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Approximation by Representative Functions on the
Complete Product of 83

Rodolfo Toledo

Abstract: This work summarizes some statements with respect to Famaysis on
the complete product of not necessarily commutative finitaigs, achieved recently.
In particular we devotes attention to a concrete case: theptzie product of the
symmetric group on 3 elements. The aim of this work is to ersiesthe differences
between this noncommutative structure and the commutedises.
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I ntroduction

VERAL RESULTSIn Fourier analysis with respect to Walsh functions are ob-
tained viewing them as the characters of the dyadic groap,the complete
product of the discrete cyclic group of order 2 with the prodof topologies and
measures. Then we often order the Walsh functions in theyBadense writing
them as the finite product of the Rademacher functions. lamsed the Walsh-
Paley system. The above structure was generalized by Vfilghkin 1947 study-
ing the complete product of arbitrary cyclic groups. Thestanction of the system
here is similar, taking the finite product of the charactdrthe cyclic groups as it
Paley did.

In [2] the authors generalize the above structures, talirgcomplete pro-
duct of not necessarily commutative finite groups. They epeasentation theory
in order to obtain orthonormal systems, which are hamedessgtative product
systems. These new structures were introduced in the fiigpway.
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Denote byN, P, C the set of nonnegative, positive integers and complex num-
bers, respectively. Leh:= (m, k € N) be a sequence of positive integers such that
my > 2 andGy a finite group with ordemy, (k € N). Suppose that each group has
discrete topology and normalized Haar measuge Let G be the compact group
formed by the complete direct product@§ with the product of the topologies, op-
erations and measurég). Thus each € G consist of sequences= (X, Xy, --.),
wherex, € Gy, (k € N). We call this sequence tlexpansiorof x. The compact to-
tally disconnected grou@ is called abounded groujif the sequencenis bounded.

In order to simplicity we always use the multiplication tondée the group opera-
tion and use the symbelto denote the identity of the groups.

If Mg :=1 andMy;1 := MMy, k € N, then everyn € N can be uniquely ex-
pressed as

n= Z)nkMk, (0O< < m, ng e N).
k=

This allows us to say that the sequeriog,ny,...) is the expansion of with re-
spect tom. We often use the following notations: gt := max{k € N : n, # 0}

and
k—1

N =Y MM, n® = S nMy.
(K ,; Zk

The notation which we used to construct orthonormal systsmasnilar to the
one appeared in [3]. Denote & the dual object of the finite groux (k € N).
Thus eacho € 3y is a set of continuous irreducible unitary representationGy
which are equivalent to some fixed representatiéfy. Letd, be the dimension of
its representation space and{ét, {», ..., {q, } be afixed but arbitrary orthonormal
basis in the representation space. The functions

U9 = U7%.g)  (.iefl....do} x€GY)

are called the coordinate functions 10t°) and the basi§{, s, ..., 4, }. In this
manner for eacto € 2, we obtaindg number of coordinate functions, in total
me number of functions for the whole dual object ;. The L?-norm of these
functions is ¥1/d;.

Let {¢2: 0 < s< m} be a system of alhormalized coordinate functiorsf
the groupGy. We do not decide now the order of the systénonly suppose that
¢ is always the character 1. Thus for every<Gs < my there exists & € 3,
i,j €{1,...,ds} such that

950 = VdoUT (%) (xe Gy
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If the finite groupGy is commutative, thed, = 1 for all o € > and the coordinate
functions are characters, that is all of them are continwousplex-valued maps on
G which satisfy

Pe(xy) = P()oR(y) (XY € Gi).
and

(e[ =1 (x€Gy).

In the construction of the Walsh-Paley and Vilenkin systeth®f the groupGg
are cyclic. For the cyclic group of order 2n¢ := 2) we obtain the concept of
Rademacher functions

P = (=1 (s€{0,1}, xeZa). 1)

Moreover, we can generalize the above functions for anrargityclic groups with
ordermy > 2 to obtain the concept @feneralized Rademacher functions

dS(x) = exp2msx/my)  (s€{0,...m—1}, XE Zm, P=-1). (2)

The above equations not only define the systenfier cyclic groups, but also give
the order of these systems.

On the other hand, By is a noncommutative finite group, then it has normal-
ized coordinate functions which take the value 0 and with ni®dreater than 1.
We can observe this fact in Table 1, where the values of theisyg appear for
the symmetric group on 3 elements, denotedsfyThis group has two characters
(¢° and¢?) and a 2-dimensional representation.

e (12 (13) (23) (123 (132 || [[¢°ll2 | [[9°]
P | 1 1 1 1 1 1 1 1
ot 1 -1 -1 -1 1 1 1 1
A IR A A S A I A
91 v2 V2 2 ] BE 2
4| 0 0 _v6 6 V6 V6 V6 V6
2 2 2 2 3 2
¢5| 0 o _v6 V6 V6 /6 V6 V6
2 2 2 2 3 2

Table 1. The syster for 83

We construct an orthonormal system @nas follows. Lety be the product
system of¢?, namely

Un(X) 1=|!:L¢|?k(xk) (xeG),
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wheren is of the formn = S My andx = (Xo,X1,...). Thus we say thai is
the representative product systesh ¢. If all of the finite group are cyclic, so the
systemgp are given by (1), then the systafnis called the Walsh-Paley system. For
the complete product of arbitrary cyclic group with systegnerdered as (2), the
systemy is called a Vilenkin system. The Weyl-Peter's theorem (&edecures
that the systeng is orthonormal and complete arf(G).

2 Representation on theInterval [0,1]

In [4] the author establishes a natural relation betweenHhar integration on
the complete direct product of finite discrete topologicaups and the Lebesgue
integration on the intervgD, 1]. With this intention, order the elements of &}
(k € N) groups in some way such that the first is always their idenlityfact, the
ordering is a bijection betweds, and{0,1,...,my— 1} which give to everyk € Gy
the integer O< X < my (8= 0). Define

.
X| = xeG).
M=3 S X€O

It is easy to see that is a norm and the proceeded metli,y) := |xy!| induces
the topology ofG. In addition, 0< |x| <1 for all x € G. Using this fact we represent
the groupG in the interval[0, 1].

Any x € [0,1] can be written

o X -

X = 0<% <m—1),
kZo Mic1 ( )

but there are numbers with two expressions of this form. Tdreyall numbers in

the set
p .

Q::{—.0< p < Mp, n,peN}

My

called m-adic rational numbergNote that 1 is not amm-adic rational number).
The other numbers have only one expression. fredic rational numbers have
an expression terminates in 0's and other terminatasgin 1's. We choose the
first one to make an unique relation for all numbers in therirtef0, 1] with their
expression, named de-adic expansionf the number. In this manner we assign to
a number in the intervgD, 1] having anm-adic expansiorn{Xp, X1, ... ) an element
of G with expansionXp,X,...) denoting this relation by. p is called theFine’s
map Using Fine’s map we introduce a new operation on the intdf/a][:

xoy:=lpxpy)  (xye[0,1]).
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Let L°(G) denote the set of all measurable functiongGwhich are a.e. finite.
In some way denote b the set of all Lebesgue measurable functiong]
which are a.e. finite. The following theorem shows the retatietween the Haar
integration onG and the Lebesgue integration on the intefGal).

Theorem 1 (see [4]) Letp denote the Fine’s map.
(@) If f € L9(G) then fop € LO. Conversely, if g¢ L° and
f(x):=g(x)  (xeG) ®)
then fe LO(G).

(b) If f is integrable on G then 4 p is Lebesgue integrable and

/Gfdu:/ol(fop)(x)dx

Conversely, if g is Lebesgue integrable and f is defined byh@) f is inte-

grable on G and
1
/ g(x)dx:/ fdu.
0 G

According to Theorem 1, we can represent the sysfeon the interval0, 1]
substituting it by the
Un:=Uhop (neN)
system. In Figure 1 we plot the corresponding valuegigfand 3 with respect
to the complete product &3. These graphs show two properties of the systiem
which are different to the commutative cases and difficidtdtudy of the noncom-
mutative cases: the systegnis not uniformly bounded and can take the value O.

The complete product of S3  n=12 The complete product of S3  n=23

i 1 R
JuuE | 4E o

Fig. 1. yn» and 3 with respect to the complete product®y.
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3 Propertiesof Dirichlet Kernels

For an integrable complex functiodndefined inG we define the Fourier coefficients
and partial sums by

i ::/G Py (keN),  Sf:=Y fk (neN).
m k=0

TheDirichlet kernelsare defined as follows:

n—-1

Dn(x,y) = kzo WX)Py)  (nEN).

It is easy to see that
S109 = [ 1)Da(xy)du(y) @

which shows the importance of the Dirichlet kernels in thelgtof the convergence
of Fourier series.
Definelg(x) := G,

Ih(X) :={yeG:y=X., forO<k<n} (xeG,neP).

We say that every sdh(x) is aninterval. The set of intervald, is a countable
neighborhood base at the identity of the product topolog&on

The following lemma is known by Paley’s lemma for commutaibases. It can
be also stated for representative product systems in genera

Lemmal (Paley’s lemma)lfn € Nand xy € G, then

M for xe l(y),
DMK(ny)_{o for x¢&Ik(y)

The Paley lemma is used to prove that g f partial sequence of Fourier
sums converge té in LP-norm and a.e., if € LP(G), p > 1. So we can also state
this proposition for the complete product &. However, the other values @,
are more different when £ M. To illustrate this statement define by

Dn:= sup|Dn(xy)]  (n€P)
X, yeG

the maximal value of the Dirichlet kernel. For commutatiasesD,, = n for all
n € P, but the general case is a bit more different.
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Theorem 2. Let G be the complete product 8% and ¢ be the representative
product system with respect to the systeiof Table 1. If ne P and A:=max{k €
N : ng # 0}, then

n< D, < 6L,

Proof. By the inequality of Cauchy-Bunyakovszki we have

2

n-1 n-1 n-1
WOTY)| < T IR [dk(y)?
kzo k(X)W (Y) kZOI k(X)] kZOI k(Y)]
n-1 n-1
< maxz{ > w2y \wk(y)\z} (X Y€EG).
K=0 K=0
Consequently,
n-1
Dn = supDn(x,X) =supy [k()[>  (n€P) (5)
xeG XEG k=

from which we have thdD, is monotone increasing sequence.
The unitary property of the representations implies (s¢e [5

j
;\qu(xk)Fs 6 (j <6 %€ 83). (6)

Moreover, leth € N, x, y € G. Thus, we have

na—1
Dn(x,y) =Dea(X,y) < Zj ¢/§(XAWSA(VA)>
S=
+ 22 (Xa) PR (YA) Dy (%,Y).-
By Paley lemma and (5) we obtain
na—1
Dn(x,x) =67 ( % |¢§(XA)|2> + | @A (Xa)[*Din gy (%,X). (7
S=
Observe,n = yi on6* and ns) = Si-gn6*. By induction onA we prove
Dn(x,x) < 61 for all x € G. Indeed, by (6)

no—1

Dnyy) (%,X) = ; 193(x0)[2 < 6
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and supposin@n, (X,X) < 6", by (6) and (7) we have

na—1

D,y (%X) = Dn(x,X) < 6" < ; |¢Z(XA)|2> +[ 0" (xa) 26"

NA
~ 6" ( ;mzm)ﬁ) <6 6=6"1,
S=!

from which the inequalityD, < 6"+ follows.
On the other hand, by the orthonormality of the sysigwe have

n—1 ’ n—1 ’
LS 1wdu=5 [ jed2du=n
=] k=0"/G
and by theu(G) = 1 propety

n-1 n-1
[, I < sups 10w =y
G &

XeG k=

R. Toledo:

(8)

from which we obtain the property,, > n. This completes the proof of the lemma.
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n

Fig. 2. Dp (n < 6% on the complete product &f

O

Figure 2 illustrates the statements of Theorem 2 with resfoethe systenyp
on 83 appeared in Table 1.
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4 Convergencein LP-Norm

An essential difference is revealed when we study the cgevee of Fourier series.
Paley proved the fact that the partial sums of Fourier semesiniformly bounded,
from LP into itself, where 1< p < . It is equivalent to the convergence of these
operators inLP-norm. This statement is known as the Paley’s theorem. RBaley
theorem was shown independently for arbitrary Vilenkinteyss by Young [6],
Schipp [7] and Simon [8].

Theorem 3 (Paley’s theorem)Let G be a Vilenkin group and € LP(G), 1 <
p < «. Then the partial sums of Fourier series of the function nated by §f,
converge to the function f in®tnorm.

Unfortunately, we can not extend this statement for the detagroduct of5s.

Theorem 4 (see [9]) Let G be the complete product®f and ¢ be the representa-
tive product system with respect to the sysfeaf Table 1. Ifl < p < c and p# 2,
then there exists an € LP(G) such that f does not converge to the function f in
LP-norm.

For this reason it is very interesting the fact that the Fajéans of an arbitrary
function belongs td.P(G) (1 < p < «) converge to the function ibP-norm. This
statement was proved in [2]. We define the Fejér means ofiéroseries of the
function f by

1 n
anf:—zskf (neP).
&
Thus, we have

Theorem 5 (see [2]) Let G be the complete product 88 and ¢ be the repre-
sentative product system with respect to the sysieofi Table 1. If fe LP(G),
1< p < «, theno, f converge to the function f infenorm.

The last theorem can be extended for Cesaro means of ordeéx o < 1) of
the Fourier series, but only for certain valuesoofTheCesiro numbers of ordea
are given by the formula

(a+1)(a+2)...(a+n)
n!

An = (neN)

wherea is a real number. We summarize the main properties of thisbheusas
follows (see [10]).

o Al =30 AT K,
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L Aﬁ—Agfleﬁfll

A1 1
'Amon_a_r(au) (a#-1,-2,...),

e the number#\? are positive ifa > —1, andAY < 1if —1< a <0,
e the sequencgy increasing foro > 0 and decreasing forl < a < 0.

Using the notation above we dendke Cearo means of ordea of Fourier series
or simply (C, a) meanshy

l n
0% fi=— a-lg f neP). (9)
We define the numbaexg as follows

oo := limsuplo max ||¢g Slle |
o= limsuplogy, ( max 10212951
ap is the infimum of all O< a < 1 such that

oellalldille <mg  (0<s<my)

holds except finite numbers &fc N. We remark that the number, exists and it
less thanj since | ¢g]|2 < me and ||¢]1 < 1 for all k € N. For the commutative
cases it is obvious thaty = 0. For the systeng of Table 1 it is easy to see that
0o = logg 3. Thus we have

Theorem 6 (see [11]) Let G be the complete product & and ¢ be the repre-
sentative product system with respect to the sysgieof Table 1. If fe LP(G),
l1<p<owanda > I096§‘, theng? f converge to the function f infenorm.

For values ofo less than Iog% we obtain divergence in*-norm.

Theorem 7 (see [11]) Let G be the complete product & and ¢ be the repre-
sentative product system with respect to the sygieoh Table 1. Ifa < IogG%,
then there exists an € L1(G) such thato® f does not converge to the function f
in L*-norm.
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