k ∈ N).
Thus eachσ ∈ Σk is a set of continuous irreducible unitary representationsof Gk

which are equivalent to some fixed representationU (σ). Letdσ be the dimension of
its representation space and let{ζ1,ζ2, . . . ,ζdσ } be a fixed but arbitrary orthonormal
basis in the representation space. The functions

u(σ)
i, j (x) := 〈U (σ)

x ζi ,ζ j〉 (i, j ∈ {1, . . . ,dσ}, x∈ Gk)

are called the coordinate functions forU (σ) and the basis{ζ1,ζ2, . . . ,ζdσ }. In this
manner for eachσ ∈ Σk we obtaind2

σ number of coordinate functions, in total
mk number of functions for the whole dual object ofGk. The L2-norm of these
functions is 1/

√
dσ .

Let {ϕs
k : 0 ≤ s < mk} be a system of allnormalized coordinate functionsof

the groupGk. We do not decide now the order of the systemϕ , only suppose that
ϕ0

k is always the character 1. Thus for every 0≤ s < mk there exists aσ ∈ Σk,
i, j ∈ {1, ...,dσ } such that

ϕs
k(x) =

√
dσ u(σ)

i, j (x) (x∈ Gk).
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If the finite groupGk is commutative, thendσ = 1 for all σ ∈ Σk and the coordinate
functions are characters, that is all of them are continuouscomplex-valued maps on
G which satisfy

ϕs
k(xy) = ϕs

k(x)ϕ
s
k(y) (x,y∈ Gk).

and
|ϕs

k(x)| = 1 (x∈ Gk).

In the construction of the Walsh-Paley and Vilenkin systemsall of the groupGk

are cyclic. For the cyclic group of order 2 (mk := 2) we obtain the concept of
Rademacher functions

ϕs
k(x) = (−1)sx (s∈ {0,1}, x∈ Z2). (1)

Moreover, we can generalize the above functions for an arbitrary cyclic groups with
ordermk > 2 to obtain the concept ofgeneralized Rademacher functions

ϕs
k(x) = exp(2πısx/mk) (s∈ {0, . . .mk−1}, x∈ Zmk, ı2 = −1). (2)

The above equations not only define the systemsϕ for cyclic groups, but also give
the order of these systems.

On the other hand, ifGk is a noncommutative finite group, then it has normal-
ized coordinate functions which take the value 0 and with module greater than 1.
We can observe this fact in Table 1, where the values of the system ϕ appear for
the symmetric group on 3 elements, denoted byS3. This group has two characters
(ϕ0 andϕ1) and a 2-dimensional representation.

e (12) (13) (23) (123) (132) ‖ϕs‖1 ‖ϕs‖∞
ϕ0 1 1 1 1 1 1 1 1
ϕ1 1 −1 −1 −1 1 1 1 1

ϕ2
√

2 −
√

2
√

2
2

√
2

2 −
√

2
2 −

√
2

2
2
√

2
3

√
2

ϕ3
√

2
√

2 −
√

2
2 −

√
2

2 −
√

2
2 −

√
2

2
2
√

2
3

√
2

ϕ4 0 0 −
√

6
2

√
6

2

√
6

2 −
√

6
2

√
6

3

√
6

2

ϕ5 0 0 −
√

6
2

√
6

2 −
√

6
2

√
6

2

√
6

3

√
6

2
Table 1. The systemϕ for S3

We construct an orthonormal system onG as follows. Letψ be the product
system ofϕs

k, namely

ψn(x) :=
∞

∏
k=0

ϕnk
k (xk) (x∈ G),
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wheren is of the formn = ∑∞
k=0 nkMk andx = (x0,x1, ...). Thus we say thatψ is

the representative product systemof ϕ . If all of the finite group are cyclic, so the
systemsϕ are given by (1), then the systemψ is called the Walsh-Paley system. For
the complete product of arbitrary cyclic group with systemsϕ ordered as (2), the
systemψ is called a Vilenkin system. The Weyl-Peter’s theorem (see [3]) secures
that the systemψ is orthonormal and complete onL2(G).

2 Representation on the Interval [0,1]

In [4] the author establishes a natural relation between theHaar integration on
the complete direct product of finite discrete topological groups and the Lebesgue
integration on the interval[0,1]. With this intention, order the elements of allGk

(k ∈ N) groups in some way such that the first is always their identity. In fact, the
ordering is a bijection betweenGk and{0,1, . . . ,mk−1} which give to everyx∈Gk

the integer 0≤ x < mk (e= 0). Define

|x| :=
∞

∑
k=0

xk

Mk+1
(x∈ G).

It is easy to see that|.| is a norm and the proceeded metricd(x,y) := |xy−1| induces
the topology ofG. In addition, 0≤ |x| ≤ 1 for all x∈G. Using this fact we represent
the groupG in the interval[0,1].

Any x∈ [0,1] can be written

x :=
∞

∑
k=0

xk

Mk+1
(0≤ xk ≤ mk−1),

but there are numbers with two expressions of this form. Theyare all numbers in
the set

Q :=

{
p

Mn
: 0≤ p < Mn, n, p∈ N

}

called m-adic rational numbers(Note that 1 is not anm-adic rational number).
The other numbers have only one expression. Them-adic rational numbers have
an expression terminates in 0’s and other terminates inmk − 1’s. We choose the
first one to make an unique relation for all numbers in the interval [0,1] with their
expression, named dem-adic expansionof the number. In this manner we assign to
a number in the interval[0,1] having anm-adic expansion(x0,x1, . . . ) an element
of G with expansion(x0,x1, . . . ) denoting this relation byρ . ρ is called theFine’s
map. Using Fine’s map we introduce a new operation on the interval [0,1[:

x⊙y := |ρ(x)ρ(y)| (x,y∈ [0,1[).
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Let L0(G) denote the set of all measurable functions onG which are a.e. finite.
In some way denote byL0 the set of all Lebesgue measurable functions on[0,1]
which are a.e. finite. The following theorem shows the relation between the Haar
integration onG and the Lebesgue integration on the interval[0,1].

Theorem 1 (see [4]). Let ρ denote the Fine’s map.

(a) If f ∈ L0(G) then f◦ρ ∈ L0. Conversely, if g∈ L0 and

f (x) := g(|x|) (x∈ G) (3)

then f∈ L0(G).

(b) If f is integrable on G then f◦ρ is Lebesgue integrable and
∫

G
f dµ =

∫ 1

0
( f ◦ρ)(x)dx.

Conversely, if g is Lebesgue integrable and f is defined by (3)then f is inte-
grable on G and ∫ 1

0
g(x)dx=

∫

G
f dµ .

According to Theorem 1, we can represent the systemψ on the interval[0,1]
substituting it by the

υn := ψn◦ρ (n∈ N)

system. In Figure 1 we plot the corresponding values ofψ12 andψ23 with respect
to the complete product ofS3. These graphs show two properties of the systemψ
which are different to the commutative cases and difficult the study of the noncom-
mutative cases: the systemψ is not uniformly bounded and can take the value 0.

The complete product of S3      n=12
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Fig. 1. ψ12 andψ23 with respect to the complete product ofS3.
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3 Properties of Dirichlet Kernels

For an integrable complex functionf defined inG we define the Fourier coefficients
and partial sums by

f̂k :=
∫

Gm

f ψk dµ (k∈ N), Sn f :=
n−1

∑
k=0

f̂kψk (n∈ N).

TheDirichlet kernelsare defined as follows:

Dn(x,y) :=
n−1

∑
k=0

ψk(x)ψk(y) (n∈ N).

It is easy to see that

Sn f (x) =

∫

G
f (y)Dn(x,y)dµ(y), (4)

which shows the importance of the Dirichlet kernels in the study of the convergence
of Fourier series.

DefineI0(x) := G,

In(x) := {y∈ G : yk = xk, for 0≤ k < n} (x∈ G,n∈ P).

We say that every setIn(x) is an interval. The set of intervalsIn is a countable
neighborhood base at the identity of the product topology onG.

The following lemma is known by Paley’s lemma for commutative cases. It can
be also stated for representative product systems in general.

Lemma 1 (Paley’s lemma). If n ∈ N and x,y∈ G, then

DMk(x,y) =

{
Mk for x∈ Ik(y),

0 for x 6∈ Ik(y)

The Paley lemma is used to prove that theSMn f partial sequence of Fourier
sums converge tof in Lp-norm and a.e., iff ∈ Lp(G), p≥ 1. So we can also state
this proposition for the complete product ofS3. However, the other values ofDn

are more different whenn 6= Mk. To illustrate this statement define by

Dn := sup
x,y∈G

|Dn(x,y)| (n∈ P)

the maximal value of the Dirichlet kernel. For commutative casesDn = n for all
n∈ P, but the general case is a bit more different.
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Theorem 2. Let G be the complete product ofS3 and ψ be the representative
product system with respect to the systemϕ of Table 1. If n∈ P and A:= max{k∈
N : nk 6= 0}, then

n≤ Dn ≤ 6A+1.

Proof. By the inequality of Cauchy-Bunyakovszki we have

∣∣∣∣∣

n−1

∑
k=0

ψk(x)ψk(y)

∣∣∣∣∣

2

≤
n−1

∑
k=0

|ψk(x)|2
n−1

∑
k=0

|ψk(y)|2

≤ max2

{
n−1

∑
k=0

|ψk(x)|2,
n−1

∑
k=0

|ψk(y)|2
}

(x, y∈ G).

Consequently,

Dn = sup
x∈G

Dn(x,x) = sup
x∈G

n−1

∑
k=0

|ψk(x)|2 (n∈ P) (5)

from which we have thatDn is monotone increasing sequence.
The unitary property of the representations implies (see [5])

j

∑
s=0

|ϕs
k(xk)|2 ≤ 6 ( j < 6, xk ∈ S3). (6)

Moreover, letn∈ N, x, y∈ G. Thus, we have

Dn(x,y) =D6A(x,y)

(
nA−1

∑
s=0

ϕs
A(xA)ϕs

A(yA)

)

+ ϕnA
A (xA)ϕnA

A (yA)Dn(A)
(x,y).

By Paley lemma and (5) we obtain

Dn(x,x) = 6A

(
nA−1

∑
s=0

|ϕs
A(xA)|2

)

+ |ϕnA
A (xA)|2Dn(A)

(x,x). (7)

Observe,n = ∑A
k=0nk6k and n(A) = ∑A−1

k=0 nk6k. By induction onA we prove
Dn(x,x) ≤ 6A+1 for all x∈ G. Indeed, by (6)

Dn(1)
(x,x) =

n0−1

∑
s=0

|ϕs
0(x0)|2 ≤ 6
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and supposingDn(A)
(x,x) ≤ 6A, by (6) and (7) we have

Dn(A+1)
(x,x) = Dn(x,x) ≤ 6A

(
nA−1

∑
s=0

|ϕs
A(xA)|2

)
+ |ϕnA

A (xA)|26A

= 6A

(
nA

∑
s=0

|ϕs
A(xA)|2

)
≤ 6A ·6 = 6A+1,

from which the inequalityDn ≤ 6|n|+1 follows.
On the other hand, by the orthonormality of the systemψ we have

∫

G

n−1

∑
k=0

|ψk|2 dµ =
n−1

∑
k=0

∫

G
|ψk|2 dµ = n

and by theµ(G) = 1 propety

∫

G

n−1

∑
k=0

|ψk|2 dµ ≤ sup
x∈G

n−1

∑
k=0

|ψk|2 = Dn (8)

from which we obtain the propertyDn ≥ n. This completes the proof of the lemma.
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Fig. 2. Dn (n≤ 64) on the complete product ofS3

Figure 2 illustrates the statements of Theorem 2 with respect to the systemϕ
onS3 appeared in Table 1.
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4 Convergence in Lp-Norm

An essential difference is revealed when we study the convergence of Fourier series.
Paley proved the fact that the partial sums of Fourier seriesare uniformly bounded,
from Lp into itself, where 1< p < ∞. It is equivalent to the convergence of these
operators inLp-norm. This statement is known as the Paley’s theorem. Paley’s
theorem was shown independently for arbitrary Vilenkin systems by Young [6],
Schipp [7] and Simon [8].

Theorem 3 (Paley’s theorem). Let G be a Vilenkin group and f∈ Lp(G), 1 <
p < ∞. Then the partial sums of Fourier series of the function f , denoted by Sn f ,
converge to the function f in Lp-norm.

Unfortunately, we can not extend this statement for the complete product ofS3.

Theorem 4 (see [9]). Let G be the complete product ofS3 andψ be the representa-
tive product system with respect to the systemϕ of Table 1. If1< p< ∞ and p6= 2,
then there exists an f∈ Lp(G) such that Sn f does not converge to the function f in
Lp-norm.

For this reason it is very interesting the fact that the Fejér means of an arbitrary
function belongs toLp(G) (1≤ p < ∞) converge to the function inLp-norm. This
statement was proved in [2]. We define the Fejér means of Fourier series of the
function f by

σn f =
1
n

n

∑
k=1

Sk f (n∈ P).

Thus, we have

Theorem 5 (see [2]). Let G be the complete product ofS3 and ψ be the repre-
sentative product system with respect to the systemϕ of Table 1. If f∈ Lp(G),
1≤ p < ∞, thenσn f converge to the function f in Lp-norm.

The last theorem can be extended for Cesàro means of orderα (0 < α < 1) of
the Fourier series, but only for certain values ofα . TheCes̀aro numbers of orderα
are given by the formula

Aα
n =

(α +1)(α +2) . . . (α +n)

n!
(n∈ N)

whereα is a real number. We summarize the main properties of this numbers as
follows (see [10]).

• Aα
n = ∑n

k=0 Aα−1
n−k ,
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• Aα
n −Aα

n−1 = Aα−1
n ,

• lim
n→∞

Aα
n

nα =
1

Γ(α +1)
(α 6= −1,−2, . . . ),

• the numbersAα
n are positive ifα > −1, andAα

n < 1 if −1 < α < 0,

• the sequenceAα
n increasing forα > 0 and decreasing for−1 < α < 0.

Using the notation above we denotethe Ces̀aro means of orderα of Fourier series
or simply(C,α) meansby

σ α
n f :=

1
Aα

n

n

∑
k=0

Aα−1
n−k Sk f (n∈ P). (9)

We define the numberα0 as follows

α0 := limsup
k→∞

logmk

(
max

0≤s<mk

‖ϕs
k‖1‖ϕs

k‖∞

)
.

α0 is the infimum of all 0< α < 1 such that

‖ϕs
k‖1‖ϕs

k‖∞ < mα
k (0≤ s< mk)

holds except finite numbers ofk ∈ N. We remark that the numberα0 exists and it
less than1

2 since‖ϕs
k‖2

∞ < mk and‖ϕs
k‖1 ≤ 1 for all k ∈ N. For the commutative

cases it is obvious thatα0 = 0. For the systemϕ of Table 1 it is easy to see that
α0 = log6

4
3. Thus we have

Theorem 6 (see [11]). Let G be the complete product ofS3 and ψ be the repre-
sentative product system with respect to the systemϕ of Table 1. If f∈ Lp(G),
1≤ p < ∞ andα > log6

4
3, thenσ α

n f converge to the function f in Lp-norm.

For values ofα less than log6
4
3 we obtain divergence inL1-norm.

Theorem 7 (see [11]). Let G be the complete product ofS3 and ψ be the repre-
sentative product system with respect to the systemϕ of Table 1. Ifα < log6

4
3,

then there exists an f∈ L1(G) such thatσ α
n f does not converge to the function f

in L1-norm.
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