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APPROXIMATION BY SMOOTH MULTIVARIATE SPLINES 

BY 

C. DE BOORl AND R. DEVORE2 

ABSTRACT. The degree of approximation achievable by piecewise polynomial func- 

tions of given total order on certain regular grids in the plane is shown to be 

adversely affected by smoothness requirements-in stark contrast to the univariate 

situation. For a rectangular grid, and for the triangular grid derived from it by 
adding all northeast diagonals, the maximum degree of approximation (as the grid 

size I/n goes to zero) to a suitably smooth function is shown to be O(n -p-2) in case 

we insist that the approximating functions are in CP. This only holds as long as 

p < (r - 3)/2 and p < (2r - 4)/3, respectively, with r the total order of the 

polynomial pieces. In the contrary case, some smooth functions are not approxima- 

ble at all. In the discussion of the second mesh, a new and promising kind of 

multivariate B-spline is introduced. 

1. Introduction. One of the important properties of univariate splines is that in 

most senses smooth splines approximate just as well as piecewise polynomials. As we 

shall see, this is no longer the case for multivariate splines where both the smooth- 

ness of the spline and the geometry of the partition can have a limiting effect on the 

order of approximation. This type of limitation has already been recognized in 

certain cases [9], such as low total order splines on a rectangular grid. For example, 

there is no effective approximation by C010-cubics (i.e., total order 4) on rectangular 

grids. The purpose of this paper is to give a systematic study of this and related 

questions. We restrict our inquiry to bivariate approximation but it will be clear that 

our techniques extend to higher dimensions. 

We became involved in these questions because we wanted to compare the relative 

merits of coordinate order splines with those of total order splines. It is well known 

that C(r-2)_smooth splines of coordinate order r on a rectangular grid of mesh size h 

approximate smooth functions to within O(hr). The same order is achieved by 

piecewise polynomials of coordinate order r on the same grid. On the other hand, 

piecewise polynomials of total order r on the same grid also approximate smooth 

functions to within O(hr), but with a considerable savings in the number of local 

degrees of freedom used: r(r + 1)/2 versus r2. It is natural to ask whether this state 

of affairs persists when we impose some smoothness on the approximating functions. 

The answer is a resounding "no"; any smoothness requirement whatever will 
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adversely affect the rate of approximation by total order splines on a rectangular 

grid. This is true for other partitions as well. This connection between smoothness 

requirements, the geometry of the partition and the order of approximation achieva- 

ble is the main theme of this paper. 

Let I = {fi} be a partition of R2 into triangles and/or rectangles. Denote by 

HL: = {fr(n)} the corresponding scaled partition, with 7Ti(n) : ri/n, all i. Denote 

by Sr p(lJn) the space of splines of order r and smoothness p on JLnn, i.e., s E Srp(lJ1n) 

if and only if s E CP(R2) and, on each ri(n), s is a polynomial of total order r (i.e. 

total degree < r). We are interested in when U1n= SrJp(lJ,n) is dense in CO(R2). We 
study this problem in detail for two particular partitions: z : = {aij}, consisting of 

the squares aij : = [i, i + 1] X [j, j + 1], and the partition A which results when 

each square of 2 is divided into two triangles by introducing the northeast diagonal. 

The technique developed for these two cases can be used for more general partitions 

as well. 

In ?2, we study approximation on En. This modest example already has the salient 

features of the general problem. We show that Sr,p(Jn) is effective if and only if 

p < (r - 3)/2. Thus, roughly speaking, only smoothness up to one-half the order of 

the polynomial pieces is allowable in this case. It turns out that smoothness also 

affects the rate of approximation in that certain Co-functions can only be ap- 

proximated to within O(n-r+P+?). Thus any smoothness condition reduces the 

achievable order of approximation. This should be compared with the univariate 

case or the tensor product case where the full order of approximation is achievable 

regardless of smoothness. 

We study approximation on A n in ?3. Here, the role of the geometry of the 

partition becomes more apparent. The splines Sr,p(1 n) are effective if and only if 

p < (2r - 4)/3, hence there is a gain over the case En from roughly r/2 to 2r/3. It 

is clear from our techniques that this is due to the fact that the partition A has three 

pairwise independent directions, viz. (1, 0), (0, 1) and (1, 1), whereas 2 has only two, 

viz. (1,0) and (0, 1). More generally, if the partition II is generated by m pairwise 

independent vectors (what we mean by this is made precise in ?4), then Sr,p(lJLn) is 

effective if and only if p < r - 1 - [(r + 1)/m]. Thus the more directions, the 

higher the allowable smoothness, but of course at the expense of a more complicated 

partition. 

The results just described have two components. First they say that UnSr,p(HLn) is 

not dense in CO(R2) if p is too large. This rests on the fact that Sr,p(lJHn) will not 

contain splines of finite support when p is too large. Our approach for this part of 

the problem is more or less the same in both cases II = 2 and I = A. The second 

half of the analysis is to show that UnSr,p(JLn) is dense when p is suitably restricted. 

This requires the construction of appropriate approximation methods. We develop 

different methods for constructing such approximations in the two cases. 

For 2 it is easy to see that Sn = Sr,p(En) is effective when p < (r - 3)/2 since Sn 

then contains the tensor products of univariate splines of order p + 2 and smooth- 

ness p. The more difficult problem is to show that S approximates any Co' -functionf 

to within 0(n-r+P+ 1). This is done by approximating the derivative D(1'1)f by splines 
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of lower order and smoothness, integrating and making local corrections for the 

approximation to f. 

Our construction of approximants from S: Sr,p(Z/n) has a completely different 

flavor, being based on extensions of the idea of multivariate B-splines. These ideas 

extend readily to more general partitions. Recall that multivariate B-splines are 

defined by certain cross sectional volumes of simplices. If the simplex is replaced by 
a more general polyhedron, the resulting function is still a piecewise polynomial, but 

now perhaps with fewer lines of discontinuity. In particular, by a suitable choice of 

the polyhedron, we can force the discontinuities of the resulting spline to be 

contained in the mesh lines of A\n As mentioned in ?4, other choices for the 

polyhedra will handle other partitions II of R2. We feel that this viewpoint for 

constructing multivariate splines may prove to be very useful. For example, some of 

the standard finite elements can be described this way [3]. 
Here are some notational conventions used. Co(A) stands for the set of r times 

continuously differentiable functions on the set A with compact support in A. II II is 

the LOO-norm on R2, and 11 I-(A) is the LOO-norm over the set A. Further, 

f 11 r = f 11 W' max 11 D( a)f 11 and I f Ir max 11 D(` )f II. 
a +f3 --r a?f38 =r 

[a] denotes the largest integer no bigger than a, i.e., the "floor" function, and [a] 
denotes its companion, the "ceiling" function, which gives the smallest integer no 

smaller than a. Further, 

m {1,2,... .,m}. 

We also need the difference operator Wh defined on the function g by the rule 

r 

yhg:(X, ) H (1p q( 
r 

)( qg(x + ph, y + qh). 
p, q=O 

This is the tensor product of the univariate rth order difference operators in the 

coordinate directions. Explicitly, rh = 8(h,O) * 8(O,h)' with 

r 

8i(r,b)g: (Xv y) 1< _I 
r-p 

rp)g(x + pa, y + pb). 
p~~~o 

2. Approximation on rectangular grids. Let : {aij} with ai:= [xi, x i+] X 

[yj, yj+ I] and xi: = yi i. We are interested in the restriction of S Sr,p(E) to 
some compact set. 

LEMMA 1. Every s E S = Sr,p(1) can be represented on 

R+2 := {(x, y): x, y 2 O} 

as a linear combination of the truncated powers in 

Tr -(2) =( Xi)+p(y-y )?q iv, p,q O; p + q < r; Xq > P if >0 

PROOF. This is proved by induction, similar to the proof that truncated power 
functions are a basis for univariate splines. D 
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Recall that I denotes the partition 2 scaled by 1/n. Let xi(n) yi(n) = i/n. 

Set Sn Sr,p(yn). 

THEOREM 1. U' jSn is dense in CO(R2) if and only if p < (r - 3)/2. 

PROOF. If p < (r - 3)/2, then Sn contains all the truncated powers (x, y) H 

(x - xi(n))+P+l(y -yj(n))+P+? and hence the space Sp+2p(En) of splines of coor- 

dinate order p + 2 and smoothness p. It is known that UnSp+2,p(2n) is dense in 

CO(RW); see for example [5]. 

Suppose that p > (r - 3)/2 and thatf E CO'(R2) with II f -Sn sII= o(l) as n xo, 
for some splines sn E Sn. Suppose without loss of generality that f has its support in 

R+2. Since p > (r -3)/2, the only truncated power functions in Tr>p(2) are of the 

form t(x, y) = x j(y-y1)q+ or t(x, y) = (x - Xi)+pyq withp + q < r. Since Yht 

O for such t, we have from Lemma 1 that Arhs 0= on R+ for all s C S. This implies 

that we also have Yh Sn 0 ? on R+2 for n = 1, 2,..., from which it follows that 

h f = 0. If we divide by h2r and take the limit as h 0, we find that D(rr)f = O. 
Since there are CO-functions for which D(r,r)f =# 0, we have proved the theorem. 

Theorem 1 shows that only splines with smoothness less than about one-half the 

order r will be effective for approximation. It turns out that even when p < (r - 3)/2, 
the order of approximation is affected negatively by smoothness. More precisely, we 

now show that the optimal order of approximation achievable with splines of order r 

and smoothness p is nr?P?l. 

THEOREM 2. Let p < (r - 3)/2 and k r - p - 1. Then 

(i) there are functions f E CO(R2) for which dist(f, Sn) 7# o(n -k ), n -x oc; 
(ii) for each f E CO(R2), dist(f, Sn) = O(n -k). 

PROOF. We will show that if f E CO(R2) and dist(f, Sn) = o(n-k), then D(r+k r)f 

vanishes at 0, and this shows (i). Actually, with a finer analysis, we could show that 

all k th order derivatives of D(rr)f vanish on all of R2. 

Suppose that f E CO'(R2) and that there are functions Sn E Sn such that 

(2.1) IIf-snII = o(n-k) asn x0. 

Let m be a positive integer and set h = 1/m. If n = bm with b an integer, then 

Un: = rhSn is in Sn and, with g := h f, we have 

(2.2) ll - un,II o(n k). 

Now any truncated power t(x, y) = (x - x)Py or t(x, y) xP(y-y1)+4 in 

Tr p(2) is annihilated by Yh. Hence, on R+ 2, un is a linear combination of the splines 

Yht, with t(x, y) = (x - 
xi(n))+P(y 

- 
yj(n))+q in Sn and i, j > 0. Such a t has 

p <p, q and p + q < r, and therefore p, q < k. Thus u, is a polynomial of 

coordinate order k on each a, (n) E En with i, j ? 0. 

For given q > 0, choose b so that l/((b + I)m) ? ksq < 1/(bm). Then the points 

(in, 0), 0 < i < k, are in aoo(bm) and so 
(q,O)Ubm)(O) 

= 0. Using (2.1), we have 

I (i,oq)(o) 1l (,o(g Ubm))(0) I< constllg - Ubmtt= o((bm)k) 
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therefore D(kO)g(O) = 0. If we now let m xo and recall that h = /rm and 

g = vhf, we find D(r?k,r)f(O) = 0, as desired. 

We now prove (ii). Without loss of generality we assume from now on that f is 

supported in the unit cube Q = [0, 112. If p = [(r - 3)/2], then (ii) follows from 

the fact that S,n contains the tensor product splines of order k = r - p - 1. For 

general p, the argument is more involved. We need a certain subspace of S , the 

space Sr,p(En) of those s E Sn for which sla (n) agrees with a polynomial in the span 

of {xPyq: p + q < r, p, q < k}, all i, j. We will prove, by induction on p, the 

following 

CLAIM. For any p and any r with p < (r - 3)/2 there is const so that for any 

f E Co(R2) supported in Q and any n, there is an s E Sr,p(En) supported in the square 

(p + 2)2Qforwhich 

(2.3) Il- s-i < constll f llrnr?P?l. 

This claim in turn gives (ii). 

Certainly the claim is true when p = -1, the case of piecewise polynomial 

approximation (see, e.g. [5]). Suppose then that the claim has been established for all 

p < p0 and consider p = p0 > -1. Take r so that p < (r - 3)/2. Take f E Co(R2) 
supported in Q, and let g = D(1'1)f. Then 

f(x, y) ff|g(t, 7) dt drq for all (x, y) E=R+ 

By induction hypothesis, we may choose u E Sr_2,p_ I(Yn) so that the support of u is 

in (p + 1)2Q and 

(2.4) g - u 11 < constll 11 r2n(r2)(P 1)+ < constll f 11 rnk 

Our approximation s to f is gotten by integrating u and making local corrections 

using B-splines. 

Forp = (PI, P2), let Mp(x, y) := MP(x)MP2(y), with Mj the univariate B-spline 
with knots xj(n),...,xj+p+?(n). Then Mj is of order p + 1 and smoothness p - 1, 

and is supported on the interval [xj(n), xj+p+?(n)]. It follows that Mp is in 

Sr2, p_ I(2n) We assume Mj to be normalized to have integral 1. 

Consider the splines Np: = M(P + I)P. Then Np is supported on the square 

QP := [x(P+I)P,(n), x(P+I)(P,+I)(n)] X [Y(P+I)P2(n), Y(P +1)(P2 +1)(n)] 

and therefore the Np's have disjoint support. 

For each p, define a JQ (g - u). From (2.4), it follows that 

(2.5) ap < Qp I constll g 11 r-2n-k < constll f 11 rnfk 1. 

Consider now the spline 

v:= u + EapNp. 
p 

For each p, we have 

(2.6) f (g-v)=0. 
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Hence, if we set 

s(x, y) ffYv(, <)d dnq, 

then s will be in Sr,p(En) and if (x, y) E Qp then 

f(X, y) - s(x, y) JXJy(g - v)(, "i) dt dq = (g - v) 

with 

E:= ([0, x] X [Y(p+ lP2(n), y]) U ([x(p+ l)P(n), x] X [0, yi). 

Using (2.6) and the fact that f and u have support in p2Q, it follows that s = 0 
outside of [(p + 1)2 + (p + 1)]Q c (p + 2)2Q. Now, for any (x, y) E (p + 2)2Q, 
we have I E 1< const n -. Further, JENP is nonzero for at most 0(n) values of p. 
Therefore, (2.4) and (2.5) give 

(2.7) AEX, Y)- s(x, y) |=| (- u - apNp 
p 

< llg- ull I El +maxl ap I|N 

? constll f 11 n-lk 

This proves (2.3) for the approximation just constructed. E 

3. Approximation on triangular grids. We now show how the results of the last 

section can be extended to triangular grids. We focus on the partition A which is 

gotten by dividing each square of 2 into two triangles by adding the northeast 

diagonal. It will be clear, however, that our techniques apply to more general 
partitions, a point made in ?4. We begin by developing methods for constructing 
smooth spline approximants. This turns out to be the more significant part of the 

problem. Our construction will be based on some variants of the ideas of multi- 

variate B-splines. 

Let p < m and let P denote the projection of Rm onto RP, i.e., z = (Pz, y) for 

z E R'n. If A is a simplex in Rn with vertices v0, . . , vm, then the function 

(3.1) M(X) := volm_p{z A: Pz = x}, x RP, 

is a piecewise polynomial [4,8] of order m - p + 1 which is, up to a constant (viz., 
volm(A)), completely determined by the points Pvo,...,PVm in RP and has its 

support in their convex hull. 

When p = 2, the piecewise polynomial M has any segment connecting any two of 
the projected vertices Pvo,...,Pvm as a mesh line, and is a polynomial on any 
connected set not intersected by such a mesh line. For many purposes (including 
ours), this results in too complicated a grid in the plane. This can be avoided if we 
replace the simplex A in (3.1) by an appropriate m-dimensional convex polyhedron 
B and so define 

(3.2) MB(X):= Volmp{z E B: Pz =X}, x E RP. 
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The function MB so defined is again piecewise polynomial of total order m - p + 1 

because B can be decomposed into disjoint simplices and therefore MB is a sum of 

(simplicial) B-splines. It has its support in P(B). 

A more useful analytic description of MB is given by the identity (used first in the 

context of simplicial B-splines by Micchelli, see [8]) 

(3.3) JRP4)(x)MB(x) dx = f(Pz) dz 

which holds for any test function (4 E Cr). The right-hand side defines MB as a 

distribution on RP. One of the advantages of (3.3) is that it can be used to define MB 

when B is a convex polyhedron of dimension q < m. The right-hand side is then 

interpreted as a q-dimensional surface integral. This definition also makes sense 

when P(B) has dimension < p. In this case, MB is defined only as a distribution. 

Suppose then that B is a convex polyhedron of dimension q ? m. As is pointed 

out in [2], it is easy to check the smoothness of MB by using the differentiation 

formula 

(3.4) DpzMB = - (z * nl )MB, 

proved there. Here, the Bi are the facets of B, i.e., the faces of dimension q - 1, 

which make up the boundary of B, and ni are their respective normals in the affine 

hull of B. Repeated application of (3.4) shows that D(a A)MB can be written as a 

linear combination of MF's where each F is a face of B of dimension q - a - /. In 

particular, if dim P(F) = p for all faces, then D(a A)MB is again a piecewise 

polynomial. Thus MB is in Cq-d-2, with d the largest integer for which there is a 

face F of B of dimension d with P(F) of dimension <p. Note also that the 

discontinuities of MB occur across the (p - 1)-dimensional sets P(F), with F a face 

of B. 

We now turn to the construction of spline approximants on the triangular 

partition A of R2. Let ei = (8ij)jmL I be the unit coordinate vectors in Rm and define 

VI := el, V2 := 

Fel, ifjj I (mod3)] 

vj :=ejd e2, if j=_2(mod3) I j = 3, 4, ...,Im. 

Lei+e2, ifj_ 3 (mod3)J 

The vectors vl,...,vm determine a parallelepiped B with vertices ElME Vi, where 

i {0, 1), all i. The translated parallelepipeds Bij: ieI + je2 + B have pairwise 

disjoint interiors and fill out the slab R2 X [0, I]m-2, hence form a partition for that 

slab. 
Consider the functions M := MB and Mij(x, y) M(x - i, y -j) 

MB (x, y) defined by (3.3) (or, equivalently, by (3.2)) with p = 2. 

LEMMA 2. (i) 2Mij = 1 on R2. 
(ii) Mi &Srp((A) for r: m-1 andp [(2r-4)/3]. 
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PROOF. The identity (i) follows from the representation (3.2) and the fact that 

UBiJ=R2 X [0, 1]m-2, with the B11 having pairwise disjoint interiors. 

We have already noted that M is a piecewise polynomial of total order m - 1 = r. 

To check the smoothness of M, note that any face F of B is of the form 

F= v + 2 aivi: O < ai < 1) 
icI 

with v some vertex of B and I C m. If P(F) is a segment, i.e., P(F) has dimension 1, 

then all i E I are congruent modulo 3, hence I I1? [r/31. Therefore, M has 

smoothness p m -[m/3] - 2 = [(2r - 4)/3]. Such a segment P(F) must lie 
on the line 

P(v) + xP(vj), -Co < x < so, 

with j-i (mod 3), all i C I, and j C 3. This is one of the mesh lines which form the 

partition A. Since M is discontinuous only across such segments P(F), it follows 

that M is in Sr,p(l), and therefore so are all the Mij. L 

LEMMA 3. If p > (2r - 4)/3, then every s C Sr p(l) can be represented on R-2as a 

linear combination of the truncated powers in 

Trp(l) = Xpyq, (x -Xi)+pyq, Xp(y -yj) +q, (x-_y-_xi) +p(x + y) 
q 

p, q 2 0; p + q <r; 

p, q > p whenever they exponentiate a truncated function). 

PROOF. Denote by ai-j and at the left, respectively right, triangle in A which make 
ii 

up the square aij. Let s E S and let to be the polynomial of order r which agrees with 

s on a~o. Then s - to = 0 on the line y = x. Therefore s - to = u on ao+o, with 

u(x, y) = cpq(x - y)p(x + y)q. 
p>p 

p+q<r 

Set tl = to + cpq(x - y)+P(x + y)y. Then s = t1 on aoo. We now continue in 

this manner, moving to the right, using the truncated powers (x - xi)+Pyq and 

(x - y - xi)+P(x + y)y to construct a function t in the span of Trp(t') which agrees 
with s on aj0o i = 0, 1, 2, .... On the first column (aoi)? I of squares, this t is just the 

polynomial to. Proceeding now up that column, we further modify t by the addition 

of a suitable linear combination of the truncated powers xP(y - yi)q and 
(x + y)P(y - x - y1)+q (note that (y-x-yj)+q = (y - x - xi)q(x - y + Xj)+q 

for suitable xi) and so obtain a new t in the span of T which agrees with s on the 

first row and first column of squares, i.e., on 

00 

U Gj0 U G01. 

i=O 

We claim that now s = t on all of R+2. We prove this by showing that s = t on ai., 
i, j > 0, using lexicographic ordering and induction. 
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(xi, y1) 

Assume that s = t on a,,, for all u < i and for all (,u, v) with tu - i and v < j (as is 
the case for (i, j) = (1, 1)). Then u := s - t is a piecewise polynomial function of 

total order r and smoothness p which vanishes for 0 < x < xi and for 0 < y < yj. If 
now u were nonzero somewhere in aj, then, on restricting u to some line x + y = c, 
with xi + y1 < c < xi+I + y, we would obtain a univariate piecewise polynomial 
function v of order r and smoothness p which vanishes outside some interval [a, b] 
and has just three knot locations, viz. the points a, (a + b)/2, and b. Further, v 
would be nonzero somewhere in [a, b]. This would imply that the sum of the 
multiplicities of the knots a, (a + b)/2, and b is at least r + 1, which would imply 
that at least one knot has multiplicity > (r + 1)/3, therefore p < r - 1 
- [(r + 1)/31 [ [(2r - 4)/3], a contradiction. This advances the induction 

hypothesis and so finishes the proof. O 

THEOREM 3.. UnSrp(l\n) is dense in C0(R2) if and only if p ? (2r - 4)/3. 

PROOF. By Lemma 2, Sr,p(l) contains the local and positive partition of unity 

(Mij) as long as p ? (2r - 4)/3. This implies the density of UnSr,pGAn) by the 
following standard argument: The simple approximation map 

Tf: 2 f(xi, yj)Mij 
i,j 

carriesf into Sr,p( ?A) and satisfies 

f(- TF)(x, y) | (f(x, y) -f(x;, yj))M,j(x, y) 
ij 

SMmaxO If(x Iy) - 
f(xi y) i 

Consequently, 11 f - Tf 11 ? w(f; diam supp M). Now scale. 
For the converse, assume that p > (2r - 4)/3. Consider the difference operator 

Ah : = .h * 8(rh, h) Since Aih and 8(rh h) commute, we have Aht = 0 for all t in the span 
of Tr7p(A) defined in Lemma 3. Therefore, by Lemma 3, Ahs = 0 on R+ for every 
s E Sr,p(i) 

Suppose now that f E Co(R2) and that llf-s f n 0 (as n -- xo) for some 

Sn E n), n = 1, 2, .... Assume without loss of generality that f has its support 
in R+2. Since An is obtained from A by scaling, it follows that AhSn = 0 on R+2, 
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therefore Ah f = 0. Dividing by h3' and taking the limit as h -* 0 shows that 

( DelDeDel+e)rf = ? 

which shows that f is not an arbitrary function in C (R2). L 

Next we consider the approximation from Sr,p(An) to smooth functions. For this, 

we need to consider the B-splines associated with faces of B. Any I C m is associated 

with a face, viz. the face 

F:= FI:= aivi: O ai 1) i 

This is a face of dimension I, or a I I I -face, for short. 

Denote the corresponding B-spline MF1 by MI. We are particularly interested in 

faces for which 

2cI and I1>2. 

For such a face, set 

Q:= { 
aiei: ? < aiI) 

Then, for any test function 4, 

|f4MI=f= oP=f Q O P, 
R2 F F~+Q 

using the facts that O(Pz) = s(Pz0) in case z C z0 + Q, and that the (m - I I)- 
dimensional volume of Q is 1. This shows that, for such a face, 

(3.5) 

M'(X, Y) = 
VOlm-2{Z F + Q: Pz = (x, y)} = vo1lII2{z0 E F: Pzo = (x, y)} 

Now define 

MIV: MF,, 

with F := (i, j) + F the face F translated. The Fij have pairwise disjoint interiors 

and form the set R2 X C with C = {EiEI\2 aivi: 0 ? ai < 1). Hence it follows from 

(3.5) that 

(3.6) M = vol11_2(C) = 1. 
i, j 

Our next lemma is a special case of a result in [3]. 

LEMMA 4. Let r := m - 1 and k := [(2r + 2)/3]. Then, for a + ,B < k, there are 

polynomials QaX3 of the form Qa3(x, y) = xayl3/(a!/!) + Ra3(x, y) with RaA of 

coordinate order (a, /3) such that 

a ,8 
(3.7) 2 Qa,8(i, j)Mi(x, y) = x! 

I ,aj 
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PROOF. The proof is an adaptation of the argument in an early draft of [3] to our 

particular context. It is essentially an inductive proof on the number I I I of the 

following 

CLAIM. Let 2 C I C m. Let h = h= I I -d, with d the largest integer for which 

there is a d-dimensionalface G of F = F, with dim P(G) < 2. Then, for any a + 3 < h, 

the function 4f, given by 

i, j 

is a polynomial of coordinate degree (a, /3) with leading coefficient 1, i.e., 

(3.8) 0Cp3(x, y) = xcyf + terms of order (a, B). 

To prove this claim, consider first the case I I 3. Let I = { 1, 2, p}. If p =1 or 2 

(mod 3), then d = 2, hence h = 1 and the claim is just (3.6). If p 3 (mod 3), then 

M' vanishes at all mesh points (i, j) except that M(1, 1) = 1, while lijajM'. is 

continuous and piecewise linear. Therefore 

f(i+ 1, j+ 1)MI = f 
i,j 

for all linear functions f, and the claim follows also for this case. 

Let now s > 3, assume the claim proved for all I I I < s, and consider some I with 

III= s. 

If d = I I -1, then h = 1 and the claim reduces once again to (3.6). Otherwise, 

d < I I -1. In this case, consider M E I\2 and set u v.. We calculate Dpu4ao for 

any a + B < h. By (3.4), 

(3.9) DpuM'=-(u -ni)M,, 

where the Fi are the (I I -l)-faces-of FI and the ni are the corresponding outward 

normals (in the affine hull of FI). This implies that (u * n ) = 0 for any face Fi 
parallel to u. There are only two faces which are not parallel to u, viz. the faces FJ 
and FJ + u, with 

J:= I\{u}. 

Since their normals sum to zero and I (u * ni) I = 1, (3.9) becomes simply 

DpuM' = - Mpu. 

This implies that 

(3.10) DpUuouo = >faj(i, jI)MJ 
i,i 

withfa,(x, y) = xay" - (a?jA and (t, 1) = (x, y) - Pu. More explicitly, 

fe~ 1aia7I 1jf 
if Pu= e2 thenfa,O(i, j)= /3iaJjll 

el + e2 ala /j?+3AaI/-1 

+lower coord. order terms. 
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Since hJ > h - 1 and I J 1<1 I and is of coordinate degree < (a, /3), we may 

apply the induction hypothesis to conclude that Dpu4ap is a polynomial; more 

precisely, that 

a(xa-IyS el 

DPu4ai0(X' y) = p BxayI- } + lower order terms, if Pu = e2}. 

axay I + /xayl-I 
e + e2 

Integrating back up, we find that 

0,fq(x, y) = xayf + lower order terms + g,j,(zlx + Z2Y) 

with ga,9 a univariate function and z C R2 perpendicular to Pu. 

But now, since I I I > 3 and d < I I I-1, it is possible to choose u in different ways, 

say u = v and u = w, so that Pv and Pw are linearly independent. This allows the 

conclusion that actually (3.8) holds and so advances the induction hypothesis. 

This finishes the proof of the claim. Taking now, in particular, I = m, we find that 

d = [m/3], hence h1 = m - [m/3] = [2m/3J = k, and we conclude that (3.8) 

holds for all a + /3 < k. Repeated application of this fact gives us, for each 

a + ,B < k, a polynomial Qa,9 of coordinate degree (a, ,B) with leading coefficient 

1/(a!/3!) such that 

2 Qao(i, j )Mij(x, y ) = xayi! L 

i,ijaI#1 

We conclude that, for any r, s, and any a + 3 < k, 

(x - r)a(y - s o 
Qail(i - r, j - S)Mir,js(x - r, y -s) 

a!/3! 

- Qa.,(i-r, j-s)Mij(x, y). 
i, j 

Consequently, for anyp C Pk, 

(3.1la) p(x, y) = (x - r)a -s) (D(aO)p)(r s) 
a?f3<k a!/3! 

= qrs(,i j)Mij(x, y) 
i,j 

with 

(3.11b) qrs(x, Y) : Qaq(x - r, y - s)(D(a )p)(r, s). 
a?+1<k 

The next lemma implies that qrs is, in fact, independent of r and s. 

LEMMA 5. The map Pk-- span(Mij): q H-* 2 jq(i, j)Mij is one-one. 

PROOF. Suppose q C Pk\{0}. Then, for any r > 0, there exists c C & so that q is 

of one strict sign on the ball Br(c) of radius r and center c. Choose r > diam supp(M). 

Since 

(i, j) E supp(M1) = (i, j) + supp(M), 
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it follows that {q(i, j)Mij(c): Mij(c) #& 0) are all of one strict sign, hence 

2 q(i, j)Mij O. oI 
I, J 

We conclude that qr, in (3.11) does not depend on r, s. In particular, 

qrs(i, ) = qij(i, j) = 2 Qafi(0,)(D(afi)p)(i, ). 
at +, < k 

COROLLARY. For any p GE , , p = 2,j(p( - +i, +j))Mij with 

Xf:- 2 Qa,,(0,0)( D(a'fl)(0 O)- 
aof ,8<k 

We use the linear functional X to define an approximation from SrJ(A) in the now 
standard quasi-interpolant fashion. First, we modify X so as to make it applicable to 
any f E CO(R2). For this, let ,t be a bounded extension of A from Pk to C(aQ3 ). Then 

it can be taken to be a bounded linear functional on all of Co(R2). In this way, we 
obtain a linear map 

Lf: kf(- + i, * +j))Mij 
i,j 

on CO(R2) to SrJp(l) which is local, reproduces Pk, and is bounded by lI,ull since 
z ijMij = 1. This implies that 

(3.12) ||f-Lf 11(A) s (11i11 + I)distN(A)(f,Pk) 

with N(A): = U {supp(Mij): supp(Mij) n A =# 0 }. Scaling by 1/n to get to the 
partition An gives the map Ln to Srjp(/n) for which we have the following 

THEOREM 4. Set m := r- 1, P : [ [(2r-4)/3J and k := [(2r + 2)/3] =p + 
2. Iff E C0(R2), then Lnf & Sr,p(/n) and 

(3.13) Ilf-Ln f lf < constkWk(f, 1/n), n = 1,2, ..., 

with Wk the kth order modulus of smoothness off. In particular, iff E Cok(R2), then 

(3.14) f- Lnf ?constk If lknk. 

PROOF. Let A = oqj(n) and, correspondingly 

N(A) U {supp(Mpqn): SUPP(Mpqn) nfA 7# 0}. 

By (3.12), 

(3.15) I f-Ln f 11(A) < (constr + l)distN(A)(f, Pk), 

while, e.g., from [5], 

distN(A)( f, Pk ) < constke 

with E = Wk(f, 1/n) or E =If Iknk since diam N(A) = 0(1/n). 0 

4. Concluding remarks. The construction of smooth multivariate spline inter- 
polants developed in ?3 can be extended to more general partitions (see also [3]). 
Suppose that HI is a partition of R2 which can be obtained as follows. Starting with a 
regular partition Hlo associated with the two independent directions d, and d2, we 
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add mesh lines through all the vertices of 110 in the directions of the vectors 

d3,..., dp, with these di's nonzero vertices of H1o other than d, or d2, and pairwise 
linearly independent. 

Thus l is associated with the directions eI and e2, A is associated with the 

directions el, e2 and el + e2, while the four directions el, e2, el + e2, el-e2 are 
associated with a partition in which both diagonals are drawn into every square. 

Given such a partition II and m 2 p, define vectors vl,...,vm in Rm by 

VI= d, v2 := d2, and, for i > 2, vi:= d + e1, withj C p andj = i (mod p). Set 

B:= {E ma v1:O? ai < 1). Then the corresponding B-spline MB given by (3.3) is of 

order r m - 1 and smoothness p r - 1 -[(r + l)/p]. If (xi, yi) are the 
vertices of H1o, then the translated splines Mi given by 

Mi(X, Y) := MB(X - xi, y-Y, 

all i, form a local partition of unity. Using arguments like those for Lemma 4 and 

Theorem 4, they can be used to construct a local and bounded quasi-interpolant on 

CO(R2) into Sr,p(Hln) which reproduces polynomials of total order k = p + 2, hence 

approximates Cok(R2)-functions to within O(n -k) 

The particular choice dj = (cos Tj1/3, sin 7rj/3), j = 1, 2, 3, results in a partition 

of R2 into equilateral triangles. We have recently learned that P. Frederickson [6,7] 
has studied spline approximation on this partition and has shown the existence of 

spline interpolants from Sr,p(Hln) in the case p = (2r - 4)/3 and r 2 (mod 3). 
This is accomplished by using a partition of unity given as translates of a fixed finite 

support spline obtained by a certain convolution. 
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