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ABSTRACT

While the application of machine learning algorithms to practical problems has been ex-

panded from fixed sized input data to sequences, trees or graphs input data, the compo-

sition of learning system has developed from a single model to integrated ones. Recent

advances in graph based learning algorithms include: the SOMSD (Self Organizing Map

for Structured Data), PMGraphSOM (Probability Measure Graph Self Organizing Map),

GNN (Graph Neural Network) and GLSVM (Graph Laplacian Support Vector Machine). A

main motivation of this thesis is to investigate if such algorithms, whether by themselves in-

dividually or modified, or in various combinations, would provide better performance over

the more traditional artificial neural networks or kernel machine methods on some practical

challenging problems. More succinctly, this thesis seeks to answer the main research ques-

tion: when or under what conditions/contexts could graph based models be adjusted and

tailored to be most efficacious in terms of predictive or classification performance on some

challenging practical problems? There emerges a range of sub-questions including: how do

we craft an effective neural learning system which can be an integration of several graph

and non-graph based models? Integration of various graph based and non graph based ker-

nel machine algorithms; enhancing the capability of the integrated model in working with

challenging problems; tackling the problem of long term dependency issues which aggra-

vate the performance of layer-wise graph based neural systems. This thesis will answer

these questions.

Recent research on multiple staged learning models has demonstrated the efficacy of

multiple layers of alternating unsupervised and supervised learning approaches. This un-

derlies the very successful front-end feature extraction techniques in deep neural networks.

However much exploration is still possible with the investigation of the number of layers

required, and the types of unsupervised or supervised learning models which should be

used. Such issues have not been considered so far, when the underlying input data struc-

ture is in the form of a graph. We will explore empirically the capabilities of models of

increasing complexities, the combination of the unsupervised learning algorithms, SOM,

or PMGraphSOM, with or without a cascade connection with a multilayer perceptron, and

with or without being followed by multiple layers of GNN. Such studies explore the effects

of including or ignoring context. A parallel study involving kernel machines with or without

graph inputs has also been conducted empirically.

Moreover, some graph learning tasks sometimes contain difficult aspects including high

dimensional inputs, imbalanced class distribution of output labels and path dependencies.

It is common practice that only one such aspect will be addressed at any one time. This

thesis introduces an integrated learning framework containing three functions for solving

these three problems by assuming these three effects are largely independent of one an-

other. In particular, a Lasso-type regularization is used for feature selection to handle the

high dimensional input situation, a non-uniform sampling method is designed to handle the

label imbalance issue, and a deep learning strategy is used to handle the path dependency

issue. This thesis evaluates the proposed ideas on several challenging real world problems,

including the UK 2006 and UK2007 web spam detection datasets and a large scale XML

document classification problem, the INEX 2008 dataset. It is shown that the proposed ap-

proaches obtain results equal to or better than the state-of-the-art performances obtained by

other techniques in the literature.



The aforementioned integrated models are also applied to another real world problem,

namely predicting the activity type of preschool and school children from wearable ac-

celerometer measurements attached to various parts of their bodies. Our research is focused

on addressing the long term dependency problem, as various recurrent neural networks are

applied to solve this problem. The results obtained permit some comparisons among the

methods deployed, as there is no ground truth information available. The conclusion which

can be made is the influence of age on the consumption level of energy.

The contributions of this thesis cover a range of machine learning algorithms. These

include: insight into the integration of machine learning methods for robust graph based

models, and dealing with the long term dependency issue of the layer-wise neural network

model and kernel machines. Extensive experiments, either on benchmark datasets or real

world problems are conducted, and comparisons are made with other results where they

exist to make concrete statements.

KEYWORDS: Graph, Neural networks, Kernel machines, Long term dependency, Deep

learning, Hierarchical or layer architectures.
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Notation

In this thesis, the mathematic representation is uniformly presented as follows: Lower-

case script letters like n are used to indicate scalars and constants. Parameters of a learning

model are shown by lowercase Greek letters such as γ. Sets and matrices are indicated by

upper case letters, e.g., M . Calligraphic letters like G, N and E are respectively used to rep-

resent graphs, a set of nodes, and a set of edges. Letters used in combination with brackets

such as h(x, y) denote functions. Typical examples are given below:

x(t) The parameter x depends on time t.

Fw(x, y) The function F takes a vector x and y as its arguments, and depends

on the variable w.

M = KL The multiplication of the two matrices, or the dot product.

n = |d| n is denoted the cardinality of vector d.

n = ‖m‖ Variable n takes the positive value of m.

x = (x1, x2, ..., xn) x is a vector containing n elements.

n ∈ {10, 15, 20, 24} A number n can take a value from a set of four elements.

Software Usage

This thesis was completed using LATEX for Linux version 3.14159265 c©1999 by D.E.

Knuth with the Kile user-friendly editor. Some of the images were created in the format of

EPS using LibreOffice 4.1 version c©2007 from the Free Software Foundation. Some other

EPS format files were produced with gnuplot v4.6.5 c©2004 by Thomas Williams and Colin

Kelley, or by xfig version 3.2 patch-level 2 c©1989-1998 by Brian V. Smith, and 1991 by

Paul King.

Hardware Environment

The work presented in this thesis includes results from a wide range of experiments on

a number of neural networks as well as kernel methods. Hardware resources which were

utilized for the experiments are as follows:

No
Hardware

OS
Number of Core Usage

Category Type cores speed years

1 Workstation Intel Linux 2 2.1 3

2 Workstation Intel Linux 2 2.4 1.5

3 Workstation Intel Linux 4 3.5 2

4 Supercomputer SGI Linux 9 2.1 3

5 Cluster AMD Scientific Linux 240 1.5 3

6 Workstation Intel Linux 7 2.1 3

Core speed is an approximate value relative to a 1GHz single-core Intel Pentium. The

core speed is approximate since the actual speed of a machine dependents on the amount

and speed of RAM, the speeds of permanent storage devices such as hard-discs, the number

of running tasks, and other factors.



Chapter 1

Introduction

A common assumption of algorithms in artificial neural networks and kernel machines is

that the input is available in vectorial form. These algorithms thus assume that the input

data is a set of mutually independent vectors. However, there are many real world learning

problems such as in image processing, molecular chemistry, World Wide Web, document

classification, logo recognition, video processing, and many more, in which the inputs are

more appropriately modelled as a graph 1.

Working with graphs rather than with vectors is more challenging as graph inputs relate

the feature vector at each node with those other nodes in its neighborhood, while working

with vectors, they are assumed to be mutually independent of their neighborhood. Hence,

machine learning algorithms for input graph processing are more complex [1, 2, 3, 4, 5].

These models share the common characteristics that they can model dependencies of data

and hence, avoid the possible loss of information that can occur when squashing data struc-

tures into a vectorial form during pre-processing. However for practical processing, it is far

1In this thesis we are using a number of terms interchangeably: graph input structure, input graph structure,

graph processing. By and large, these refer to the same concept: the inputs to machine learning models

are assumed to be in the form of a graph, consisting of nodes and links; each node has associated feature

vectors, which are sometimes called labels. The links could also be endowed with feature vectors, although

in this thesis invariably we will only consider the simpler situation, where the links may be weighted with a

connection weight.

1
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more convenient to maintain a fixed sized vector for input to the more traditional vectorial

input machine learning algorithms.

In the vectorial input case, there are many neural network and kernel machine models.

The behaviours of some of these models are well understood [6]. For example, in the case of

unsupervised learning, we have learning vector quantization, self organizing map [7], neu-

ral auto-associator [6], spectral clustering [8], manifold embedding, linear support vector

machines, and simple kernel machines [6, 9]. It is known that these models do not have uni-

versal approximator properties, implying that they cannot approximate an input to a cluster

mapping arbitrarily closely. This is expected, as without target information, the data some-

how organizes itself into clusters, or groups, in which the intra-group distances are smaller

than the inter-group distances. But the issue of the number of clusters is notoriously difficult,

as it is not known how the data could be grouped together so that some distance criterion

can be satisfied. Hence, as expected, the clusters cannot approximate the underlying clusters

of the data arbitrarily closely, as such underlying clusters are ill-posed. On the other hand,

for the supervised learning paradigm, the most popular example is the multiple hidden lay-

ered feedforward neural network, alternatively known as mulitlayer perceptron (MLP). In

such a situation, it is known that the MLP can approximate an underlying nonlinear input

output mapping arbitrarily closely [6]. The case of kernel machines is less clear. It is known

that kernel machines can be formed with various kernels e.g. radial basis function kernel,

polynomial kernel, in which some of these common kernels are universal approximators [6].

For input graphs, there exist some neural network and kernel machine models which

can handle the input graph structures. In unsupervised learning paradigm, there are various

extensions of the self organizing map to handle graphs of various complexity, e.g., trees,

graphs without self loops [2, 10]. The most recent generation PMGraphSOM can handle

graphs with self loops [3]. It is also not expected that these various extensions of SOM in

the graph input cases would have universal approximation properties. On the other hand,
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there are extensions of the multiple layer perceptron to handle graph inputs, called a graph

neural networks [4, 11, 12, 13, 14, 15, 16]. These models possess the universal approxima-

tion property, in that they are capable of approximating nonlinear input graphs to vectorial

outputs to an arbitrary close value.

Recently, there has been an emerging trend in combining several neural network models

so as to improve prediction results. The most common situation is the composition of un-

supervised and supervised neural network models as introduced in [17, 18]. In [18], it was

shown that combining models does provide better performance than if only one neural net-

work model is used. However, these combined neural network models appear to be ad hoc.

There have not been any systematic studies devoted to investigate the effects of combining

these neural network models, or in general, machine learning modules (which include ker-

nel machines). Another situation is observed in the deep neural network where composite or

multiple layers of one or different neural models are stacked together [19, 20]. In this case,

the engineering of a suitable architecture like the number of layers, the size of each layer,

for a particular problem appear to be somewhat of a “black art” [19, 20, 21, 22, 23, 24, 25].

One just brings several neural network modules together 2, as a result, the performance of

the combined model is better than that obtained using a single neural network model.

We desire to understand this issue, namely what rationale does one use to combine neural

network modules?, this would be a great motivation to pursue in this thesis. Indeed this

thesis investigates the following issues:

• What guidelines does one use in combining different machine learning modules to-

gether? Here by machine learning modules, we mean unsupervised and supervised

learning modules for vectorial inputs in both neural networks (e.g., self organizing

map, multilayer perceptron), or kernel machines (linear support vector machines, ker-

2This is no disrespect to those who work in this area. If one considers the way that multiple layers are being

positioned, with different sizes in deep neural networks, there does not appear to be any in-principle fashion

in which these are put together.
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nel machines with different kernels); and for graph inputs (PMGraphSOM in unsuper-

vised learning, GNN in supervised learning, graph Laplacian for kernel machines) 3.

• As a corollary, this thesis strives to provide an answer to the following question: given

that one has a combined learning model using various modules, what would be the

effect of adding one module on the performance of the combined network in some

practical problems?

• As a corollary to the above questions, another question arises: could one improve the

performance of these combined models, if the practical problem comes with some of

the following characteristics: high dimensional feature vectors associated with each

node, imbalanced output class labels, long term dependency problem (which is known

to plague supervised learning of neural networks with multiple hidden layers)?

• In a practical problem which is particularly prone to long term dependency issues, the

prediction of activity types of preschool children and school children, based on mea-

surements made by accelerometers wearable at various parts of their bodies, particular

effective ways of overcoming the long term dependency issue will be investigated.

In this thesis, one would notice a very general principle: a layerwise approach to deal

with different problems. The layerwise principle is inspired by the deep neural network ap-

proach, though it is not the same concept. In a layerwise approach, we merely deal with a

particular aspect of the practical problem, e.g., the need for unsupervised learning of graph

inputs, the need to resolve the recursiveness which might exist in the training data, the need

to deal with the prediction of the output labels (where the output labels only extend to some

of the outputs), etc. In the deep neural network technique, it is assumed that there is a fron-

tend, used to extract features from the raw inputs, or very little preprocessed inputs (e.g.,

3Theoretically one could combine both neural network modules and kernel machine modules together,

though this is not done in this thesis.
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speech signals). These features once extracted implicitly would be passed to a neural net-

work classifier [22]. This would be different from the layerwise approach, which is proposed

here. Moreover the phrase “layerwise” has also been used in the training of multiple hidden

layer feedforward neural networks previously [19, 20]. However, its usage here in this thesis

would be following the lead of its usage in this sense in [18]. It appears that its usage in this

sense is for the first time extensively explored in this thesis.

From the parallel investigation of the layerwise approach to combine neural network

models, and kernel machine models, one could gain considerable insight into the working

of these models, in particular how they relate to two particular practical datasets, viz., the

UK2006 and UK2007 web spam detection datasets. The layerwise approach is deployed for

both the neural network and kernel machine models to the same datasets. Then their results

will be compared, and interpretation sought of the results provided thereafter.

The investigation on how such integrated models can handle commonly encountered is-

sues in practical problems, like high dimensionality of the feature vectors, the imbalance of

the output label distributions, and the long term dependency issues, follow rather more tra-

ditional lines in handling such problems, e.g., using some kind of regularization technique

to reduce the dimension of the feature vectors, the deployment of a non-uniform sampling

technique to sample the output class labels and using them in the training and testing pro-

cedures, and the use of techniques specifically designed to overcome long term dependency

issues in neural network models. The handling of the long term dependency issue in neural

networks deserves some special mention, as it is commonly encountered in training multi-

ple layer feedforward neural networks. The underlying idea of long short term memory [26]

technique to overcome the long term dependency issue is investigated in this thesis.

As implicitly obvious in the discussions here, this thesis investigates these problems

using empirical means, i.e., by applying the ideas to practical challenging problems. There

is some theoretical development where necessary to “glue” the techniques together. The
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strength of this thesis lies in the deployment of an in-principle manner: a layerwise approach

to combine machine learning modules into an integrated model, and the interpretation of the

results obtained.

The remaining sections of this chapter are organized as follows: Section 1.1 presents

the contributions of this thesis. The benefit of this research is summarized in Section 1.2.

Finally, the thesis outline is given in Section 1.3.

1.1 Contributions of the thesis

The contributions of this thesis include:

• Investigation of a layerwise approach to combine machine learning modules into an

integrated model. This can be divided into two separate parallel though related stud-

ies:

– Combination of the neural network modules into an integrated model. This is

denoted as Model A.

– Combination of the kernel machine modules into an integrated model. This is

denoted as Model B.

The relationships between the classification accuracies and the architectural complex-

ities in both Model A and Model B are obtained. This is based on applying both

models to the same two datasets: UK2006 and UK 2007 web spam detection datasets.

The interpretation of the results obtained leads to a conclusion: in the UK 2006 web

spam dataset, it appears that there is more evidence of link farms being used as a

spamming device by the spamsters. On the other hand, in the UK2007 web spam

dataset, it appears that these link farms were replaced by more sophisticated spam-

ming techniques, e.g., content based spamming.
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• Dealing with the following commonly encountered issues in practical learning prob-

lems: high dimensionality of the input feature vectors, imbalance of the output class

label distributions, and long term dependency issues. In each case, it is shown that if

the issue is yaken into consideration then improved results can be obtained.

• In the case of long term dependency, this thesis investigates such occurrence in a prac-

tical prediction problem: predicting the activity types of preschool children and school

children from measurements obtained from wearable accelerometers attached to vari-

ous parts of their bodies. This is a particularly nasty problem because there are many

stages for the backprop errors to go through beforethey reach the input end, and hence

the backprop errors could become vanishingly small after passing through a number

of hidden layers. It is shown that using methods specifically designed to overcome

long term dependency issues can assist in overcoming these, thereby obtaining quite

reasonable results.

1.2 Research benefits

Many real-world problems could be easily modeled by either sequences, trees or graphs in

general. The richer information representation in practice would help the prediction task to

achieve much better performance. However, graph representation is only the first stage over

the learning process. An appropriate learning model being designed could bring significant

benefits. A well designed prediction model should not only express the adaptability of

the graph type of input, but can also exploit effectively the topological relations between

graph elements. Several main benefits would be attained from this research and they are

enumerated as follows:

1. A practical demonstration would be shown that graph based modeling methods would

perform at least equivalent to traditional learning approaches. This is interesting since
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numerous real-life applications could be effectively represented as sequences, trees

or graphs. Typical examples include modeling body movements for physical activity

prediction, modeling an image/video as graphs or a sequence of graphs, document cat-

egorization, modeling molecules, DNA, genes in the fields of Chemistry and Biology,

and many others.

2. The context of integrated architectures would play important roles in prediction out-

come. In particular, the research clarifies the specific conditions under which the

performance of model integration could be promoted. It is found that placing an un-

supervised pretrained model prior to one or a cascade of supervised learning models

is quantitatively beneficial. Such a context is consistent with the underlying idea of

the deep learning algorithm. Another situation is that layering a cascade of the same

learning modules, or applying the long short term memory idea may help to allevi-

ate the detrimental effects of the long term dependency problem in terms of neural

network processing, and enhance the learning performance accordingly. Layerwise

applications in kernel learning are likewise proven to be a fruitful area of research.

3. Data-driven processes such as feature selection and imbalance class treatment are not

at all trivial since these may significantly influence model prediction accuracy. Proper

understanding of the effects of the curse of dimensionality and the imbalanced data

problem may help one to better prepare for each application and to develop an effec-

tive model.

1.3 Thesis structure

The thesis is organized as follows:

Chapter 1: Overview of the research, which include the underlying ideas of the research

topic, the thesis contributions, the benefit of the research, and the outline of the thesis.
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Chapter 2: Background on the traditional machine learning models and several approaches

to improve the model’s learning performance.

Chapter 3: Literature review on graph based learning, with recent solutions to long term

dependencies in the graph domain.

Chapter 4: A detailed description of several real-world problems and benchmark datasets

related to graph data structures and evaluation approaches.

Chapter 5: A comparison of the performances of the traditional neural networks and graph

based neural network models. Various integrated models are introduced to seek the

conditions under which the learning system can be promoted.

Chapter 6: Addressing similar questions arising in Chapter 5, but with kernel machines

instead of neural networks.

Chapter 7: A proposed hierarchical machine learning technique to deal with difficult prob-

lems encompassing high input dimensionality, highly imbalanced class distribution

and the remote path dependency problem.

Chapter 8: Research in alleviating the long term dependency in the real world physical

activity classification problem.

Chapter 9: Summary of the findings of the research, the limitations, and some suggestions

for future work.



Chapter 2

Traditional machine learning algorithms

2.1 Introduction

Artificial neural networks (ANNs) have a successful history in solving machine learning

problems [6, 7]. ANNs are algorithms which simulate the ability of a biological brain to

learn from sensory inputs. The enormous interest in developing suitable algorithms has

resulted in a remarkable number of distinct learning algorithms that have found widespread

applications in the real world. But since these types of algorithms are designed to mimic

their biological counterparts and hence, the consequence is that ANNs can be implemented

as a massive parallel system that takes advantage of modern multi-core CPU and multi-core

GPU technology. In the past, however, due to the limitation of available computer processing

technologies, ANNs were most commonly implemented as a non-parallel single process.

Thus, despite the success of such systems, the computation time for training ANNs on large

scale datasets was relatively long, rendering them impractical for general use. ANNs fell

out of favor with researchers with the introduction of faster methods such as support vector

machines (SVM) or kernel methods (KM) [9, 27]. SVMs and KMs quickly became the

preferred choice in the field of machine learning. This trend has been reversed in recent

years due to the development of multi-core CPUs and massively parallel GPU systems and

10
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because of recent developments in deep learning [20, 24]. Such computing systems allow the

implementation of ANNs as massive parallel systems which greatly speed up computations

during the learning phase of an ANN. ANNs have since become more scalable than SVMs

and KMs, and have been applied to very large learning problems (i.e. in image and video

recognition problems, the WWW and social network based learning problems)[20, 24, 28].

The rest of this Chapter aims at providing some background on conventional, non-graph

based machine learning methods such as the Self-organising map, Multilayer perceptron,

Elman recurrent neural net, as well as the classic non-graph based kernel machine learning

such as kernel K-means and SVM. Section 2.2 and Section 2.3 respectively explain these

two learning algorithms. Several common or important adaptations of the learning methods

are then described in Section 2.4. The learning methods presented in this chapter will serve

as a basis for comparisons with more recent graph-based models which will be presented in

Chapter 3.

2.2 Classic Artificial neural networks

2.2.1 Self-organising map

Teuvo Kohonen proposed the Self-organising (feature) map (SOM) in the 1980s [7]. The

SOM is a type of artificial neural network that is trained by an unsupervised learning mech-

anism. The SOM is widely used for the purpose of clustering or for the projection and

visualization of high dimensional signal spaces on low dimensional display spaces. The

display space can be of any dimension though two dimensional display spaces are most

common. The following assumes for simplicity that the display space is two dimensional.

The display space is thus parametrized by a two dimensional grid. At the intersection of

the grid points (denoted as nodes or neurons), it is assumed that there is a vector of weights

(codebook vector). The dimension of the codebook vectors must match the dimension of
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Figure 2.1: Common architecture of a SOM, the neighborhood relationship between the

nodes on the map is shown. There are fully connected links between the k-dimensional

inputs and the nodes. There are codebook vectors defined for each node. The output of

network regarding each input value is the associated coordinates where the input is mapped

on.

the input vectors. The main purpose is to enable these weights to approximate the training

input, such that the vectors which are nearby each other in the high dimensional feature

space will remain close when projected on the low dimensional display space. The SOM

architecture is illustrated in Figure 2.1, which contains an input layer and an output layer or

projection (activation) map.

The SOM training algorithm can be described as follows: Let x be one of the k dimen-

sional input vector in a set of input training vectors. Each of the codebook vectors is defined

as ci = (ci1, ci2, ..., cik)
T ∈ Rk, i = 1, 2, . . . , n × m, where n and m are respectively the

two dimensions of the grid, and T denotes the transpose of a vector. There is one codebook

associated with each node in the feature map. ci is usually initialized using random values.

In practice, however a probability density function p(x) of the input data is often used to

control the value and range of the initial values for ci. The number of clusters, in most of the

cases, is defined by the user. Unlike other (supervised) learning algorithms, the SOM does

not normally require the normalization of input vectors. For example, when clustering a set

of bag-of-words vectors then the normalization process might be even harmful, because that

may reduce the significance of some word or set of words.
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The learning process consists of two major steps, the competitive step and the coopera-

tive step:

Competitive step: The best matching codebook is identified. The best-matching unit (BMU)

r is required to be the minimum value in the matching criterion when compared with

the other codebooks in the SOM.

r = argmin
i
{d(x, ci)} (2.1)

Here, r is denotes the winning neuron or BMU. The matching criteria is most com-

monly based on Euclidean distance d = ‖x− ci‖2.

Cooperative step: The elements in a neighborhood set Ni of the BMU are modified by the

following quantity:

∆ci = α(t)h(∆ri)(x− ci), (2.2)

where α(t) is a scalar learning rate factor which decreases with time t. ∆ri defines the

topological distance between cr and ci, and the smooth Gaussian kernel function is

widely used as the neighborhood function h(.). The neighborhood function defined as

i.e. in Equation 2.3 controls the amount by which the codebooks in the neighbourhood

are updated.

h(∆ri) = exp
(

− ‖lr − li‖2
2σ2(t)

)

, (2.3)

where lr and li are the location vectors of winning neuron r and the i-th neuron in the

lattice respectively. The parameter σ(t) represents the kernel size. Both α(t) and σ(t)

are monotonically decreasing functions of time t.
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Figure 2.2: Common architecture of multilayer layer perceptron with three layers. n input

neurons, u hidden neurons and m output neurons.

2.2.2 Multilayer perceptron (MLP)

The multilayer perceptron (MLP) is a supervised artificial neural network [6]. The MLP

consists of a set of neurons which are organized in layers. The most common MLP archi-

tecture contains one input layer (n sensory inputs), one hidden layer (u neurons) and one

output layer (m outputs) as demonstrated in Figure 2.2. The neurons in each layer are fully

connected with neurons in adjacent layers. Each connection is weighted by an adjustable

weight value. Hence, in practise, these connections are simply referred to as weights. Let

W I denote a n×u dimensional weight matrix containing the weights between the input and

the hidden layers, and let WO denote a u × m matrix containing the weights between the

hidden and the output layer. The number of neurons in input and output layers are defined

by the learning problem at hand, while the number of hidden neurons can be adjusted freely.

The activation function (sometime called as the cost or error function) can be either lin-

ear or non-linear depending on whether the problem is linearly separable or not. Common

non-linear functions include the sigmoid σ(x) = 1
1+e−x , or the hyperbolic function tanh(x),

where x is denoted the input vector.

The learning algorithm consists of two main stages called the feedforward stage and the
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backward or error backpropagation stage. The algorithm can be used for both classification

and regression tasks.

Feedforward stage: Given the training input x, the output of hidden unit is calculated as

follow hj = σ(
∑n

i=1 w
I
ijxi). Similarly, the (actual) output of the output layer is yk =

σ(
∑u

j=1 w
O
jkhj). If d is denoted the desired output (or the target value), the cost/error

function then is defined based on the least mean squared error E = 1
2

∑m
k=1(yk−dk)

2.

Backpropagation stage: The error is propagated back through the architecture and the

weights are updated into the negative direction of the gradient. The purpose of this

step is to adjust the weights such that the network output becomes closer to the tar-

get value. The gradient with respect to each of the weights needs to be calculated

accordingly. Starting with the weights in the output layer the gradient is computed as

follows 1:

∂E

∂wO
jk

= (dk − yk)yk(1− yk)hj (2.4)

The gradients with respect to weights connecting the input and hidden neurons are

computed based on the sum of all gradients of the outputs

∂E

∂wI
ij

=
m
∑

k=1

(dk − yk)yk(1− yk)
(

u
∑

j=1

wO
jk

∂hj

∂wI
ij

)

(2.5)

where
∂hj

∂wI
ij

= hj(1 − hj)xi if the sigmoid activation is used. All connection weights

are updated with the amount of change being ∆w = −γ ∂E
∂w

where γ ∈ [0, 1] is the

learning rate.

The two training steps are repeated for a number of iterations, and the stopping criterion

could be defined based on a certain number of training iterations or the error threshold.

1Assuming that the linear activation function is used at the output neurons.
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Figure 2.3: Time series Elman neural network model

2.2.3 Elman recurrent neural network

Traditionally, the Elman net [29] is one of the first recurrent neural network models intro-

duced to address time series prediction. Since the learning problems contain time series

data, Elman neural network model can be applied in order to improve the prediction per-

formance. The Elman network is a supervised algorithm which can take as targets: values

associated with a given input vector (i.e. for classification tasks), or subsequent values of

a given data sequence (i.e. for regression, prediction tasks). The network is trained by a

gradient descent method which differs from the MLP algorithm in that the gradient is being

propagated back though the recurrent structure of the network. The recurrence depends on

the length of the input sequences. Figure 2.3 illustrates the Elman network which extends

the MLP architecture with the internal state layer (or context layer) that stores the last hid-

den state at every iteration. In practice, Elman networks, as well as most other recurrent

NNs suffers from the long sequence learning problem, because the error signal becomes

vanishingly small while being back-propagated through the sequence. However, the Elman

net is better than traditional MLP in that it can learn the sequence data.
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2.3 Kernel learning

This section will describe some basic kernel methods that have long gained significant in-

terest in the machine learning community.

2.3.1 Kernel K-means

The KKM is known as a simple and effective unsupervised learning model. It has been

adapted to large-scaled clustering problems [27]. The model aims to cluster a set of given

data into k subsets S1, ..., Sk such that the within-cluster sum of squared distances are min-

imized. argmin
µ

∑k
i=1

∑

xj∈Si
‖xj − µi‖, where µi is the mean of points or the center of

cluster Si. Generally, the algorithm contains two main steps. The first one is denoted as As-

signment phase where each sample is assigned to a cluster considering the central locations

of clusters. The second one is the Update phase, in which the centers µ are updated to be the

centroids of those new clusters. The kernel K-means model is a later generation of the orig-

inal K-means where the input data points are mapped non-linearly into a high-dimensional

feature space via a pre-defined kernel function.

2.3.2 Support vector machine

In machine learning, the SVM [9] is one of the most well-known kernel methods. It is a

supervised learning model. The underlying idea is that the SVM construct a hyper-plane

to separate the data in high-dimensional space into binary categories if given a set of input

feature vectors and associated class labels. The formulation of SVM is defined as a non-

probabilistic linear classifier. It is however, efficiently adaptable to a non-linear classification

by the application of kernel functions. The commonly used kernel function is the radial basis

function k(xi, xj) = exp
(

− ‖xi−xj‖
2σ2

)

, where σ denotes the kernel function parameter. xi

and xj are two arbitrary input samples. A common learning algorithm can be presented
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briefly as follows:

Given a set of training examples and corresponding class labels, the data is defined

as D = {(xi, yi)|xi ∈ Rm, yi ∈ {−1, 1}}ni=1. The output of the SVM is calculated as y =
∑n

i=1 αiyiK(x, xi)+b, where K(.) denotes a kernel function, b is offset value. (xi, yi) is the

i−th training sample and corresponding class label in n training inputs. If an unseen sample

x is present, the output y of the SVM is computed accordingly. The model parameters

α = {αi}ni=1 are learned by solving the optimization problem raised in the dual form as

shown in Equation 2.6.

min
αi

(

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiyiαjyjK(xi, xj)
)

, (2.6)

satisfying the constrains
∑n

i=1 αiyi = 0, 0 6 αi 6 C, i = 1, ..., n, where C denotes an

upper bound for the soft margin of the optimal hyper-plane.

2.3.3 Multiple kernels support vector machine

A common approach in kernel machines is to use multikernel learning which is developed

by combining several linear and non-linear kernel functions applied to the input space. This

method has been proven to enhance the prediction accuracy [30, 31]. The approach can be

adapted to solve large scale problems [32]. The multiple kernels can be solved by using

the Sequential Minimal Optimization (SMO) approach. The multikernel formulation can be

described as follows:

Given the training data {(xi, yi)}, ones can define a set of m base kernels {Kk}mk=1 which

may include linear function, radial basis function, sigmoid and polynomial kernel functions.

The corresponding feature map is denoted as {Φk} such that Kk(xi, xj) = Φk(xi).Φk(xj).

The multiple kernel SVM aims to learn a linear combination of kernels K =
∑

k dkKk, with
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dk > 0. The primal problem can be formulated as follow.

max
w,b,ξ>0,d>0

1

2

∑

k

wt
kwk + C

∑

i

ξi +
λ

2
(
∑

k

dpk)
2
p (2.7)

subject to yi(
∑

k

√
dkw

t
kΦk(xi) + b) > 1 − ξi, where the normal vector is denoted as wk,

slack variable ξi and a constant λ. The common use of p-norm here is p = 2.

2.4 Approaches to improve standard learning algorithms

The following presents some of the approaches that have been developed as part of an effort

to improve the effectiveness or speed of standard learning algorithms. Gradient based learn-

ing algorithms in particular are known to have deficiencies such as a slow convergence rate

(i.e. they are known as slow learners), and problems with training deep network architec-

tures or learning long time sequences (known as the long term dependency problem). The

following methods are among the more successful approaches to address such shortcomings.

2.4.1 Rprop algorithm

The term Rprop stands for the Resilient Propagation. The method is designed to remove

the harmful effect of the size of the gradient when training MLP networks. Rprop changes

weights based on the sign of the gradient and assigns a learning rate that allows acceleration

through a momentum to each of the network weights [33]. The learning rule is as follows:

∆
(t)
ij =































η+ ∗∆(t−1)
ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
> 0

η− ∗∆(t−1)
ij , if ∂E(t−1)

∂wij
∗ ∂E(t)

∂wij
< 0

∆
(t−1)
ij , else

(2.8)
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where 0 < η− < 1 < η+. ∆
(t)
ij is the amount by which the weight connecting the j-

th neuron with the i-th neuron is changed at time (or iteration) t. The amount of weight

change becomes smaller if the sign of the gradient has changed since the previous iteration

otherwise, if the sign of the gradient remained unchanged then the weight change value

increases (i.e. it builds a momentum). The learning rule now becomes:

∆w
(t)
ij =































−∆
(t)
ij , if ∂E(t)

∂wij
> 0

∆
(t)
ij , if ∂E(t)

∂wij
< 0

0, else

(2.9)

There is one exception that if the derivative changes sign and the previous updating step

was large, the target minimum was missed, then the updating rule is given as follows:

∆w
(t)
ij = −∆w

(t−1)
ij , if

∂E(t−1)

∂wij

∗ ∂E(t)

∂wij

< 0 (2.10)

2.4.2 Pseudo-Newton Optimization based methods

The Pseudo-Newton method is proposed in [34]. It takes advantage of the second order

derivatives of the cost function (Hessian matrix) in MLPs. For an input x and the weight

value wi, the corresponding cost/error function is E(x). The updating of the weight follows

the online learning rule:

∆wi(x) = − λ

‖∂2E(x)
∂2wi

‖+ µ
∗ ∂E(x)

∂wi

(2.11)

where, λ and µ are small positive constants.
∂2E(x)
∂2wi

denotes the second order derivative of

the error function. The first term on the right hand side of Equation 2.11 denotes the learning

rate. In this case, the learning rate is locally modified for each weight value. When ‖∂2E(x)
∂2wi

‖

is small, a larger learning rate would be obtained. The µ value is to prevent the ∆wi(x) from
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becoming very large.

Another method based on the pseudo-Newton optimization adapts to a longer span of

input/output dependencies, and is called weighted time pseudo-Newton optimization [35].

The method updates the weight by the sum of all ∆wit(x) at all time instances t. The µ

value here is updated online to limit ∆wi(x) to lower values than a predefined upper bound.

2.4.3 Genetic algorithm or Particle swarm optimization

Genetic algorithms (GA) have been introduced to avoid the need for gradient computation

altogether [36]. Hence, a GA should not be affected by long term dependencies. The authors

of [36] proposed the use of a cellular genetic algorithm and additionally, two learning tech-

niques named Lamarckian and Baldwinian for training parametric systems. The Lamarckian

method guarantees that offspring genotypes inherit good experiences from their parents. On

the other hand Baldwinian learns better fitness values. A chromosome will survive in the

next generation if its learned fitness is better. The base artificial neural network used is the

recurrent neural network.

Related to GA is the Particle swarm optimization (PSO) algorithm [37]. The PSO is

inspired by the collective behavior exhibited in swarms of social insects. Each particle rep-

resents a potential solution based on its own position and flight velocity, which is being

adjusted during the optimization process. The PSO is better than the GA in terms of conver-

gence speed and the ability to escape from a local optima.

2.4.4 Deep learning underlying concept

A large number of deep learning models have been proposed in recent years. The earliest

exploration of deep leaning originated from a multilayer neural networks (MLP). Hinton

and Bengio introduced Deep Belief Networks (DBN) by using the Restricted Boltzmann

Machine (RBM) [22] as the unsupervised pre-training layer, followed by a fully connected
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neural network for the supervised learning stage. General knowledge and analysis of deep

learning architectures is provided in [21]. The underlying idea of deep learning could effi-

ciently be applied in both neural processing and kernel machine cases, in which the unsu-

pervised and supervised learning algorithms are properly integrated together. Subsequent

chapters in this thesis provide a deeper exposure to methods for training deep network ar-

chitectures.

2.5 Conclusion

This chapter presented a number of widely known machine learning algorithms. They have

in common that they are vector based rather than graph based models. While the conven-

tional artificial neural networks have a longer application history, the simpler kernel machine

models have gained interest in the machine learning community in more recent years. This

is largely due to the learning speed of these algorithms, efficiency in learning, and testing

a real world large scale problem. However, more recent developments in deep, hierarchical

neural networks has brought back the center of attention to the parametric type of algo-

rithms. Nevertheless, as will be shown in the subsequent chapter several powerful models

in kernel machines are being proposed. Some of these kernel methods are inspired by the

deep learning concept in neural processing, for example the ones introduced in [38, 39]. In

practice however their performance has not improved as dramatically as in the case of deep

or hierarchical neural network learning.



Chapter 3

Machine Learning Methods for

Structural Data

3.1 Introduction

This chapter provides an overview of graph based machine learning techniques. Both non-

parametrized and parametrized models will be reviewed. Some explanation to structural

data representations will be offered in Section 3.2. The formal definition of a graph based

learning problem is given in Section 3.3. Section 3.4 provides an overview of graph based

artificial neural network models. Unsupervised learning models are considered first, then

supervised models are presented. Section 3.5 presents graph kernel machines. Special at-

tention will be given to models which will be utilized later in this thesis. Existing methods

addressing long term dependency (or the vanishing gradient problem) in the graph domain

are presented in Section 3.6. Finally, Section 3.7 concludes this chapter.

23



3.2. Data structure representation 24

3.2 Data structure representation

This thesis will refer to any data that is represented by scalars or fixed sized vectors as

unstructured data, whereas sequences, trees, and graphs will be referred to as structured

data. The following will discuss several typical types of structural data representation.

The simplest type of structured input representation is a temporal sequence. A sequence

conveys a temporal order of its elements. It has one beginning and one ending point. This

data representation technique differs from conventional fixed-sized vectorial data in that its

elements can not be arranged randomly. The underlying temporal order can be exploited

by appropriate methods such as the SOMSD, Elman network and LSTM learning systems.

Temporal sequences are commonly used to represent time series problems. Some real-world

examples of problems which can be represented by temporal sequences include physical

activity classification, energy expenditure prediction, stock market prediction, handwritten

letter/digit/word prediction, speech recognition, and forecasting in general. There are two

main types of sequence learning problems, namely prediction (forecasting) and classifica-

tion of sequences. The former is often seen as a time series problem where a learning model

learns the time variation up to the current point, and then predicts what will happen next

in the immediate future. The latter problem types usually appear when each sequence rep-

resents an object, e.g. the DNA sequence, and each sequence can be categorized into a

specific class, like active or inactive class. All such data are modeled based on the time

order of appearance elements.

A second type of structural data representation are spacial temporal or contextual tem-

poral sequences. This type of data considers both the temporal order of sequence elements

and the spacial/contextual relationship among features within a single time step. The two

cases of this type of problems are illustrated in Figure 3.1. Case 1 of this figure shows that a

physical activity can be modeled by a temporal sequence, and can be classified into a typical

type of physical activity. A commonly used sensor for physical activity recognition learning
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Figure 3.1: Contextual/temporal sequence type of problems

problems measures g-forces (using accelerometers) at regular time intervals (i.e. at 100Hz).

The task is to model the patterns in the data sequence in order to predict activity type or

energy expenditure. Such accelerometry is commonly taken from either hip, left or right

wrist. When training a learning system, a sliding window and step size can be provided for

every sequence resulting in a fixed dimensional input. Learning is accomplished by sliding

the window to the end of the sequence where the target label is found. The input to the

learning model at each iteration is the feature data within the window. This type of learning

has been used extensively in the literature i.e. by recurrent neural networks [26, 29, 40]. In

the second case, Figure 3.1 shows that the conceptual relation between movements of hip,

left and right wrists can be modelled. In this case, at each time step, the information might

include the spatial relation between different positions of a human’s body. Thus, the three

sequences are linked by the same time frame.

A third type of structural data are tree data structures. A tree is a simple graph in which
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pairs of nodes are connected by a single path. Cycles are not permitted in a tree. A non-

empty tree consists of a root node (or super-source) and potentially many levels of additional

nodes. The root node is located at the top level and has no parent nodes, while the leaf nodes

are those without children, and are located at the lowest level of the tree. The ordered links

in a tree differ from unordered links in that those links are arranged in a predefined order. A

value (could be a vector) attached to a node will define its characteristic, which is denoted

as a label or feature vector of that node. Data trees are very common in computer science.

A typical example of this type is obtained by parsing semi-structured documents such as

source code or hypertext documents. Such trees are referred to as parsing trees. XML

documents make a good example. In XML documents, contents are located in different

blocks which are called tags. The entire document is represented by a complete XML tree.

The tree consists of nodes which represent the XML tags (e.g < p > and < br >), and links

which represent the nesting of the tags. The process to construct a tree structure from an

XML document is named a parsing stage. Since a tree requires an existing root node, the

top level tag in the XML document is parsed to be the root node, and each tag belongs to

one level of the tree. The label attached to the nodes may be the identifier of the unique tag.

The drawback of this data structure representation is that the related content of the XML

document is normally not involved in the XML tag tree. This may reduce the information

richness of the XML tag tree.

A more generic type of structural data representation is graphs. A graph may contain any

kinds of links (self links, undirected, directed, ordered, unordered links) and may contain

cycles. Graphs are supposed to sufficiently represent various complicated real world prob-

lems. An example would be seen in the WWW situation. Webpages and internet documents

are typical representatives of hyperlink based structural data. Those objects are connected

via hyperlinks. A webpage can have an arbitrary number of hyperlinks to other documents

on the WWW. Those connections have a characteristic that they may be multi-fold refer-
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encing or self-referencing. The graph built from hyperlink structure of documents on the

Web is referred to a directed cyclic graph. In this case, the content of documents/webpages

will form the feature label vectors of the nodes. In a webpage classification problem, for

instance, a single webpage could be designated normal if it is not known to be a spam one.

In practice, a directed cyclic graph could be utilized for modeling the spam/non-spam clas-

sification problem. In particular, each node in the graph is present to either belong to the

spam or normal class, while the graph connections are viewed as hyperlinks on the internet.

The intentional removal of hyperlink information would lead to a loss of useful information

regarding data representation.

One of the data structures that extends the representational power of graphs are called

hypergraphs. Hypergraphs are a generalization of a graph in that the edges are no longer

limited to link just pairs of nodes. The links in a hypergraph can connect any number of

nodes. The connections in the hypergraph are called hyperedges. Applications for which

hypergraph representations are useful can be found in telecommunication, parallel comput-

ing, and game theory.

Another type of data structure that extends the representational power of graphs are

called graph-of-graphs (GoG) [16]. A GoG is a graph whose nodes are labeled by other

graphs. This is useful for application domains which need to be represented by more than

one type of graph. Figure 3.2 uses the World Wide Web as an example. The WWW consists

of interlinked documents and hence this is suitably represented as a Web graph. The Web

graph consists of nodes that represent web pages and (directed) links that represent the

hyperlink structure of the Web. Since each node in the Web graph represents a web page

and since most documents in the WWW are described by some markup language (XML

and HTML are most common) which describe the structure of the document and hence,

each document is most suitably represented by the corresponding XML (or HTML) tree.

Thus, each node in the Web graph is suitably described (or labeled) by an XML tree. The
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Word graphXML graphWeb graph

Figure 3.2: Web GoG illustration.

procedure of labeling nodes in one graph with other graphs can continue up to any suitable

depth. For example, Figure 3.2 shows that the nodes of the XML tree can be suitably

described by a concept graph or word graph. The Web graph in this example is referred

to as the level 1 graph or root graph, the XML tree is referred to as level 2 graph, and

consequently the word graph is the level 3 graph. The GoG depicted in Figure 3.2 is thus

said to be a GoG of depth 3. Another example of a GoG is a time series of graphs. This

refers to a set of graphs for which an ordering is defined. This, for example, is used to

represent videos in video classification problems. A video consists of a temporal series of

still images (called frames) where each frame is suitably represented by a region adjacency

graph.

It is interesting to note that GoGs are the most general type of data structure presented

in this thesis. A GoG contains hypergraphs, graphs, trees, sequences, vectors, and scalars

as special cases. Hence, any vector, sequence, graph, etc. is a special case of a GoG.

Generally, one is able to select a wide range of graph representation approaches, whichever

is most suited to the problems at hand. This thesis focuses on graph learning problems,

since the modelling of a graph is a universal method for most (if not all) real world learning

problems.
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3.3 Formal definition of graph learning problems

The problem domain involving graphs as studied in this thesis can be stated as follows: A

classification problem is denoted to belong to the graph domain if it could physically be

modelled as graphs. If the whole problem is represented as a single graph, then each node

commonly will account for a training sample. In this case, the nodes become the subjects of

interest. The sample’s feature vector is practically the means to label the nodes. Each node

can have a unique desired target/class label. On the other hand, if an input sample can be

modeled as a graph containing a root node, there may be one supervised root node in the

graph. In practice, if a root node is not clearly specified, the first node in the graph would

be assigned to be the root node. In this case, the graphs become the subjects of interest.

Generally, a graph learning model can create a mapping for each graph in a non-empty set

of graphs that is said to be a graph focused (multiple graphs or many graphs) application.

It can also map each node in a non-empty set of graphs that is called a node focused (single

graph or one graph) application. Such multiple graphs technically can be seen as a single

graph without connections between sub-graphs. The detailed description of these graph

problems is explained in [4].

The term graph data structure (or simply graph) is a generic representation of a data

structure that includes temporal sequences, trees, and directed/undirected cyclic/acyclic

graphs. Formally, a graph is represented as follows, G = {N , E} where N = {1, 2, . . . , |N |}

is the set of nodes, while E is the set of edges E ⊆ {(u, v)|u, v ∈ N}. The indegree of a

node v is the number of incoming edges to v, whereas the outdegree of v is the number of

outgoing edges from v. In the case of a tree structure, an edge is viewed to be directed if a

tuple (u, v) ∈ E is an ordered pair where the natural direction is presented from the vertex

u to vertex v of the edge. Every undirected edge can be represented as being directed by

adding to every tuple (u, v) the reverse connection (v, u).

Each node or link may be labeled by a feature vector xi ∈ RL. We assume that these
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features are numeric and can be of any fixed dimension (including zero-dimensional). Some

of the nodes may have targets. Without loss of generality, we assume that the problem

contains examples of two classes, +1 and −1. Let the set of nodes with +1 targets and −1

be denoted by N+ ∈ N , with |N+| nodes and N− ∈ N with |N−| nodes respectively. The

problem is that given the set of target nodes, N+ ⊕N−, together with the feature vectors in

each node n ∈ N , can one infer the targets of the nodes in the set N ∩ {N+ ⊕N−}?

In reality, a graph learning problem may encapsulate three difficulties:

1. Curse of dimensionality

2. Imbalanced class distribution

3. Remote path dependency or long term dependency

The curse of dimensionality refers to the particular problem that the dimension of input

feature vectors is significantly large (L ≫ 0). When the dimension of the input space in-

creases, the available data would become sparse which can become problematic for some

machine learning approaches. The curse of dimensionality also refers to a conjunction prob-

lem of both the input data space and the applied learning algorithm. This arises since the

learning model does not scale well to high dimensional data, typically due to the high de-

mand in computation time or memory storage that exponentially increases with the dimen-

sion of data.

The imbalanced class distribution is another common problem regardless of whether

binary or multiple class cases are used. The problem occurs when the number of samples

that belong to one class is significantly different to the number of samples in any of the

other classes. For example, a binary classification problem in the domain of graphs in

which nodes are labeled by target values, where a class imbalance problem can occur when

there is an overwhelmingly large number of negative samples compared with the number

of positive samples. Formally this can be shown as |N+| ≪ |N−|. Similarly, the case
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of |N+| + |N−| ≪ |N | also falls into the category of imbalanced class distribution. The

latter indicates that not all nodes are supervised and this is best understood by assuming

that all unlabeled nodes belong to the imaginary class “unlabeled”. The imbalance issue

can hinder the standard prediction models to achieve high accuracy on the minority class,

since the overwhelming major class examples can alter the learning model’s objective. This

is particularly the case for learning methods that are robust to noise. Such models often

dismiss the minority class as noise.

The remote path dependency problem can occur in graphs in which the shortest path

between a pair of nodes becomes very long. Two nodes nd1 and nd2 are said to be re-

mote path dependent if there exists a physical path P starting from node nd1, going through

edge ei and different nodes ni, then ending at node nd2 or vice versa. One can define

P = (nd1, e1, n1, ..., nτ , eτ , nd2), where τ is a positive number and nd1, nd2 6= ni, 1 6 i 6 τ .

Nodes on the path P do not necessarily belong to a single class. A robust classifier would

be able to categorize correctly those two far apart nodes nd1 and nd2. A related problem is

the more traditional problem of the so-called vanishing gradient or long term dependency

problem which originated in learning a recurrent/recursive neural network. The learning

algorithm used for that network is usually based on computing the gradient of an objective

function with respect to the network weights. In the backward phase of the back-propagation

mechanism, the error gradient is backward in time (i.e along the temporal sequence back-

ward to the beginning point/time) and recursively re-computes the required gradients. While

the desired output at time tc depends very much on the input information presented at a very

earlier time te ≪ tc in the sequence, this results in the gradient gradually vanishing during

the back-propagation pass. This makes learning with long term dependency very difficult

[35]. In the graph learning domain, it turns out that the remote path dependency is very

closely related to the long temporal sequence in time series problems, though the former

seems a little more complicated. Hence, one could theoretically define a long term depen-
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dency problem in graph based neural network models, similar to which occurs in recurrent

neural networks. In fact, the learning mechanisms of recurrent NNs and graph based NNs

are both in recursive forward and backward intervals. Later this thesis will interchangeably

use the terms remote path dependency, long temporal sequence, vanishing gradient and long

term dependency to refer to a similar learning problem in recurrent or recursive NNs.

3.4 Artificial Neural Networks for structural data

Table 3.1 lists some of the milestones in the development of ANNs in chronological or-

der, considering both unsupervised learning and the supervised learning paradigms. The

evolution of neural networks shown in Table 3.1 with respect to data types than can be

processed by these methods. It is observed that the development of neural networks for

modelling increasingly complex data types has accelerated in recent years. Neural networks

were limited to processing fixed sized vectors for nearly 30 years. Then new methods were

introduced which were able to process sequences, then data trees, then general graphs, and

most recently, graph-of-graph data structures. The table also shows that supervised learn-

ing methods were generally leading the way, with unsupervised methods trailing by several

years in their ability to process complex data structures.

3.4.1 Unsupervised neural networks

The SOM architecture and training algorithm has been generalized in recent years to en-

able the processing of structural data. Approaches that have been introduced include the

Self-Organizing Map for Structured Domains (SOMSD) [2, 49, 50], supervised training al-

gorithm for SOM [51], GraphSOM [52], Probability measure graph self organizing map

(PMGraphSOM) [3] and most recently the CompactSOM [41]. In addition, non-sparse

kernels based on SOMSD activation maps have been proposed very recently [53]. The im-



3.4. Artificial Neural Networks for structural data 33

Table 3.1: The evolution of NNs with respect to the capability of processing different types

of input data.

Year Supervised learning Unsupervised learning

2011 Compact SOM [41]

2010 GoG neural network [16]

2009 Probability mapping SOM [42]

2008 Graph Self organizing Map [10]

2004 Graph neural network [43]

2002 EditSOM [44]

2001 SOM for structure data [2, 45]

1997 Recursive neural network [5]

1996 Backpropagation throught structure [46]

1995 Self organizing Map [7]

1993 Labeling RAAM [47]

1990 Elman recurrent neural network [29]

.

.

1961 Multilayer Perceptron [48]

proved SOMs present robust clustering properties and are capable of processing various

types of input graph data, such as labeled, undirected, sparse, and cyclic graphs.

3.4.1.1 The SOM for structured data (SOMSD)

The SOMSD is an extension of the traditional SOM with the capability of processing la-

beled directed acyclic graphs (DAGs) [2]. A constraint of DAGs is that there must exist at

least one super-source node. In a DAG D, nodes with no outgoing edges are called leaf

nodes, nodes without incoming edges are root nodes. The remaining nodes are defined to

be intermediate nodes. Each node j in a graph is represented by a hybrid vector xj which

contains any data label that may be attached to the node as well as information about the

mappings (coordinates) of the nodes’ offsprings. The vector is defined as xj = (lj, v)
T ,

where lj denotes a p-dimensional data label, and v is an o-dimensional coordinate vector,

with o being the maximum outdegree of any node in the training set of graphs. Vector v is

padded if the outdegree of a node is smaller than the maximum outdegree of the graph. T
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denotes the transpose of the vector.

Unlike the traditional SOM that merely considers data labels in vector form as its input

samples, the SOMSD utilizes both the information of labels 1 as well as the relationship

among the data input. The relationship of the data is presented through vector v, which

stores the information about the node’s offspring. The mechanism is to maintain the process

of passing the information about children nodes to the parent node. Because the SOMSD

processes nodes in a recursive manner, information about any (connected) node is eventu-

ally passed to the root node of the graph. Information about a graphs’ topology is finally

“condensed” at the root node. The nature of the SOMSD input requires that the nodes in a

graph are processed in inverse topological order (bottom-up, or from the leaf nodes to the

root node). The training algorithm is an extension of the training algorithm of the standard

SOM.

Training algorithm: Vector v contains the coordinates of the winning neurons of a nodes’

children. Because a node can have several parents, the coordinates of the winning neuron

are stored so as to be available when processing the parent nodes. This avoids computational

expense in that the winning neuron needs to be computed only once for each node and within

a training iteration. The training algorithm can be given as follows:

Step 1: Select a graph in the input space, then store all vertices of the graph in an inverted

order (leaves first, then intermediates and finally the root node).

Step 2: For each vertex j in the list, form an input vector xj; the winning neuron r is

calculated as in Equation 3.1.

r = argmin
i
‖Λ(xj, ci)‖ (3.1)

The Euclidean distance between input vector xj and codebook vector ci of the i-th

1Note that this thesis will use the “label” term in order to indicate the feature vector attached on the nodes

of the graph. We will use the term “target” to denote the class label.
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neuron on the map is weighted by the new matrix Λ of (p+2o)× (p+2o)-dimension.

The weight matrix Λ is a diagonal matrix, consisting of p diagonal elements which

have the value µ. All other diagonal elements are 1 − µ. This parameter is used

to control the contribution of the label data or the spatial location information with

respect to a graph node in the training algorithm.

Step 3: After the BMU r is found, the winning codebook vector and its neighboring ones

are updated by the following amount.

∆ci = α(t)h(∆ri)(xj − ci) (3.2)

where α(t) is a learning rate. h(.) denotes the neighbourhood function that is depen-

dent on ∆ri defining the distance between neuron r and neuron i.

Step 4: The coordinates of the current winning nodes are passed to their parent nodes so

that their coordinate vector v is defined.

These steps are repeated until all nodes in a training set have been processed and for a

number of training iterations until a stopping criterion is met. Common stopping criteria

are: a maximum number of training iterations, or a threshold in the mapping performance is

reached.

The SOMSD training algorithm works in an unsupervised manner. However, a super-

vised SOMSD learning framework does exist [51]. In fact, Kohonen introduced an approach

to training SOMs in a supervised fashion [7]. However, Kohonens’ approach has been found

to have some drawbacks, namely, (1) the input vectors attached with class information lead

to an imbalance in error measurement, especially in the case when the SOM is trained with

very large dimensional target labels; (2) the computational complexity of the learning algo-

rithm increases as a class label is attached to the input vector; (3) the algorithm is limited to

a vectorial input situation. These problems have been overcome by the supervised SOMSD
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algorithm introduced in [51]. In practice, the supervised SOMSD is useful for partially su-

pervised learning problems, and supervised learning problems requiring visualizations. The

supervised SOMSD will not be considered in this thesis since it is not suited to incorporation

in the integrated model.

3.4.1.2 Contextual self organizing map for structured data (CSOMSD)

The CSOMSD was proposed in [49]. The purpose of CSOMSD is to overcome a limita-

tion of the SOMSD when encoding contextual differences between identical subgraphs. A

SOMSD cannot differentiate between identical subgraphs that appear in a different context

within a graph. Furthermore, CSOMSD is able to address cyclic graphs [50] by using a

pre-processor to replace cycles by special nodes. The major property of CSOMSD is that it

considers the mappings of not only offspring nodes but also parent nodes when forming the

input vectors. In particular, an input vector of the SOMSD regarding a node j is defined as

xj = (lj, ych[j]), where lj is the node label, ych[j] denotes the concatenated list of coordinates

of the winning neurons with respect to each node’s offspring, which is also called a state.

The input vectors for the CSOMSD are extended through concatenation of the mappings

of the parent vectors as in xj = (lj, ypa[j], ych[j]), where ypa[j] and ych[j] are states of parent

and offspring nodes, respectively. This input representation has been reported to improve

the mapping quality [50] but at the cost of requiring larger mapping space and consequently

and increase in computational time requirements.

The CSOMSD is limited to processing acyclic and bounded graphs. When handling

unbounded graphs, the model experiences decreased mapping quality and significantly in-

creased computational time. The SOMSD and CSOMSD cannot process graphs whose

maximum outdegree is not known. For example, when modelling the Web graph then the

maximum number of hyperlinks that a web page can have is not known. The problem can

be overcome by assuming a maximum outdegree and then pruning the state vector of any

nodes for which the outdegree exceeds the maximum assumed value. This, however, can
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result in decreased mapping quality and a significantly increased computational time [2].

The introduction of Graph self organizing map is a effective solution to unbounded graph

learning.

3.4.1.3 Graph self organizing map (GraphSOM)

The GraphSOM as proposed in [52] is designed to overcome the problem with unbounded

and cyclic graphs. A key difference between the (C)SOMSD and the GraphSOM is the way

by which the state vector is represented. Instead of listing the mappings of each offspring

(and parent), the GraphSOM uses consolidated activation of the mapping space. Given an

activation map M and k = |M | the number of neurons on the map M , the GraphSOM

defines the input vector as xj = (lj,Mne[j]), where lj of dimension p is a data (feature) label

vector, and Mne[j] is a k-dimensional vector containing the activation of each neuron on the

map M with respect to the neighboring nodes of node j. One may define Mab as the state

of the neuron at the coordinate [a, b]. The state of a neuron is assigned to the number of

neighbors that were mapped at that neuron’s location. For example, if one wishes to train a

simple undirected graph with 5 nodes as shown in Figure 3.3, one could use an activation

map of size 2×4 = 8 neurons. For simplicity, it is assumed that no data labels are associated

with each node. The figure shows that node id = 0 has three direct neighbors which are

identified as 1,2, and 3. The example assumes that the mapping of these nodes (as obtained

by a pervious training iteration) occurred at locations (1,1), (1,1), and (2,3) respectively.

Thus, the state vector of node 0 would be Mne[0] = (2, 0, 0, 0, 0, 0, 1, 0). Since the example

assumed that there is no feature vector associated with it, hence the corresponding input

vector would be x0 = Mne[0]. Note that the elements in the state vector list the consolidation

information about the mappings of node’s neighbors. Since two neighbors were mapped

to the same location, hence the corresponding element on the activation map is activated

twice. This is indicated by the value 2 in the corresponding position of the state vector. All
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Figure 3.3: Illustration undirected graph with 5 nodes, the node id, and corresponding coor-

dinate v of the best matching codebook vector are shown.

remaining ones are zero since no mappings occured at the corresponding locations. In other

words, the node id = 0 has two neighbor nodes id = 1 and node id = 2, both being mapped

to the same coordinate [1, 1], and one neighbor node id = 3 mapped to coordinate [2, 3].

Given that the dimension of M is fixed, hence the GraphSOM is effective in dealing with

learning problems for which the maximum degree of a node is unknown or unbounded.

The training algorithm of GraphSOM is similar to the one used for SOMSD. Since

both methods form a hybrid input vector consisting of data label and state information,

hence the diagonal matrix Λ is again used to control the influence of the data label, and

the state component to the Euclidean distance. In GraphSOM the matrix is of dimension

(p + k) × (p + k). The first p diagonal elements are set to µ, and all remaining diagonal

elements are set to 1 − µ as before. Note that if 1 − µ = 0 then the algorithm reduces to

the basic SOM training algorithm. The GraphSOM training algorithm also consists of two

main stages, the competitive phase that is present in Equation 3.1, and the cooperative phase

shown in Equation 3.2.

The GraphSOM improves the abilities of the SOMSD and CSOMSD in that (1) con-

struction of states is independent to the order of the neighbors. Hence, the approach can

process unordered or non-positional graphs. However, the algorithm can also consider the

order of the neighbors by concatenating the states to the input vector in node order. This

leads to the fact that GraphSOM contains CSOMSD and SOMSD as special cases. (2) The
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dimensions of input and codebook vector are independent of the maximum outdegree of all

nodes. Thus, GraphSOM is suitable for graphs with a large outdegree. (3) Redundancies in

the mappings of nodes are reduced.

However, the GraphSOM exhibits a problem in that the magnitude of changes in the

mapping of nodes is not captured appropriatly by the state vector. For instance, assuming

that the new mapping coordinate of node id = 2 is shifted to [1, 2] and all other nodes are

mapped to their previous locations, then the new input vector of node id = 0 would become

x0 = (1, 1, 0, 0, 0, 0, 1, 0). If, however the mapping of node 2 had shifted more substantially

to say [1, 3], then the input vector would become x0 = (1, 0, 1, 0, 0, 0, 1, 0). Note that the

Euclidan distance between (2, 0, 0, 0, 0, 0, 1, 0) and (1, 1, 0, 0, 0, 0, 1, 0) is the same as the

Euclidan distance between (2, 0, 0, 0, 0, 0, 1, 0) and (1, 0, 1, 0, 0, 0, 1, 0). Hence, this way of

representing new states does not provide a good indication of topographic similarities of the

mapping of nodes, and the GraphSOM has consequently limited abilities to serve learning

problems that require the topology preserving clustering of data. The problem is overcome

by the Probability Mapping GraphSOM.

3.4.1.4 Probability mapping GraphSOM

The PMGraphSOM was designed to overcome the aforementioned weakness of the Graph-

SOM [3, 42]. The problem with GraphSOM is that it hard codes mappings in which the

mappings of nodes would take either 1 if there exists a mapping at a given location, or 0 if

there is not. The PMGraphSOM uses a soft code representation of the mappings by using a

probability of a mapping at any location on the map. This allows the Euclidean to capture

the relative distance of a neighbor’s mapped location toward the location of the winning

neuron. The probability mapping of an element in M is computed as follows

Mi =
exp(−‖rc−ri‖2

2σ(t)2
)

√
2πσ(t)

, (3.3)
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where, rc and ri are the coordinates of the winning neuron and the i-th neuron in the lattice

respectively. 1√
2πσ(t)

is for normalization purposes, so that
∑

Mi ≈ 1. The cumulation is

calculated for all the i-th nodes neighbors. σ(t) decreases towards zero with time t. This

leads to the early learning process creating a significant change in mapping, whereas in the

late stage, as σ(t) → 0, the probability mapping will become close to the hard code method

with states.

3.4.2 Other unsupervised approaches for graph data structures

Kernel method aims to project the data space into higher dimensional space so that the input

space can be separated better by a hyperplane in the kernel space. The new kernel function

proposed in [53] and [54] (called KernelSOMSD) is based on the SOMSD in order to deal

with graph data structures.

An extension of recursive neural networks to the unsupervised learning approach for

structural data is proposed [55]. The authors present a fixed-length vector representation for

DAGs, and define the method of Euclidean measuring the similarity of two graphs using a

maximum entropy approach.

Besides that, there exists an approach that uses a graph similarity meassure called graph

edit distance in order to map graphs onto a display space [56]. The authors defined a series

of graph edit operations which represent their frequency of occurrence. Thus, proper edit

operations are required to address various graphs which may feature errors and distortions.

The task is to calculate the edit distance between two DAGs and find the minimum cost so

that the best matching neuron is able to be found. However, the disadvantage of this method

is that for a given dataset, there is no automatic mechanism available to derive edit cost

operations. Instead, this is determined experimentally. Moreover, the computation of the

graph edit distance does not scale with the size of graphs, hence the method is only useful

for small learning problems.
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Another approach to graph domain is the EditSOM [44]. The author applied the edit

cost operations in order to measure the similarity of two graphs, then used the same set

of operations for the cooperative stage in which the distance between input tree and the

winning neuron is shortened. This requires the number of clusters to be known a priori as

it is used as a parameter in the algorithm. The edit cost distance method does not need

numeric presentation of a graph, only the graph relations is required. But as before, the

EditSOM is limited to small scale learning problems due to the reason that is associated

with the computation of the graph edit distance.

Another approach to the development of a SOM for learning problems involving tree

structured data is the Multilayer Self-Organizing Map (MLSOM) as introduced in [57].

Here, the nodes at each level of a tree are processed by a different layer of the MLSOM.

This approach enables MLSOM to be comparable with SOMSD performance in clustering,

utilization and classification for tree structured data.

In summary: A wide range of unsupervised models for structured data have been in-

troduced in the literature in recent years. Each model is designed to address a particular

graphical data type. However, the SOMSD and its later generations such as CSOMSD,

GraphSOM and PMGraphSOM appear to be the most complete series of learning models

that one can choose to deal with the greatest variety of types of graph data structures. This

is the main reason why this set of models is selected for applications in this thesis.

3.4.3 Supervised neural network models

One representative model for time series prediction problems is known as the Long Short-

Term Memory (LSTM) [26]. More recently, several novel approaches dealing with struc-

tured data have been proposed, such as the back-propagation through structure [46], and

recursive cascade-correlation [58]. A more generic model for data structures is proposed in

[5]. However, those models are restricted in processing acyclic and directed graphs. Some
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Figure 3.4: LSTM cell structure of the LSTM neural network model

other extensions in addressing the cyclic and labeled-link graphs were introduced in [59].

The graph neural network, a recent generation of recursive neural network can handle more

general types of graphs such as cyclic, directed and undirected graphs [4, 43, 60]. One

recent approach tackling graph-of-graphs problems has been examined [16, 61]. The fol-

lowing will explain some of the more well-known supervised neural processing prediction

models in more detail.

3.4.3.1 LSTM recurrent neural network

This recurrent NN model has proved its effectiveness in solving long term dependency prob-

lems [26]. The LSTM architecture contains special memory blocks located at the hidden

layer. Each memory block may include one memory cell or more. The memory is built with

a fixed self-connection. The model is learned by seeking an appropriate way to open and
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shut the input and output gates. For instance, the gate remains closed if the model accesses

the input information as not useful and vice versa.

Figure 3.4 illustrates the single block memory with a single cell. The input xt at time step

t is given to each input, output gates and the memory cell. The corresponding weights are

Win,Wout,Wc. The squashing function used in the input gate and output gate are sigmoidal

f(x) = 1
1+e−x . The squashing function at input of memory cell is the logistic sigmoidal

function g(x) = 4
1+e−x−2

, and at the output of memory cell is centered sigmoid g(x) =

2
1+e−x−1

. Hence, we denote Yin, Yout, Yc to be respectively the outcome of input, output

gates and the memory cell. One has:

Yin = f(
∑

Win × xt)

Yout = f(
∑

Wout × xt)

Sc = Sc + Yin × g(
∑

Wcxt)

Yc = Yout × h(Sc)

A major problem with gradient descent for standard recurrent NNs is that error gradi-

ents vanish exponentially quickly with the size of the time lag between important events.

With the LSTM memory blocks, however, when error values are back-propagated from the

output, the error becomes trapped in the memory portion of the block. This is referred to

as an “error carousel”, which continuously feeds errors back to each of the gates until they

become trained to cut off the value. Thus, regular back-propagation become more effective

by training LSTM blocks to remember values for very long durations.

3.4.3.2 Recursive neural network (RMLP)

The RMLP utilizes the back-propagation through structure (BPTS) algorithm introduced in

[62]. The model sometimes is called BPTS for simplicity. An application based on this

neural network is suggested in [63]. A more generalization representation of the RMLP is
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named as the recursive neural network [5, 64]. The main feature of RMLP is the recursive

mechanism in learning a cyclic type of graph. Generally, RMLP can be referred to as an

extended recurrent cascade correlation network, extended real time recurrent network and

neural tree [5]. The RMLP will be described in detail here.

For a graph G, considering the vertex x with label l, the vertex outX(x, j) is the vertex

pointed by the j-th pointer leaving from x. Now, considering the current node c and its

children nodes ch[c], then xc denotes the state of the current node in the given graph, xch[c]

is the states of children of xc. Let lc be the label of c, and N be the dimension of the input

node label corresponding to N label input neurons (see Figure 3.5). H is the number of

hidden neurons, also the number of recurrent state neurons and moreover is the dimension

of the state vectors. The output o corresponding to each node at time step t (or the state of a

node at time t) is calculated as follows:

oc(t) = f(lc, xch[c]) (3.4)

Or, to be more specific, one can include the weight values as follows:

oc(t) = f
(

W I lc + Ŵ Ixch[c](t)
)

or (3.5)

o(t+ 1) = F
(

W I lc + Ŵ Io(t)
)

It is worth noting that the RMLP utilizes the same weight value for the same order of

each child’s node to connect to the hidden layer. Specifically, any node c has an i-th child

which corresponds to the weight Ŵ I
i . That is the reason why RMLP is limited to deal with

ordered or positional graphs. In the output layer, y is computed as follows:

y(t) = g
(

WOxs(t)
)

(3.6)
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Figure 3.5: RNN model: The graph on the top left, the unfolding network on the top right

and the network architecture shown on the bottom.

Here, f and g are transition and output functions, respectively.
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3.4.3.3 Graph neural network (GNN)

The Graph neural network was first introduced in [43]. It has been applied to a number of

practical applications, namely, for XML document and sentence classification [11, 15], for

web page ranking and processing [14, 65], and for an image recognition application [13].

A comprehensive explanation of the GNN learning model and computational complexity

is presented in [4, 60]. The GNN is considered a generic model which can accept vari-

ous types of graph input, such as directed/undirected, ordered/unordered, edge labeled and

cyclic graphs.

In the encoding network, consider the current node c and its neighboring nodes ne. Then

xc denotes the state of current node in the given graph, and xne is the state of neighbors of

xc. Let lc be the label of c, and lne be the labels of ne. Linked-edge labels between c and a

node u of ne is l(c,u). s is the dimension of the nodes’ state. For non-positional GNN, the

current node’s state and the output o corresponding to each node at time step t are calculated

as follows:

xc(t) =
∑

u∈ne
hw(xu(t), lu, lc, l(c,u))

oc(t) = gw(xc(t), lc) (3.7)

where hw and gw are local transition and output functions, respectively. Function hw is

introduced in order to make the GNN to be applicable to un-ordered graphs. For simplicity

sake, one reduces the representation of Equation 3.7 as follows:

x = Fw(x, l)

o = Gw(x, lc) = Gw(Fw(x, l), lc) (3.8)

Here Fw and Gw are global transition and output functions, respectively. l is stacked by

all labels or the current node, edge and neighbor node labels. However, note that x in
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Figure 3.6: The graph neural network is present where a given graph on the left, unfolding

network on the right.

Equation 3.8 on the left hand side is not the same as x in the right hand side. At time step

t, the current state xc of a node on the left of Equation 3.7 is computed, then in the next

time step t+1, that value of xc would become xne on the right hand side, if at this time step

we consider the activation of the c neighboring node. Because of the cyclic nature of the

graph being processed, the state value xc can be iteratively calculated in order to achieve a

stable solution at which the state of each individual node is almost unchanged. Figure 3.6

gives an example of a graph with 4 nodes (on the left), and demonstrates the corresponding

unfolding network of the GNN model (on the right). It shows how the transition and output

functions at each particular node receives the input and provides the output.

The GNN2 (GNN squared): The GNN2 has been designed for modelling GoGs. The curious

nomenclature arises out of the fact that the GNN2 consists of a number of GNNs that have

been stacked on top of each other. Thus, this approach to address GoGs is an extension to

the GNN algorithm [63]. The network architecture for each level in the GoGs has inherited

some features from the GNN model [43]. The outcome of the states of each deeper-level

graph will be used to re-label the corresponding node of its parent graph. This process takes

place from the innermost graph out to the outermost one. The backpropagation stage is then

applied for the purpose of weight updating using gradient descent. Formally, the state of a
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node at level 0 is computed as follows:

x0
i = F 0

i (l
0
i , o

1
out[i], x

0
ne[i]) (3.9)

o0i = G0
i (l

0
i , x

0
i ) (3.10)

where, i is a given node ID. o1out[i] and o0i denote the resulting state of a child graph as a

whole, featuring node i and the resulting state of node i, respectively. ne[i] are the neighbors

of node i, and l represents the label of node i. Finally, F 0
i and G0

i are transition and output

functions that can be realized as linear, non-linear or hyperbolic functions. In an iterative

manner, the resulting state of a child graph at level 1 is given by:

x1
i = F 1

i (l
1
i , o

2
out[i], x

1
ne[i]) (3.11)

o1i = G1
i (l

1
i , x

1
i ) (3.12)

and so on. thus, the general form of the GNN can be stated as follows

xk
i = F k

i (l
k
i , o

k+1
out[i], x

k
ne[i]) (3.13)

oki = Gk
i (l

k
i , x

k
i ) (3.14)

At the top-most level K of a GoG, the vector o becomes a null vector such that the output is

given by:

xK
i = FK

i (lKi , x
K
ne[i]) (3.15)

oKi = GK
i (l

K
i , x

K
i ) (3.16)

The parameters in a GNN are updated by a gradient descent method similar to the one

used for MLPs and RNNs.
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3.5 Kernel machines for structural data

Kernel methods have recently emerged as an interesting development of machine learning

algorithms. Various graph kernels have been proposed, such as the diffusion kernel based on

graph spectral analysis of the input graph [66], graph regularization [67], or graph Laplacian

support vector machine [68, 69, 70]. Regardless of supervised or unsupervised algorithms,

the kernel matrix is computed according to a graph matrix (such as graph Laplacian) that

is derived from the adjacency matrix expressing the neighborhood relations between sam-

ples. The following sections will provide some details on two well-known kernel methods,

namely Spectral kernel clustering and Graph Laplacian support vector machine.

3.5.0.4 Spectral kernel clustering

The underlying concept of SKC follows the spectral graph theory [8]. The idea is to utilize

eigenvectors of the similarity graph to perform input dimensionality reduction/ transforma-

tion, then using the KKM algorithm for the rest. The learning algorithm is presented briefly

as follows. Given the input data in the form of a similarity graph, the task is to seek the most

efficient way to partition the graph into a specific number of node groups with the constrain

that the links between nodes of different groups are most weakly connected. The nodes of

a group would be most similar to one other, or the connections within a group’s nodes are

strong.

Given that the number of clusters is user pre-defined (say k clusters), the SKC algorithm

consists of three main phases. In the first phase, the graph Laplacian matrix L is constructed

via the adjacency matrix. By applying eigen decomposition in the second phase, the first k

eigenvalues and the corresponding k eigenvectors (u1, ..., uk) of L are taken into account.

Let U be the matrix whose columns are composed of (u1, ..., uk). Rows of U would be

associated with n original input samples. Finally, the KKM is applied on the row-based

samples of U , to cluster them into k clusters C1, ..., Ck.
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3.5.0.5 Graph Laplacian support vector machine

While the SVM and MKSVM are vectorial based learning models, the GLSVM is able

to incorporate data structures in its learning process. The GLSVM is a manifold learning

mechanism which has been extensively researched [1, 68, 69]. The model encapsulates

several concepts, namely spectral graph theory [8], manifold assumption and regularization

Reproducing Kernel Hilbert Spaces [1]. The introduction of GLSVM was inspired by the

classical SVM dual formulation. In practice, it has achieved promising performance in

semi-supervised learning [1]. The model can be solved via the primal form together with

the usage of a conjugate gradient regime [71].

The learning algorithm can be presented as follows. In the input space, given the dataset

S = D ∪ U , with labeled data D = {(xi, yi), i = 1, ..., l} and unlabeled data U = {(xi, i =

l+1, ..., n}. If the kernel matrix K and the graph Laplacian matrix L are available, the dual

form of GLSVM is as follows:

min
α∈Rn,ξ∈Rl

l
∑

i=1

ξi + γAα
TKα + γIα

TKLKα (3.17)

subject to yi(
∑n

j=1 αik(xi, xj) + b) > 1 − ξi, ξi > 0, i = 1, ..., l. Also, the primal form of

GLSVM is given here.

min
α∈Rn,b∈R

l
∑

i=1

V (xi, yi, k
Tα + b) + γAα

TKα + γI(α
TK + 1T b)L(Kα + 1b). (3.18)

where, V (.) is a squared hinge loss function or L2 loss. 1 indicates the vector of n elements

equal to 1. γA is a co-efficient controlling the complexity of ambient space, which is another

name for the parameter C in the cases of SVM and MKSVM. One may use γA instead of

C for every kernel machine model. Finally, parameter γI controls the complexity of the

intrinsic structural penalty function.
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3.6 Learning long term dependency problem

This section will review recent approaches to addressing the long term dependency problem,

with special focus on problems in learning graph data structures.

3.6.1 Optimizing the free parameters of BPTS algorithm:

Recently, an improved algorithm was proposed to solve the long term dependency prob-

lem in RNNs [72]. The mechanism is created to optimize the free weight parameters

θ = (A,B,C,D) that exist in the BPTS model.

x = F (Aq−1o+Bu)

o = G(Cx+Du) (3.19)

Because the gradient tends to vanish in the training algorithm with respect to deep struc-

tures, a penalty term is introduced in the learning rule. The learning rule for θ at time t

becomes:

θ(t) = θ(t− 1) + α
(

θ∗ − θ(t− 1)
)

+ βΦ (3.20)

where θ∗ represents the suboptimal state that is the result of applying the least square method

through several iterations. Φ can be called the penalty term. α is the learning rate and β

decides the weight of Φ. In fact, β is set to increase gradually by a small proportion to

escape from the suboptimal state. This method is experimentally proved to be robust both

in learning speed and network performance.

3.6.2 Leaky integrator based method

An earlier and more simple method is to bring past information to the current learning point.

However, this approach is unable to handle the significance of each time step information
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in the past. The NARX method introduced in [73] is inspired by this mechanism. A recent

method makes use of leaky integrator factors in each NN learning unit while keeping the

forward and the backward procedures pass efficient [74]. The cost function is computed by

the cross-entropy method: E(t, o) = −∑i t
ilog(oi). Here, t and o are the desired and the

actual outputs, respectively. The output of the hidden units at time step t in the following

compact form:

yt = f
(

t
∑

i=1

(

λi−1Wyt−i + λ̂i−1Ŵxt−i

))

(3.21)

The leaky integrator is defined as: Sy
t =

∑t
i=1 λ

i−1yt−i and Sx
t =

∑t
i=1 λ̂

i−1xt−i. To

represent the leaky integrator in an iterative fashion, one can write Sy
t = yt−1 + λSy

t−1 and

Sx
t = xt−1 + λ̂Sx

t−1. The λ and λ̂ are constrained between (0, 1) by applying the sigmoid

function, assigning them to 1/(1 + exp(−ℓ)), and learning the unconstrained ℓ accordingly.

3.6.3 Long short term memory

This method has gained significant success in solving the long term dependency problems

[26]. This method was very successful in solving a range of pattern recognition, like speech

signal recognition, handwriting recognition and time-series problems. The LSTM can han-

dle learning problems with considerable long term dependencies by utilizing special mem-

ory units located at the hidden layer. Each memory cell is built with a fixed self-connection.

The error signal is trapped in the cell and cannot be changed. The output gate of the mem-

ory cell has to learn which error to trap by properly scaling them. Meanwhile, the input

gate learns when to release the error, again by a scaling method. Then the error is truncated

once it is allowed to leave to the memory cell. The design of such memory units allows the

gradient of the error function to freely back-propagate through the network with possibly

arbitary duration.
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3.6.4 Genetic algorithm and Particle swarm optimization

The GA for estimating the network’s parameters in RNNs has been attempted in [75]. The

authors indicated that the GA is more robust than BPTS when dealing with a flower im-

age classification problem. It is interesting to note that the authors applied two different

GA methods: The first one concatenates all the weights into a single chromosome (termed

whole-in-one); the second one uses four GAs for four set of weights used in RNN (termed

4-parallel). The latter performs better than the former. Different objective/fitness functions

are used in these two methods. It is also reported that PSO may be applied as an effective

replacement for GA in graph based learning models such as RNN and GNN. The advantage

of PSO is that it helps to improve the computational time efficiency over the conventional

GA model.

3.6.5 Hierarchical learning

Hierarchical architectures for modelling graph data structures were first proposed in [17].

The authors made use of a combination of unsupervised PMGraphSOM and supervised

GNN, in which the PMGraphSOM is used as a pre-processor. The results obtained from

the PMGraphSOM are then concatenated to the feature vector of the corresponding node,

and this is then used to train the GNN. It was shown that this approach reduces (but not

eliminates) the long term dependency problem [17].

Another approach that uses a hierarchical architecture for the modelling of graphs was

proposed in [76, 77]. The approach takes advantages of a series of GNNs. The output of

one GNN is used to re-label the associated nodes in the dataset. The re-labelled graph is

then used to train another GNN. The procedure is repeated until no further improvement in

classification accuracy is observed. It was empirically shown that such a layered approach

produces better results than the baseline method that only utilizes one GNN for the learning

task, and that two to three layers of GNNs should be sufficient in most cases. This finding
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provides evidence that a layered learning architecture can reduce the long term dependency

problem in the domain of graphs.

3.7 Conclusion

This chapter has given an overview of graph based machine learning algorithms. The his-

tory, definitions and key concepts were reviewed. This chapter first provided background on

graph data representation and the formal definition of a graph learning application. Several

neural network models, namely some generations of SOMs for structural data and graph

based neural networks were explained. Existing approaches addressing the problem of re-

current/recursive architectures were reviewed. Furthermore, this chapter has provided in-

sights into two well known graph kernel machine algorithms. The kernel machines will

later be used to compare learning and prediction performance with corresponding neural

network models.



Chapter 4

Problem descriptions and evaluation

methods

4.1 Introduction

This chapter offers a description of datasets that will be used in this thesis for the evaluation

of proposed methods and for comparison purposes. The datasets used are:

UK2006 and UK2007: These two datasets are widely used for benchmarking learning sys-

tems in their ability to classify web pages into spam or non-spam sites. This is a

heavily unbalanced binary classification problem consisting of one very large graph

for each of the data sets.

Mutag: A dataset for activity prediction in chemical molecules. This defines a regression

type of learning problem consisting of a set of relatively small graphs.

INEX2008 A dataset pertaining to XML documents. This is a multi-class classification

problem consisting of a set of medium sized graphs.

Physical activity prediction: Two datasets on physical activity prediction in young chil-

55



4.2. The UK2006 and UK2007 web spam detection datasets 56

dren and adolescents respectively. This is a very recent dataset involving multi-class

classification on a limited number of temporal sequences (of graphs).

This chapter is organized as follows: Section 4.2 presents an overview the UK 2006

and the UK 2007 web spam detection datasets. These are some of the most well-known

and challenging benchmark problems in the domain of graphs. The relatively small Mutag

dataset will be described in Section 4.3. The large text document categorization problem as

posed by the INEX2008 dataset is presented in Section 4.4. The two datasets for the physical

activity prediction in young children and adolescents will be described in Section 4.5 and

Section 4.6 respectively. Section 4.7 will present several evaluation metrics that will be used

in this thesis, and Section 4.8 summarizes this chapter.

4.2 The UK2006 and UK2007 web spam detection datasets

The UK2006 and UK2007 datasets are widely used as benchmark problems for the eval-

uation of prediction models which can explore information provided in the form of a web

graph, each node in the graph is described by a high dimensional feature vector [18, 67,

78, 79, 80, 81]. They consist of large collections of hosts retrieved from the .UK top-level

domains. The web pages are grouped together according to the location of their host. The

hyperlinks between pages/nodes define the topology (known as host graph or HG) of the

resulting directed graph of the web pages [78, 79].

There is a feature vector associated with each node in the graph. The feature vector

contains 96 elements which describe the content of the associated host such as average

word length, and number of words in the title (these are denoted as content based features or

C in short). The vector also consists of a 41-dimensional description of the connectivity of

the associated node such as PageRank, number of neighbors, TrustRank (these are named as

link based features or RL). In addition, a third set of features is 138 in dimension, being the
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transformation of link-based features, such as normalization, logarithm and so on (this set is

denoted as transformed link-based features or TL). The feature vector associated with each

node is a concatenation of these three sets: C, RL and TL, a total of 275 dimensions. Note

that not all of the dimensions are independent of one another. In other words, the node can

be described by a surface of lower dimensions; this insight gives rise to the regularization

studies conducted in this thesis later.

Some of the nodes come with a manually labelled class label: spam or normal (some

other nodes labelled as ”unknown” will not be recognized as a separate class since it is not

clear if the nodes belong to normal or spam ones). By the nature of the problem, the number

of nodes labelled as normal would be much higher than the number of nodes which are

labelled abnormal or spam. This gives rise to the issue of imbalance output class distribution

which will be investigated later in this thesis. Since the labels are obtained manually, by a

group of human volunteers, hence the number of labelled nodes is small relative to the size

of the web.

These two datasets are ideal for the purpose of graph based learning investigations, since

they contain both relational and feature data. A traditional learning model can only learn on

the feature data, while a graph based model can exploit both topological and feature data.

The challenge is to classify the unlabelled nodes in the graph into either spam, or non-

spam ones. For a detailed discussion on what constitutes spam on the Web the interested

reader is referred to detailed descriptions readily available in [78, 79, 82]. For the purpose

of this thesis, it suffices to indicate that spam pages are web documents whose content or

hyperlinks are designed to inflate their rank on Web search engines. Hence, web pages may

be classified as content-based spam, link-based spam, or both. The two given datasets labels

a document simply as spam if it falls into any one of the three spam categories. What makes

this dataset of interest for this thesis is that the learning problem requires from a learning

system the ability to model content as well as the topology of the dataset. Relevant properties
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Table 4.1: Relevant details of the UK webspam datasets.
Dataset UK2006 UK2007

Number of hosts 11,402 114,529

Number of pages 77M 100M

Host graph (HG)

Number of graphs 1 1

Number of nodes 11,402 114,529

Topology Number of links 730,774 1,885,820

φ number of links per node 64 16

Max. out-degree 5,994 51,692

Feature sets
Content-based features (C) 96 96

Raw link-based features (RL) 41 41

Transformed link-based features (TL) 138 138

Train set

size 9,551 4,275

spam 767 222

non-spam 7,472 3,776

unknown 1,312 277

Test set

size 1,851 2,204

spam 1,250 122

non-spam 601 1,933

unknown 0 149

of both datasets are given in Table 4.1. From Table 4.1 it can be observed that the UK2007

dataset is about 10 times the size of the UK2006 dataset while containing fewer training

samples, much fewer links between nodes, and much larger deviations of the number of

outgoing links. As a consequence the UK2007 graph is more sparse than the UK2006 one.

This implies that the average length of a path between two labelled nodes is longer for the

UK2007 dataset. A main challenge with the UK2007 dataset is to overcome possible path

dependencies between (labelled) nodes in the graph.

For the UK2006 dataset, there are 8,239 training hosts in which the number of spam

hosts accounts for a small portion of ≈ 9.3%. The testing dataset contains 1,851 hosts with

more than 67.5% of spam ones. Interestingly, the proportion between spam and non-spam

hosts in the training and testing set is significantly different. In particular, while the number

of spam hosts is two fold that of the non-spam hosts in the testing set, the number of spam

hosts in the training set is just under one ten that of non-spam hosts. This raises a challenge

for the prediction models that the training dataset might not cover all possible behaviours of

the underlying system, which the testing dataset may require.

Regarding the UK2007 dataset, there are approximately 10 times as many hosts as in the
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UK2006 dataset. However, the number of labeled hosts is small (6,479). The percentage of

spam hosts involved in both the training and testing datasets is around 5%. This imbalanced

nature of UK2007 is much more severe than that of the UK2006 dataset.

4.3 Mutagenesis dataset

Mutag is a relatively small benchmark dataset [83]. The purpose of this dataset is to inves-

tigate whether it is possible to predict the mutagenicity of chemical componds/molecules.

The term mutagenesis refers to a biological process that drives the genetic constitutions of

an organism. This usually leads to a mutation in genes. Mutagenesis can take place spon-

taneously in nature or is physically or chemically activated by a mutagen. Mutagenesis can

lead to cancer or some other disease. Hence, there is considerable interest in researching

methods that can predict whether a medical compound is mutagenic or non-mutagenic. The

mutagenesis dataset can be referred to as a classification or regression problem [83]. Each

molecule is given a real valued number representing the capability if it is mutagenic (de-

notes mutagenicity) or not. We will use the dataset as a binary classification problem for

consistency with previous researches. This also relates to common practice in that harm-

ful substances are classified as dangerous (i.e prohibited) and not-so dangerous (permitted),

by using a threshold as defined by Safe Work Australia. Hence, a medical compound is

either categorized as active (mutagenicity > 1) or inactive (mutagenicity < 1). They are

correspondingly assigned to the class labels +1 and -1. The properties of this dataset are

sumarized in Table 4.2.

The table shows that for the 230 medical molecules three different datasets are derived

as three separated benchmark problems. Specifically, these are the regression friendly part,

regression unfriendly part, and the whole data. The regression friendly part contains 188

molecules, while the remaining molecules are attributed to the regression-unfriendly part.

The whole data refer to all 230 medical compounds. A molecule can have descriptive fea-
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Table 4.2: General properties of the Mutagenesis datasets.
Dataset Whole data Friendly part Unfriendly part

Number of molecules 230 188 42

Number of active mutag 138 125 13

Number of inactive mutag 92 63 29

Atom bond

Number of graphs 230 188 42

Number of nodes 5894 4893 1001

Topology Number of links 6309 5243 1066

φ number of nodes per graph 25 26 23

φ number of links per graph 27 27 25

φ number of links per node 1 1 1

Max. out-degree 4 4 3

Feature sets
Atom type and charge (AB) 10 10 10

Chemical measurements (C) 2 2 2

Precoded structural attributes (PS) 2 2 2

Evaluation method 10-fold 10-fold L-o-o

tures at the atomic level or at the molecular level. In particular, a single atom’s properties

include atom type and its charge. There are 9 different types of atom, namely C, H, O, N,

F, Cl, Br, I and S. A one-hot encoding technique is used to represent an atom type in bi-

nary form. Thus, the encoding technique produces a 10-dimensional vector consisting of a

nine-dimensional binary vector representing the atom type and a one-dimensional element

representing its charge value. In the following, this 10-dimensional vector will be referred

to as the AB feature vector. At the compound level, there are two chemical measurement

features named as lowest unoccupied molecule orbital and water/octanol partition coeffi-

cient (denotes C features), and other two features named as precoded structural attributes

(denotes PS features). In general, there are three sets of features AB, C and PS what will be

used in our experiments.

Finally, the atom bond provides the conceptual material to construct the graph topology

of a compound. One molecule is modelled by a graph whose nodes represent atoms and

links are the bond. This creates multiple graph problems. The evaluation methods used for

those datasets are indicated as 10 fold cross validation for the regression friendly part and

whole datasets, and leave-one-out (l-o-o) for the regression unfriendly part.
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Table 4.3: The INEX 2008 dataset brief information
Total Train Test

Size of corpus ≈751 Mb ≈75 Mb ≈676 Mb

Number of documents 114,366 11,437 102,929

Number of distinct words 166,619 115,002

Graph topology 636,187 directed links, average 5.5 links/node

Table 4.4: The INEX 2008 categories: Number of documents
ID Category names Total Train Test

471 United states 29,980 2,945 27,035

49 Reference 14,905 1,474 13,431

339 Sports 9,435 915 8,520

252 Social institutions 8,199 866 7,333

1530 Politics by region 7,749 789 6,960

1542 Urban geography 7,121 696 6,425

10049 Human behavior 6,933 679 6,254

380 Fiction 6,262 639 5,623

897 Categories by nationality 6,166 637 5,529

4347 Americas 6,088 592 5,496

9430 Demographics 3,948 405 3,543

1310 Tourism 2,880 294 2,586

5266 Art genres 2,544 264 2,280

323 Sociology 1,165 128 1,037

1131 Europe 991 114 877

Total 114,366 11,437 102,929

4.4 The INEX 2008 dataset

This is a large set of text documents in XML format. The dataset has been used widely as a

benchmark categorization problem since 2008 [84]. The corpus is a subset of the Wikipedia

XML Corpus [85]. 114,336 documents have been extracted from the original data cohort.

The links between those documents have also been derived for the purpose of document

graph construction. These links either correspond to the links created by the authors of the

Wikipedia articles or automatically generated by Wikipedia. Table 4.3 gives some statistics

about the documents. The documents allocated to the training set are much fewer than the

test set. This would raise difficulty in generalization prediction since the learning feature
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space may not cover that of unknown samples. The dataset features 636,187 directed links

among available documents. Each document is connected by 5.5 links (in-link) on average,

and provides 5.5 links to other documents (out-link) on average. Table 4.4 gives information

about the 15 different categories and the corresponding number of documents existing in

the training and test sets. In addition to the much larger testing set, the class distribution is

severely imbalanced in this dataset. The largest class, “United states” is approximately 31

times the size of the smallest one “Europe”. This unbalance in class sizes can also pose a

challenge for prediction models.

For the experiments, this thesis will use the following data representation method. Each

document is represented by a feature vector. Each element in the feature vector is computed

based on Term frequency (TF ) or with Inverse document frequency (TF.IDF ) values.

One can define a list of terms T = t1, t2, ..., t|T | extracted from the list document D =

d1, d2, ..., d|D|. The term frequency TF is the relative frequency of term tj in a document di:

tfi,j =
ni,j

∑|T |
l=1 ni,l

, (4.1)

where ni,j is the number of occurrences of term ti in document dj , normalized by the total

number of terms in dj . The more frequent the term ti, the higher the tfi,j .

On the other hand, the IDF measures the discriminatory power of a term tj:

idfj = log
|D|

|{di : tj ∈ di}|
, (4.2)

where |D| is the cardinality of documents in the training corpus and |{di : tj ∈ di}| is the

number of documents containing term tj . The less frequent the term tj in the dataset, the

higher the idfj . One can define the weight TF.IDF of a term within a document as follows:

tf.idfi,j = tfi,j ∗ idfj (4.3)
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The TF.IDF means that the more frequent the term tj in di and less in other documents,

the higher is the weight tf.idfi,j Therefore, a feature vector can be represented by the con-

catenated TF or TF.IDF values of every existing term in that given document.

4.5 Preschool children physical activity cohort

The dataset consists of physical activity data collected from 11 pre-school children within

the age range of 3-6 years. The dataset was collected in the laboratory environment in 2012.

Participants were requested to complete 12 protocol activity trials over two laboratory visits

scheduled within a 3 week period. The activities in visit 1 included watching TV (TV),

sitting on floor being read to (reading), standing making a collage on a wall (art), walking

(walking), playing an active game against an instructor (active game), and completing an

obstacle course (obstacle course). Six more activities were preformed at visit 2: Sitting

on a chair playing a computer tablet game (tablet), sitting on floor playing quietly with

toys (quiet play), treasure hunt (treasure hunt), cleaning up toys (clean up), bicycle riding

(bicycle), and running (running). Each trial lasted approximately 4-5 min. A summary of

these 12 activities and corresponding activity type classes is shown in Table 4.5. The main

purpose of the grouping is that each PA activity class is more or less equivalent in the amount

of energy expended, while running and walking are the two most popular actions which are

hence treated as separate classes.

The participants were wearing an ActiGraph GT3X+ sensor (an accelerometer) on three

body positions hip, left wrist and right wrist. The acceleration information is recorded at 100

Hz. The sensors measured and stored triaxial acceleration of those body’s parts. As a re-

sult, there are three 3-dimensional datasets extracted from each of the three accelerometers,

denoted as Hip data, Lwr data and Rwr data.
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Table 4.5: All physical activity (PA) types

Name Description Activity type class

TV Watching TV

Sedentary
ST Story time

iP Playing iPad

QP Quiet play

CO Collage

Light lifestyle activitiesTH Treasure hunt

CU Cleaning up

BR Using bicycle/tricycles

Moderate-to-vigorous activitiesOC Obstacle course

BB Bean bags

WA Walk Walking

JG Running Running

4.6 School-age children and Adolescence cohort data

The second data cohort in the field of physical health is the school children and adolescents

PA problem denoted as SCA data. This is a relatively large dataset consisting of 100 partic-

ipants in the age group 5 to 15 years. The data was collected at the Queensland University

of Technology in 2010. They also used accelerometers but sampled the information at 30Hz

which were positioned at the waist of the participants using flexible elastic belts. Each par-

ticipant also performed 12 activity trials: lying down, handwriting, laundry task, throw and

catch, comfortable overground walk, aerobic dance, computer game, floor sweeping, brisk

overground walk, basketball, overground run/jog, and brisk treadmill walk. All activity tri-

als lasted approximately 5 minutes, except for the lying down trial, which was completed

in 10 minutes. Based on the movement pattern and the amount of EE, these activities are

categorized into 5 classes, similar to the case of preschool children data. Those classes are

sedentary (lying down and handwriting computer game), light household (HH) activities

or games (floor sweep, laundry task, and throw and catch), moderate-to-vigorous games or

sports (aerobic dance and basketball), walking (comfortable overground walk, brisk over

ground walk, and brisk treadmill walk), and finally running (overground run/jog) [86]. Both
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Table 4.6: General confusion matrix.

Predicted Predicted

Positive Negative

Actual Positive TP FN

Actual Negative FP TN

the preschool children dataset and the adolescence dataset can be modelled as a time se-

ries or temporal sequence classification problem, since each activity is composed of a series

of time-step based acceleration information. The information at the current time-step may

more or less be influenced by information that happened in the past.

4.7 Evaluation approaches

Various evaluation metrics will be applied in our experiments. For the classification prob-

lems, Accuracy (ACC), (macro/micro) Recall, F1, and Area under the ROC curve (AUC)

indicators will be utilized. The Root mean square error (RMSE) and (absolute) Mean bias

are the evaluation metrics for the regression problems.

Accuracy (ACC): ACC represents the percentage of correctly predicted examples over the

dataset size. On the basis of the confusion matrix given in Table 4.6, the accuracy

is calculated as follows. ACC = TP+TN
TP+FN+TN+FP

. Despite its popularity, the ACC

performance meassure is limited in expressing the true performance of a classifier on

unbalanced learning problems.

Recall: Recall is defined as the proportion of target documents returned. There two conven-

tional methods of calculating the performance of a text categorization system based

on recall, namely micro-averaging and macro-averaging. Micro-averaged values are

calculated by constructing a global contingency table and then calculating recall us-

ing these sums. In contrast, macro-averaged scores are calculated by first calculating
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precision and recall for each category and then taking the average of these. The dif-

ference between these is that micro-averaging gives equal weight to every document

while macro-averaging gives equal weight to every category.

Rmicro =

∑|C|
i=1 TPi

∑|C|
i=1 TPi + FNi

(4.4)

Rmacro =
1

|C|

|C|
∑

i=1

TPi

TPi + FNi

(4.5)

F-measure (F1): F1 can reflect more accurately the generalization performance of a clas-

sifier in an imbalanced dataset. The larger the F-measure value the better the per-

formance on the positive class. Its calculation is a balance between precision Pr =

TP
TP+FP

and recall Re = TP
TP+FN

in that the F-measure is F1 =
2∗Pr∗Re
Pr+Re

Area under the curve (AUC): AUC refers to the probability that a learning model ranks

a randomly chosen positive sample higher than a randomly chosen negative one. In

fact, if a model classifies the negative examples correctly, then a poor performance in

predicting the positive examples would be reflected by a low AUC value.

RMSE and (absolute) Mean bias: For a regression problem, the evaluation metrics used

are (absolute) mean bias and RMSE. Absolute mean bias is more indicative for as-

sessing the overall performance of a prediction model than the mean bias, since the

mean bias is sometimes very small if the positive and negative values are compensated

together. The (absolute) mean bias is computed by taking the mean of (absolute) dis-

tance between predicted and measured output for all testing samples. The RMSE

is taking the square root of the sum of all squared distances between predicted and

measured output for every testing sample.
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4.8 Conclusion

Benchmark problems that will be used for the experiments in this thesis have been de-

scribed. The data representation of these sets of data is available in both topological form

and (feature) vectorial form. Four of the benchmark problems express properties with some

similarities. For example, each data sample can be viewed as a node in a graph, which is

constructed via the relational information between nodes. The problems derived from the

Web spam detection and INEX 2008 data are single graph node-focused learning problems.

It is intuitive that the nodes will be classified into different classes. On the other hand, the

Mutag dataset is as multiple graph classification problem where each graph represents a

single molecule, the task of which is to correctly classify each graph to the corresponding

class. In contrast, the two physical activity datasets contain temporal sequences. Each input

sample is represented by a single time series or temporal sequence. These problems could

be generalized to multiple graph (sequence) problems. The two datasets will be used in

Chapter 8 for both classification and regression experiments in this thesis.



Chapter 5

Incorporating Input Graph Topology in

Neural Networks

5.1 Introduction

This chapter presents a systematic study on a set of benchmark problems to investigate

whether and when the modeling of input graph structures has an advantage when compared

to corresponding classic machine learning models. The benchmark dataset includes two

Web spam detection problems UK2006 and UK2007, and three medical compound Mutag

regression problems, as described in Chapter 4. Research questions that will be answered

in this Chapter are (1) whether modelling the inputs as graphs confers any advantages over

those of classic machine learning algorithms, (2) if so, under which conditions do these

materialize and by how much? (3) Is the incorporation of the inputs as graphs worth the

effort in terms of the results obtained?

A careful step-by-step approach is taken by considering the simpler learning methods

first, then by applying models of increasing complexity. The aim is to obtain baseline results

to which more advanced methods can be compared with. This should allow for conclusions

on how graph-based models compare with non-graph based models when modelling a struc-

68
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tured domain in practice. In order to highlight the role of incorporating input graph topology

in the neural network architecture, the experimental results are presented in a non-traditional

manner. In particular, we will show results on datasets using different neural network ar-

chitectures, first without using any input graph information, and then we will progressively

repeat the same experiments by incorporating a graph topology. Thus, we will be able to

show the effectiveness of incorporating the input graph topology in neural network architec-

tures, trained using an unsupervised learning technique, or supervised learning technique,

or a combination of both. Along with the experiments, several integrated learning models

are proposed, being motivated by the hierarchical and deep learning regime.

This chapter is organized as follows: The experimental setting will be described in Sec-

tion 5.2. Section 5.3 presents the results of experiments when deploying classic unsuper-

vised learning architectures, and supervised learning architectures without assuming any

input graph topology, i.e., the set of links is assumed to be zero. Section 5.4 studies the case

in which the set of links is non-zero. A comparison and discussion is given in Section 5.5.

Finally, some conclusions are drawn in Section 5.6.

5.2 Evaluations and Experimental Setting

This section will give the evaluation methods being used and the order of significance of

these, and will present the procedure for the experiments.

5.2.1 Evaluation consideration

Three different evaluation metrics are applied including AUC, ACC and F1. These three

metrics are not always uniformly behaved. Hence, it is important to first understand the

expressive power of each of these metrics and then to define an order of importance in any

given situation.
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For example, when learning from a significantly imbalanced dataset, a simple learner

may predict all samples to belong to the majority class. Hence, this might result in a high

prediction accuracy. The UK2007 dataset is the one typical example that a weak learner

would obtain a relatively good accuracy of 88% by simply assigning every webpage to the

non-spam class. On the other hand, if the learning model classified all spam pages correctly

while classifying all other pages in a random fashion then the accuracy would be reduced

greatly to 53%. The reason is that the total number of correctly predicted hosts can decline

when the dataset in imbalanced, thus negatively affecting the ACC performance. Hence,

by relying on the ACC evaluation, one may wrongly underestimate a learner that correctly

classifies all spam hosts (because truly predicting spam is the main purpose of Web spam

detection problems). The ACC is a good performance indicator when the dataset is well

balanced.

If the class distribution is not severely imbalanced as, for example, with the Mutag

dataset, then the ACC could be a more indicative metric. In the literature, both AUC and

ACC have been primarily used to evaluate models which were trained on the Web spam

detection and Mutagenesis problems [78, 79, 87, 88]. In practice, the AUC exhibits simi-

lar properties to the F1 method since both measure the accuracy balance between minority

and majority class, although the AUC appreciates the minority class samples a little more.

Hence, we use three evaluation metrics and rank the significance of those metrics in de-

scending order as follows: AUC → F1 → ACC for Web spam detection problems and ACC

→ AUC → F1 for the Mutagenesis problem. The reader is reminded to take this ordering of

metrics into consideration when experimental results are compared later in this chapter.

5.2.2 Experimental Procedures

Unsupervised and supervised learning systems are considered in this chapter. The different

nature of these learning methods require a different treatment when selecting training mod-
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els. The SOM and PMGraphSOM were trained for at least 500 iterations, then the SOMs

which produce the best ACC performance on the training set selected. Traditionally, an un-

supervised model assumes that a target vector is not available and hence, a probability or

distance index such as the Davies-Bouldin method [89] would be applied. However, in our

experiments, the target vectors are available for all problems. As a result, ACC will be used

for model selection, since it is better for demonstration purposes.

When training supervised models, a validation set consisting of 10% randomly selected

data from the training set is created. Various model architectures are tried and the best one is

selected via the validation set performance over 1000 training iterations. We quantitatively

observed that after that number of training epoches, the network’s error does not decrease

significantly. Due to the variation of evaluation methods, the key indicator for model selec-

tion is AUC in cases of the Web spam detection problems and ACC for the Mutag dataset.

Other learning parameters like SOMs’ map sizes or the size and number of hidden layers

will be shown in the first column of the results tables. The hybrid models simply use the

parameters from the best component learning modules. For instance, the SOM+MLP and

PMGraphSOM+MLP models are constructed from the best previously reported components

SOM/PMGraphSOM and MLP respectively.

Each experiment is repeated 10 times subject to random initial conditions for Web spam

problems. For the Mutagenesis learning, the experiments are repeated 3 times. 10-fold cross

validation evaluation is applied for the regression friendly and the whole Mutag dataset

while leave-one-out is used for the regression unfriendly part (due to its small size). This is

referred to as 10-fold and l-o-o in the subsequent tables.

The experimental results indicate the average performance and corresponding standard

deviation in brackets over 10 and 3 runs for the Web spam and Mutag problems, respectively.

The small value of standard deviation reflects the representative and stable performance re-

sults. Because the performance on the Mutag datasets is calculated through cross validation
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approaches, it will be shown that the standard deviations resulting from Mutag experiments

are normally higher than that of Web spam classification.

In the following, the column T in the results tables indicates whether or not topological

information in the input data was modelled by corresponding models. For example, the

SOM and MLP cannot model the graph topology resulting in the associated entries in this

column being left blank. Additionally, AUC is not possible for the SOM and PMGraphSOM

because their output is only coordinates on the activation map.

5.3 Classic neural network architectures

The SOMs and MLPs are trained on the vectorial input data. The results shown in this

section will form a baseline to compare with the graph neural network models.

5.3.1 Self organising feature map

The empirical results of SOM for the UK2006, UK2007 and for the Mutag datasets are

given in Table 5.1. The map sizes of SOM training on the Web spam problems were se-

lected within 101x70, 80x66, 73x55 and 64x43. The size of maps are not too large to avoid

the unnecessary computational cost. For the Mutag dataset, the maps were selected within

59x44, 40x30, 35x25 and 30x22. The reason for setting the map sizes for the mutag dataset

to be smaller than the Web spam ones is that their set of input vectors is much smaller com-

pared to the Web spam datasets. We define a compression ratio cr as the number of samples

divided by the number of neurons. The larger the cr values, the higher compression rate or

higher density the samples would be projected on the map. With respect to different SOMs’

maps, cr for the UK2006 dataset ranges between the highest magnitudes [1.29, 3.44]. It

is hence expected that a high ACC performance of SOMs on the UK2006 problem would

hardly be achieved. However, the SOM’s ACC performance practically likewise depends
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Table 5.1: SOM results for the UK2006, UK2007, and the Mutag dataset.
SOM F1 ACC

Map Features T Train Test Train Test

UK 2006 dataset

64x43 C 0.458 [0.093] 0.358 [0.069] 0.921 [0.012] 0.419 [0.068]

64x43 RL 0.597 [0.025] 0.586 [0.141] 0.938 [0.008] 0.535 [0.056]

64x43 C+RL 0.602 [0.102] 0.634 [0.043] 0.901 [0.048] 0.572 [0.034]

UK 2007 dataset

73x55 C 0.346 [0.016] 0.072 [0.010] 0.950 [0.026] 0.732 [0.035]

73x55 RL 0.514 [0.020] 0.099 [0.006] 0.949 [0.018] 0.697 [0.079]

73x55 C+RL 0.460 [0.018] 0.088 [0.015] 0.951 [0.028] 0.750 [0.025]

Mutag: Whole dataset

40x30 AB 0.849 [0.006] 0.756 [0.055] 0.808 [0.009] 0.684 [0.071]

40x30 AB+C 0.838 [0.012] 0.780 [0.096] 0.800 [0.013] 0.735 [0.105]

40x30 AB+C+PS 0.823 [0.011] 0.769 [0.093] 0.787 [0.009] 0.726 [0.094]

Mutag: Regression friendly part

40x30 AB 0.893 [0.003] 0.825 [0.043] 0.850 [0.004] 0.761 [0.057]

40x30 AB+C 0.876 [0.012] 0.835 [0.121] 0.834 [0.015] 0.791 [0.134]

40x30 AB+C+PS 0.978 [0.004] 0.879 [0.080] 0.971 [0.006] 0.844 [0.098]

Mutag: Regression unfriendly part

30x22 AB 0.870 [0.018] 0.500 [0.304] 0.913 [0.017] 0.682 [0.162]

30x22 AB+C 0.774 [0.031] 0.433 [0.335] 0.881 [0.018] 0.715 [0.224]

30x22 AB+C+PS 0.773 [0.032] 0.440 [0.343] 0.881 [0.018] 0.740 [0.241]

on the portion of input samples which are linearly separable. Similarly, the small cr val-

ues (ranging between [0.02, 0.06]) regarding Mutag regression unfriendly data, does not

guarantee a high SOM’s ACC performance. The selection of map sizes here is thus rel-

ative for each datasets. The other learning parameters for SOM were selected as follows

α(0) ∈ {0.01, 0.1, 0.3, 0.5, 0.8} and σ(0) ∈ {5, 10, 17, 29, 40}. Via trial-and-error, we em-

pirically found that the value α(0) = 0.1 is best applied for all datasets, while σ(0) = 10

and σ(0) = 29 are suitable values for Mutag and Web spam problems, respectively.

The SOM works best on learning problems that consist of linearly separable groups of

data. This however is not the case for many real world applications. It is hence expected

that the generalization performance of the SOM would be quite poor for the spam detection

datasets. This can be observed in Table 5.1. The high ACC on the training sets could be ob-

served for all datasets. On the other hand, as expected, the generalization ACC performance

for the UK2006 dataset is poorest when compared with others. The extreme case here is

the considerably low F1 testing performance for the UK2007 dataset. This can be explained
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Table 5.2: MLP performances on the UK2006, UK2007 and Mutagenesis dataset.
MLP AUC F1 ACC

Hid. units Features Topo Train Test Train Test Train Test

UK 2006 Dataset

25 C 0.800 [0.011] 0.805 [0.021] 0.491 [0.007] 0.653 [0.034] 0.885 [0.009] 0.637 [0.024]

37 RL 0.931 [0.005] 0.815 [0.020] 0.652 [0.005] 0.728 [0.030] 0.911 [0.008] 0.694 [0.024]

37 C+RL 0.946 [0.005] 0.865 [0.017] 0.704 [0.009] 0.791 [0.021] 0.925 [0.008] 0.752 [0.019]

UK 2007 Dataset

25 C 0.637 [0.028] 0.659 [0.023] 0.364 [0.011] 0.298 [0.019] 0.947 [0.005] 0.933 [0.005]

25 RL 0.670 [0.010] 0.635 [0.017] 0.221 [0.015] 0.148 [0.009] 0.894 [0.011] 0.872 [0.016]

40 C+RL 0.660 [0.041] 0.673 [0.024] 0.424 [0.020] 0.324 [0.034] 0.949 [0.007] 0.930 [0.017]

Mutag: Whole dataset

4 AB 0.493 [0.019] 0.484 [0.135] 0.754 [0.006] 0.751 [0.059] 0.615 [0.018] 0.612 [0.088]

16 AB+C 0.835 [0.007] 0.802 [0.068] 0.835 [0.009] 0.822 [0.066] 0.797 [0.013] 0.783 [0.079]

13 AB+C+PS 0.876 [0.007] 0.840 [0.061] 0.870 [0.007] 0.852 [0.052] 0.843 [0.008] 0.825 [0.050]

Regression friendly part

10 AB 0.500 [0.027] 0.462 [0.127] 0.813 [0.016] 0.805 [0.068] 0.703 [0.032] 0.694 [0.095]

13 AB+C 0.906 [0.013] 0.837 [0.108] 0.896 [0.009] 0.876 [0.086] 0.861 [0.011] 0.836 [0.114]

16 AB+C+PS 0.939 [0.011] 0.851 [0.096] 0.930 [0.008] 0.912 [0.082] 0.908 [0.011] 0.885 [0.105]

Regression unfriendly part

4 AB 0.583 [0.146] 0.500 [0.237] 0.564 [0.056] 0.385 [0.259] 0.619 [0.206] 0.503 [0.249]

10 AB+C 0.777 [0.043] 0.517 [0.242] 0.722 [0.022] 0.506 [0.347] 0.844 [0.036] 0.738 [0.273]

7 AB+C+PS 0.751 [0.049] 0.517 [0.242] 0.705 [0.025] 0.529 [0.334] 0.848 [0.034] 0.815 [0.175]

via a detrimental effect on SOM caused by the severely imbalanced class distribution of this

dataset. In addition, the high ACC results for this dataset is also a good implication that

most data is assigned to the overwhelmingly larger class (containing normal hosts).

The testing performance of SOM, on the other hand is seen better for the mutag datasets.

This implies that a major proportion of the input patterns may be linearly separable. The

standard deviation regarding the regression unfriendly data is larger than the regression

friendly and the whole Mutagenesis problem due to the leave-one-out evaluation proce-

dure for the regression unfriendly data. The standard deviation is computed over 42 outputs,

which is a much larger range than the case of 10 fold cross validation.

5.3.2 Multilayered neural networks with a single hidden layer

In this experiment, each MLP is configured with only a single hidden layer. The number

of hidden units are selected from {17, 25, 31, 37, 40} for the Web spam datasets, and from

{4, 7, 10, 13, 16} for the Mutagenesis dataset. An adaptive learning rate mechanism is used

during the learning process. All the input data are normalized. The empirical result is shown

in Table 5.2.
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As can be seen in Table 5.2, the single-hidden-layered MLP generally produces better

results in terms of classification and generalization performance, compared to the SOM.

Both F1 and ACC experience a significant improvement. In particular, the testing perfor-

mance improves in the range from 15% to 23%, whereas the training ACC remains high

for both the UK2006 and UK2007 datasets. Interestingly, both training and testing AUC

performance for UK2006 are much higher than for the UK2007 dataset.

The enhancement in testing performance is much less conspicuous for the Mutag data.

ACC witnessed an increase by about 4% to 8% compared to the SOM results. AUC per-

formance for the regression friendly part and whole dataset is relatively high, which is not

observed for the regression unfriendly part. In addition, the standard deviations associated

with the MLP results are noticeably smaller. This indicates that the generalization ability of

MLP is much more representative than that of the SOM.

5.3.3 MLP network with multiple hidden layers

This set of experiments are made inspired by a deep MLP model which contains three hidden

layers, and was investigated by Lecun et al. [19]. We will present the results of MLPs

being configured with two or three hidden layers. For short, the three hidden layer MLPs

is denoted as Lecun5 MLP. For the two hidden layered MLP, the hidden neuron number

in each hidden layer is selected from {7, 9, 13, 16, 20} for the Web spam datasets and from

{3, 5, 7, 10, 12} for the Mutagenesis dataset. In the Lecun5 MLP experiments, the number

of hidden neurons is chosen from {4, 8, 10, 16, 20} for the Web spam datasets and from

{2, 4, 6, 8, 10} for the Mutagenesis dataset. The training procedure and learning parameters

are established the same as a one hidden layer MLP. Table 5.3 and Table 5.4 summarize the

results of two and three hidden layer MLPs, respectively.

As is evident from the results shown in the tables, the MLPs with additional hidden

layers produce a modest performance improvement for the Web spam data, and result in
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Table 5.3: Two hidden layer MLP performances on the UK2006, UK2007 and Mutag data
2 hidden layer MLP AUC F1 ACC

Hid. units Features Topo Train Test Train Test Train Test

UK 2006 Dataset

16-9 C 0.812 [0.004] 0.799 [0.004] 0.513 [0.003] 0.669 [0.023] 0.889 [0.004] 0.649 [0.016]

20-13 RL 0.930 [0.001] 0.812 [0.004] 0.652 [0.005] 0.740 [0.030] 0.910 [0.007] 0.695 [0.022]

16-13 C+RL 0.949 [0.004] 0.865 [0.009] 0.740 [0.009] 0.767 [0.013] 0.938 [0.003] 0.731 [0.011]

UK 2007 Dataset

16-13 C 0.636 [0.038] 0.670 [0.035] 0.326 [0.035] 0.293 [0.013] 0.937 [0.014] 0.930 [0.010]

9-13 RL 0.632 [0.004] 0.603 [0.005] 0.191 [0.005] 0.141 [0.008] 0.876 [0.007] 0.845 [0.010]

20-9 C+RL 0.654 [0.015] 0.682 [0.017] 0.371 [0.038] 0.286 [0.027] 0.943 [0.009] 0.932 [0.009]

Mutag: Whole dataset

10-7 AB 0.493 [0.029] 0.465 [0.119] 0.750 [0.005] 0.740 [0.049] 0.609 [0.014] 0.594 [0.064]

12-5 AB+C 0.835 [0.008] 0.804 [0.069] 0.835 [0.008] 0.815 [0.064] 0.798 [0.012] 0.775 [0.076]

10-7 AB+C+PS 0.877 [0.008] 0.843 [0.067] 0.873 [0.007] 0.851 [0.063] 0.847 [0.008] 0.828 [0.061]

Mutag: Regression friendly part

7-8 AB 0.507 [0.026] 0.529 [0.137] 0.807 [0.016] 0.789 [0.070] 0.692 [0.031] 0.672 [0.098]

8-5 AB+C 0.900 [0.014] 0.834 [0.106] 0.896 [0.009] 0.871 [0.090] 0.858 [0.013] 0.831 [0.115]

12-8 AB+C+PS 0.930 [0.014] 0.854 [0.095] 0.930 [0.008] 0.903 [0.091] 0.908 [0.010] 0.877 [0.111]

Mutag: Regression unfriendly part

8-3 AB 0.353 [0.041] 0.339 [0.150] 0.479 [0.051] 0.443 [0.261] 0.354 [0.058] 0.372 [0.197]

12-5 AB+C 0.674 [0.026] 0.517 [0.242] 0.701 [0.028] 0.562 [0.363] 0.857 [0.017] 0.815 [0.209]

12-5 AB+C+PS 0.676 [0.023] 0.517 [0.242] 0.699 [0.026] 0.562 [0.363] 0.856 [0.016] 0.840 [0.182]

largely unchanged performance for the Mutag data. It is known that multiple hidden layer

MLPs are better suited to significantly non-linear problems. This improvement is offset by

the detrimental effects of the long-term dependency problem which become more obvious

with the deeper network architectures. The situation gets even worse for the Lecun5 MLP

when compared to the two-hidden layer MLP, since a slight reduction is observed in the

Lecun5 MLP learning performance. Nevertheless, the degradation is not very significant.

This might reflect the fact that the long-term dependency is not a significant problem for

non-recursive neural processing. This statement will be further clarified in the following

sections.

5.3.4 Multi-staged Multilayered feedforward neural network

This section examines the effect of changing the learning architecture from a multiple hidden

layer MLP into several single hidden layer MLPs, one for each hidden layer. These MLPs

are stacked together in a hierarchical manner. The output of one MLP forms part of the input

to the next MLPs. All MLPs are trained separately using the class labels from respective

learning sets. The approach helps to add a relaxation between different hidden layers, which
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Table 5.4: Lecun5 MLP performances on the UK2006, UK2007 and Mutag datasets
Lecun5 MLP AUC F1 ACC

Hid. units Features Topo Train Test Train Test Train Test

UK 2006 Dataset

20-8-16 C 0.807 [0.008] 0.800 [0.002] 0.503 [0.006] 0.679 [0.022] 0.884 [0.005] 0.655 [0.016]

10-16-8 RL 0.930 [0.002] 0.806 [0.005] 0.646 [0.008] 0.735 [0.033] 0.909 [0.007] 0.689 [0.025]

16-10-4 C+RL 0.946 [0.003] 0.863 [0.006] 0.733 [0.007] 0.750 [0.027] 0.938 [0.003] 0.718 [0.022]

UK 2007 Dataset

16-10-4 C 0.644 [0.013] 0.672 [0.013] 0.257 [0.040] 0.253 [0.024] 0.884 [0.034] 0.882 [0.032]

16-8-4 RL 0.623 [0.006] 0.590 [0.007] 0.182 [0.008] 0.129 [0.009] 0.864 [0.014] 0.833 [0.018]

20-10-4 C+RL 0.676 [0.024] 0.689 [0.021] 0.291 [0.067] 0.256 [0.034] 0.901 [0.034] 0.894 [0.033]

Mutag: Whole dataset

10-6-4 AB 0.497 [0.044] 0.440 [0.114] 0.751 [0.009] 0.738 [0.050] 0.612 [0.018] 0.593 [0.067]

6-8-2 AB+C 0.829 [0.017] 0.796 [0.076] 0.835 [0.008] 0.810 [0.079] 0.799 [0.012] 0.770 [0.089]

6-8-2 AB+C+PS 0.872 [0.007] 0.843 [0.068] 0.874 [0.008] 0.859 [0.060] 0.847 [0.009] 0.835 [0.060]

Mutag: Regression friendly part

8-4-6 AB 0.508 [0.044] 0.462 [0.111] 0.736 [0.205] 0.730 [0.189] 0.650 [0.104] 0.631 [0.146]

6-8-2 AB+C 0.870 [0.138] 0.804 [0.185] 0.890 [0.021] 0.865 [0.103] 0.848 [0.039] 0.820 [0.127]

10-8-2 AB+C+PS 0.926 [0.012] 0.852 [0.100] 0.929 [0.007] 0.906 [0.097] 0.905 [0.010] 0.884 [0.111]

Mutag: Regression unfriendly part

6-8-2 AB 0.520 [0.125] 0.462 [0.201] 0.522 [0.043] 0.402 [0.211] 0.481 [0.167] 0.422 [0.259]

10-6-4 AB+C 0.676 [0.022] 0.517 [0.242] 0.712 [0.035] 0.545 [0.353] 0.854 [0.023] 0.803 [0.214]

8-4-2 AB+C+PS 0.676 [0.023] 0.517 [0.242] 0.700 [0.030] 0.579 [0.363] 0.849 [0.031] 0.842 [0.164]

might in practice eliminate the adverse effects of the long term dependency problem.

As can be seen, the cascade staged MLP, on average, produces better results than both

the two hidden layer MLP and the Lecun5 MLP. In particular, the improvements are more

apparent for the larger Web spam learning problems. The results obtained here may suggest

that the Lecun5 MLP performance was degraded, possibly being attributed to the long term

dependency problem.

5.3.5 Multi-staged deep learning architectures

The later sections will show that a graph neural network model likewise embraces in its

learning mechanism the long term dependency problem. Such problems can be effectively

solved via a multiple staged learning approach. The proposed approach can either be a cas-

cade of several one-hidden-layer MLPs, or multiple stages of unsupervised neural networks

and MLPs. The latter is inspired by the deep learning concept. In this section, a baseline

deep learning architecture will be presented, which trains two or more neural networks, how-

ever the difference is that the integrated model includes both unsupervised and supervised

network modules. An unsupervised network is first trained and when done, its outputs form
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Table 5.5: Layered MLP performances on the UK2006, UK2007 and Mutag datasets
Layered MLP AUC F1 ACC

Hid. units Features Topo Train Test Train Test Train Test

UK 2007 Dataset

25 C 0.815 [0.003] 0.798 [0.004] 0.512 [0.005] 0.652 [0.034] 0.893 [0.008] 0.636 [0.024]

37 RL 0.932 [0.001] 0.835 [0.005] 0.658 [0.007] 0.775 [0.026] 0.910 [0.005] 0.729 [0.023]

37 C+RL 0.945 [0.003] 0.870 [0.007] 0.708 [0.009] 0.764 [0.015] 0.929 [0.003] 0.729 [0.014]

UK 2007 Dataset

25 C 0.691 [0.054] 0.708 [0.044] 0.394 [0.010] 0.322 [0.012] 0.945 [0.003] 0.936 [0.004]

25 RL 0.655 [0.004] 0.624 [0.003] 0.200 [0.004] 0.129 [0.018] 0.882 [0.016] 0.850 [0.017]

40 C+RL 0.701 [0.038] 0.715 [0.033] 0.457 [0.022] 0.314 [0.031] 0.952 [0.006] 0.932 [0.011]

Mutag: Whole dataset

4 AB 0.493 [0.023] 0.460 [0.119] 0.752 [0.008] 0.741 [0.054] 0.611 [0.020] 0.596 [0.071]

16 AB+C 0.843 [0.011] 0.803 [0.063] 0.835 [0.010] 0.819 [0.066] 0.798 [0.014] 0.778 [0.079]

13 AB+C+PS 0.882 [0.008] 0.840 [0.069] 0.871 [0.007] 0.851 [0.045] 0.844 [0.007] 0.825 [0.043]

Mutag: Regression friendly part

10 AB 0.499 [0.025] 0.489 [0.120] 0.812 [0.015] 0.800 [0.075] 0.700 [0.031] 0.685 [0.108]

13 AB+C 0.904 [0.015] 0.838 [0.107] 0.897 [0.009] 0.870 [0.098] 0.862 [0.011] 0.831 [0.121]

16 AB+C+PS 0.942 [0.008] 0.849 [0.093] 0.932 [0.008] 0.904 [0.082] 0.912 [0.011] 0.877 [0.104]

Mutag: Regression unfriendly part

4 AB 0.624 [0.171] 0.486 [0.229] 0.595 [0.056] 0.363 [0.268] 0.713 [0.182] 0.650 [0.260]

10 AB+C 0.816 [0.057] 0.517 [0.242] 0.775 [0.043] 0.512 [0.337] 0.872 [0.024] 0.753 [0.254]

7 AB+C+PS 0.812 [0.051] 0.517 [0.242] 0.735 [0.030] 0.562 [0.363] 0.841 [0.036] 0.840 [0.182]

Table 5.6: SOM + MLP deep learning performances on all datasets
SOM+MLP AUC F1 ACC

Datasets Features Topo Train Test Train Test Train Test

Web spam Datasets

UK 2006 C+RL 0.974 [0.006] 0.930 [0.018] 0.888 [0.038] 0.694 [0.015] 0.972 [0.011] 0.680 [0.012]

UK 2007 C+RL 0.888 [0.059] 0.831 [0.042] 0.521 [0.050] 0.327 [0.036] 0.942 [0.013] 0.911 [0.017]

Metagenetic Datasets

Whole Dataset AB+C+PS 0.898 [0.007] 0.845 [0.057] 0.888 [0.007] 0.854 [0.063] 0.865 [0.009] 0.823 [0.071]

Friendly part AB+C+PS 0.944 [0.009] 0.861 [0.080] 0.938 [0.008] 0.907 [0.084] 0.918 [0.010] 0.879 [0.105]

Unfriendly part AB+C+PS 0.754 [0.042] 0.517 [0.242] 0.704 [0.026] 0.561 [0.372] 0.854 [0.023] 0.845 [0.169]

an additional input to the supervised model. The approach has been proven very effective

for difficult problems which might be related to the long term dependency problem [21, 90].

In experiments, we applied the proposed method by first training a SOM then using the

mapping coordinates of the SOM as an additional input to training the MLPs. Empirically,

we took the best results of SOMs obtained in Section 5.3.1, and then re-trained MLPs with

the new set of input data. For short, we denote the model as SOM+MLPs. Table 5.6 presents

the results of the SOM+MLPs model.

It can be seen that the deep learning inspired model significantly improved the classifi-

cation and performance generalization. The increase in AUC indicator ranges between 7%

and 15% when compared with the best results obtained so far on the UK2006 and UK2007

datasets, respectively. This impressive improvement is interestingly not reflected by the
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other F1 and ACC performance. Nevertheless, for the Web spam problems, the AUC is the

most important indicator to evaluate the highly imbalanced class distribution of the datasets.

The efficiency of the deep learning regime has been meticulously studied in [90]. The

effectiveness of the deep learning architecture is confirmed here through this set of experi-

ments, especially for the challenging Web spam detection problems. In fact, the deep learn-

ing system consists of a large number of learning parameters. This may require much by way

of computational resources and time, however this also allows an effective approximation

of complex problems. Another advantage of the deep learning regime is that the over-fitting

problem could be circumvented by training the various separate learning modules.

5.4 Graph based Neural network architectures

We have so far ignored topological relationships between samples in the datasets. Models

capable of encoding such dependencies are examined in this section. We will deploy graph

based methods to model the graph data structures of the given learning problems. Accord-

ingly, the “Host graph” and the atom bond relation are utilized as contextual information of

the data for the Web spam problems and Mutag dataset, respectively.

5.4.1 The application of PMGraphSOM

The PMGraphSOM will be trained by using the same parameters as were used for the SOM.

The PMGraphSOM requires the setting of the weight parameter µ that controls the bias

between features and topological information. Its weight µ is selected from within the set

{0.001, 0.01, 0.1, 0.3, 0.6, 0.9}. In addition, the map size of the PMGraphSOM is selected

to either be 101× 70, 80× 66, or 73× 55 for the Web spam, and either be 59× 44, 40× 30,

or 35 × 25 for the Mutag dataset. The size of the PMGraphSOM is chosen slightly larger

when compared to the previously trained SOM because the input dimension (and amount of
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Table 5.7: PMGraphSOM performances on the UK2006, UK2007 and Mutag dataset.
PMGraphSOM F1 ACC

Map Fts. T Train Test Train Test

UK 2006 dataset

80x66
√

0.621 [0.008] 0.519 [0.011] 0.937 [0.002] 0.506 [0.009]

80x66 C
√

0.723 [0.008] 0.622 [0.004] 0.951 [0.001] 0.557 [0.004]

80x66 RL
√

0.611 [0.004] 0.671 [0.120] 0.942 [0.007] 0.582 [0.057]

80x66 C+RL
√

0.849 [0.019] 0.757 [0.027] 0.973 [0.004] 0.648 [0.024]

UK 2006 dataset

73x55
√

0.601 [0.028] 0.096 [0.013] 0.962 [0.001] 0.656 [0.027]

73x55 C
√

0.524 [0.075] 0.100 [0.019] 0.958 [0.004] 0.711 [0.053]

73x55 RL
√

0.558 [0.014] 0.099 [0.008] 0.959 [0.001] 0.684 [0.006]

73x55 C+RL
√

0.551 [0.038] 0.102 [0.006] 0.960 [0.003] 0.712 [0.031]

Mutag: Whole dataset

59x40
√

0.909 [0.055] 0.800 [0.066] 0.877 [0.096] 0.740 [0.087]

59x40 AB
√

0.918 [0.004] 0.823 [0.084] 0.901 [0.005] 0.796 [0.092]

59x40 AB+C
√

0.922 [0.005] 0.790 [0.101] 0.907 [0.006] 0.748 [0.106]

59x40 AB+C+PS
√

0.925 [0.006] 0.800 [0.104] 0.908 [0.007] 0.757 [0.113]

Mutag: Regression friendly part

40x30
√

0.927 [0.061] 0.864 [0.056] 0.894 [0.101] 0.805 [0.070]

40x30 AB
√

0.959 [0.006] 0.880 [0.089] 0.943 [0.009] 0.835 [0.120]

40x30 AB+C
√

0.917 [0.007] 0.841 [0.103] 0.888 [0.009] 0.803 [0.100]

40x30 AB+C+PS
√

0.955 [0.006] 0.876 [0.070] 0.939 [0.008] 0.835 [0.086]

Mutag: Regression unfriendly part

35x25
√

0.842 [0.043] 0.322 [0.364] 0.876 [0.097] 0.685 [0.199]

35x25 AB
√

0.929 [0.028] 0.443 [0.402] 0.955 [0.018] 0.740 [0.241]

35x25 AB+C
√

0.928 [0.021] 0.423 [0.409] 0.955 [0.012] 0.645 [0.303]

35x25 AB+C+PS
√

0.919 [0.021] 0.450 [0.416] 0.952 [0.011] 0.790 [0.170]

information provided) to the PMGraphSOM is increased as a result of adding topological

information. In other words, given the same map size, the compression ratio associated to

PMGraphSOM is larger than that associated with the SOM.

The PMGraphSOM results are summarized in Table 5.7. Similar to the SOM, it is ob-

served that the test results are improved with the number of features used. With respect to

the UK2006 and UK2007 datasets, it is observed that the combination of the C+RL features

produces better results than when using either C or RL, or when using no features other

than the graph topology. Similarly, the feature set AB+C+PS produces better results than

any other combination of features. An interesting observation is that the PMGraphSOM can

produce a reasonably good accuracy even if no features other than the topology is used for

training. This is a somewhat expected result given that link based spam can be captured by
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the graphs’ topology. A similar observation is made for the mutag datasets. This implies

that the structure of the molecule contributes to its mutagenecity.

Moreover, the incorporation of relational information usually leads to a generalisation

enhancement of the network when compared to the standard SOM shown in Table 5.1. The

testing ACC for the UK2006 and UK2007 datasets is enhanced by about 8.6% and 2.1%,

respectively. Similarly, an approximate improvement of 2% in ACC can be observed for the

Mutag problems. At first sight there appear to be rather modest improvements in results,

and hence this raises the question as to whether the improvement in results is worth the

effort. The realization that even a minor improvement, of say 1%, is very significant when

considering the scale of the Web dataset, and it is a significant improvement if the residual

error approaches zero.

5.4.2 Graph neural network

The GNN models were trained using different numbers of hidden units selected from within

{14, 25, 31, 37, 40}, and the number of state neurons selected from within {2, 5, 8, 10, 12}

for the Web spam data. In the case of Mutagenesis dataset, the numbers of hidden and state

neurons are chosen from within {2, 5, 8, 10, 12}. All other experimental settings for GNNs

are the same as for the MLPs in the previous section.

The experimental results are presented in Table 5.8. It is observed that the GNN gener-

alization ability is significantly better than that of the MLPs (refer to Table 5.2). This is an

interesting observation because the improvement in the training performance is much less

significant. Moreover, a simple comparison between the two graph based models, GNN

and PMGraphSOM, indicates an obvious improvement in excess of 10% in ACC testing

performance. The variances of MLP and PMGraphSOM results are generally larger when

compared with the GNN results, which implies the two former models’ performance are

much more sensitive to the initialization conditions.
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Table 5.8: GNN performances on the UK2006, UK2007, and the Mutagenesis datasets
GNN AUC F1 ACC

Hidden State Features Topo Train Test Train Test Train Test

UK 2006 Dataset

14 9
√

0.743 [0.076] 0.589 [0.097] 0.363 [0.100] 0.749 [0.079] 0.621 [0.176] 0.659 [0.044]

37 21 C
√

0.863 [0.013] 0.855 [0.011] 0.624 [0.006] 0.774 [0.006] 0.914 [0.002] 0.739 [0.006]

31 15 RL
√

0.912 [0.001] 0.788 [0.002] 0.601 [0.005] 0.790 [0.005] 0.883 [0.003] 0.730 [0.004]

40 21 C+RL
√

0.944 [0.004] 0.902 [0.009] 0.714 [0.012] 0.815 [0.009] 0.934 [0.002] 0.781 [0.009]

UK 2007 Dataset

25 15
√

0.528 [0.006] 0.554 [0.006] 0.112 [0.001] 0.122 [0.003] 0.369 [0.034] 0.370 [0.036]

25 21 C
√

0.772 [0.020] 0.755 [0.027] 0.456 [0.010] 0.329 [0.011] 0.955 [0.002] 0.938 [0.003]

14 9 RL
√

0.678 [0.015] 0.628 [0.018] 0.269 [0.017] 0.153 [0.037] 0.919 [0.018] 0.898 [0.017]

37 15 C+RL
√

0.788 [0.017] 0.781 [0.010] 0.451 [0.011] 0.317 [0.008] 0.953 [0.004] 0.937 [0.004]

Mutag: Whole dataset

5 2
√

0.300 [0.245] 0.300 [0.245] 0.756 [0.022] 0.752 [0.072] 0.600 [0.100] 0.600 [0.074]

5 8 AB
√

0.550 [0.023] 0.573 [0.109] 0.767 [0.012] 0.736 [0.035] 0.600 [0.011] 0.621 [0.077]

5 8 AB+C
√

0.841 [0.019] 0.823 [0.093] 0.844 [0.012] 0.821 [0.072] 0.798 [0.017] 0.830 [0.078]

10 8 AB+C+PS
√

0.837 [0.047] 0.884 [0.020] 0.868 [0.009] 0.852 [0.074] 0.813 [0.048] 0.852 [0.023]

Mutag: Regression friendly part

2 5
√

0.400 [0.200] 0.400 [0.200] 0.799 [0.005] 0.801 [0.047] 0.665 [0.014] 0.658 [0.134]

10 5 AB
√

0.523 [0.048] 0.539 [0.163] 0.815 [0.009] 0.797 [0.060] 0.665 [0.011] 0.676 [0.086]

5 2 AB+C
√

0.907 [0.014] 0.869 [0.056] 0.906 [0.007] 0.845 [0.075] 0.851 [0.012] 0.904 [0.071]

10 2 AB+C+PS
√

0.867 [0.063] 0.891 [0.019] 0.935 [0.005] 0.911 [0.054] 0.894 [0.074] 0.936 [0.026]

Mutag: Regression unfriendly part

8 2
√

0.321 [0.240] 0.403 [0.183] 0.473 [0.013] 0.817 [0.010] 0.310 [0.011] 0.309 [0.462]

12 5 AB
√

0.670 [0.043] 0.474 [0.080] 0.588 [0.030] 0.800 [0.005] 0.690 [0.011] 0.690 [0.462]

5 2 AB+C
√

0.696 [0.017] 0.675 [0.066] 0.924 [0.060] 0.918 [0.033] 0.856 [0.012] 0.809 [0.392]

10 2 AB+C+PS
√

0.706 [0.031] 0.678 [0.020] 0.867 [0.019] 0.857 [0.043] 0.851 [0.021] 0.833 [0.373]

When looking at the AUC results related to Mutag datasets, the generalization perfor-

mance of the GNN on the regression unfriendly part is poorer than the training performance.

This is however not observed on the regression friendly part or when using the whole Mutag

datasets. This is possibly because of the non-linear properties of regression unfriendly data

samples, which is known as the hard-to-solve regression task [91, 92].

5.4.3 Multi-stage Graph neural networks (MSGNN)

This section considers a cascaded system of GNNs as explained in Section 3.4.3.3. A num-

ber of GNNs are trained where the output of one GNN is taken as an additional input (con-

catenated to the other features) for the training of a second GNN; the output of which is

added to to train a third GNN, and so on, up to a pre-defined depth. It was quantitatively

proven that such a hierarchical model consisting of two GNNs is the most effective architec-

ture [17, 93]. Hence, this Section will present the results of a trained cascade that consists

of two GNNs.
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Table 5.9: MSGNN performances on the UK2006, UK2007 and Mutagenesis datasets.
MSGNN AUC F1 ACC

Hidden State Features Topo Train Test Train Test Train Test

UK 2006 Dataset

14 9
√

0.840 [0.006] 0.733 [0.001] 0.511 [0.001] 0.608 [0.003] 0.895 [0.001] 0.594 [0.002]

37 21 C
√

0.890 [0.030] 0.869 [0.004] 0.633 [0.020] 0.774 [0.020] 0.915 [0.005] 0.737 [0.020]

31 15 RL
√

0.915 [0.008] 0.791 [0.019] 0.608 [0.031] 0.770 [0.041] 0.900 [0.014] 0.713 [0.037]

40 21 C+RL
√

0.949 [0.008] 0.914 [0.020] 0.727 [0.015] 0.839 [0.028] 0.935 [0.002] 0.804 [0.030]

UK 2007 Dataset

25 15
√

0.530 [0.007] 0.561 [0.005] 0.114 [0.003] 0.112 [0.002] 0.421 [0.097] 0.425 [0.091]

25 21 C
√

0.786 [0.018] 0.771 [0.015] 0.396 [0.010] 0.277 [0.016] 0.921 [0.010] 0.918 [0.014]

14 9 RL
√

0.688 [0.008] 0.649 [0.013] 0.221 [0.013] 0.186 [0.014] 0.856 [0.034] 0.851 [0.037]

37 15 C+RL
√

0.809 [0.015] 0.796 [0.016] 0.447 [0.011] 0.332 [0.014] 0.950 [0.015] 0.933 [0.014]

Mutag: Whole dataset

5 2
√

0.400 [0.200] 0.350 [0.229] 0.750 [0.008] 0.745 [0.078] 0.600 [0.011] 0.600 [0.072]

5 8 AB
√

0.535 [0.038] 0.607 [0.119] 0.772 [0.010] 0.756 [0.047] 0.600 [0.012] 0.626 [0.085]

5 8 AB+C
√

0.843 [0.016] 0.835 [0.085] 0.844 [0.012] 0.826 [0.070] 0.795 [0.012] 0.844 [0.075]

10 8 AB+C+PS
√

0.844 [0.054] 0.884 [0.017] 0.872 [0.009] 0.852 [0.074] 0.826 [0.055] 0.874 [0.028]

Mutag: Regression friendly part

2 5
√

0.450 [0.150] 0.450 [0.150] 0.799 [0.005] 0.801 [0.047] 0.665 [0.070] 0.672 [0.117]

10 5 AB
√

0.516 [0.054] 0.570 [0.098] 0.812 [0.008] 0.797 [0.051] 0.665 [0.011] 0.693 [0.091]

5 2 AB+C
√

0.910 [0.014] 0.873 [0.053] 0.908 [0.005] 0.859 [0.068] 0.850 [0.012] 0.899 [0.066]

10 2 AB+C+PS
√

0.869 [0.042] 0.897 [0.018] 0.938 [0.005] 0.897 [0.043] 0.872 [0.080] 0.957 [0.030]

Mutag: Regression unfriendly part

8 2
√

0.298 [0.245] 0.486 [0.117] 0.473 [0.013] 0.817 [0.010] 0.310 [0.011] 0.310 [0.460]

12 5 AB
√

0.682 [0.034] 0.529 [0.178] 0.596 [0.023] 0.817 [0.010] 0.690 [0.011] 0.690 [0.462]

5 2 AB+C
√

0.861 [0.041] 0.732 [0.095] 0.935 [0.060] 0.881 [0.056] 0.851 [0.020] 0.833 [0.373]

10 2 AB+C+PS
√

0.708 [0.030] 0.678 [0.071] 0.862 [0.020] 0.857 [0.043] 0.858 [0.019] 0.857 [0.350]

Table 5.9 summarizes the experimental results of the MSGNN model. In general, the

MSGNN outperforms the GNN in the key evaluation method, AUC, by about 1% to 2%

for Web spam problems. Similarly, the MSGNN improves the results on the key evaluation

indicator for Mutag problems, ACC, by 1% to 3% when compared with the single GNN

model’s results. The results do not express a consistent improvement with regard to the less

important evaluation metrics, i.e. the F1 and ACC for Web spam and AUC and F1 for Mutag

problems. This may be observable in some cases, since the model is pushed to perform best

on a single evaluation method, rendering it less focused on the others.

From an architectural perspective, the multiple stages of GNNs are similar to the case

of having cascaded layers of MLPs instead of having a single GNN or MLP. The multiple

stage models are hence effective in the sense that they help to relax the long term dependency

problem, which may occur when configuring the model internally with multiple hidden or

state layers.
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Table 5.10: PMGraphSOM+MLPs performances on all datasets
PMGraphSOM+MLP AUC F1 ACC

Datasets Features Topo Train Test Train Test Train Test

Web spam Datasets

UK 2006 C+RL
√

0.975 [0.008] 0.931 [0.019] 0.882 [0.057] 0.700 [0.025] 0.970 [0.016] 0.685 [0.020]

UK 2007 C+RL
√

0.893 [0.042] 0.835 [0.024] 0.540 [0.047] 0.336 [0.024] 0.944 [0.014] 0.915 [0.011]

Metagenetic Datasets

Whole Dataset AB+C+PS
√

0.897 [0.007] 0.845 [0.049] 0.893 [0.008] 0.873 [0.044] 0.872 [0.010] 0.848 [0.049]

Friendly part AB+C+PS
√

0.939 [0.015] 0.855 [0.095] 0.936 [0.008] 0.915 [0.085] 0.916 [0.011] 0.890 [0.107]

Unfriendly part AB+C+PS
√

0.691 [0.024] 0.517 [0.241] 0.701 [0.027] 0.561 [0.361] 0.857 [0.017] 0.840 [0.181]

5.4.4 Graph Self organising map with multilayered feedforward neu-

ral network

The MSGNNs would not normally be referred to as a deep learning model, since unsuper-

vised components are not engaged in the learning architecture. A deep learning inspired

architecture engaging the PMGraphSOM as an unsupervised component is considered in

this section. The PMGraphSOM is deployed as a pre-training stage, followed by the train-

ing of a MLP. The PMGraphSOM is used instead of the SOM since it is capable of modelling

structural data and since it preforms a projection of graphs onto a fixed dimensional display

space. Hence, the PMGraphSOM reduces a set of graphs to a set of vectors which can

then be used to train a MLP. For simplicity, we will refer to this architecture as PMGraph-

SOM+MLP. This system will be trained by using the same parameters as when training the

PMGraphSOM and MLP in the previous sections.

Table 5.10 displays the PMGraphSOM+MLP’s experimental results. The ACC perfor-

mance of the PMGraphSOM+MLP is poorer when compared with the results of the GNN

and MSGNN for Mutag problems, however its AUC indicator outperforms the two models

for the case of Web spam datasets. Due to the nature of PMGraphSOM learning algorithm,

the projection map output does not allow as good generalization classification results as the

MLP model. The PMGraphSOM at least provides a helpful grouping of similar input sam-

ples, either in feature-based or structural space. The integration between PMGraphSOM and

MLP would bring more or less relational aspects of input data to the classification output of

MLP. However, it depends on the information richness of topological data of learning prob-
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lems. In our cases, the experimental results reflect that the host graphs available in Web spam

problems may be more informative than the bond structures provided in the Mutag dataset.

In addition, the PMGraphSOM+MLP model expresses similar behavior to the SOM+MLP

model, except that the former incorporates relational data in its learning process. Hence,

some improvement is evidently observed in the results of the PMGraphSOM+MLP.

5.4.5 Graph Self organising map with multilayered feedforward neu-

ral network for GNN filtering

Even though the PMGraphSOM+MLP model expresses such impressive results, there is a

good reason to add the GNN model to the end of the PMGraphSOM+MLP learning sys-

tem. The GNN might incorporate the topological information associated in the input data

space in its learning process, i.e the supervised graph based learning. Hence, one of the most

promising approaches is to integrate modules such that the relational data could be most pro-

ductively exploited. We eventually come up with the complex model that is integrated from

three different neural networks, namely PMGraphSOM, MLP and GNN, which is denoted as

the PMGraphSOM+MLP+GNN model. In this model, the output of PMGraphSOM+MLP

will form the additional input to the MSGNN, since the MSGNN can learn on the output of

other neural networks. In addition, the placement of MSGNN could not only help to exploit

topological relation effectively, but circumvent the long term dependency problem as well.

The MSGNN here serves as a classification filter for the whole learning task. The learn-

ing capability of PMGraphSOM+MLP+GNN can be relatively derived through the learning

capabilities of two models, i.e PMGraphSOM+MLP and MSGNN.

Table 5.11 presents the best results for our learning problems. As can be observed,

the PMGraphSOM+MLP+GNN architecture produces outstanding performance on all the

studied datasets. The AUC and ACC performance gained an increase of at least 1% to 3%

for all Web spam and Mutag problems when compared with the best results attained by any
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Table 5.11: PMGraphSOM+MLP+GNN performances on all datasets
PMGraphSOM+MLP+GNN AUC F1 ACC

Datasets Features Topo Train Test Train Test Train Test

Web spam Datasets

UK 2006 C+RL
√

0.972 [0.010] 0.958 [0.014] 0.820 [0.011] 0.894 [0.013] 0.955 [0.005] 0.865 [0.016]

UK 2007 C+RL
√

0.909 [0.016] 0.854 [0.034] 0.614 [0.022] 0.355 [0.010] 0.964 [0.022] 0.938 [0.011]

Metagenetic Datasets

Whole Dataset AB+C+PS
√

0.854 [0.090] 0.892 [0.039] 0.872 [0.009] 0.851 [0.073] 0.843 [0.078] 0.887 [0.058]

Friendly part AB+C+PS
√

0.882 [0.058] 0.901 [0.019] 0.936 [0.006] 0.920 [0.047] 0.894 [0.071] 0.963 [0.034]

Unfriendly part AB+C+PS
√

0.708 [0.078] 0.678 [0.071] 0.858 [0.020] 0.857 [0.043] 0.858 [0.019] 0.857 [0.350]

Table 5.12: Different learning models divided into two categories and a complex model
N Classic Neural Nets Graph-based Neural Nets

1 SOM PMGraphSOM

2 MLP GNN

3 MSMLP MSGNN

4 SOM+MLP PMGraphSOM+MLP

PMGraphSOM+MLP+GNNs

method tried so far. The following section will take the results presented here to compare

with other existing methods applied to the same benchmark problems.

5.5 Comparison and Discussion

In this Section, we will show a relative comparison between classic and graph based neural

architectures. Each non-graph learning model is paired and compared with a relatively

defined counterpart appearing in graph based learning group. Table 5.12 presents different

learning models divided into pairs (indexed as N). The pairs’ empirical results are compared

in Table 5.13. This section will also compare the PMGraphSOM+MLP+GNN performance

with those produced by other studies in the literature.

It is noticed that making a comparison between two models is difficult since their ar-

chitectures and algorithms are not the same. The pairing of models is made so as to corre-

spondingly belong to two sets of learning systems, i.e non-graph and graph based models.

The purpose of this comparison is to expose the strength and weakness of each model. It

will be clarified by how much an improvement is made when incorporating the topological

information in the learning models.
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Table 5.13: Generalization performance comparison of Neural network models with and

without topology incorporated. Abbreviations used: S-supervised, U-unsupervised, D-deep

learning. AUC is not available for unsupervised models.

Learning Models UK 2006 UK 2007 Whole Mutag Friendly part Unfriendly part

No S U D Classic Graph Classic Graph Classic Graph Classic Graph Classic Graph

AUC performance

2
√

0.865 0.902 0.673 0.781 0.840 0.884 0.851 0.891 0.517 0.678

3
√ √

0.870 0.914 0.715 0.796 0.840 0.884 0.849 0.897 0.517 0.678

4
√ √ √

0.930 0.931 0.831 0.835 0.845 0.845 0.861 0.855 0.517 0.517

F1 performance

1
√

0.634 0.757 0.088 0.102 0.769 0.800 0.879 0.876 0.440 0.450

2
√

0.791 0.815 0.324 0.317 0.843 0.852 0.912 0.911 0.529 0.857

3
√ √

0.764 0.839 0.314 0.332 0.851 0.852 0.904 0.897 0.562 0.857

4
√ √ √

0.694 0.700 0.327 0.336 0.854 0.873 0.907 0.915 0.561 0.561

ACC performance

1
√

0.572 0.648 0.750 0.712 0.726 0.757 0.844 0.835 0.740 0.790

2
√

0.752 0.781 0.930 0.937 0.825 0.852 0.885 0.936 0.815 0.833

3
√ √

0.729 0.804 0.932 0.933 0.825 0.874 0.877 0.957 0.840 0.857

4
√ √ √

0.680 0.685 0.911 0.915 0.823 0.848 0.879 0.890 0.845 0.840

For ease of comparison, Table 5.13 brings together the results of the various learning

models. Bold face is used to highlight the better of the two results. It is observed in Ta-

ble 5.13 that the graph neural models’ performance dominates vector based learning models.

Statistically, the graph based models could bring 100% possibility of attaining better testing

AUC (up to 9% improvement) for the Web spam problems. Since AUC is the primary eval-

uation method used for Web spam problems, the models were pushed in order to achieve as

good AUC results as possible. This may in some cases result in a degradation of F1 or ACC

performance, i.e for the models GNN and PMGraphSOM when learning the challenging

UK2007 dataset. For the whole mutag dataset, graph based models are always better when

compared with the classical ones. It is noticed that the ACC is the key evaluation metric

for Mutag problems. There are some results associated with the regression friendly and un-

friendly parts, by which not 100% out-performance of ACC or other evaluation methods is

achieved by the graph learning models. The reason is that rather than attempt to attain higher

ACC resulting in a decline in F1 and AUC performance, the small number of input samples

available in each Mutag data part may hinder the learning mechanism of graph based models

(which have to learn with larger input dimension, including both feature and relational infor-

mation, and with the same small number of input samples when compared with the classic
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Table 5.14: A performance comparison of different techniques on Web spam detection prob-

lems.
Learning approaches Features Cite AUC

UK2006 Dataset

Graph Regularization C+RL+HG+other [67, 94] 0.963

PMGraphSOM+MLP+GNNs C+RL+HG 0.958

Stacked Learning C+other [95] 0.956

Stacked Learning C+other Benczúr[78] 0.931

Layered Learning C+RL+HG [17] 0.930

Bayesian C+RL+TL+other Filoche[78] 0.929

ERUS with C4.5 C+TL+other Geng[78] 0.927

Language Model Analysis C+RL+TL [96] 0.860

Spam Score Propagation RL+HG Abou[78] 0.803

UK2007 Dataset

PMGraphSOM+MLP+GNNs C+RL+HG 0.854

Linked LDA other [80] 0.854

ERUS with C4.5 C+HG+other Geng[79] 0.848

Random forest C+RL+TL Tang[79] 0.824

Graph Regularization C+RL+HG+other Abernethy[79] 0.809

LDA other Siklosi[79] 0.796

Boosted SVM C+HG+other Bauman[79] 0.783

Language Model Analysis C+RL+TL [96] 0.750

Decision Tree C+RL+HG Skvortsov[79] 0.731

models). In addition, the models indexed 4 (i.e SOM+MLP and PMGraphSOM+MLP) pro-

duce poorer results than the MSGNN, even though more properties are turned on, such as

unsupervised, supervised and deep learning properties. The rationale is that they do not have

a graph-based supervised learning property.

Placing our final results with other existing approaches in the Table 5.14 and Table 5.15,

it is difficult to make a fair comparison since the learning feature sets are different for each

model. For the UK2006 and UK2007 problems, some authors intentionally created the

input features themselves based on the raw content of hosts, i.e ”+other” features shown in

Table 5.14. For simplicity, the input features are all ignored. The comparison is focused

only on the best obtained results. We strictly obey the rule that the number of testing hosts

and the evaluation methods must to be the same for all models. Approaches not presented

here are those that do not follow the above specification.

Our results stand at the first places for the UK2007 and regression friendly part, and at
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Table 5.15: A performance comparison of different techniques on Mutag problem.
Learning approaches Features Cite ACC

Whole dataset

Improved Bayesian AB+C+PS [97] 93.91

PMGraphSOM+MLP+GNNs AB+C+PS 88.69

1nn(dm) AB+C [91] 88.00

RelNN AB+C+PS [88] 83.04

TILDE AB+C [87] 82.00

RDBC AB+C [92] 82.00

Regression-friendly part

PMGraphSOM+MLP+GNNs AB+C+PS 96.26

RS AB+C+PS+FG [98] 95.80

MFLOG AB+C [99] 95.70

Bayesian AB+C+PS [97] 95.22

RSD AB+C+FG [100] 92.60

RelNN AB+C+PS [88] 91.49

1nn(dm) AB+C [91] 91.00

Regression-unfriendly part

PMGraphSOM+MLP+GNNs AB+C+PS 85.71

TILDE AB+C [87] 85.00

RDBC AB+C [92] 79.00

1nn(dm) AB+C [91] 72.00

the second places for the UK2006, regression unfriendly part and the whole Mutag dataset.

This is an indicative comparison, since it reflects that the proposed learning model is espe-

cially effective in dealing with a wide range of real-world challenging problems.

5.6 Conclusions

This chapter studied the incorporation of unsupervised and supervised neural network ar-

chitectures in different ways, with the main focus of identifying the architectural conditions,

under which the integration model expresses its best effectiveness by taking advantages

of each individual learning component. We have found that the learning system with an

unsupervised PMGraphSOM model and a supervised MLP architecture, and followed by

a number of stages of GNN as filters, is the most robust model that can effectively solve

classification and regression applications.

Though the long term dependency problem was not meticulously studied in this chapter,
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we have quantitatively proven that layer/hierarchy based learning systems can deal with the

problem of long term dependencies much better than many layers integrated internally in a

single prediction model.



Chapter 6

Encoding Structural Data with Kernel

machines

6.1 Introduction

Kernel methods such as SVM, multi-kernel SVM, GLSVM, kernel K-means and spectral

kernel clustering have become popular in machine learning because of their efficiency and

simplicity of learning algorithm. Similar to neural algorithms, the more recent research

activities in kernel methods focused on introducing graph based kernel learning. Both su-

pervised and unsupervised kernel based algorithms rely on a graph/node similarity measure

to compute an adjacency matrix which represents the neighborhood relations between in-

put samples. Then a kernel matrix is defined by, for example, following a graph Laplacian

method.

Even though there exist a good number of graph based kernel machine methods, there

is no systematic study in assessing the effectiveness of graph-based over the classical non-

graph based kernel methods nor has there been a sufficiently deep study on the integration of

graph-kernel learning modules as a way of enhancing the capabilities of a learning system. A

number of research questions will be addressed in this chapter: (1) Do graph based learning

91
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models have a performance advantage over non-graph based models? An expected answer

would be that graph-based kernel methods should be able to at least match the computational

capabilities of their non-graph based counterparts. (2) Is it possible to construct hierarchical

or deep kernel architectures (similar to those introduced in ANNs in Chapter 5), and would

such architectures enhance the general performance? (3) How does the learning capability

of graph kernel methods compare to learning capability of graph neural networks? This

chapter presents a comprehensive study on the effect of modelling structural topology of

data by building kernel machine models. This study is conducted analogous to the study on

Neural Networks that was presented in Chapter 5. To facilitate a comparison, the models

are trained and applied to the same sets of data viz. the Web spam detection datasets and the

Mutag datasets.

The organization of this Chapter is as follows. Section 6.2 presents the graph matrix

selection. The general experimental setting is presented in Section 6.3. In Section 6.4,

experimental results of non-graph based unsupervised and supervised learning architectures

will be given, while in Section 6.5, a graph-based model will be presented. Comparisons

and a discussion will be offered in Section 6.6. Conclusions are drawn in Section 6.7.

6.2 Graph matrix selection

Any learning problem consisting of a set of graphs can be transformed into an equivalent

single graph learning problem or into an equivalent node-focused learning problem. Details

of the transformation process will be presented in Section 6.2.1. The construction of the sim-

ilarity graph, adjacency matrix and graph Laplacian matrix will be shown in Section 6.2.2

and Section 6.2.3 respectively.
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Figure 6.1: Steps to construct a similarity graph on an example: Two molecules (graphs

on the left) are transformed into spectral representation (middle) which in turn is used to

compose the similarity graph (right) using k-nearest neighbor method.

6.2.1 Spectral transformation

A widely accepted approach to applying the graph Laplacian kernel method is to use spec-

tral transformation. Spectral graph theory provides an approach to addressing the problem

of multiple graphs [101]. This approach is oriented by the mathematical foundation that

exposes the characteristics of the structural information of graphs using the eigenvectors

and eigenvalues of the adjacency matrix. In particular, each graph structure is transformed

into a vectorial representation. The following steps are executed: (1) The adjacency ma-

trix A associated with a single graph is computed. (2) The eigenvalues of matrix V are

obtained by the eigen decomposition approach A = UTV U . (3) A vector of positive eigen-

values is used as the additional input to each input sample. Each graph is provided with a

spectral representation or a spectral vector. This vector is then added to the input features

of each learning sample as additional relational information. Figure 6.1 demonstrates the

transformation from graphs to spectral feature values. In the next step, a similarity graph

on the whole input feature space (including both original feature vector and spectral feature

vector) will be composed.
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Figure 6.2: Constructing the Graph Laplacian matrix on an example: Given the labeled edge

similarity graph (left), the corresponding weighted adjacency matrix is constructed (middle),

and finally the weighted graph Laplacian is computed (right)

6.2.2 Similarity graphs

Figure 6.1, on the right, illustrates the process of creating a similarity graph for the whole

input space from a multiple graph learning problem. The most popular way to build a

similarity graph is the k-nearest neighbor approach. This figure particularly shows the con-

struction of a similarity graph by using the 4-nearest neighbor approach. Nodes in the graph

represent input samples. Every node is connected to 4 other nodes which are closest to it in

terms of Euclidean distance with respect to the node’s feature vectors. In practice, a simi-

larity graph can also be derived from the structural topology of the data input, thus avoiding

the need to compute a spectral representation. For instance, in the WWW domain one can

use the hyperlink connections to build the similarity graph. The weight (scalars to labels on

edges) of each edge can be calculated using the squared distance among the nodes’ feature

vectors.

6.2.3 Building the Graph Laplacian Matrix

A graph matrix is one that represents the neighborhood relations between nodes of a graph

in a condensed numerical form. The Graph Laplacian matrix is one of the most well-known

approaches of this type. The resulting matrix is suited as input for the graph-based kernel

learning methods.
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The Graph Laplacian is constructed as follows. Assuming that A is an adjacency matrix

with its elements ai,j equal to 1 if there is a link between node vi and vj , and 0 otherwise.

The Graph Laplacian matrix will be L = D − A, where D is a diagonal degree matrix.

dii =
∑N

j=1 ai,j , and N is the number of nodes in a graph (the dimension of A). If the links

in a graph are weighted then the Graph Laplacian can be constructed based on a weighted

adjacency matrix, as depicted in Figure 6.2. The figure shows that the elements aij of the

adjacency matrix A would then be assigned to the weight of the edge connecting vi and

vj . The weighted L can be computed accordingly. Finally, L is normalized by calculating

L = D− 1
2 (D − A)D− 1

2 .

6.3 Experimental procedures

A common approach when adopting GLSVM is that the similarity graph is computed via

the sample feature vectors [70]. For the Web spam problem, the similarity graph is de-

rived from the topology of the host graph. Due to the restriction of GLSVM in solving the

multiple graph problem, we adopt spectral transformation for Mutag datasets. In compos-

ing the similarity graph, a maximum number of nearest neighbors is required. The number

of nearest neighbors is tuned within the range [4,10] for regression unfriendly, regression

friendly and the whole Mutag datasets. We respectively select the maximum number of

nearest neighbors to be 9, 5 and 6 for those three datasets through a number of experiments.

In the unsupervised learning cases, i.e KKM and SKC, the best number of clusters will

be shown in the results tables in a column named NoC (short for “Number of Clusters”).

To compute the training performance, clusters are assigned to class labels (-1 or +1) using

majority voting. For example, a cluster belongs to class +1 if the predominant samples in

that cluster belong to class +1. This will allow the performance computation for evaluation

and testing purposes using ACC and F1. The column T in the resulting tables indicates

whether or not topological information is modelled by the corresponding learning method.
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A validation set is used by randomly selecting 10% of the training samples. The models

are trained on the training set, the best parameters then selected on the basis of the valida-

tion performance. The AUC and ACC indicators are respectively used as the performance

indicators for validation purposes for the Web spam detection and Mutagenesis problems.

Each experiment is repeated 10 times (Web spam detection task), and 3 times (Mutagenesis

problems). The mean of the training and testing performances and the associated standard

deviation will be reported. 10-fold cross validation is applied for the Regression friendly

and the whole Mutagenesis dataset, and leave-one-out applied for the Regression unfriendly

data. The selected models’ parameters are shown in the first columns in the result tables.

For any supervised model, three metrics AUC, F1 and ACC are used for experimental eval-

uation. The significant order of these regarding each learning problem is set the same as was

shown in the Chapter 5.

6.4 Applications of classic Kernel Machines

This section will apply KKM, SVM, and an integrated method consisting of both KKM and

SVM. These models do not incorporate the relational aspects of input data in their learning

process. The results shown here will form the baselines for the comparisons with the graph

based kernel methods.

6.4.1 Kernel K-means

KKM is one of the simplest kernel clustering methods. The number of clusters is tuned

respectively within the range of [10,20] for the Mutagenesis datasets and within [20,40]

for the Web spam detection problems. The number of clusters was derived empirically

under the the reasonable assumption that more clusters are expected for the much larger

problems UK2006 and UK2007 when compared with the Mutagenesis dataset. The KKM’s
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Table 6.1: KKM performances on Web spam and Mutagenesis problems
KKM F1 ACC

NoC Features T Train Test Train Test

UK 2006 dataset

37 C 0.333 [0.017] 0.689 [0.048] 0.745 [0.051] 0.636 [0.031]

37 RL 0.332 [0.010] 0.784 [0.019] 0.605 [0.057] 0.690 [0.014]

37 C+RL 0.329 [0.009] 0.762 [0.009] 0.642 [0.029] 0.675 [0.007]

UK 2007 dataset

25 C 0.164 [0.009] 0.160 [0.008] 0.636 [0.047] 0.622 [0.045]

25 RL 0.138 [0.015] 0.130 [0.005] 0.594 [0.126] 0.570 [0.120]

25 C+RL 0.145 [0.018] 0.136 [0.014] 0.646 [0.118] 0.632 [0.120]

Whole Mutag dataset

20 AB 0.748 [0.005] 0.747 [0.039] 0.604 [0.006] 0.601 [0.051]

20 AB+C 0.802 [0.012] 0.795 [0.096] 0.764 [0.022] 0.762 [0.093]

20 AB+C+PS 0.822 [0.012] 0.815 [0.097] 0.795 [0.015] 0.791 [0.089]

Regression Friendly part

16 AB 0.799 [0.006] 0.796 [0.058] 0.671 [0.009] 0.668 [0.076]

16 AB+C 0.857 [0.019] 0.849 [0.105] 0.809 [0.018] 0.808 [0.115]

16 AB+C+PS 0.870 [0.033] 0.861 [0.121] 0.829 [0.038] 0.828 [0.134]

Regression Unfriendly part

10 AB 0.632 [0.032] 0.464 [0.395] 0.826 [0.024] 0.828 [0.167]

10 AB+C 0.686 [0.066] 0.556 [0.405] 0.798 [0.058] 0.800 [0.211]

10 AB+C+PS 0.681 [0.061] 0.558 [0.408] 0.805 [0.048] 0.807 [0.216]

experiment results are summarized in Table 6.1. It can be seen that the KKM performance

varies significantly with the initialization condition. This is most obvious in the case of ACC

performance on the UK2007 data. The standard deviation of results for the Mutag datasets

is also relatively high. However the reason here is that its calculation is based on the cross

validation approach. An interesting observation is that while the ACC performance is quite

reasonable for all the datasets, the F1 indicator is very poor for UK2007 when compared

with UK2006 and the other datasets. This observation can be attributed to the imbalanced

nature of the Web spam problems.

6.4.2 Support Vector learning

Two main parameters that need to be set when training a SVM are the kernel’s parameters,

and the soft margin parameter γA (or C). These parameters are selected via a grid search

strategy with exponentially growing sequences of σ and γA. More specifically, γA is selected

from within the range {2−3, 2−2, ..., 29} while σ is selected from within {2−11, 2−10, ..., 22}.
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Table 6.2: SVM performances on Web spam and Mutagenesis problems
SVM AUC F1 ACC

σ γA Features T Train Test Train Test Train Test

UK 2006 dataset

22 25 C 0.931 [0.012] 0.764 [0.006] 0.783 [0.079] 0.457 [0.042] 0.967 [0.010] 0.520 [0.022]

20 25 RL 0.965 [0.012] 0.822 [0.022] 0.647 [0.138] 0.539 [0.063] 0.948 [0.016] 0.566 [0.036]

2−2 26 C+RL 0.977 [0.014] 0.882 [0.014] 0.749 [0.109] 0.656 [0.050] 0.961 [0.014] 0.650 [0.034]

UK 2007 dataset

2−2 26 C 0.901 [0.023] 0.734 [0.018] 0.502 [0.123] 0.282 [0.078] 0.963 [0.006] 0.946 [0.002]

2−3 27 RL 0.820 [0.035] 0.607 [0.012] 0.156 [0.084] 0.023 [0.008] 0.949 [0.003] 0.938 [0.002]

2−2 25 C+RL 0.963 [0.025] 0.726 [0.011] 0.723 [0.179] 0.284 [0.068] 0.977 [0.012] 0.937 [0.005]

Whole Mutag dataset

2−9 24 AB 0.524 [0.004] 0.480 [0.095] 0.750 [0.001] 0.743 [0.013] 0.602 [0.001] 0.591 [0.039]

2−5 25 AB+C 0.869 [0.009] 0.845 [0.025] 0.848 [0.012] 0.832 [0.029] 0.813 [0.014] 0.794 [0.030]

2−2 22 AB+C+PS 0.896 [0.010] 0.868 [0.010] 0.866 [0.008] 0.843 [0.027] 0.839 [0.009] 0.812 [0.031]

Regression Friendly part

2−11 22 AB 0.496 [0.009] 0.508 [0.038] 0.799 [0.001] 0.792 [0.006] 0.665 [0.001] 0.662 [0.030]

2−4 23 AB+C 0.941 [0.004] 0.927 [0.043] 0.896 [0.008] 0.886 [0.036] 0.859 [0.012] 0.846 [0.048]

2−5 24 AB+C+PS 0.969 [0.012] 0.948 [0.027] 0.939 [0.019] 0.913 [0.031] 0.921 [0.025] 0.888 [0.036]

Regression Unfriendly part

2−4 25 AB 0.735 [0.032] 0.745 [0.045] 0.631 [0.001] 0.599 [0.041] 0.833 [0.001] 0.772 [0.176]

2−5 25 AB+C 0.937 [0.043] 0.839 [0.027] 0.869 [0.145] 0.704 [0.168] 0.933 [0.066] 0.815 [0.167]

2−5 24 AB+C+PS 0.967 [0.046] 0.853 [0.044] 0.860 [0.111] 0.703 [0.094] 0.926 [0.054] 0.813 [0.139]

A popular Gaussian radial basis function is applied as the kernel function.

The experimental results are presented in Table 6.2. It can be observed that the classic

kernel machine SVM generally outperforms KKM in both classification and generalization.

The most obvious improvement is observed for UK2007 on both ACC and F1 indicators.

The generalization results are improved by 15% in F1 and 30% in ACC when compared

with the KKM results. A similar observation is made with the Mutag datasets. The ACC

performance increases by 1% to 6% when compared with the KKM results. Moreover, it is

evident that the model’s performance is improved when more features are utilized for learn-

ing. With respect to the UK2006 data, the AUC performance is generally better than those

from the UK2007 dataset, due to the severely imbalanced nature of the UK2007 dataset.

Any standard learning models would find it non-trivial to achieve a good ACC result (by

simply assigning most samples to the majority class) in this type of dataset, rendering it

difficult to obtain a high AUC (which may bias correct classification of minority class sam-

ples). It is also confirmed here that the ACC performance regarding the UK2007 dataset

is always seen to be best for both training and generalization performance when compared

with other datasets.
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6.4.3 Multi-kernel Support Vector machine

We used p = 2 in the experiments as it was shown to be the most effective p-norm regu-

larization value [102]. The number of kernels can be arbitrary, however a large number of

kernels can increase the computational time requirement unnecessarily. We found that 10

kernels is suited to the given learning problems. All other kernel and learning parameters

are similar to the SVM model.

The experimental results of the MKSVM are summarized in Table 6.3. It is generally ob-

served that the utilization of linearly combined kernel functions improved the performance

on all evaluation indicators. The training performance is close to 100% for all of the learning

problems. This result can be attributed to the complementary nature of the kernel functions

so that the strength of each kernel is taken into account. Particularly for generalization per-

formance, the UK2006 dataset experienced the greatest improvement in results on all of the

evaluation metrics but especially for ACC and F1, which improved by 25% and 20% im-

provement, respectively. The UK2007 dataset, however only gained about a 3% increase in

the AUC generalization performance when compared to using a single kernel function. For

the Mutag datasets, the MKSVM generally produces a better ACC performance and is more

stable (smaller deviation) than the SVM case.

6.4.4 Deep learning using kernel machines

The work presented in this section is inspired by the recent successes of deep learning in the

field of neural networks [21, 103] as well as in the kernel machine domain [38, 104, 105].

The fundamental idea in deep kernel methods is based on the layered architecture consisting

of several kernel methods within each of the layers. This architecture often contains just two

layer of SVMs [39, 106, 107, 108]. The SVMs in the first layer are trained in parallel, taking

a subset of the training data as input by sampling data from the original input space. The

outputs of the first layer are combined and then form the input for the second layer of SVMs.
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Table 6.3: MKSVM performances on Web spam and Mutagenesis problems
MKSVM AUC F1 ACC

σ γA Features T Train Test Train Test Train Test

UK 2006 dataset

2−5 22 C 0.913 [0.044] 0.768 [0.008] 0.698 [0.155] 0.623 [0.065] 0.949 [0.039] 0.622 [0.042]

2−4 23 RL 0.975 [0.010] 0.803 [0.010] 0.830 [0.044] 0.816 [0.012] 0.964 [0.010] 0.748 [0.008]

2−3 23 C+RL 0.998 [0.002] 0.887 [0.008] 0.950 [0.043] 0.866 [0.004] 0.990 [0.009] 0.808 [0.006]

UK 2007 dataset

2−6 23 C 0.970 [0.014] 0.736 [0.006] 0.942 [0.003] 0.354 [0.006] 0.994 [0.000] 0.908 [0.004]

2−6 25 RL 0.936 [0.014] 0.580 [0.006] 0.854 [0.037] 0.125 [0.030] 0.986 [0.003] 0.846 [0.040]

2−4 23 C+RL 0.996 [0.003] 0.760 [0.011] 0.990 [0.005] 0.279 [0.015] 0.999 [0.001] 0.832 [0.014]

Whole Mutag dataset

2−2 27 AB 0.559 [0.056] 0.547 [0.026] 0.753 [0.015] 0.748 [0.007] 0.614 [0.011] 0.605 [0.011]

20 22 AB+C 0.991 [0.005] 0.779 [0.024] 0.980 [0.015] 0.800 [0.010] 0.976 [0.018] 0.761 [0.011]

2−3 22 AB+C+PS 0.994 [0.003] 0.870 [0.017] 0.987 [0.007] 0.846 [0.006] 0.984 [0.009] 0.820 [0.007]

Regression Friendly part

2−5 24 AB 0.475 [0.027] 0.506 [0.037] 0.806 [0.003] 0.800 [0.004] 0.681 [0.007] 0.673 [0.006]

20 22 AB+C 0.990 [0.007] 0.807 [0.026] 0.977 [0.020] 0.867 [0.006] 0.970 [0.026] 0.824 [0.009]

2−1 23 AB+C+PS 0.996 [0.005] 0.923 [0.024] 0.987 [0.007] 0.912 [0.006] 0.983 [0.009] 0.883 [0.008]

Regression Unfriendly part

2−6 25 AB 0.755 [0.016] 0.694 [0.078] 0.631 [0.000] 0.611 [0.015] 0.833 [0.000] 0.818 [0.112]

2−4 25 AB+C 1.000 [0.000] 0.873 [0.026] 0.999 [0.006] 0.694 [0.063] 0.999 [0.004] 0.838 [0.111]

2−6 26 AB+C+PS 1.000 [0.000] 0.882 [0.021] 1.000 [0.000] 0.671 [0.038] 1.000 [0.000] 0.849 [0.113]

A more strict interpretation of the term deep learning requires that the system comprises of

an unsupervised model as a pre-training component. A corresponding deep learning kernel

machine was proposed in [38] where an unsupervised Principal component analysis (PCA)

kernel and the supervised SVM algorithm are integrated in a hierarchical architecture.

In this chapter, several adaptive deep learning architectures will be presented. The deep

model described in this section is structured by integrating KKM and SVM models. For

simplicity, we denote the model as KKM+SVM. Figure 6.4.4 illustrates the proposed deep

learning model. Firstly, the KKM is trained unsupervised on the original input data. The

clustering result is then used as additional input to the 2-layer SVMs. A number of SVMs in

the first SVM layer was tried between 20 and 120. We empirically found that 100 SVMs is a

reasonable number for the tasks. All SVMs are trained in parallel. The input subset of each

SVM component is sampled from the whole training data. The minority class samples are

all present in each subset, while the number of samples in the majority class are randomly

sampled to ensure that the size of the two classes is equal. This sampling mechanism should

help the SVM to learn better. The concatenation of SVM outputs from the first layer will

form the input to the second SVM layer which contains only one SVM. As for any ensem-
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Figure 6.3: Deep learning using KKM clustering and SVM learners. D represents the input

data while Di is a sampled data from D. The parallel layers include classic SVMs (denoted

Ci). The Aggregator in this case is another SVM learning the output of previous layer.

Table 6.4: KKM+SVM performance on the Web spam and Mutagenesis learning problems.

KKM+SVM AUC F1 ACC

Datasets Features T Train Test Train Test Train Test

Web spam datasets

UK 2006 C+RL 0.962 [0.008] 0.887 [0.009] 0.622 [0.065] 0.593 [0.048] 0.944 [0.007] 0.607 [0.032]

UK 2007 C+RL 0.963 [0.024] 0.771 [0.006] 0.700 [0.173] 0.285 [0.022] 0.976 [0.013] 0.945 [0.005]

Metagenetic datasets

Whole Dataset AB+C+PS 0.898 [0.013] 0.863 [0.006] 0.875 [0.009] 0.855 [0.011] 0.850 [0.010] 0.826 [0.013]

Friendly part AB+C+PS 0.955 [0.017] 0.943 [0.017] 0.926 [0.009] 0.910 [0.006] 0.904 [0.012] 0.884 [0.018]

Unfriendly part AB+C+PS 0.925 [0.034] 0.821 [0.034] 0.705 [0.034] 0.676 [0.021] 0.853 [0.015] 0.838 [0.110]

ble model the selection of learning parameters is done by using the best parameters of the

individual learning components. The experimental results of the KKM+SVM are summa-

rized in Table 6.4. The deep learning model generally produces better results than the single

kernel SVM, and is comparable with the MKSVM, i.e the AUC testing performance. The

ACC indicator gains 1% to 2% increase compared with that of the SVM model. The advan-

tages of KKM+SVM over the MKSVM are that it is simply implemented and reduces the

computational cost of executing multiple kernels internally in the support vector learning

algorithm since it allows parallel computations.
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Table 6.5: SKC performances on Web spam and Mutagenesis problems
SKC F1 ACC

NoC Features T Train Test Train Test

UK 2006 dataset

39 C
√

0.339 [0.007] 0.717 [0.028] 0.743 [0.021] 0.662 [0.022]

39 RL
√

0.352 [0.009] 0.742 [0.016] 0.695 [0.034] 0.657 [0.014]

39 C+RL
√

0.347 [0.009] 0.764 [0.023] 0.653 [0.029] 0.682 [0.019]

UK 2007 dataset

25 C
√

0.170 [0.012] 0.165 [0.014] 0.647 [0.063] 0.638 [0.064]

25 RL
√

0.143 [0.007] 0.129 [0.004] 0.596 [0.069] 0.574 [0.061]

25 C+RL
√

0.154 [0.009] 0.149 [0.015] 0.642 [0.055] 0.637 [0.058]

Whole Mutag dataset

20 AB
√

0.740 [0.038] 0.751 [0.084] 0.674 [0.020] 0.686 [0.097]

20 AB+C
√

0.780 [0.029] 0.805 [0.062] 0.741 [0.030] 0.770 [0.067]

20 AB+C+PS
√

0.833 [0.014] 0.858 [0.048] 0.796 [0.023] 0.807 [0.056]

Regression Friendly part

17 AB
√

0.791 [0.015] 0.789 [0.071] 0.707 [0.015] 0.707 [0.092]

17 AB+C
√

0.858 [0.027] 0.849 [0.127] 0.804 [0.038] 0.803 [0.145]

17 AB+C+PS
√

0.892 [0.027] 0.885 [0.113] 0.856 [0.037] 0.855 [0.127]

Regression Unfriendly part

12 AB
√

0.609 [0.047] 0.472 [0.365] 0.769 [0.041] 0.767 [0.178]

12 AB+C
√

0.727 [0.053] 0.598 [0.425] 0.827 [0.029] 0.815 [0.192]

12 AB+C+PS
√

0.720 [0.083] 0.565 [0.423] 0.812 [0.065] 0.811 [0.181]

6.5 Applications of Graph-based Kernel Machines

This section will present several graph based kernel learning models, in which the relational

aspects of data input will be encoded.

6.5.1 Spectral kernel clustering

The SKC has many similar properties to KKM. The only difference is that the SKC at first

exploits the topological information given by the similarity graph. The KKM then plays

a modular role in the SKC model. The KKM is applied on the resulting matrix whose

columns are eigenvectors received from eigen decomposition of the graph Laplacian ma-

trix. The SKC’s experimental results are given in Table 6.5. Note that column T is ticked

implying the usage of topological structures. It can be observed that both SKC and KKM

performance are poor in terms of the F1 indicator for the UK2007 dataset. This can be

explained by the severely imbalanced nature of this dataset. Since the majority of class sam-
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ples are largely predominant in the resulting clusters, the ACC performance is accordingly

high. Similar observations can be seen for the F1 testing performance for all datasets. Nev-

ertheless, the learning performance of SKC is generally better than that of KKM, since it

takes the relational aspects of the data into consideration. All the SKC’s training parameters

and the learning procedures were the same as those in the KKM case. This clearly shows

that spectral kernels benefit from modelling relational data.

6.5.2 Graph Laplacian Support Vector Machine

The GLSVM is capable of incorporating structural topology in its learning process. In

addition to the kernel parameter σ and the ambient space parameter γA as in the SVM

model, the GLSVM’s variable γI decides the influence of the structural information. A

grid search strategy is used to identify the best choice of these three parameters. They are

selected from within the following ranges, σ ∈ {2−5, 2−4, ..., 21}, γA ∈ {2−3, 2−2, ..., 23}

and γI ∈ {2−3, 2−2, ..., 23}.

Results are shown in Table 6.6. It is observed that the GLSVM’s generalization ability

is much better than that of the non-graph based SVM model given in Table 6.2. In particu-

lar, the AUC and ACC indicators are both improved by around 1% - 3% for the Web spam

detection and Mutagenesis problems. Interestingly, the training performance of GLSVM re-

mains very similar to that of the SVM and MKSVM models. This reflects that incorporation

of the graph data structure in the GLSVM encourages generalization ability of the model. If

compared with the unsupervised SKC model, a significant improvement in ACC generaliza-

tion performance can be observed, especially for UK2006 and UK2007. The effectiveness

of modelling graph data in supervised kernel learning is likewise evident when comparing

results with the deep learning KKM+SVM model. The GLSVM results are better than the

KKM+SVM results. This, too, indicates that the encoding of topological information in a

supervised kernel machine algorithm can bring a measurable benefit.



6.5. Applications of Graph-based Kernel Machines 104

Table 6.6: GLSVM-A performances on Web spam and Mutagenesis problems
GLSVM AUC F1 ACC

σ γA γI Features T Train Test Train Test Train Test

UK 2006 Dataset

2−1 2−2 2−3 C
√

0.845 [0.010] 0.806 [0.006] 0.568 [0.017] 0.714 [0.015] 0.900 [0.007] 0.683 [0.010]

20 2−1 20 RL
√

0.961 [0.019] 0.843 [0.005] 0.728 [0.021] 0.775 [0.016] 0.928 [0.007] 0.731 [0.013]

21 2−5 20 C+RL
√

0.964 [0.006] 0.895 [0.009] 0.732 [0.022] 0.796 [0.031] 0.934 [0.005] 0.760 [0.029]

UK 2007 Dataset

2−1 2−2 22 C
√

0.800 [0.004] 0.756 [0.006] 0.420 [0.002] 0.343 [0.002] 0.942 [0.002] 0.931 [0.006]

21 21 2−3 RL
√

0.694 [0.010] 0.631 [0.009] 0.208 [0.002] 0.142 [0.006] 0.870 [0.017] 0.844 [0.020]

22 21 21 C+RL
√

0.766 [0.024] 0.760 [0.007] 0.284 [0.023] 0.241 [0.004] 0.863 [0.036] 0.920 [0.012]

Whole Mutag dataset

2−1 2−4 2−2 AB
√

0.542 [0.000] 0.364 [0.086] 0.777 [0.001] 0.745 [0.016] 0.674 [0.001] 0.604 [0.041]

21 2−1 2−3 AB+C
√

0.875 [0.012] 0.807 [0.072] 0.849 [0.004] 0.822 [0.019] 0.809 [0.004] 0.788 [0.026]

21 2−2 2−2 AB+C+PS
√

0.856 [0.006] 0.815 [0.010] 0.853 [0.004] 0.848 [0.034] 0.824 [0.002] 0.817 [0.017]

Regression Friendly part

20 2−5 2−3 AB
√

0.507 [0.000] 0.408 [0.023] 0.827 [0.001] 0.800 [0.002] 0.729 [0.000] 0.670 [0.060]

21 2−1 2−3 AB+C
√

0.931 [0.001] 0.912 [0.026] 0.900 [0.001] 0.895 [0.018] 0.864 [0.002] 0.854 [0.027]

2−1 2−3 2−3 AB+C+PS
√

0.934 [0.007] 0.919 [0.024] 0.926 [0.004] 0.923 [0.021] 0.902 [0.004] 0.899 [0.024]

Regression Unfriendly part

21 2−2 2−1 AB
√

0.781 [0.026] 0.500 [0.030] 0.662 [0.013] 0.593 [0.047] 0.797 [0.014] 0.781 [0.134]

2−1 21 2−2 AB+C
√

0.966 [0.003] 0.813 [0.032] 0.960 [0.001] 0.704 [0.048] 0.976 [0.000] 0.833 [0.140]

2−1 2−3 2−3 AB+C+PS
√

0.981 [0.002] 0.835 [0.028] 0.984 [0.018] 0.739 [0.052] 0.990 [0.012] 0.860 [0.122]

6.5.3 Learning hyperlink and feature based similarity graphs

In the Web spam problems, either hyperlink-based or feature-based similarity graphs could

be utilized in our experiments. Hence, it is worth clarifying which method is more advanta-

geous. Two models will correspondingly learn on the two types of graph inputs. These will

be denoted simply as GLSVM-A and GLSVM-B. The two models are identical but the input

is different. The GLSVM-A results are shown in Table 6.6. We select the number of nearest

neighbors from 3 to 9 in constructing the feature-based similarity graphs for GLSVM-B.

We found that the best number of nearest neighbors is 4 for both the UK2006 and UK2007

datasets. If we use the same C+RL feature set for training the GLSVM-A and GLSVM-B

models. Comparison results between two models GLSVM-A and GLSVM-B are shown in

Table 6.7. The former always outperforms the latter in all cases. In particular, the GLSVM-

B performance is about 1% AUC and 2% F1 and ACC for UK2006, 0.5% AUC, 1% F1 and

5% ACC for UK2007, poorer than that of GLSVM-A.

Figure 6.4 and Figure 6.5 compare the disagreed prediction results (displaying samples

which might be correctly classified by GLSVM-A, but not GLSVM-B, and vice versus) be-
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Table 6.7: GLSVM performances on Web spam detection problems
Compare AUC F1 ACC

σ γA γI Models T Train Test Train Test Train Test

UK 2006 dataset

21 2−5 20 GLSVM-A
√

0.964 [0.006] 0.895 [0.009] 0.732 [0.022] 0.796 [0.031] 0.934 [0.005] 0.760 [0.029]

21 2−4 2−2 GLSVM-B
√

0.944 [0.010] 0.886 [0.005] 0.658 [0.023] 0.774 [0.020] 0.918 [0.008] 0.738 [0.017]

UK 2007 dataset

22 21 21 GLSVM-A
√

0.766 [0.024] 0.760 [0.007] 0.284 [0.023] 0.241 [0.004] 0.863 [0.036] 0.920 [0.012]

20 2−5 22 GLSVM-B
√

0.824 [0.061] 0.754 [0.002] 0.344 [0.076] 0.235 [0.024] 0.884 [0.020] 0.854 [0.004]

tween the GLSVM-A and GLSVM-B models. The disagreed data points are shown (left

y-axis versus x-axis) in relations with the confident levels of correct or incorrect classifica-

tion (because the classification output is obtained within a range [0, 1], this is referred to as

probability of correct or incorrect classification). The disagreed data points are also shown

with the corresponding number of in-coming links/in-degree and out-going links/out-degree

(right y-axis versus x-axis). A high positive confidence level of a data point implies that the

learning model can provide a correct prediction of that data point with a high probability.

Conversely, a high negative confidence level (close to 0) indicates that the learning model

provides a wrong prediction of that data point with a low probability. The confidence levels

are sorted. The out-degree and in-degree of each node/data point are shown respectively

above and below the zero axis. The correct data points classified by the GLSVM-A and

GLSVM-B models are separated by a solid vertical line. For simplicity, the disagreed data

points are listed ascendingly. As can be seen, within dissent points, spam nodes (illus-

trated as triangles) cover a large area compared with normal ones (shown as circles) for

the UK2006 data, and the converse situation is observed for the Uk2007 dataset. In both

cases, the data points correctly classified by GLSVM-A always dominates that of GLSVM-

B model. The GLSVM-B can best exploit the feature-based similarity graphs with relatively

sparse connection for both UK2006 and UK2007 datasets. Those graphs statistically are

more sparse than the hyperlink-based similarity graphs used by the GLSVM-A model. In

particular, the average number of in-coming links to nodes that are correctly predicted by the

GLSVM-B model is equivalent to 65.87% and 58.46% that of the GLSVM-A model for the

UK2006 and UK2007 data, respectively. Similarity, the average number of out-going links
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Figure 6.4: The disagreements among the testing data points when learning GLSVM with

hyperlink-based similarity graph (GLSVM-A) and feature-based similarity graph (GLSVM-

B) for UK2006 dataset
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Spam nodes: distance to zero line indicates the in or out-degree

Figure 6.5: The disagreements among the testing data points when GLSVM with hyperlink-

based similarity graph (GLSVM-A) and feature-based similarity graph (GLSVM-B) for

UK2007 dataset

to nodes that are correctly classified by the GLSVM-B model is approximately 72.92% and

92.06% that of the GLSVM-A model for the UK2006 and UK2007 data, respectively. This

clearly indicates that the topological information from the hyperlink graph is more useful

than that of the feature-based graph.
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Table 6.8: SKC+SVM performances on Web spam and Mutagenesis problems

SKC+SVM AUC F1 ACC

Datasets Features T Train Test Train Test Train Test

Web spam Datasets

UK 2006 C+RL
√

0.965 [0.009] 0.888 [0.014] 0.653 [0.063] 0.611 [0.041] 0.948 [0.008] 0.619 [0.029]

UK 2007 C+RL
√

0.965 [0.026] 0.771 [0.020] 0.728 [0.186] 0.287 [0.024] 0.978 [0.014] 0.945 [0.020]

Metagenetic Datasets

Whole Dataset AB+C+PS
√

0.901 [0.010] 0.869 [0.006] 0.878 [0.004] 0.863 [0.006] 0.853 [0.005] 0.834 [0.018]

Friendly part AB+C+PS
√

0.960 [0.012] 0.945 [0.011] 0.933 [0.014] 0.917 [0.006] 0.913 [0.018] 0.893 [0.018]

Unfriendly part AB+C+PS
√

0.951 [0.051] 0.814 [0.023] 0.810 [0.036] 0.687 [0.030] 0.903 [0.020] 0.839 [0.116]

6.5.4 Spectral kernel clustering and Support Vector learning

This section investigates an integrated model consisting of SKC and SVM and which will

be denoted simply as SKC+SVM. This model is similar to KKM+SVM as discussed previ-

ously. In the SKC+SVM deep learning, we incorporate the topological information in the

(unsupervised) SKC model, followed by a layered SVM learning. The difference between

the KKM+SVM and SKC+SVM models is the first layer. The results are summarized in

Table 6.8. Both deep learning inspired models share similar behaviour on classification and

generalization performance, although the SKC+SVM results are consistently improved by

about 1% to 3% (i.e. as can be seen on the ACC generalization performance).

6.5.5 Support Vector Machines with Graph Laplacian Support Vector

Machines

Two supervised kernel methods, the classic SVM and the graph based model GLSVM are

integrated to form a two-layered learning architecture (denoted as SVM+GLSVM for sim-

plicity). The first layer consists of 100 SVMs (same as the case of KKM+SVM) which

is arranged in a parallel fashion, and is configured similar to the first SVM layer in the

KKM+SVM and SKC+SVM models. In the second layer, the same number of GLSVMs

are trained taking the outputs of the SVMs in the first layer as their additional inputs. Finally,

all outputs of the GLSVMs are merged to produce the final results. The experimental results

of SVM+GLSVM are summarized in Table 6.9. As can be observed, the model improves the
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Table 6.9: SVM+GLSVM performances on Web spam and Mutagenesis problems

SVM+GLSVM AUC F1 ACC

Datasets Features T Train Test Train Test Train Test

Web spam Datasets

UK 2006 C+RL
√

0.969 [0.002] 0.927 [0.007] 0.794 [0.010] 0.899 [0.003] 0.948 [0.003] 0.857 [0.006]

UK 2007 C+RL
√

0.871 [0.016] 0.839 [0.014] 0.463 [0.060] 0.368 [0.022] 0.911 [0.030] 0.892 [0.012]

Metagenetic Datasets

Whole Dataset AB+C+PS
√

0.834 [0.011] 0.848 [0.012] 0.853 [0.003] 0.847 [0.004] 0.824 [0.002] 0.826 [0.005]

Friendly part AB+C+PS
√

0.940 [0.013] 0.920 [0.003] 0.928 [0.005] 0.921 [0.006] 0.907 [0.007] 0.904 [0.017]

Unfriendly part AB+C+PS
√

0.981 [0.002] 0.867 [0.120] 0.984 [0.019] 0.783 [0.098] 0.990 [0.012] 0.881 [0.102]

Figure 6.6: Deep learning with SKC clustering based graph topology learning, paralleled

layer 1 with classic learner SVMs (denoted Ci) and paralleled layer 2 with graph learning

GLSVMs (denoted GCi). D stands for the input data while Di is a sampled data from

D. The A (stands for Aggregator) is operated by averaging over all the results obtained by

individual GLSVMs.

generalization performance by 4% to 6% on the AUC indicator for the UK2006 and UK2007

datasets compared with other layered architectures presented earlier, i.e. KKM+SVM and

SKC+SVM. A similar improvement can also be observed regarding ACC testing perfor-

mance for the Mutagenesis problem.

6.5.6 A complex model using kernel learning and clustering

A complex graph-based kernel machine is proposed and applied here. It is developed on

the basis of the SVM+GLSVM model, by incorporating an unsupervised SKC compo-
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nent for each learning layer. We simply denote the model as SKC+SVM+GLSVM. The

model is illustrated in Figure 6.6. The main difference between the SVM+GLSVM and

SKC+SVM+GLSVM architectures is the integration of SKC for pre-training purposes in the

latter. The clustering results of SKC are used as additional input to each learning component

in the SVM and GLSVM layers. Placing a SKC clustering model before SVM+GLSVM

provides a gist or overall information of the input space to the supervised layered learning.

This mechanism theoretically obeys the deep learning model in the discipline of neural pro-

cessing, which was proved advantageous in Chapter 5. Moreover, the layered architecture

SVM+GLSVM has been shown to be beneficial when compared with single model learn-

ing, most especially, the GLSVM layer at the final stage helps the entire system to exploit

efficiently both feature and relational information from the input. Hence, most of the inspi-

ration to create SKC+SVM+GLSVM is from the deep learning idea and layered architecture

in the graph learning domain. The final model can be seen as a companion with the complex

model previously introduced, PMGraphSOM+MLP+GNN.

The best results achieved by the SKC+SVM+GLSVM learning system are summarized

in Table 6.10. Around 1% improvement on AUC testing performance can be seen for the

Web spam detection, and on ACC generalization performance for Mutagenesis problem

when compared with the best performance achieved so far using kernel methods, given that

AUC and ACC are the key evaluation metrics for two problems, respectively. A massive

improvement can be observed if we compare the final results with the results obtained by any

single learning model, for instance, up to 12% better than SVM performance, and up to 8%

better than GLSVM performance given the key evaluation metric over all ranges of problem.

It is noticed that for challenging and large scale problems like Web spam detection, even a

1% improvement in accuracy could result in hundreds of hosts to be correctly categorized.
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Table 6.10: SKC+SVM+GLSVM performances on Web spam and Mutagenesis problems

SKC+SVM+GLSVM AUC F1 ACC

Datasets Features T Train Test Train Test Train Test

Web spam Datasets

UK 2006 C+RL
√

0.970 [0.005] 0.933 [0.009] 0.794 [0.010] 0.905 [0.004] 0.948 [0.004] 0.868 [0.009]

UK 2007 C+RL
√

0.890 [0.015] 0.848 [0.013] 0.516 [0.044] 0.382 [0.023] 0.936 [0.016] 0.914 [0.013]

Metagenetic Datasets

Whole Dataset AB+C+PS
√

0.898 [0.020] 0.872 [0.013] 0.867 [0.024] 0.860 [0.020] 0.842 [0.026] 0.843 [0.021]

Friendly part AB+C+PS
√

0.930 [0.016] 0.929 [0.014] 0.921 [0.012] 0.932 [0.014] 0.896 [0.014] 0.910 [0.019]

Unfriendly part AB+C+PS
√

0.951 [0.014] 0.836 [0.064] 0.890 [0.014] 0.833 [0.090] 0.934 [0.008] 0.904 [0.096]

6.6 Comparison and Discussion

6.6.1 Comparison between Kernel machines, and between Kernel ma-

chine and Neural network models

In this section, various models are compared in pairs. Comparisons can be made between

kernel machine methods as listed in the upper part of Table 6.11. The table defines a refer-

ence symbol for each pair. For example, the symbol ’a’ refers to the pair KKM and SKC.

Similarly, comparisons between kernel machines and neural network methods can be made

as defined in the lower part of Table 6.11. Again, the table defines a reference symbol for

each of the pairs. These symbols are used for ease of reference in the following result tables.

The comparative results between kernel machines are shown in Table 6.12. Comparative re-

sults between kernel machine and neural networks are given in Table 6.13.

Making a fair comparison is always difficult since models have different internal param-

eters as well as architectural designs. Table 6.12 presents the experimental results of relative

pairs between a conventional and a graph based model. As can be observed, the graph based

models outperform the classic ones in most cases for all datasets. The better performance

degree is indicated by the blue and cyan level of the corresponding cells’ background color

in the table, where the higher color intensity of the cells means the better they perform

compared with their associated counterparts. Statistically, the graph based models produce

better results than the classic models in all cases for the UK2006 dataset. This is however

not observed for other problems, either the large scale UK2007 dataset or small problems



6.6. Comparison and Discussion 111

Table 6.11: Different learning models divided into two categories
Paired models within kernel machines

No Classic kernel machines Graph kernel machines

a KKM SKC

b SVM GLSVM

c MKSVM SVM+GLSVM

d KKM+SVM SKC+SVM

Paired models between neural networks and kernel machines

No Neural networks Kernel machines

1 SOM KKM

2 MLP SVM

3 Lecun 5 MLP MKSVM

4 SOM+MLP KKM+SVM

5 PMGraphSOM SKM

6 GNN GLSVM

7 MSGNN SVM+GLSVM

8 PMGraphSOM+MLP SKC+SVM

9 PMGraphSOM+MLP+GNN SKM+SVM+GLSVM

Table 6.12: Generalization performance comparison between Classic versus Graph kernel

machines. Abbreviations are: S-supervised, U-unsupervised, D-deep learning.
Learning Models UK 2006 UK 2007 Whole Mutag Friendly part Unfriendly part

No S U D Classic Graph Classic Graph Classic Graph Classic Graph Classic Graph

AUC performance

b
√

0.882 0.895 0.726 0.760 0.868 0.815 0.948 0.919 0.853 0.835

c
√ √

0.887 0.927 0.760 0.839 0.870 0.848 0.923 0.920 0.882 0.867

d
√ √ √

0.887 0.888 0.771 0.771 0.863 0.869 0.943 0.945 0.821 0.814

F1 performance

a
√

0.762 0.764 0.136 0.149 0.815 0.858 0.861 0.885 0.558 0.565

b
√

0.656 0.796 0.284 0.241 0.843 0.848 0.913 0.923 0.703 0.739

c
√ √

0.866 0.899 0.279 0.368 0.846 0.847 0.912 0.921 0.671 0.783

d
√ √ √

0.593 0.611 0.285 0.287 0.855 0.863 0.910 0.917 0.676 0.687

ACC performance

a
√

0.675 0.682 0.632 0.637 0.791 0.807 0.828 0.855 0.807 0.811

b
√

0.650 0.760 0.937 0.920 0.812 0.817 0.888 0.899 0.813 0.860

c
√ √

0.808 0.857 0.832 0.892 0.820 0.826 0.883 0.904 0.849 0.881

d
√ √ √

0.607 0.619 0.945 0.945 0.826 0.834 0.884 0.893 0.838 0.839

like regression unfriendly data. This may imply that the topological data available in the

UK2006 dataset is considerably more beneficial for graph based learning algorithms. This

behavior was previously viewed in the connectionist models. Nevertheless, if only the key

evaluation metric is considered for each dataset, the graph models always outperform the

classical ones.

A comparison between neural network and kernel machine model performance is pre-

sented in Table 6.13. While the testing results are shown in the upper part, the corresponding



6.6. Comparison and Discussion 112

Table 6.13: Performance comparison of neural networks (NN) and kernel machines (KM).

AUC and ACC are evaluation metrics shown for Web spam and Mutag problems respec-

tively. Abbreviations are: S-supervised, U-unsupervised, T-topology and D-deep learning.
Learning Models UK 2006 UK 2007 Whole Mutag Friendly part Unfriendly part

No S U T D NN KM NN KM NN KM NN KM NN KM

Comparison of testing performance

1
√

0.572 0.675 0.750 0.632 0.726 0.791 0.844 0.828 0.740 0.807

2
√

0.873 0.882 0.673 0.726 0.816 0.812 0.882 0.888 0.815 0.813

3
√

0.863 0.887 0.689 0.760 0.835 0.820 0.884 0.883 0.842 0.849

4
√ √ √

0.930 0.887 0.831 0.771 0.823 0.826 0.879 0.884 0.819 0.838

5
√ √

0.648 0.682 0.712 0.637 0.757 0.807 0.835 0.855 0.790 0.811

6
√ √

0.902 0.895 0.781 0.760 0.852 0.817 0.936 0.899 0.833 0.860

7
√ √ √

0.914 0.927 0.796 0.839 0.874 0.826 0.957 0.904 0.857 0.881

8
√ √ √ √

0.931 0.888 0.835 0.771 0.848 0.834 0.890 0.893 0.840 0.839

9
√ √ √ √

0.958 0.933 0.854 0.848 0.887 0.843 0.963 0.910 0.857 0.904

Comparison of corresponding standard deviation

1
√

0.034 0.007 0.025 0.120 0.094 0.089 0.098 0.134 0.241 0.216

2
√

0.017 0.014 0.024 0.011 0.062 0.031 0.111 0.036 0.207 0.139

3
√

0.006 0.008 0.021 0.011 0.060 0.007 0.111 0.008 0.164 0.113

4
√ √ √

0.018 0.009 0.042 0.006 0.071 0.013 0.105 0.018 0.218 0.110

5
√ √

0.024 0.019 0.031 0.058 0.113 0.056 0.086 0.127 0.170 0.181

6
√ √

0.019 0.014 0.024 0.020 0.049 0.018 0.107 0.018 0.181 0.116

7
√ √ √

0.009 0.009 0.010 0.007 0.023 0.017 0.026 0.024 0.373 0.122

8
√ √ √ √

0.020 0.007 0.016 0.014 0.028 0.005 0.030 0.017 0.350 0.102

9
√ √ √ √

0.014 0.009 0.034 0.013 0.058 0.021 0.034 0.019 0.350 0.096

standard deviations are given in the lower part of the table. The better results between any

two models are highlighted by some intensity levels of blue and cyan scale. As can be

observed, kernel machines outperform their associated counterparts for the regression un-

friendly part, since this dataset has a small number of input samples compared relative to

the input dimension. The parametric models would find disadvantage when learning with

insufficient data input.

For other datasets, it is difficult to conclude which models are predominant, though there

are more blue cells the more that properties of the learning models are turned on. In par-

ticular, the better performance regarding each dataset (except for the regression unfriendly

part) is all marked on the neural network models (shown intuitively at the bottom line No 9

of the upper part of this table). The NN models outperform their KM counterparts by 2.5%

for UK2006, 0.6% for UK2007, 4.4% for the whole mutag and 5.1% for the regression

friendly dataset. The predominant results of NN based models implies that the deep learn-

ing regime is better fitted, and the topology exploit-ability is more obvious in parametric
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rather non-parametric models. The following will further explain the suitability of NNs for

the tasks. In the graph learning domain, a remote path dependency problem between nodes

might exist. The neural network models are found to be capable of handling deep learning

problems or problems containing remote path dependencies, since the models are formed by

deep neuron layers internally by themselves. Such model architectures could allow learn-

ing of a deep representation of data. The kernel machine architectures, on the other hand,

seem not to allow a robust mechanism to effectively learn the deep representation of data

or the remote path dependency problem in graph data structures. Hence, in terms of neural

processing, the presence of a classifier after a clustering model in a hierarchical/deep learn-

ing model is absolutely accountable. Adding relaxation between neural layers to reduce

the adverse effect of long term dependency would generally enhance network performance.

Therefore, the model integration techniques are well suited to the neural network models,

and the neural networks generally are more superior compared with graph-based deep learn-

ing models (with all the properties of learning models being used) when compared with the

kernel machine ones.

Nevertheless, one obvious advantage of KM models is that the results obtained are seen

to be more stable than with neural networks. The lower part of Table 6.13 clearly shows that

the standard deviations of the results provided by kernel machines are generally lower than

those of the neural networks. This implies that the neural network models are very much

dependent on the initialization conditions, which is not the case for kernel machine learning.

6.6.2 Projection of final experimental results

In order to examine the coverage and differences between the training and testing sets in

Web spam detection, the UK2006 and UK2007 datasets, Figure 6.7 and Figure 6.8 present

the projection of input samples/hosts on two dimensional maps. This is done by running a

PMGraphSOM on the final results of the complex kernel machine architecture, i,e input to
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the PMGraphSOM the probability output of the SKM+SVM+GLSVM model. Because the

PMGraphSOM is capable of preserving the structural topology of the input space, similar

nodes in the graph are projected at nearby locations on the map.

As can be observed, in the UK2007 dataset, the training samples cover quite well the

testing samples, while this seems not to be the case in the UK2006 dataset. For instance,

considering the upper left corners of the training and testing mappings in Figure 6.7, while

not many incorrect samples in the training set can be seen, many misclassified samples in

the testing set are observed. The reason might be due to the unbalanced nature of the the

two datasets. Whereas the spam nodes are dominant in the testing set, the major samples

existing in the training set are non-spam. This is particularly seen in the upper left corners.

Hence, the underlying feature information utilized for training seems not to be sufficient

to allow the model to generalize well in the testing period. Another observation is that

the misclassification often occurs when the spam and normal nodes are overlapped on the

activation map.

6.6.3 Comparison between the GLSVM and GNN models

In this section, the experimental results of two representative graph based classification mod-

els, GLSVM and GNN are further examined. They are trained on the same hyperlink-based

graph and use the same set of feature vector C+RL. Figure 6.9 and Figure 6.10 show the dis-

agreed data points/results/nodes provided by the GLSVM and GNN models (i.e. the former

predicts a node to be spam, but the latter predicts it to be normal and vice versa), and nodes’

related properties. Hence, a disagreed node is either correctly identified by the GLSVM or

by the GNN model, for both normal or spam node. In general, the nodes correctly predicted

by the GNN usually dominate those predicted by the GLSVM model. Each figure contains

three parts. The upper parts are similar to that in Figure 6.4 and Figure 6.5. The middle

parts present the average in-degree and out-degree of disagreed nodes. Finally, the bottom
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Figure 6.7: The illustration of the PMGraphSOM mapping (map size 80x60) for the

UK2006 training (left) and testing set (right). The cross and plus shapes are respectively

representing the spam and normal nodes. The squared shape indicates the misclassified

samples for both training and testing set.
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Figure 6.8: The illustration of the PMGraphSOM mapping (map size 80x60) for the

UK2007 training (left) and testing set (right). The cross and plus shapes are respectively

representing the spam and normal nodes. The squared shape indicates the misclassified

samples for both training and testing set.
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parts show the ratios regarding three typical content-based features 1.

Link-farm and link-based spam: It is observed in the UK2006 data that a link-farm might

be present with a high possibility. Considering four spam data points/nodes at the bottom

right corner of Figure 6.9 as examples, these all have a relatively large number of in-coming

links. In practice, the large number of out-going connections is not strange since a website

sometimes aims to cite as many other related pages as possible. If a spam site is linked

by many other spam ones, this would account for the link-farm case. There are 94.9% and

96.6% in-coming links from other spam nodes to the first two indicated nodes (shown with

93 and 79 in-degree connections in Figure 6.9, respectively). Also, there are 100% spam

links pointing to the other two indicated nodes (shown with 88 and 64 in-degree connection

in Figure 6.9, respectively). Thus, it can be stated that the UK2006 dataset is featured by the

link-based spam method. The middle part of Figure 6.9 further clarifies this statement. The

in-degree of spam nodes, on average are about two times higher than that of normal ones.

Theoretically, the GNN model can regulate the graph connectivity better than the GLSVM

model because while the topological information only forms a component in the GLSVM’s

objective function, it becomes a structural part of the GNN model since the GNN algorithm

iteratively learns patterns on its topological basis. Finally, the bottom part of Figure 6.9

appears not to support the statement that a content-based spam is the key method in the

UK2006 case, since the three features are not provided with clearly differentiable values

between nodes.

Content-based spam: As can be observed, a link-farm seems not to be present in the

UK2007 data. More specifically, the spam node indicated with in-degree 38 (or 38 in-

coming links) shown in the bottom right corner of Figure 6.10, for example, contains no

connections from other spam nodes. This is again confirmed through the middle part of

Figure 6.10, namely that the averaged in-degree of spam nodes is always significantly lower

1By looking into the three key content-based features: (1) Number of words of webpage (2) The indepen-

dent LP of webpage and (3) The top 1000 corpus precision, we can particularly respectively examine (1) how

long the page is (2) the popularity of the words used and (3) how the words are unrelated with each other.
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Normal nodes: distance to zero line indicates the in or out-degree
Spam nodes: distance to zero line indicates the in or out-degree

Figure 6.9: Upper: the disagreed data points when learning GLSVM and GNN with

hyperlink-based similarity graph - Middle: the average number of in-degree and out-degree

links - Bottom: The normalized averages of three content-based features in UK2006.

than that of normal nodes. However, the bottom part of this figure shows that the spam pages

on average contain more words, popular words and uncorrelated words than normal ones.

The interesting aspect shown in the bottom part is that the GNN seems to be more conser-

vative than its counterpart in identifying spam nodes, since it can predict the spams with a

very large number of unrelated words. This proves that the UK2007 data is characterized by
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Disagreed data points in UK2007

GLSVM GNN

Prediction confidence
Counterpart’s misclassified confidence

Normal nodes: distance to zero line indicates the in or out-degree
Spam nodes: distance to zero line indicates the in or out-degree

Figure 6.10: Upper: The disagreed data points when learning GLSVM and GNN with

hyperlink-based similarity graph - Middle: the average number of in-degree and out-degree

links - Bottom: The normalized averages of three content-based features in UK2007.

some content-based spam techniques. In fact, many spams were created by using either (1)

keyword stuffing or (2) article spinning and duplication which are numerically represented

by the three content-based features shown in Figure 6.10.
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6.7 Conclusion

This chapter presented a systematic study on the effect of encoding the relational topol-

ogy in the learning process of several kernel methods. It has been shown that the inte-

grated model which takes the most advantage of individual learning components is the

SKC+SVMs+GLSVM hierarchical architecture. It is quantitatively shown that the graph

based kernel machines predominantly perform better than the more conventional kernel

based predictors. We have also shown that the results obtained by kernel methods are gen-

erally more stable than the case with neural networks.

It can be derived that the layer architecture method is beneficial for both neural and ker-

nel machine learning. Nevertheless, the neural network based models possibly gain much

more advantage in hierarchical learning than the kernel based algorithms. In other words,

the deep learning inspired models are practically realistic and effective in learning graph

data structures. The context in which individual learning modules are arranged, is con-

sidered important in promoting the overall network performance. It is observed that long

term dependencies are not likely to appear in kernel machines learning since the learning

algorithms are not based on the gradient descent approach. However, this is the case con-

cerning with the neural network models. Further investigation and solutions to long term

dependencies will be shown later in Chapter 7.



Chapter 7

A Hierarchical neural network for graph

learning

7.1 Introduction

This chapter introduces an integrated learning system containing three functions in order to

tackle three associated problems arising in graph-based practical applications, by assuming

that the effects of each of these three would be largely independent of one another. In the

literature, each of these problems is treated individually. In the proposed integrated model,

the first function is based on the deep learning strategy which is incorporated to deal with

possible remote path dependency issues of a graph learning problem. The second func-

tion is a L1 based regularization for significant feature selection from the large feature set.

Thirdly, a non-uniform sampling function is used to solve possible imbalance class distri-

bution in given datasets. As we assume the effect of each of these on one another is largely

indeoendent, we can put them into the the same framework, and solve them one after the

other. Note that we do not propose a method in which the effects of all these are considered

simultaneously, and that the parameters involved are optimized simultaneously. This chap-

ter will show that the proposed model is effective when addressing challenging real world

120
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problems. This is shown through applications to two well-known benchmark datasets, viz.,

the UK 2006 and UK2007 web spam detection datasets, and a large scale XML document

classification problem, the INEX 2008 dataset. It is found that the proposed approaches help

to obtain state-of-the-art results on those datasets. Thus, through such empirical investiga-

tions, we have shown that th assumption of the independency of the effects of these three

functions is valid, at least in these practical problems. There could be other problems for

which such an assumption might not be valid, though we have not found them yet in our

experience.

First, in a graph based classification problem, the learning performance of a learner

would be exasperated if the distribution of class labels among the input is severely imbal-

anced. That is, for instance, there are many more negative examples than positive examples

in a binary class problem. When dealing with severely imbalanced training datasets, it is

common to use a sampling method on the inputs. In general, the aim of sampling methods

is to match the number of negative examples with positive examples in a particular manner

[109]. For example, a rough balance between two class examples based on Negative Bi-

nomial Distribution (NBD) was proposed in [110]. An alternative approach is to re-weight

examples which are misclassified in this learning round, so as to better classify them in the

next learning round [111, 112]. However, to the best of our knowledge, such a technique

has not yet been applied to the graph structured domain. Indeed, it is intuitively clear how

such techniques could be helpful within the context of graph domain.

Secondly, the feature vector of an input could be very high dimensional which can

cause problems known as the curse of dimensionality. A number of approaches have been

proposed when dealing with high dimensional input feature vectors. Many have engaged

some forms of pruning by computing the maximum information gain on the vector elements

[113, 114, 115, 116]. Some have applied regularization approaches [117, 118, 119]. This

chapter will employ the L1 regularization technique which allows the selection of important
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features in the input space [118]. We will specifically apply L1 regularization to the graph

based problem learning.

Thirdly, a common deep learning approach consists of multiple stages of an unsuper-

vised learning unit, followed by a supervised learning module [21], e.g., as those explored

in previous chapters. In practice, however deep learning has so far only been applied to

feature vectors which are assumed to be independent. To the best of our knowledge, apart

from the work presented in [17, 93], there have not been any other attempts in developing a

deep learning strategy on graph structured inputs. The main reason is that it is not clear how

one may take into account the topology of a graph in the input of an unsupervised learning

model.

In general, by assuming that the effects of these three on one another are largely indepen-

dent, this chapter proposes an integrated model which combines three sub-solvers, namely

a remote path dependency solver, an imbalanced data solver, and a high input dimension

solver, and solve the problem sequentially one after the other. This is a non-trivial task as it

is not intuitively clear how to combine these techniques such that the positive effects of the

individual technique are consolidated. We found that by making such an assumption, and by

solving each of the sub-problems sequentially, we achieved the best results on three differ-

ent challenging datasets. This is an interesting finding since there are not many techniques

which perform as robustly and well on those datasets. Moreover, by applying such a method

to the practical problems, the assumption is validated post hoc, at least for these practical

probelms evaluated, as it showed an improvement on the performance when compared with

other techniques, which might not have taken such effects into account.

The rest of this chapter is organized as follows: The general hierarchical deep learning

scheme is presented in Section 7.2. Section 7.3 describes the experimental procedures.

Section 7.4 provides the experimental results, comparisons and discussions. Finally, some

conclusions are drawn in Section 7.5.
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Figure 7.1: The multiple staged learning model: compact diagram.

Figure 7.2: The multiple staged learning model: detailed diagram.

7.2 Graph-based hierarchical neural network: the learn-

ing system

This section presents the work flow or the order of components within the hierarchical learn-

ing system. A compact diagram of the model is illustrated in Figure 7.1, while a more spe-

cific model design can be seen in Figure 7.2. Intuitively, the proposed model consists of four

main components 1, namely dimensionality reduction which is denoted as a pre-processing

stage, unsupervised pre-training, an imbalanced data solver and a long-term dependency

solver. The two latter solvers are based on independent supervised learning models. It can

be seen that the input data is constituted by two separable pieces of information: structural

topology and feature vectors. Because of the possible high dimensionality of the feature

vectors, it is reasonable that the dimensionality is reduced by using a L1 regularization ap-

proach which effectively selects the significant features from the original set. Regarding

1The model’s components are applied interchangeably with the following: a model’s units, modules, learn-

ing stages or levels.
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the dimensionality reduction in Section 7.2.1, the L1 approach to the binary classification

problems will be presented first, and then the information gain approach for text document

categorization problem will be shown.

The reduced feature vector set obtained after the dimensionality reduction approach,

together with the graph structural topology, will form the input to the pre-training unit. In

practice, almost all unsupervised learning models do not assume that the feature vectors

are related through an underlying graph structure. The only known unsupervised learning

technique which could handle general graph structured inputs is called PMGraphSOM [42].

The PMGraphSOM considers the proper ratio between topology and feature information in

its learning process so as to achieve the best performance where the relational context and

nodes’ feature are exploited. Once fully trained, the PMGraphSOM will produce clusters of

input samples, in which feature vectors that are similar in feature space as well as similar

in the relational context in which they occur within the graph, will be clustered together

in the display space of the PMGraphSOM. The coordinates of these mappings along with

the feature set derived from the dimensionality reduction approach, will form an augmented

reduction input (ARI) for a subsequent stage.

The ARI obtained so far is then utilized for the imbalanced treatment stage. Note that

the ARI is now a set of independent vectors rather than a graph. The rationale is that the

mappings produced by the PMGraphSOM are in fact the projection of the nodes in the

graph. Hence, the coordinates of these mappings are the encoding of features as well as

of the context within which the features occur in the graph. As a consequence, the ARI

contains an abstract description of the graph topology in vectorial form. This enables us to

deploy a standard MLP model at this stage. The MLP is seen as a weak learner in terms of

a parallel based sampling approach. Since the MLP is a supervised method which relies on

the node labels, and since assuming that the training dataset may be severely imbalanced and

hence, a hybrid sampling algorithm (HNBD) is introduced with the base learner MLP and
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the ARI as inputs. Details of the HNBD sampling method will be described in Section 7.2.2.

Once the training of the imbalanced solver is completed, its output will be the predicted

classes of the nodes that can be associated with a given input. This prediction together with

the graph topology information, will then form the input to a layered GNN module. More in-

formation about the layered GNNs architecture will be found in Section 7.2.3. The rationale

for using the GNN is that in some situations, a single hidden layered MLP might have some

difficulties in obtaining a good mapping between the input and the output. Hence a mul-

tiple hidden layer MLP could be deployed in obtaining an accurate input output mapping.

Hence, in the graph input situation, it is surmised that a multiple GNN would allow a much

better depiction between the graph inputs and the outputs. The accuracy of a single hidden

layer MLP is limited by the accuracy of the mappings produced by the PMGraphSOM. The

PMGraphSOM performs mappings to a discrete display space, hence these mappings are to

be considered an approximation. These mappings form part of the input for the MLP so that

the output of the MLP is an approximated prediction of the pattern class. By augmenting the

original graph structure with these predictions, this will enable the GNN to learn and reduce

the residual classification error based on information about a graph’s topology. Finally, the

output of the GNN is the resulting classification of the nodes.

One will find that the results can be improved through the cascaded stages of the GNNs.

Here, the prediction outputs of a GNN are used to label the associated nodes in the graph

and then to train another layer of GNN on this input. This strategy is repeated until no fur-

ther improvements in the classification of the nodes in the training set are observed. The

observation that a GNN can improve the results of the previous and fully trained GNN,

was an unexpected finding given that the optimal capabilities of the GNN have been proven

formally [60]. Thus, from a formal perspective, there should be no reason as to why sub-

sequent GNNs should improve on the results of a single GNN. We suspect that the reason

behind our observation can be attributed to the gradient descent based learning method in
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the GNN. Such methods are known to converge to local minima which may be far away

from the global minimum. By cascading several GNNs, each GNN will be trained to re-

duce residual errors. This is possible since each of the GNNs is initialized differently (i.e.

randomly), and hence enables the system to find a better local minimum with every step in

the cascade. It will be demonstrated that the cascade of GNNs with a boosting mechanism

would be beneficial in learning challenging graph-based problems. Another reason might

be that the optimality proof is based on the assumption that the number of hidden units (and

hence the number of adjustable parameters) is unbounded, whereas in practice, the number

of hidden units is always limited. Thus, a second GNN can improve the results of the first

GNN if the number of hidden units is less than optimal for a given learning problem.

Generally speaking, the underlying idea of the integrated learning system is that it ex-

tends the approach in [17] as it incorporates a dimension reduction of the input feature

space. It likewise allows a sampling technique to be incorporated in order to deal with pos-

sibly severely imbalanced class distribution datasets. These two components were missing

in [17], rendering it less effective when compared with the proposed model. Deep learning

occurs in the integration stage between the PMGraphSOM and the MLP. This deep learning

differs from the standard deep learning approach [21], in that we take into account the under-

lying graph topology representing the relationships among the feature vectors. By imposing

an unsupervised learning model, as a front-end in the processing of the data, the long term

dependency effect will be reduced. It is also surmised that the contextual relation is more

effectively exploited by using the cascaded section of GNNs [93] at the end of the learning

system.
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7.2.1 Dimensionality reduction

7.2.1.1 L1 Regularization for feature selection

In the domain of feature selection, a relatively large number of approaches have been pro-

posed to address the curse of dimensionality [120]. The intuitive benefits of these feature

selection methods are: (1) The reduction of computational cost as the size of approximator

becomes small along with the input dimension; (2) The enhancement of the generalization

prediction accuracy by reducing overfitting of the training set [121].

Many approaches engage wrapper methods that use a predictive model to score feature

subsets. LASSO or L1 regularization method penalizes the regression coefficients, shrinking

many of them to zero. Features with non-zero regression coefficients are selected by the

LASSO algorithm. Similarly, a large number of regularization approaches has been intro-

duced. In particular, Least angle regressions or LARS [117] is an efficient algorithm of L1.

Ridge regression or L2 [118] and L1/2 [119] are different variants of regularization-based

feature selection techniques.

Other approaches are categorized by the filter selection type. Filter methods select fea-

tures by ranking them using different criteria such as mutual information or correlation

coefficients [113]. Peng et al. proposed mutual information based feature selection [115].

They select a condensed set of features following the maximal statistical dependency cri-

terion defined on the mutual information between the joint distribution of the selected fea-

tures and the class labels. Other methods based on information theory include the likelihood

maximization approach [113], and correlation based feature selection [116]. The correlation

measure evaluates subsets of features following the criteria that useful feature sets should

encapsulate those highly correlated with the target labels, yet uncorrelated to each other. In

addition to filter and wrapper, Embedded methods integrate feature selection in the model

learning process [120].

In the proposed model, we apply a well-known approach to the selection of feature vec-
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tors using L1 regularization formulation [122]. Assume that there are N training samples,

xi, i = 1, 2, . . . , N , xi is a M dimensional vector, and yi, i = 1, 2, . . . , N the corresponding

target values. Then it is possible to model the targets as follows: y = β0∞+Aβ+ ǫ, where

β0 is a constant, ∞ is a N -dimensional vector with all elements 1, A is N × M matrix,

the i-th row being the vector xi, β is a M vector, with elements βj , j = 1, 2, . . . ,M , ǫ is

a noise vector. The j-th feature is selected if βj 6= 0. So the feature selection problem can

be formulated as follows: minβj
J = 1

2
ǫT ǫ, subject to the constraint

∑M
j=1 ‖β‖pp 6 t, where

‖ ·‖pp is a Lp norm, and p is an integer. If p = 2 this is the usual squared norm, while if p = 1

this will be the usual L1 norm. The constraint will force some of the βj to 0.

Without loss of generality, one can assume p = 1. Thus, the constraint is given as

∑M
j=1 |βj| 6 t. This optimization problem can be solved using the Lagrange multiplier

technique by augmenting the cost function as follows: J = 1
2
ǫT ǫ+ λ

∑M
j=1 βj . We propose

to use the alternating directions multiplier method (ADMM) to solve this problem [123].

This is because the ADMM is an efficient method for solving L1 regularization problems

with linearly separable cost functions, and linearly separable constraints. Our problem of

feature selection fulfills these conditions and hence the ADMM is deployed to solve the reg-

ularization problem. The concept behind ADMM is trivial. It evaluates the gradients of the

augmented cost function, and then the unknowns are updated using the Gauss-Seidel updat-

ing method and using Newton’s method for solving the algebraic equations (each variable

once found will be used in subsequent updates, instead of updating all the variables at the

same time).

7.2.1.2 Information gain method for text categorization problem

In information theory, the mutual information of two discrete variables X and Y is

I(X, Y ) =
∑

x∈X

∑

y∈Y
P (x, y)log2

(

P (x, y)

P (x)P (y)

)

, (7.1)
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where P denotes probability. In text mining, the information gain is calculated as the

mutual information between terms and topical categories.

Let C = ci, i = 1, 2, ..., n be a set of categories in the input space. One can define

T = t, t̄ in which t and t̄ refer to an occurrence and non-occurrence of term t, respectively.

Then the information gain between C and T is

I(T,C) =
∑

t∈T

∑

c∈C
P (t, c)log2

(

P (t, c)

P (t)P (c)

)

(7.2)

Or for each term t one would have

I(t) =
n
∑

i=1

P (t ∧ ci)log2

(

P (t ∧ ci)

P (t)P (ci)

)

+
n
∑

i=1

P (t̄ ∧ ci)log2

(

P (t̄ ∧ ci)

P (t̄)P (ci)

)

(7.3)

The information gain (IG = I) calculated above will be the selection criteria for the di-

mensionality reduction strategy. Indeed, one can select a number of terms that are associated

with the highest IG values. Then a given text document, which is known as a set of terms,

can be compressed into a series of those selected terms. As shown in Chapter 4, each term

is represented by a concatenated TF.IDF value. Hence, one can finally assign a feature

vector containing TF.IDF values of selected terms to a given document.

7.2.2 HNBD sampling for imbalanced data issue

A large number of studies have been conducted to reduce the effect of the imbalanced class

distribution on predictive models [124]. Fundamentally, the approaches are divided into

three main approaches, namely Bagging or sampling, the Boosting algorithm [125], and

Cost-sensitive learning [126, 127].

The Bagging aggregating or sampling idea was pioneered by Breiman [109]. The con-

cept refers to a method of generating multiple versions of a predictor trained individually on

boostrap replicates of the learning set. The actual output of the prediction model will be de-
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cided by voting on the individual predictor’s outputs [109]. More recently, many sampling

approaches have been developed based on a bagging-based ensemble to address class im-

balanced problems [128, 129, 130] such as undersampling [129], the oversampling method

[130], and the synthetic sampling technique [128]. A roughly balanced bagging approach

was proposed in [110]. In a boostrap replica, all minority examples are selected while the

number of majority examples are chosen following the negative binomial distribution (NBD)

with a fixed probability of success of 0.5. Thus, the average number of positive and negative

examples through all the sampling runs are almost equal [110].

While sampling is related to the data level approach, boosting ensembles are seen as

algorithm level methods [125]. Schapire first proposed the boosting idea, in that the learn-

ing mechanism would turn weak classifiers into a strong learner [111]. The first and well-

known approach based on a boosting ensemble was Adaboost [131]. Adaboost increases the

weights of misclassified instances after each training round. The incorrectly classified ex-

amples in the current iteration will be given more focus in the next iteration. Each individual

classifier is also assigned another weight for the purpose of assessing the final output of the

learning system [131]. Recently, similar methods have been proposed, including SMOTE-

Boost [132] and DataBoost.IM [133]. In addition, other methods apply boosting directly

in learning algorithms, such as the boosting neural network [134] and the boosting support

vector machine [135].

Finally, cost-sensitive combines both data and algorithm level approaches to engage dif-

ferent misclassification weights for each class during learning process [125]. Cost-sensitive

is applied in a neural network by incorporating the high weights of misclassification in-

stances into the objective function [136]. Metacost [126] is a bagging-like ensemble. It

relabels the training examples with their estimated minimal cost classes. Fan et al. in-

troduced Adacost [127], which is a variant of Adaboost [131]. Adacost uses the cost of

incorrectly classified examples to update the training distribution after each iteration [127].
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Costing is presented in [137], and applies the cost proportionate rejection sampling method.

Another cost-sensitive method applied in a kernel machine can be found in [112].

In this section, we propose a new sampling approach. Its underlying idea is to combine

under-sampling [129] and roughly balanced bagging [110]. The former uses a sampling

ratio over the number of majority examples, while the minority instances are kept fixed.

The latter relies on NBD to sample the number of majority examples. The probability of

success remains unchanged at 0.5, such that the average number of majority class examples

are roughly equivalent to that of small class ones. We will demonstrate that in severely

imbalanced datasets the probability of success should not be fixed in order to achieve the

best results. We propose a hybrid sampling approach (HNBD) that takes advantage of the

NBD based sampling while the size of majority-class sampled sets is flexible and will be

validated in the learning phase.

In our experiments, the optimal value of q is searched and validated during the training

phase of the prediction model. Another justification is that when the training subsets are

down-sampled from the majority class, the idea of under-sampling [129] is still satisfied.

The average size of the negative class is not expected to be smaller than the positive one in

a sampled subset. In practice, we found that when q < 0.5, the prediction performance is

improved for severely imbalanced datasets. In general, the HNBD still inherits the dynamic

sampling of majority examples via the NBD method.

Specifically, NBD is defined as a probability distribution of the number of success m+

in Bernoulli trials before the number of failures m− appear. This is computed by the proba-

bility function shown in Equation 7.4.

p(m−|m+) =







m+ +m− − 1

m+






qm

+

(1− q)m
−

(7.4)

Therefore, in order to obtain the distribution of m−, the value of m+ and q must be presented.
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Algorithm 1 The HNBD algorithm inputs the full training set S . Base classifier L. Number

of base classifiers K. Probability of success q

1: procedure HNBD-TRAIN(S, L,K, q)

2: for i = 1 to K do

3: Sampling the full training set to achieve subset Si, Si ∈ S . Si = C+ + c−,

c− ∈ C−. c− are randomly chosen in C− with no duplicates. Let n− be the size of c−

then n− following NBD with q.

4: Running classifier Li using Si as training set, to obtain the trained model Mi.

5: procedure HNBD-PREDICT(Mi,U )

6: For each sample x ∈ U present to Mi, we derive two-dimension output P+
i and P−

i

referring to probabilities that the given sample belongs to +1 and -1 class, respectively.

7: Aggregate all the models’ results to get the final probability output Pout of x.

8: Pout(x) =
1
K

∑K
i=1

P+
i

P+
i +P−

i

It can be referred to a sampling method that m− means the -1 class samples while m+

implies +1 class ones. In particular, one can draw a number of -1 class samples, n− from

N− samples based on NBD, if the number of +1 class samples, N+ and probability q are

given in Equation 7.4.

The proposed HNBD sampling method is presented in Algorithm 1. Let S be the train-

ing set, K be the number of base learners (L denotes a learner), and q be a pre-defined

probability of success. These are given as algorithm’s inputs. Hence, it allows us to judge

on different q values. After training a base classifier Li, a trained model Mi (for example

in MLPs, a trained model is a MLP with its parameters being tuned after training) will be

derived. In the prediction stage, the testing/unknown set U is presented. An aggregation of

all individual trained models is applied to obtain the final probability output for each sam-

ple. In this stage, the prediction performance can be derived for both training and testing

sets. Referring to web spam detection problems, the output probability Pout (Equation 7.5)

becomes the spamicity and is calculated as follows:

spamicity =

∑K
i=1

Pspami

Pspami+Pnormali

K
, (7.5)

where Pspami and Pnormali respectively correspond to P+ and P−.
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7.2.3 Learning the remote path dependencies

In practice, a recurrent or recursive neural network commonly suffers from the long term

dependency problem, in which the network’s error vanishes while being fed back via the

back-propagation algorithm. In the graph learning domain, the error is back-propagated

through the deep graphical structure, the gradient contribution gradually decreases along

with the depth of the graph. Possible approaches to this long term dependency problem are

numerous, including the Leaky integrator learning algorithm [74], Long short term memory

[26] and Genetic algorithm [36, 75]. The hierarchical methods proposed in [76, 77] initially

deal with the long term dependency in graph learning problems, however are unable to ad-

dress the imbalanced issue and the curse of dimensionality of the data input. These missing

properties cause the approaches to be less effective in learning challenging problems.

One of our early attempts in addressing the issue of long term dependency in the graph

domain was using GA or PSO as an optimization function in the GNN learning algorithm.

The main purpose of this method is that we use the GA/PSO module to produce good

initialization for GNN network parameters, such that the long term dependencies are not

durably affected in the GNN learning algorithm. We seek a set of parameters through a

series of chromosome generations (for the GA case), or through random solutions and up-

dating searches in the pre-defined population (for the PSO case), in order to minimize the

objective function. When applying the GA/PSO optimization algorithm to the GNN, the

corresponding model is fairly slow compared with the GNN learning by itself. The compu-

tational requirement for both algorithms is very much dependent on the population size and

the number of generations. It was roughly estimated that the applied methods are about 200

times slower than the original GNN learning. The PSO applied to GNN can provide more

promising results than the GA and the GNN model by self, since the PSO based model re-

quired less learning iterations to achieve the equivalent accuracy results. However, the final

accuracy performance is about the same for those learning models given that the experiments



7.2. Graph-based hierarchical neural network: the learning system 134

Algorithm 2 Boosting-GNN algorithm

1: procedure B-GNN(wi, ti, pr, l, P c,Nc,K)

2: repeat

3: Build a new graph Gk with nodes labeled by pr
4: Compute threshold δ that maximize F-measure on the training set.

5: for i = 1 to q do

6: if (ti = 1) and (prni
< δ) then

7: wnew
i = wold

i + ‖ti − prni
‖ ∗ Pc

8: if (ti = 0) and (prni
> δ) then

9: wnew
i = wold

i + ‖ti − prni
‖ ∗Nc

10: Otherwise wnew
i = wold

i

11: Train GNNk with the cost function

12: E =
∑q

i=1[(ti − prni
) ∗ wnew

i ]2

13: Update prediction values prni

14: k = k + 1
15: until k = K, where K is the pre-defined maximum number of training cycles.

were conducted on the Web spam detection problems.

In this section, a novel layer based boosting graph neural network (B-GNN) is intro-

duced. The Pseudo code of the algorithm is given in Algorithm 2. Without loss of general-

ity, assuming that the given learning problem is binary, the input of the B-GNN model and

several variables are explained as follows.

(1) k = 1, GNNk denotes the k-th GNN trained on the Gk-th graph.

(2) Initialize weights of nodes wi = 1, i = 1, 2...q, q = |N |.

(3) Training target of node ni: ti = 1 if ni ∈ +1 class, ti = 0 if ni ∈ -1 class.

(4) First GNN is trained to obtain current prediction values prni
= Ω(G, ni)|pri ∈

R, i = 1, 2...N

(5) Pc is a constant weighting the positive class.

(6) Nc is a constant weighting the negative class.

In the algorithm, we optimize the threshold of the F1 measure to balance the precision (P)

and recall (R) values of the retrieval performance. The F1 measure is defined as the harmonic

means of P and R. In our implementation, we used an initial condition of weighing the ratio
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of the weights associated with the positive samples and the negative samples by the inverse

ratio of the number of positive samples N+ to the negative samples N−, and then used a

greedy algorithm to find the approximate threshold T which maximizes the F1 measure. The

B-GNN algorithm uses a graph G0 as input. A GNN0 is trained on the G0 and the output

of GNN0 is obtained. That output is used to compute a weight matrix of all the nodes

and to re-label the nodes (the output is added to the original feature vector attached to the

node) to obtain a modified graph G1, which is then used to train a GNN1, and so on. Thus,

the weight matrix is re-computed after each GNN layer. The node corresponding to a high

weight value is associated with a high prediction error at the output layer of the GNN. The

approach forces the GNNs to gradually improve on the residual classification errors. The

algorithm is terminated when no further improvement can be obtained. Hence, the approach

optimizes the classification rate which results in a general improvement of the classification

performance. The advantages of B-GNN is that it remembers the historical weights of all

nodes in the graph and cumulatively updates the weights through the layers of the GNN.

7.3 Experimental procedures

Firstly, for evaluation purposes, three metrics AUC, F1 and ACC are applied. The evalu-

ation method that used for binary problems, the UK2006 and UK2007 datasets, is AUC.

In practice, however we will use all three listed metrics for a comprehensive comparison.

Because it is observed that web spam detection problems are of severely imbalanced class

distribution, the most suitable evaluation method for this would be AUC. Hence, the per-

formance exhibited by AUC would be seen to be the most important. In addition, for the

text categorization field, the suitable methods include macro average recall (Rmacro), micro

average recall (Rmicro) and F1, all of which are utilized in the INEX document classification

problem.

The features provided with the UK2006 and UK2007 datasets consist of three groups:
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96 content based features, 41 link based features, and 138 transformed link based features,

resulting in a total of 275 features. For these two datasets, the L1 regularization method

solved by the ADMM algorithm is used for feature selection purposes. The best number of

features, regardless of belonging to any feature group, will be selected as per the following

procedure. We apply a K-folds cross validation method by dividing the training dataset into

K subsets. This is done by selecting K − 1 subsets for training and leaving one set out

each round for validation purposes. For each sub training set, we solve a L1 optimization

problem. Finally, the performance on the training datasets and the validation datasets are

averaged through all K learning rounds. We then can find the number of features (Fbest)

which on average is related to the best performance on the validation set. In practice, we set

K = 5 for the feature selection experiment.

At each learning stage of the hierarchical learning system, experimental settings applied

for Web spam detection problems and the text categorization problem may differ. For the

common procedures, the learning parameters are set as follows. In the unsupervised PM-

GraphSOM pre-training stage, the radius is selected within {5, 10, 20, 30} while the learning

rate is tuned within {0.2, 0.4, 0.8, 1}. Different map sizes have been tried including 48x30,

54x42, 64x40 and 80x70. The AUC evaluation is not derivable in the unsupervised learn-

ing algorithm, hence it is expected not to be seen in the PMGraphSOM results. In the

HNBD sampling stage, 100 MLPs are trained in parallel, and the final results are merged.

The number of hidden units is chosen in {7, 9, 13, 16, 20}. The learning rate is set to be

adaptive. Both PMGraphSOM and MLP training are stopped at 2000 iterations. In B-

GNN learning, each GNN has a number of hidden and state units which are tuned within

{14, 25, 31, 37, 40} and {2, 5, 8, 10, 12}, respectively. The training of each GNN layer is

terminated at 1500 training iterations. Each model is tested in at least 5 runs with different

initialization conditions. The best model is selected based on the best training performance.
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Figure 7.3: L1 Lasso solution paths based on different tuning parameters λ shown on lower

plot and corresponding number of selected features on the upper plot

7.4 Experimental Results

This section is structured in the order of incremental model complexity. The generalization

performance of each learning unit and integrated modules will be presented.

7.4.1 Dimensionality reduction

7.4.1.1 L1 Feature selection for Web spam detection problems

The tuning parameter λ in L1 regularization controls the number of features being selected.

Hence, the first step in the experiment is to determine a suitable value for λ. Figure 7.3

illustrates the application of the L1 regularization method to the UK2006 dataset. The L1
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Figure 7.4: The curve showing the number of selected features for the UK2006 and UK2007

using the L1 feature selection

solution path is shown in the lower part of Figure 7.3. It can be seen that the magnitudes

of all solution elements decreases to zero along with increasing size of λ. The number of

features at each point corresponds to non-zero solution elements. Shown in the upper part

of Figure 7.3 is the number of features and some examples which have 131, 100, 77 and 63

non-zero solution elements. Note that the λ value is bounded in the range [0.1, 5.0] where

reasonable results can be obtained.

It is interesting to investigate the effect of L1 regularization on three individual set of

features, content, raw link and transformed link -based feature groups. This is shown in

Figure 7.4. The total number of L1 features is given on the x-axis, while the numbers of

features in each of the three groups is associated with the y-axis. It is observed that for both

datasets, as the tuning parameter increases, the L1 regularization removes transformed link

and raw link based features first. This implies that the transformed link and raw link based

features are less valuable than the content based feature to the learning task. For example,

when the total number of features is reduced to 100, about two thirds of the raw link and

transformed link -based features are already removed, while up to two thirds of the content-

based features are kept. When the total number of remaining features shrinks to 18, there

are no raw link features left in the UK2006 case. Thus, it can be stated that content-based
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Figure 7.5: Average AUC performances on validation sets with respect to different number

of features regarding the UK2006 dataset

information contributes more important features than the other two feature categories.

In order to draw a final best set of features, regardless of any groups, L1 regularization

is applied to the mean of 5-fold cross validation. This was done as follows: Presuming that

the number of features is bounded in the range 55 to 275, for each of those numbers, we

run a 5-fold cross validation, and the number corresponding to the highest average AUC

performance on the validation set will be selected. The AUC performance with respect to

different number of features are shown in Figure 7.5 for the UK2006 dataset. Finally, we

find the best number of features, that is Fbest = 85 for the UK2006 case and Fbest = 98 for

the UK2007 dataset. Within 98 features of the UK2007 dataset, there are 51 content based,

10 raw link based, and 37 transformed link based features. Several feature examples are the

number of words in the title of a page, the fraction of visible text (hp), the compression rate

of the hp, the top 500 corpus precision (hp) content-based features, just to mention a few.

The experimental results shown in Table 7.1 proves that the application of L1 regular-

ization method for feature selection is really helpful in the cases of Web spam detection

problems. The table presents the AUC training and generalization performance for both

datasets. More particularly, different feature combinations have been conducted. It can be

observed that the more features involved in learning, the better the AUC that is obtained. It
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Table 7.1: MLP’s AUC performance on the UK2006 and UK2007 datasets using different

feature sets.

Feature sets Reference
UK2006 UK2007

Feat. size Train Test Feat. size Train Test

C [95] 96 0.8797 0.8615 96 0.7398 0.6632

RL [78] 41 0.9193 0.8174 41 0.6745 0.6192

C+RL [17] 137 0.9201 0.8755 137 0.7537 0.7428

C+RL+TL [96] 275 0.9278 0.8719 275 0.7643 0.7356

L1 reduced feature set 85 0.9450 0.8902 98 0.7890 0.7681

Figure 7.6: Feature and topology extraction in the INEX 2008 XML document categoriza-

tion problem.

is however not the case when the number of features becomes large, say up to 275, where

the MLP may be overfitting and results in poor generalization performance. In general, the

reduced feature sets help to improve around 2%-3% for both training and testing results in

the UK2006 and UK2007 datasets.

7.4.1.2 Dimensional reduction for INEX 2008 dataset

Since there are not any existing feature sets, a practical method is to obtain a list of important

terms for each document based on the IG approach. Due to the large number of terms
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available in documents of the INEX 2008 cohort, the following lexing steps are conducted

to ensure that a short list of terms would be derived:

(1) Lower case all words.

(2) Toss words from the stop-list (including a, the, and so on).

(3) Remove words containing non-alphabet characters.

(4) Apply a stemming function and remove the last characters (s, e, es) of words.

(5) Remove words containing only digits.

After lexing, the number of terms is reduced from 115,002 to 66,934. The IG of each

word is then computed. Also, each term can be represented by a TF.IDF value. We

then select 40,000 terms with the highest IG values. By doing so, each document can be

represented by a feature vector of 40,000 dimension. A linear SVM filter is then used to

reduce the feature space to 15, which is equal to the number of class labels. These resulting

features are denoted as content based features (CON), which will be used as the feature

vector of each document.

Figure 7.6 gives an overview of the pre-processing stage applied in the INEX2008 prob-

lem. In addition to the CON feature set, two types of graph can be derived. The first one

is only a single graph that is constructed based on the hyperlinks connecting different xml

documents. It is denoted as a hyperlink graph (HYP). The second one is a set of xml tag

based graphs. Each document is related to one tag graph (TAG). In order to compose TAG

graphs, the xml structure is read, and a xml tag becomes a node in the graph. Finally, we

achieve the following for TAG trees:

(1) The number of unique xml tags is 639

(2) The number of TAG trees is 114,366

(3) The total number of node is 4,850,964

(4) The maximum number of nodes on a TAG tree is 1,119

(5) The maximum out-degree is 193
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The nodes of TAG trees are attached either with the corresponding tag index (ID) or

with the CON feature vector. The HYP graph nodes are only attached with the CON feature

vectors. The number of HYP graph nodes is exactly the number of documents (or the

number of TAG trees).

(1) The number of nodes is 114,366

(2) The maximum out-degree is 101

For the later experiments, three main types of graph can be created, namely the TAG

graph, TAG+CON graph or HYP+CON graph. For MLP training, only the content-base

feature set is utilized. However, with PMGraphSOM, all these graph types can be its input.

7.4.2 Unsupervised learning

The output of the PMGraphSOM is represented in the form of 2D coordinates on its projec-

tion map. This feature information is brought forward in our hierarchical learning regime in

such a way that it is added to the reduced feature set that has been obtained so far. These

final set of features is denoted as CO-FEAT.

7.4.2.1 The PMGraphSOM for Web spam detection problems

The input of PMGraphSOM consists of both feature and topological information that allows

the PMGraphSOM to be able to condense all data into a contraction form on its activation

map. Several experimental results of PMGraphSOM training with different parameters are

shown in Table 7.2. This table provides the training results with two evaluation metrics,

ACC and F1. It can be observed that the training performance of PMGraphSOM is rela-

tively high with the best at 96.77% and 96.29% in accuracy for the UK2006 and UK2007

datasets, respectively. The F1 performance varies significantly due to the changes in the

network’s architectures. This is reflective of the selection of the PMGraphSOM parameters

significantly influencing the learning outcome for these web spam problems.
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Table 7.2: PMGraphSOM training ACC and F1 performance for two web spam detection

datasets.

Map Map size µ
UK2006 UK2007

ACC F1 ACC F1

1 64x40 0.01 0.9766 0.8683 0.9562 0.5125

2 64x40 0.25 0.9691 0.8299 0.9537 0.4410

3 64x40 0.50 0.9518 0.7315 0.9587 0.5528

4 48x30 0.01 0.9504 0.6266 0.9544 0.4972

5 48x30 0.25 0.9492 0.7152 0.9514 0.4327

6 48x30 0.50 0.9180 0.3588 0.9539 0.4802

7 54x42 0.01 0.9276 0.5120 0.9629 0.6205

8 54x42 0.25 0.9293 0.5275 0.9582 0.5498

9 54x42 0.50 0.9537 0.6776 0.9592 0.5434

7.4.2.2 PMGraphSOM learning results for the INEX 2008 dataset

As shown, the CON features are received from the IG based dimensionality reduction

method. The TAG graphs and HYP graph are extracted from the XML tag structure and

the hyperlink information, and they are typical examples of many-graph/graph-focused and

one-graph/node-focused problems, respectively. This section will show the training of PM-

GraphSOM on three different datasets, including TAG, TAG+CON and HYP+CON. For

many-graph problems, the Compact PMGraphSOM has been tried since it is more suitable

for learning very deep tree structures. It is observed that the required training duration is

reduced by about 10 times compared with the PMGraphSOM case. The learning speed of

Compact PMGraphSOM is similar to that of SOMSD.

Table 7.3 shows the results of PMGraphSOMs for the three datasets. It can be said

that the incorporated CON to TAG graph helps to improve the results very little compared

with the PMGraphSOM trained on TAG only. The best performance is seen regarding

HYP+CON data learning. The results show very obviously the large difference between

HYP+CON based learning and the other two based on TAG graphs. This clearly indicates

that PMGraphSOM can provide supportive output features for the later learning units in the

system.
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Table 7.3: The PMGraphSOM’s Rmicro and Rmacro training results on different augmented

datasets: TAG; TAG+CON; HYP+CON

Classs ID TAG TAG+CON HYP+CON

1. United states 0.803 0.11 0.995

2. Reference 0.573 0.811 0.97

3. Sports 0.114 0.625 0.991

4. Social institutions 0.043 0.396 0.905

5. Politics by region 0.057 0.05 0.962

6. Urban geography 0.037 0.085 0.974

7. Human behavior 0.074 0.009 0.956

8. Fiction 0.033 0.021 0.989

9. Nationalities 0.008 0.013 0.991

10. Americas 0.022 0.006 0.968

11. Demographics 0.072 0.03 0.926

12. Tourism 0 0.052 0.973

13. Art genres 0 0.01 0.996

14. Sociology 0 0 0

15. Europe 0 0 0.772

Rmicro 0.309 0.337 0.961

Rmacro 0.134 0.16 0.896

7.4.3 One-staged deep learning PMGraphSOM+MLP

Supervised learning models will be presented from this section. The one-staged hierarchical

learning model does not form an actual component in our proposed learning system. It is

however, informative in the sense that the unsupervised pre-training step will prove very

helpful for the task. Here, a single MLP will be trained on the feature set CO-FEAT which

contains both the output of the PMGraphSOM and the L1 based reduced feature set. In the

later sections, the PMGraphSOM is not recalled anyway because its influence is conveyed

in its feature output.

The following will compare the MLP performance when trained without or with an

unsupervised pre-trained stage. In other words, one can compare the results of the MLP

when training with only the L1 based reduced feature set and training with the CO-FEAT

feature set, respectively. Firstly, for the web spam detection problems, it is observed that

the generalization AUC results are improved from 0.8902 to 0.9003 for UK2006, and from

0.7681 to 0.7905 for UK2007. It is also seen to improve by 0.005 and 0.018 in the training

performance for UK2006 and UK2007, respectively.
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Table 7.4: The MLP training with and without the trained PMGraphSOM outputs.

Categories
No pre-trained Pre-trained

Train Test Train Test

Rmicro 0.9493 0.7859 0.9510 0.7864

Rmacro 0.9385 0.7183 0.9428 0.7245

F-measure 0.9432 0.7290 0.9457 0.7304

Secondly, Table 7.4 shows the results of training MLP with regard to the INEX 2008

dataset. The MLP with the PMGraphSOM pre-trained can improve both the training and

testing performance. In this case, we only used the output of PMGraphSOM training

with HYP+CON input, due to the relatively poor performance on the cases of TAG and

TAG+CON. Since the learning problem is relatively large, small improvement shown here

is due to the fairly large number of documents being correctly classified.

7.4.4 Imbalance data treatment

In this section, HNBD sampling using the base learner MLP is presented. The input of the

MLPs is the CO-FEAT feature set. For the first step, input data normalization is applied. We

utilize standard 3-layer MLPs for the experiment. The HNBD will be present in detail for

the web spam problems. The method is then similarly applied to the INEX 2008 dataset.

7.4.4.1 The HNBD sampling results for Web spam problems

For each probability of success q, Algorithm 1 is implemented once. We conducted 100

MLP experiments for each q. The values of q are randomly selected from the range q ∈

[0.15, 0.6]. An example of NBD in which the number of non-spam hosts can be drawn is

shown in Figure 7.7. If the number of spam hosts (n = 222) are used in the training set,

the number of non-spam hosts m are sampled according to the NBD. As a consequence,

the number of non-spam hosts m would likely fall to between 700 and 1100. By varying

q values, the size of the majority class will be changed in the sampled training subsets,

while all the minority class instances are selected. This mechanism allows us to validate the

performance of the base learner to seek the best q for a particular imbalanced problem.
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Figure 7.8: AUC training performance while applying HNBD to the UK2006 dataset.

Figure 7.8 and Figure 7.9 present the AUC training performance for the UK2006 and

UK2007 datasets, respectively. It is observed that the best AUC performance can be obtained

when setting q = 0.22 for UK2006 and q = 0.20 for the UK2007 dataset. In general, it is

found that a variation of the q-probability can lead to significant changes in the system’s

performance when learning with imbalanced datasets. In fact, the optimal q-probability

value is obtained by the proposed automated process rather than a value that needs to be

determined by trial-and-error.
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Figure 7.9: AUC training performance while applying HNBD to the UK2007 dataset.

The effectiveness of HNBD is summarized in Table 7.5 for the UK2006 and UK2007

datasets. The method denoted as MLPs in the table refers to the MLPs learning without a

sampling method, which forms the comparison base line. For comparisons, we implemented

approaches introduced in [136] for the cost-sensitive neural network by setting the weight

on the error cost function, the approach in [138] for undersampling, and the approach in

[110] for roughly balance bagging. All the MLPs settings for those methods are made the

same as for the HNBD. The comparison is fair since those methods all take the MLPs as

base learners. It is evident that the proposed HNBD method outperforms all others given

both imbalanced datasets, UK2006 and UK2007. The poorest result is associated with the

MLPs without embedding any sampling techniques. The cost sensitive method seems not

to perform as well as the under-sampling and the RB methods. The RB sampling approach

is seen to be most close to our proposed HNBD method. It seems to perform quite well

in the case of less imbalanced data like the UK2006 dataset, while it suffers from severely

skewed class distribution such as UK2007. The HNBD method achieves a fairly moderate

improvement when compared with the others in the case of K2006, while the improvement

is more significant for the UK2007 dataset. This is reflective of the fact that the HNBD is
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Table 7.5: Advancement of HNBD sampling approach compared with others regarding the

AUC performance.

Methods Reference
UK2006 UK2007

Train Test Train Test

MLPs 0.9490 0.9003 0.8167 0.7905

Cost-Sensitive with MLPs [136] 0.9512 0.9024 0.8320 0.8073

Under-sampling based [138] 0.9648 0.9196 0.8887 0.8183

Roughly balance bagging (RB) [110] 0.9692 0.9225 0.8545 0.8215

Proposed HNBD sampling 0.9743 0.9283 0.9006 0.8375

Table 7.6: The MLPs training with and without sampling approach engaged.

Classs ID
No sampling With sampling

Train Test Train Test

Rmicro 0.9487 0.7851 0.9511 0.7858

Rmacro 0.9373 0.7190 0.9432 0.7247

F-measure 0.9424 0.7290 0.9464 0.7313

more robust when dealing with severely imbalanced data.

7.4.4.2 Sampling results for the INEX 2008 problem

Due to the fact that the INEX 2008 dataset is a multiple class problem, application of HNBD

is required to adjust to some extent. In particular, we set the NBD parameter p as being fixed

at 0.5, and apply HNBD for all the classes’ samples. This approach in practice results in an

improvement of Rmacro value by 0.011, however both Rmicro and F1 performances decline.

We then apply a simple approach as follows: Firstly, we train the full training set and achieve

result A, then we train the HNBD based sampling training set and obtain result B. Finally,

the two results A and B are merged to form the ultimate output. Table 7.6 presents the results

of this boot-trap sampling approach. A possible explanation for the improvement is that it

may take advantage of the high Rmicro result on the full training set, and the high Rmacro on

the sampling training set.
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7.4.5 Experimental results on the top level of the leaning system

The final experimental results of the proposed learning system are presented in this section.

One can denote the model as the three-staged hierarchical learning or in short PMGraph-

SOM + HNBD(MLPs) + B-GNN model. In this level, the output of the HNBD(MLPs)

together with the graph topology will form the graph-based input for the B-GNN model.

Note that the topological information of the INEX 2008 dataset is HYP graph, while host

graph is the one for web spam detection problems.

7.4.5.1 For the web spam detection problems

In this section, the B-GNN will be trained with the input taken from the output of the pre-

vious layer and the graph topological information. A number of different models trained

on the same input as B-GNN are also conducted for comparison purposes. They consist

of kernel methods (SVM and GLSVM) and parametric models (MLP and original GNN).

The models are either able to incorporate the input topology such as B-GNN, GNN and

GLSVM, or are unable to encode relational information like SVM and MLP. By placing dif-

ferent types of learning models on the top of a parametric based deep learning architecture,

we are able to examine the integrative suitability of those models in the proposed hierarchi-

cal regime. It can also be seen which models will perform best given the same feature and

topological input.

For this experiment, we configure the particular setting for kernel based methods’ pa-

rameters as follows. The kernel used is the Gaussian radial basis function. The best com-

binations of kernel parameter σ, and soft margin parameter γ are selected by a grid search

with exponentially growing sequences of σ and γ. Here, γ is tuned within {2−3, 2−2, ...29}

while σ is selected within {2−11, 2−10, ...22}. The GLSVM learns relational data by us-

ing the host graph to compute the adjacency matrix which will be applied in its learning

process. In addition to kernel parameter σ and the ambient space parameter γA, another
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Table 7.7: Comparison of the five models when trained based on the top level of the proposed

learning system.
Models AUC F1 ACC

Name Topology Train Test Train Test Train Test

Web Spam UK2006 Dataset

+B-GNN
√

0.9851 0.9685 0.6391 0.3593 0.9712 0.8843

+GNN
√

0.9720 0.9582 0.8203 0.8939 0.9551 0.8650

+GSVM
√

0.9738 0.9481 0.8385 0.8904 0.9601 0.8603

+MLP 0.9533 0.8770 0.7616 0.7514 0.9436 0.7190

+SVM 0.9745 0.9483 0.8306 0.8841 0.9592 0.8543

Web Spam UK2007 Dataset

+B-GNN
√

0.9154 0.8572 0.6395 0.3591 0.9655 0.9360

+GNN
√

0.9097 0.8534 0.6145 0.3553 0.9647 0.9382

+GSVM
√

0.9010 0.8455 0.5740 0.3644 0.9512 0.9251

+MLP 0.7433 0.7344 0.5139 0.3278 0.9569 0.9345

+SVM 0.8393 0.6730 0.4891 0.3372 0.9440 0.9424

variable γI of GLSVM decides the influence of structural information. Similar to the SVM,

the grid search of three parameters (σ, γA, γI) is conducted, i.e. σ ∈ {2−5, 2−4, , ...21},

γA ∈ {2−3, 2−2, ...23} and γI ∈ {2−3, 2−2, ...23}.

The experimental results are shown in Table 7.7. The “Topology” column indicates

whether or not the ”on-top” prediction models (illustrated by a + before a model name)

utilize relational information in their learning process.

It can be derived from the table that if one wishes to achieve very good AUC perfor-

mance on a problem featured with imbalanced class nature and topological data structures,

then GNN based models would be the most suitable. Nevertheless, the results obtained by

GLSVM are competitive, and especially SVM provides an excellent performance on the

ACC basic 2 for the UK2007 dataset. The models learning without topological relation are

not as robust as the ones taking advantage of relational data. It is also shown that the SVM

and GLSVM are not integrated well 3 in the parametrized based hierarchical models.

It is worth mentioning the computational requirements of those models for a closer ex-

2The Kernel machine can provide very good accuracy, as the nature of learning a support vector is to

absolutely separate input samples into positive or negative class. Therefore, the ACC performance is boosted

when trained with a kernel machine approach.
3The output of the parametric model is definite values which might better support the AUC performance,

while the probabilistic output of kernel methods is not as strong since it may not provide sufficient information.



7.4. Experimental Results 151

amination about the aspects of real-time processing advantages. In practice, kernel methods

usually hold the initiative in that they can learn a problem within a relatively short duration.

In particular, for the case of web spam detection problems, the SVM requires between 10.16

to 15.75 seconds for the training phase, while only 1.63 to 2.33 seconds are needed for test-

ing. Similarly, even though GLSVM incorporates both feature and topology in its learning

algorithm, its computation cost is approximately 4 times more than that of SVM model. On

the other hand, parametric models usually take more time for the training process. More

specifically, training a MLP with the web spam detection problems cost from 420 to 510

seconds (using the single thread implementation. The implementation as a massive parallel

system was not available at the time of the experiment. When implemented as the parallel

one, the speed up by a factor of 40x can be expected [139]). It is however interesting that

the testing computation time is only 0.5 to 2.0 seconds. The highest computational load is

for the GNN learning algorithm. Its training process requires around 200 times longer than

the MLP, which is about 24 to 48 hours depending on the parameters configured and the

status of the computer processor. The testing time requirement for the GNN model is again

not very long. From 40 to 70 seconds are needed for calculating the test results of all test set

samples in the UK2006 and UK2007 datasets. In other words, for one unknown sample, it

requires less than 0.05 second for the prediction time. What is evident here is that the GNN

based learning model to some extent delivers better learning performance. It is in fact prac-

tical since commonly the model is not required to be re-trained during the prediction stage,

and since the testing time for the GNNs model is still reasonable for a real-world learning

problem.

If our final experimental results are placed along with other methods that have been

published in the literature, our results come at the first place for both UK2006 and UK2007

datasets. In particular, in the case of UK2006 dataset, the best AUC result obtained so

far was by Abernethy et al [67, 94] with AUC = 0.963. The authors applied the graph
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Table 7.8: The GNN training performance.
Cls 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Sum Rmicro

0 2937 2 0 1 0 0 0 0 0 0 5 0 0 0 0 2,945 0.9973

1 2 1463 0 2 3 0 2 0 1 0 0 0 1 0 0 1,474 0.9925

2 1 1 912 0 0 1 0 0 0 0 0 0 0 0 0 9,15 0.9967

3 1 0 2 857 5 0 1 0 0 0 0 0 0 0 0 866 0.9896

4 3 3 0 5 777 0 1 0 0 0 0 0 0 0 0 789 0.9848

5 5 0 3 0 1 687 0 0 0 0 0 0 0 0 0 696 0.9871

6 0 1 0 3 0 0 674 1 0 0 0 0 0 0 0 679 0.9926

7 1 1 0 0 0 0 1 636 0 0 0 0 0 0 0 639 0.9953

8 0 1 0 1 0 0 0 0 635 0 0 0 0 0 0 637 0.9969

9 1 0 0 1 1 0 1 0 0 588 0 0 0 0 0 592 0.9932

10 16 3 0 0 0 2 0 0 1 0 383 0 0 0 0 405 0.9457

11 2 0 0 0 0 3 0 0 0 0 0 289 0 0 0 294 0.9830

12 0 0 0 0 0 0 0 0 1 0 0 0 263 0 0 264 0.9962

13 0 0 0 0 0 0 0 0 0 0 0 0 0 128 0 128 1.0000

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 114 1.0000

Regularization approach with usage of the C+RL+HG feature, topology and many other

features which they computed from the webpage content. Our model provides a little better

result for AUC = 0.969 (0.6% improvement). In terms of the UK2007 dataset, the model

named linked LDA introduced in [80] gives the result with AUC = 0.854. Our proposed

model produces AUC = 0.8572 which is about 0.3% better. All comparisons are suppose

that the size of the testing set is the same for all the models. These results confirm that the

proposed hierarchical learning system can perform consistently well on the two challenging

datasets.

7.4.5.2 For the INEX 2008 document categorization problem

Due to the large scale of INEX 2008 dataset, training a GNN would take almost 2 weeks!

We intentionally train a single GNN model at this final stage and then directly compare the

result with the other approaches available in the literature. The best final training and the

corresponding testing performance are shown in the two following Table 7.8 and Table 7.9.

It can be observed that the training result is almost perfect at Rmicro=0.9918 and F1=0.9919.

The results imply that it is difficult to achieve better results for not only the training but the

testing set as well.
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Table 7.9: The GNN testing performance.

Cls 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Sum Rmicro

0 25529 365 128 123 108 77 50 29 179 188 108 86 33 9 23 27,035 0.9443

1 292 10305 174 414 505 162 349 455 355 144 53 23 68 64 68 13,431 0.7673

2 144 122 7796 92 19 69 80 37 65 45 19 11 11 7 3 8,520 0.9150

3 87 621 116 5147 545 45 200 206 145 68 28 10 39 65 11 7,333 0.7019

4 237 817 16 582 4978 49 85 24 83 28 38 9 3 9 2 6,960 0.7152

5 159 355 183 102 62 4789 58 33 327 113 176 41 12 4 11 6,425 0.7454

6 71 631 86 286 91 61 4491 245 116 66 16 26 29 29 10 6,254 0.7181

7 47 512 32 130 20 39 205 4487 55 30 10 5 30 15 6 5,623 0.7980

8 179 630 59 221 79 240 85 92 3571 82 55 55 71 7 103 5,529 0.6459

9 346 219 172 110 62 53 56 46 100 4211 36 42 14 2 27 5,496 0.7662

10 398 166 163 53 35 181 18 16 123 45 2304 27 7 4 3 3,543 0.6503

11 240 39 30 73 14 120 22 24 128 69 10 1809 6 0 2 2,586 0.6995

12 38 249 37 68 15 36 74 87 239 18 13 18 1366 8 14 2,280 0.5991

13 24 208 6 65 23 15 109 25 37 12 5 4 3 496 5 1,037 0.4783

14 4 112 18 17 20 13 5 7 61 3 3 1 12 1 600 877 0.6842

Table 7.9 shows the corresponding generalization performance (in a confusion matrix)

for the INEX 2008 dataset. We achieved the final results of Rmicro=0.7955 and F1=0.7407.

Since the size of the testing set is much larger than that of the training set for this data, it

was viewed as a non-trivial problem, and is very difficult to improve the Rmicro significantly.

In fact, for each 0.01 increase in the Rmicro indicator, nearly 1200 additional documents

will be correctly classified. The generalization performance here indicates that the larger

the classes, the better the Rmicro performance is likely to be achieved. For example, the

largest document class consists of 27,035 documents, which is associated with a Rmicro

performance of 0.9443. The poorest one corresponding to Rmicro = 0.4783 belongs to the

class number 13 with only 1,037 documents. This again emphasizes the fact that the INEX

2008 problem is hard to obtain very good testing performance even though the training

performance can be easily enhanced to almost 100% accuracy.

Table 7.10 gives the generalization performance of several learning models applied to

the INEX 2008 dataset. The best Rmicro performance of 0.799 is retrieved by the SLVM

learning model which exploits the closed frequent subtrees [140]. It is obvious that the

generalization performance is only marginally improved even though this model takes many
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Table 7.10: INEX 2008 results.

Methods Features References Rmicro

SLVM closed frequent subtree HYP+CON+other [140] 0.799

Our proposed approach HYP+CON 0.7955

Entropy based method CON [141] 0.7879

SLVM origin CON [114] 0.7876

Link frequencies HYP+CON [84] 0.7849

Label propagation HYP+CON+TAG+other [142] 0.776

Naive Bayes extensions HYP+CON [143] 0.6980

Naive Bayes HYP+CON [144] 0.6813

additional features (other than the CON+HYP ones) as its input. Our model falls in second

place with Rmicro = 0.796, which is almost 1% better than the third place performance of

Rmicro = 0.788 [141]. Most of the other results have been cited from the INEX text document

categorization competition which took place in Australia in 2008 [84].

7.5 Conclusion

This chapter presented a hierarchical learning system in an integrative and comprehensive

manner. It has been shown that the proposed model is able to handle three different limi-

tations of a common/graph prediction model, including imbalanced class distribution, high

input dimensionality and the remote path dependency problem. We have shown experimen-

tal results in a staged based approach. The results are presented step by step from the first

to the last learning layer. The comparisons have presented us with a better understanding

of the model’s capability. It is found that the proposed prediction model is capable of deal-

ing with various difficult real-world applications and in obtaining state-of-the-art learning

performance.

The long term dependency has also been addressed in this chapter. In this case, deep

learning or hierarchical model was shown to be very effective in overcoming the problems.

In the next chapter, the problems of long term dependency will be further analyzed.



Chapter 8

Learning long-term dependency for

temporal classification problems

8.1 Introduction

Long term dependency in the graph learning domain has been addressed to some extent

in the previous two chapters of this thesis. This chapter will consider different aspects in

learning temporal time sequences, the dependency of one piece of data with the other are

mainly their correlation in time, i.e., a much more restricted form of dependency than had

they been in the graph domain. The question which we seek to answer is: in this restricted

form of dependency, are there better ways to handle the dependency than if they been in the

more general graph domain. Intuitively the answer would be affirmative, but it is the burden

of this chapter to demonstrate the qualitative difference in the performance of the techniques

used, had such an effect been taken into account.

Long term dependency issues have been originally observed in learning a parametric

model for a temporal sequence 1. When learning a parametrized model, the gradient of the

1Long term dependency issues do not occur in non parametric models, like support vector machines, kernel

machines.
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backprop error could be vanishingly small in some of the stages close to the input end of

the neural network architecture. This is due to the fact that the sigmoid nonlinearity used as

activation function of the hidden layer neurons, could wander deep into the nonlinear region

and hence its derivatives at such regions become very small. If this is propagated back a

number of stages in time in a time-unfolding of the recurrent neural network, then the error

could become smaller and smaller. This can cause a non-effective updating of the parameters

as the update depends on the derivative of the sigmoid function. Thus, long term dependency

is a special feature in learning parametric models using sigmoidal activation functions in the

hidden layer of the model. In recent years, alternative activation functions were proposed

for such parametric models, viz., rectilinear functions [145] or maxout functions [146].

Essentially, the idea is to synthesize sigmoid functions from linear or the maximum of a

number of outputs. Such activation functions do not suffer from long term dependency.

However, the deployments of such synthesized models often would involve large number

of parameters which consequently would require a large amount of training data (which we

do not have in the PA activity data), and thus, in this thesis, we will not be considering this

activation function synthesis approach.

In this chapter, we will deploy several machine learning approaches, with particular fo-

cus on both recursive and recurrent neural networks 2 and the integration of these, to predict

some functions related to physical activity (PA) data in preschool and school aged children.

As will be shown later in the chapter, PA type of data is particularly prone to long term

dependency issues if one wishes to use a parametric model to model its behaviours. Hence,

the PA type data would serve as an excellent example to study the long term dependency of

time sequences.

To date, several studies have employed MLPs to predict physical activity type in children

aged from 5 years old [86, 147, 148]. Due to age-based behavioral factors, models applied to

older children might not generalize well to predict the behaviour of younger children, since

2The difference between recursive and recurrent will be explained later in this chapter.
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the prediction task might be difficult for younger aged children who are less disciplined

than older ones. To the best of our knowledge, machine learning based accelerometry data

analysis has not been evaluated on data of very young children such as preschoolers.

This chapter aims to examine and compare the accuracy of various prediction models,

some of them integrated ones from components for predicting PA type in children aged

between 3 and 15.

The rest of this chapter is organized as follows: The data measurement and feature

extraction methods will be presented in Section 8.2 and Section 8.3, respectively. Section 8.4

describes the prediction models and integration approaches. The experimental setting is

given in Section 8.5. The illustrations for long term dependency problem are shown in

Section 8.6. Section 8.7 and Section 8.8 provide the experimental results for the preschool

children data and the SCA data, respectively. Some conclusions are drawn in Section 8.9.

8.2 Data measured

The following measurements were made, or inferred from the primary measurements:

• Metabolic equivalents (MET) is a physiological measure expressing the energy cost

of physical activities and is defined as the ratio of metabolic rate (the rate of energy

consumption) during a specific physical activity to a reference metabolic rate, set by

convention to 3.5 ml O2 kg
−1/min or equivalently:

1MET ≡ 1
kcal

kg ∗ h ≡ 4.184
kJ

kg ∗ h

where kcal is the energy expenditure in 1,000 calorie units, kJ is the energy expen-

diture in 1,000 joule units, kg is the weight in kilograms, and h is the time spent in

doing the physical activity.

• Activity energy expenditure (AEE) in kcal/kg/min.
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• Measured time in minutes

The activity is measured by accelerometers attached to various parts of the child’s body.

Thus, by measuring the activity as indicated by the accelerometer readings, together with

the time in which the activities were spent, it is possible to have an indication of the total

amount of energy spent in the physical activity, in kcal, by the child.

Two PA data cohorts, involving subjects of different ages, from 3 to 15 years old (preschool

children, school and adolescence (SCA)), were assessed in several laboratory based physical

activities. The detailed descriptions of these datasets were given in Chapter 4. The school

children and adolescence (SCA) dataset is relatively large; it contains 100 participants. The

preschool children dataset contains 11 participants.

The activities performed by both cohorts can be divided into five types, namely

• Sedentary,

• Light activities and games,

• Moderate-vigorous activities,

• Walking, and,

• Running.

The SCA dataset is extracted from a single hip mounted accelerometer. The preschool

children dataset is collected from three sensors attached at the hip, left wrist and right wrist

of the child.

Several raw data time sequences collected from the hip sensor wearable by preschool

children are shown in Figure 8.1, in which accelerometry for each activity type. The plots

show the G-forces (vertical axis) for each of the three directions X, Y and Z over a period

of 240 seconds.

As can be observed, from left to right and from top to bottom, the X, Y and Z values are

increasingly varied since the activities involved would require more energy.



8.2. Data measured 159

-1

-0.5

 0

 0.5

 1

 50  100  150  200

W
a
tc

h
in

g
 T

V

Time serial

X-value

Y-value

Z-value
-1

-0.5

 0

 0.5

 1

 50  100  150  200

S
to

ry
 t
im

e
Time serial

X-value

Y-value

Z-value
-1

-0.5

 0

 0.5

 1

 50  100  150  200

P
la

y
in

g
 i
P

a
d

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

Q
u
ie

t 
p
la

y

Time serial

X-value

Y-value

Z-value
-1

-0.5

 0

 0.5

 1

 50  100  150  200

C
o
lla

g
e

Time serial

X-value

Y-value

Z-value
-1

-0.5

 0

 0.5

 1

 50  100  150  200

W
a
lk

in
g

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

T
re

a
s
u
re

 h
u
n
t

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

C
le

a
n
in

g
 u

p

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

C
y
c
lin

g

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

O
b
s
ta

c
le

 c
o
u
rs

e
 

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

R
u
n
n
in

g

Time serial

X-value

Y-value

Z-value

-1

-0.5

 0

 0.5

 1

 50  100  150  200

B
e
a
n
 b

a
g
s

Time serial

X-value

Y-value

Z-value

Figure 8.1: The raw time series examples of 12 different physical activities. The horizontal

axis is time expressed in seconds.
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8.3 Problem description and feature extraction methods

Problem formulation:

Based on the measurements, as given by the accelerometer reading attached to the child’s

body, as obtained in the datasets, is it possible to predict the activity type of the children?

The prediction of subjects’ activity types is likely to be more difficult when the subject’s

age is < 5. While older aged subjects normally behave in a more disciplined manner in

that they would comply with the experimental procedures, the preschool children, however,

behave more freely. They are more active and excited with their surroundings. This results

in the data collected for preschool children being more noisy.

Feature extraction:

For the preschool children PA data, since each participant performs 12 different types of

activities, there are 11 (participants) × 12 = 132 input sequence samples. For the school and

adolescence (SCA) data, there are 100 (participants) × 12 = 1200 sequence samples. The

duration of each activity type is limited to a maximum of 2 minutes; the longest sequence

ones is 120 (seconds).

We applied the feature extraction method introduced in [86] and extract two types of

features:

• Summary of the distribution of counts features – Consider each minute as a basis.

Count the total number of peaks in the time series during this period. One then finds

the times when the following percentiles are reached:

– 10%, t1

– 25%, t2

– 50%, t3

– 75%, t4

– 90%, t5
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This gives some idea of the underlying distribution of counts.

• Summary of temporal dynamics. From ti obtained, i = 1, 2, 3, 4, 5, estimate a first

order model: ti = αti−1 + ǫ, where α is a constant, and ǫ is assumed to be Gaussian

distributed with N (0, σ), and σ is the unknown variance. In this case, it is quite simple

to derive two solutions for α:

– Case 1:

α =

∑5
i=2 t

2
i

∑5
i=2 titi−1

then, ǫi, i = 2, 3, 4, 5 can be estimated as follows:

ǫi = ti − αti−1

Then
∑5

i=2 ǫi ≈ 0, and σ2 =
∑5

i=2 ǫi

– Case 2:

α =

∑5
i=2 titi−1
∑5

i=2 t
2
i

Then, ǫi, i = 2, 3, 4, 5 can be computed as follows:

ǫi = ti − αti−1

Then,
∑5

i=2 ǫi ≈ 0 and σ2 =
∑5

i=2 t
2
i

For the selection criterion, we choose either case 1 or case 2 dependent on whether

∑5
i=2 ǫi is closer to 0.

Thus in each minute one would have 6 indicators relating to the distribution and the

dynamics of the peaks of the measurements. Note that ti in the feature set will be expressed

in terms of ratio ti
60

, and that 0 < α < 1. Thus there is no need for any scaling of these

numbers as they are all in the range [0, 1]. Note also that this way of extracting features
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will favor those activities with a large number of peaks. For example, in TV watching, it is

noted that there is hardly any peak in the time series, and thus the features extracted will be

almost all 0. If the time series consists of N minutes, then one would have a feature of 6N

dimensions. This will give a set of features describing the time series.

Since we are interested in the possibility of predicting the activity types, we will need to

use some kind of sliding window to obtain a moving average of these instantaneous features.

We divide the time series into non-overlapping intervals of W seconds. Thus, a time series

of N data points will consist of ⌊N
W
⌋ segments, where ⌊·⌋ denotes the maximum integer such

that 6 N
W

. Then, using W seconds as a window, one could obtain a sliding window version

of the features, each time sliding T seconds in the time direction. In our experiments, we

choose T = 10, 30, 60 seconds. Thus in the 10 seconds case, one will have a 60-dimensional

vector, while in the 60 seconds case, one will have a vector of dimension 360. So, say one

has a time series of length N seconds, if one has a window of length W seconds, each time

it advances by a step of say T seconds, then one has a set of vectors consisting of:

• V1 = [v1,v2, . . . ,vW ]

• V2 = [v1+T ,v2+T , . . . ,vW+T ]

• V3 = [v1+2T ,v2+2T , . . . ,vW+2T ]

• ...

where Vi ∈ R6W and vj ∈ R6. Note that Vi, are not independent vectors, but correlated

vectors. One can denote this set of vectors V . In the situation when there are not enough

samples in the last vector of V , this will be padded with 0 so that it will be the same dimen-

sion.
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Figure 8.2: (1) The prediction problem, when the next symbol in the sequence is to be pre-

dicted given a set of previous sequence. (2) The classification problem: ones have multiple

feature vectors formed in each window, where each vector is not necessarily independent,

we wish to classify that sequence as belonging to a class label.

8.4 The prediction models

The prediction and classification problems are stated as follows:

Prediction Problem:

Given a set of feature vectors vt, t = 1, 2, . . . , i, v ∈ R6, can we predict the one step ahead

value of vi+1?

Classification problem: Given the sequences Vi ∈ R6W , i = 1, 2, . . . , NV , can one classify

the sequence as class C?

Both problems are illustrated in Figure 8.2 using a DNA sequence as an example. This

chapter will only consider the classification problem.

Classification of the activity type

Using the features extracted from the time series, it is quite simple to observe that one

may train a multilayer perceptron to classify the activity type. In this case, one might have
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a training dataset Ttrain = {vi, ℓi}, i = 1, 2, 3, 4, 5; where i denotes the activity type, and

vi ∈ Rn, the n-dimensional feature vector extracted. Then, one can train a multilayer

perceptron with, say, one hidden layer, of width, say, N neurons, one can train this model

such that the least squared error between the output prediction of the model and the target

value of the label to be small, without causing any over-training issues. Then, given a testing

dataset Ttest = {vi}, without any associated output labels, one could use the trained model

to predict the labels associated with the given set of feature vectors.

For modelling the correlated sequences, we consider a number of possible models:

• Elman network or alternatively known as a recurrent neural network

• Recursive multilayer percetron (RMLP) network

• Stable state neural network (SSNN) which combines the recursive and recurrent neu-

ral network

• Long short term memory model

All these models have been described in Chapter 3, except the Stable state neural net-

work model, hence it will be explained in the following section. These basic models will

form the fundamental building blocks for composing the integrated models.

8.4.1 Stable state neural network

This model is proposed particularly to address temporal sequence classification problems.

This model is considered as a special case of the GNN model which was primarily intro-

duced to learn graph based problems [4]. Hence, we only present here the distinct features

of the Stable state neural network model.

In learning a temporal sequence, the algorithm can, at each node, take into account both

information from the previous steps as well as information in the present step. This model
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Figure 8.3: The SSNN prediction model

further includes that of the RMLP model which learns only information concurrent at each

time step. It also includes the recurrent neural network as a special case.

With respect to Figure 8.3, the SSNN model can be described as follows:

zt = T1
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(8.1)

xt = T2(zt) (8.2)

yt = T3(xt), (8.3)

where the input ut is m-dimensional vector and the output is p-dimensional vector. The

internal states zt and xt are respectively n1-dimensional and n2 dimensional vectors. The

transformation functions T1, T2 and T3 are respectively n1× (m+2n2), n2×n1 and p×n2.

These will also include the biases for each of the hidden layer neurons. The hidden layer

neurons all have sigmoidal activation functions.
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It is noted that in Equation 8.1 if xt is missing, then this collapses to the simple recur-

rent neural network, or alternatively known as the Elman network. On the other hand, in

Equation 8.1 if xt−1 is missing, then this will collapse back to an RMLP. Hence, the SSNN

model can be observed as a generalization of both the simple recurrent neural network and

the RMLP model.

The advantages of having both a recurrent link and a recursive link are that if the time

sequence exhibits behaviour which best be described by a recurrent neural network, the

SSNN model is capable of handling it. Additionally, if the time sequence exhibits a recursive

behaviour, then the SSNN can also handle it. Moreover, it can handle the complex situation

where recurrent behaviour interacts with the recursive behaviour of the time sequence.

The states x1 are guaranteed to be stable if similar to the GNN case, a fixed point theorem

is invoked. In practice, this implies that the parameters obtained must be within a certain

region, as required by the fixed point theorem. The training of the SSNN follows the usual

method. One forms a squared error function at the output end, and then the parameters in

the transformation T1, T2 and T3 can be updated, using a simple gradient descent algorithm.

Similar to the simple recurrent neural network situation, this model could exhibit long term

dependency issues.

8.4.2 Composition of models

In this section, we will consider some possible compositions of the basic modules. More-

over, one way of overcoming the long term dependency would be to modify the inputs, and

hence here we will consider this in this section as well.

8.4.2.1 Clustering for the pre-training stage

We are provided with a number of time series, e.g., from the acceleromters attached to the

subject’s body. These provide measurements which might not be decorrelated. A first step
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in the preprocessing of the input data can be to cluster, i.e., grouping the measurements

together.

The time series input vectors can be mapped into clusters on a two dimensional display

space, using a self organizing map (SOM). Once a SOM is trained, then this means that for

each input vector/sequence, there will be an associated two dimensional vector (x, y) in the

display space. The points on the two dimensional display space may form clusters, i.e., the

distance between points within a cluster is smaller than the distance between points in the

cluster with those points which are outside it.

Now this way of preprocessing assumes that the data within each window is independent

of those in other windows. Such an assumption is not usually valid, and hence the points

formed can only be considered to be used as bias, in biasing a solution towards these pre-

disposed locations.

8.4.2.2 The ensemble of SOM for clustering and the SSNN model (SOM+SSNN)

It can make sense to combine the SOM with the SSNN since they have complementary prop-

erties. The SOM is different from the SSNN in that its learning algorithm is unsupervised.

The SOM model is known to be less sensitive to noise in the data. The SSNN, on the other

hand, is supervised, and has much better generalisation ability. Inspired by the concept of

deep learning presented in [25], we propose to evaluate the ensemble model SOM+SSNN

consisting of a SOM as a first layer, followed by an SSNN as a second layer. Both layers

are trained on the same input data. The second layer receives the output of the first layer as

an additional input.

The role of SOM as a pre-training module in the ensemble model would have three

benefits. The first is that the SOM acts as a filter to reduce the dimensionality of the input

feature space to two dimensional feature space. Secondly, the SOM is flexible in setting

the mapping size. Mapping results can help to distinguish between samples by diversifying
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the data on the map, supporting the SSNN model to recognize potential heterogeneity in

the classes and to find an optimal solution. Finally, it is well-known that in the time series

learning process, the recurrent network usually forgets the information that occurred far in

the past. More technically, the recurrent model because of its parameters, will diminish

the effects of information which were far from the current time step, from the stability of

the recurrent neural network model property. The output of the SOM is informative to the

SSNN model in that it helps to alleviate the problem of learning long sequences by providing

the relational information of whole sequence to the input of SSNN. In particular, the SOM

output can bring the complete history information of the sequence to the point where a class

label is available.

Thus, in this case, we have the input feature vector which is the entire length of the time

sequence (say N seconds), and so it will be 6N dimensional vector, and it denotes a type of

activity by the children. If the time series is less than the maximum we can pad it with 0 so

that it will be the same dimension as the maximum length of the time sequences. We can

use SOM to train such a set of feature vectors. This will provide some possible clusters in

the two dimensional display space. Then, given a time sequence, we can find its associated

co-ordinates in the display space. This will be the additional information provided to the

augmented inputs of SSNN model, augmented by the additional 2 dimensions. This will

bias the SSNN model towards the activity type.

8.4.2.3 The SSNN model with modified input sequences (SSNNin)

The approach is to explore the possibility of feedforward of the inputs. The input sequence

to the SSNN model is modified by adding shortcut links from a node to other nodes which

appeared previously. Figure 8.4 presents some examples of adding shortcut links to the

original input sequence.

One can define a number of channels (or the number of shortcut links) and shortcut steps.
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Figure 8.4: The sequence with optional shortcut links

For example, if channel = 1 and step = 1, one obtains the original input sequence. If channel

= 1, step = 2, then there will be two inputs: u(t), and u(t-2). If channel = 1, and step =3, then

there will be two inputs: u(t), u(t-3). If channel=2, and step = 2, then there will be three

inputs, u(t), u(t-1), u(t-2). Note that in this case, the number of steps cannot be less than

the number of channels. If channel = 2, one channel at step = 3, and one channel at step =

2, then there will be three inputs: u(t), u(t-2), and u(t-3). In other words, if there is more

than one channel, then one must specify the number of delays in the input, which would be

available at the current input.

In this manner, the input to the SSNN is augmented, by the direct feedforward of the

past inputs to the current input. In general, we will have the following model:

x(t) = fw

(

u(t),u(t− d1),u(t− d2), . . . ,u(t− dp)
)

, (8.4)

where are the delays in the i-th channel. fw(·) is a parametrized function, with weights,

which can be determined. The activation function of the hidden layer neurons are assumed
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to be sigmoidal functions.

This idea works, because at time t, some of the past inputs are known directly, i.e., not

through the network. Thus, if there is long term dependency, this effect is lessened by having

direct past inputs to the current input, as such inputs are not modified through the unfolded

network architecture. Note that this method does not eliminate long term dependency al-

together. It helps to ameleorate the effect of long term dependency by making past inputs

available. The number of past inputs and the extent to which it will need to extend to the

past will depend on intuition, or experimentation.

8.5 Evaluation metrics and Experimental setting

8.5.1 For classification problems

Three different evaluation metrics are used, including ACC, Recall and F1. Because the

model performance is related to different activity types, the ACC evaluation method is con-

sidered the most important. Recall and F1 are shown for the purpose of assessing the gener-

alization abilities of the different prediction models, and for the purpose of presenting a rich

comparison between models.

Table 8.1 provides an indication of the basic experimental setup the experiment ID, the

window size, the step size in each of the experiment.

For preschool children data, the leave-one subject-out cross validation approach is ap-

plied. The model is trained on all the input sequences except for one subject’s data being left

out for the testing set. The learning parameters are tuned based on the training performance.

Prediction results are calculated by averaging over all leave-one- out trials. On the other

hand, for the SCA data, non-overlapping splits of the whole dataset into three equal sets,

namely training, validation and test sets are conducted. The model is trained on the train-

ing set, and the learning parameters tuned via the performance on the validation set. For
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Table 8.1: The experiment IDs and the corresponding input frame sizes and sliding steps for

recurrent NNs.

Experiment ID
Preschool children data SCA dataset

Frame size Step Frame size Step

1 9 9 5 5

2 18 18 5 1

3 18 9 10 10

4 27 27 10 5

5 27 18 10 1

6 27 9 20 10

7 36 27 20 5

8 36 18 20 1

9 36 9 40 10

10 45 27 40 5

11 45 18 40 1

12 45 9 55 5

13 54 27 55 1

14 54 18

15 54 9

both datasets, each experiment is run 5 times, and the averages and corresponding standard

deviations over 5 runs reported.

In general, the following configurations are used: The learning rate and radius of SOM

is selected within {0.6, 0.8, 1.0, 1.2} and {12, 15, 20, 25}, respectively. The SOM map sizes

are tried within {19x17, 20x19, 23x20, 25x22} for the preschool children data, and within

{53x47, 58x54, 61x58, 63x59} for the SCA data. For both datasets, the number of hid-

den neurons in the MLP, Elman recurrent network, RMLP and SSNN are tuned within

{3, 8, 13, 17, 25}. The number of state neurons in the state layers of the RMLP and SSNN

models is tried within {5, 7, 10, 17}. For the LSTM model, the number of memory blocks

and the number of cells in each block are selected within {5, 10, 13, 15, 25} and within

{1, 2, 3}, respectively. The training process of SOM and MLP is both terminated after

10,000 iterations. For all other models, the training duration was chosen to be 5000 epochs,

since the convergence was observed well within these number of epochs. The adaptive

learning rate is applied for supervised learning models. All the input features are normal-

ized. The experimental results obtained by the traditional MLP will form the baseline for

comparison purposes.
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Table 8.1 lists the index of experiment (IDs) associated with the frame sizes and sliding

steps set for the creation of the input of the recurrent network (the frame size is equivalent to

the size of network input, and the sliding steps decide where the next input frame is located).

In the following, Exp.ID will be used to indicate the frame as well as step setting here.

8.5.2 For Regression problems

For experimental evaluation, three different evaluation metrics are used, there being root

mean square error (RMSE), absolute mean bias (AMB) and mean bias (MB). In particular,

RMSE and AMB are used in the prediction of AEE, while RMSE and MB are the evaluation

methods for predicting MET values. AMB and MB are fairly similar, although AMB seems

more indicative than MB. Using MB instead of AMB is for the purpose of comparing with

the results of related studies.

Only the preschool children data contains AEE and MET measurements, hence the ex-

perimental results regarding the SCA data will not be available. All experimental settings are

set to be the same as in the classification task. In regression learning, we take advantage by

using the best selected parameters in the classification task. Additionally, SOMSD is used

here instead of the traditional SOM, since the former is capable of encoding contextual in-

formation of input data in its learning process, which might be useful for temporal sequence

learning. The learning rate and radius of SOMSD are selected from {0.6, 0.8, 1.0, 1.2} and

from {15, 20, 25, 30} respectively. The SOMSD map sizes are tried within {65x56, 77x60,

80x68, 90x70}. In addition, µ values are tried within {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 8.5: The normalized gradient during the back propagation process for the sequence

of sedentary.

8.6 The illustrations for long term dependency issue

8.6.1 Gradient in learning long sequences

Using the SCA data for this experiment, we apply 10s window for feature extraction and

then apply frame size 3 and sliding step 3 for the input of recurrent network. The following

demonstrations are taken at the end of the training process. All the network parameters

are set to be the same as in the experimental procedure section. The model used for the

experiment is SSNN.

We consider 5 sequences of different types of physical activities. Figure 8.5 displays the

normalized gradient during the backpropagation process when learning on the sequence of

sedentary activity. Similarly, Figure 8.6 to Figure 8.9 are for the sequences of light activities

and games, moderate-vigorous activities, walking and running, respectively.

From these figures, it can empirically be inferred that long term dependency appears
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Figure 8.6: The normalized gradient during the back propagation process for the sequence

of light activities and games.
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of moderate-vigorous activities.
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Figure 8.8: The normalized gradient during the back propagation process for the sequence

of walking activity.
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Figure 8.9: The normalized gradient during the back propagation process for the sequence

of running activity.



8.6. The illustrations for long term dependency issue 176

clearly when learning long sequences. It shows that the gradient rapidly decreases and be-

comes extremely small when the network is in the backpropagation process. If one takes

into account the constant 10E-11, then the gradient will be smaller than that value after pro-

cessing layer 7 to 11 of the sequence, depending on the type of sequence being processed. In

particular, the gradients regarding more active activities (i.e. walking and running) decrease

slower than that of sedentary activities. The reason for this is that the input sequences of

the sedentary class contain more zero values than the other classes. The significant reduc-

tion of gradient results in less effectiveness in learning a long sequence, especially when the

important information of the sequence lies deep within the sequence. We conclude that the

current learning problem is affected by the long term dependency issue.

8.6.2 A solution to long term dependency problem

So far, the experiment sequences have no additional shortcut links. Figure 8.11 displays the

normalized gradients when learning on the sequence with shortcut links added. In this case,

we take the running sequence for demonstration purposes. Figure 8.10 illustrates a sequence

with 21 time step data points. Here we take into account a single particular node t20, the

channel here being the number of additional shortcut link (sl). All the other nodes have a

similar property, which is intentional though not shown in this figure for clarity. When the

channel is expanded, more shortcut links to the distant history nodes are added. Because we

investigate the effect of additional links on the problem of long term dependency, we focus

on changes in the channel numbers while keeping the shortcut step fixed at 2. Figure 8.11

shows the gradients when learning a sequence which is applied with different channel num-

bers (i.e channel = 2,4,6,9) compared with the original sequence. It is seen that adding

shortcut links is effective in addressing the long term dependency problem. The gradients in

the case of applying the input modification method do not vanishingly decline, but decrease

gradually. Hence the deep points in the sequence are all taken into account in the learning
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Figure 8.10: Adding shortcut links to original sequence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

G
ra

d
ie

n
t

Sequence points

Channel=9, adding 9 shortcut links
Channel=6, adding 6 shortcut links
Channel=4, adding 4 shortcut links
Channel=2, adding 2 shortcut links

Original sequence

Figure 8.11: The normalized gradient during the back propagation for sequences with dif-

ferent channel numbers.

process. However, it is also shown that the problem of selecting the best number of channels

is left for the trail-and-error in the later experimental task.



8.7. Experimental results for preschool children data 178

 0

 3

 6

 9

 12

 15

 0  3  6  9  12  15  18

 0

 3

 6

 9

 12

 15

 0  3  6  9  12  15  18

Sedentary
Light activities

Moderate to Vigorous
Walking

Jogging

 0

 3

 6

 9

 12

 15

 0  3  6  9  12  15  18

 0

 3

 6

 9

 12

 15

 0  3  6  9  12  15  18

Sedentary
Light activities

Moderate to Vigorous
Walking

Jogging

 0

 3

 6

 9

 12

 15

 0  3  6  9  12  15  18

 0

 3

 6

 9

 12

 15

 0  3  6  9  12  15  18

Sedentary
Light activities

Moderate to Vigorous
Walking

Jogging

 0

 3

 6

 9

 12

 15

 18

 21

 0  3  6  9  12  15  18  21  24

 0

 3

 6

 9

 12

 15

 18

 21

 0  3  6  9  12  15  18  21  24

Sedentary
Light activities

Moderate to Vigorous
Walking

Jogging

Figure 8.12: SOM activation maps for left wrist (top left), right wrist (top right), hip (bottom

left) with same map size 19x17, and three data combination (bottom right) with map size

25x22.

8.7 Experimental results for preschool children data

This section will present prediction results of several neural networks for the preschool

children data. The results are shown along with an increment of model complexity. For

each table, the results in bold indicate the best performance.

8.7.1 The self organizing map

In this section, the SOM model is implemented. We aim first to show the projection of activ-

ity samples on the activation map, and secondly to analyze the possibility of incorporating

the SOM model into a layer-wise learning regime. Three sensors’ data are separately and

interactively learned. Corresponding projection maps are shown in Figure 8.12. It can be
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Table 8.2: Performance of MLP on preschool children data.

Data selection
Training performance Testing performance

ACC Recall F1 ACC Recall F1

Hip data

10s data 0.882 [0.002] 0.848 [0.005] 0.853 [0.005] 0.630 [0.023] 0.586 [0.027] 0.544 [0.023]

30s data 0.889 [0.003] 0.858 [0.003] 0.861 [0.004] 0.647 [0.026] 0.601 [0.032] 0.564 [0.026]

60s data 0.898 [0.004] 0.871 [0.004] 0.874 [0.004] 0.685 [0.014] 0.634 [0.014] 0.598 [0.018]

Left wrist data

10s data 0.931 [0.002] 0.896 [0.003] 0.912 [0.004] 0.716 [0.013] 0.682 [0.024] 0.640 [0.028]

30s data 0.937 [0.004] 0.907 [0.006] 0.922 [0.004] 0.722 [0.012] 0.716 [0.009] 0.677 [0.010]

60s data 0.940 [0.004] 0.914 [0.008] 0.928 [0.007] 0.724 [0.009] 0.695 [0.022] 0.655 [0.025]

Right wrist data

10s data 0.916 [0.004] 0.878 [0.006] 0.885 [0.005] 0.636 [0.016] 0.571 [0.013] 0.530 [0.016]

30s data 0.938 [0.002] 0.902 [0.004] 0.911 [0.004] 0.674 [0.005] 0.594 [0.022] 0.552 [0.022]

60s data 0.952 [0.003] 0.926 [0.006] 0.933 [0.005] 0.683 [0.016] 0.618 [0.032] 0.582 [0.030]

3 data combination

10s data 0.964 [0.002] 0.944 [0.003] 0.954 [0.003] 0.705 [0.027] 0.609 [0.026] 0.579 [0.026]

30s data 0.965 [0.002] 0.948 [0.003] 0.956 [0.003] 0.722 [0.023] 0.656 [0.029] 0.628 [0.033]

60s data 0.966 [0.001] 0.951 [0.003] 0.955 [0.002] 0.737 [0.009] 0.683 [0.026] 0.642 [0.028]

observed that the more overlap and confusion between activity samples, the more difficult

the prediction task will be. Concerning the projection, the mappings of left wrist data and

the combination data could be seen to be more obviously clustered. In the other two cases of

right wrist and hip data however, the mappings of samples are inter-weaved. There are some

overlaps between sedentary, light activities and games and moderate-to-vigorous activities.

The right wrist data seems to contain a certain level of noise. It practically reflects the fact

that most participated children move their right hands more frequently while performing

actions. Note that, for these little children, the jogging term is equivalent to running in older

children.

8.7.2 The multi-layer perceptron

The traditional MLP model is implemented in this section. The MLP can be configured

with multiple hidden layers. The standard model normally contains only one hidden layer.

Different data extraction based on 10s, 30s and 60s windows are applied. The results of

MLP training on these data are indicative to see which feature extraction approach is the

best. In fact, smaller windows for feature extraction mean that shorter bit of activities will

be validated. The disadvantage of a small window base is that it may capture more noise
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Table 8.3: Performance of Elman network on preschool children data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.895 [0.012] 0.878 [0.017] 0.884 [0.015] 0.693 [0.025] 0.611 [0.034] 0.579 [0.037]

2 0.916 [0.001] 0.915 [0.002] 0.915 [0.002] 0.705 [0.014] 0.635 [0.022] 0.604 [0.025]

3 0.894 [0.040] 0.892 [0.039] 0.893 [0.040] 0.679 [0.037] 0.606 [0.056] 0.574 [0.058]

4 0.917 [0.001] 0.916 [0.001] 0.916 [0.001] 0.743 [0.025] 0.686 [0.031] 0.649 [0.030]

5 0.915 [0.001] 0.912 [0.002] 0.913 [0.002] 0.717 [0.028] 0.663 [0.029] 0.631 [0.033]

6 0.912 [0.005] 0.906 [0.011] 0.908 [0.009] 0.704 [0.011] 0.633 [0.021] 0.598 [0.020]

7 0.915 [0.001] 0.912 [0.003] 0.913 [0.003] 0.692 [0.017] 0.637 [0.038] 0.603 [0.045]

8 0.915 [0.001] 0.914 [0.002] 0.915 [0.002] 0.731 [0.010] 0.665 [0.020] 0.631 [0.020]

9 0.913 [0.002] 0.910 [0.005] 0.911 [0.005] 0.682 [0.019] 0.604 [0.037] 0.573 [0.038]

10 0.916 [0.000] 0.916 [0.001] 0.916 [0.001] 0.718 [0.020] 0.668 [0.039] 0.638 [0.042]

11 0.916 [0.000] 0.916 [0.001] 0.916 [0.001] 0.713 [0.028] 0.648 [0.027] 0.614 [0.029]

12 0.916 [0.001] 0.915 [0.001] 0.915 [0.001] 0.703 [0.029] 0.616 [0.038] 0.583 [0.039]

13 0.917 [0.000] 0.916 [0.001] 0.916 [0.001] 0.717 [0.027] 0.642 [0.039] 0.609 [0.039]

14 0.916 [0.001] 0.915 [0.002] 0.916 [0.001] 0.722 [0.020] 0.663 [0.033] 0.633 [0.034]

15 0.915 [0.001] 0.914 [0.002] 0.915 [0.002] 0.696 [0.019] 0.641 [0.036] 0.608 [0.037]

for a particular action. On the other hand, large windows for feature extraction can capture

overall trends and the direction of activities.

As can be seen from Table 8.2, while the right wrist data is provided with the best training

accuracy compared with two other sensors’ data, the best generalization performance is

related to the left wrist data. Overall, the combination of three sensor data provides the

best training and generalization performance. More interestingly, the 60s data is always

associated with better prediction results than the 10s and 30s cases. In the later parts, we

will use 60s data for different recurrent NNs.

8.7.3 The Elman recurrent neural network and the RMLP learning

Two recurrent neural networks will be deployed in this section. While the Elman network

was known as the first recurrent model capable of learning time series, the RMLP was

introduced originally for tree structure learning. In this problem, an input sequence is viewed

as a simple tree in which the root node is located at the end (or can be created via a super

node which connects to all the nodes on the sequence), and the leaf node is located at the

beginning of the sequence.



8.7. Experimental results for preschool children data 181

Table 8.4: Performance of RMLP on preschool children data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.878 [0.010] 0.843 [0.016] 0.852 [0.017] 0.729 [0.007] 0.621 [0.022] 0.589 [0.021]

2 0.893 [0.038] 0.887 [0.037] 0.889 [0.038] 0.711 [0.031] 0.639 [0.033] 0.614 [0.038]

3 0.878 [0.041] 0.856 [0.045] 0.861 [0.044] 0.671 [0.034] 0.574 [0.037] 0.539 [0.032]

4 0.916 [0.000] 0.916 [0.000] 0.915 [0.000] 0.757 [0.006] 0.689 [0.004] 0.665 [0.003]

5 0.912 [0.000] 0.911 [0.003] 0.912 [0.003] 0.717 [0.003] 0.631 [0.000] 0.605 [0.005]

6 0.899 [0.003] 0.882 [0.008] 0.887 [0.006] 0.686 [0.012] 0.578 [0.038] 0.536 [0.042]

7 0.916 [0.000] 0.915 [0.000] 0.915 [0.000] 0.736 [0.000] 0.696 [0.000] 0.682 [0.000]

8 0.914 [0.000] 0.911 [0.000] 0.911 [0.000] 0.701 [0.000] 0.597 [0.000] 0.567 [0.000]

9 0.889 [0.037] 0.878 [0.037] 0.882 [0.037] 0.696 [0.033] 0.610 [0.025] 0.579 [0.026]

10 0.899 [0.037] 0.899 [0.036] 0.899 [0.037] 0.710 [0.027] 0.638 [0.029] 0.608 [0.027]

11 0.899 [0.037] 0.898 [0.036] 0.899 [0.037] 0.697 [0.035] 0.621 [0.047] 0.594 [0.043]

12 0.898 [0.037] 0.896 [0.038] 0.897 [0.038] 0.675 [0.022] 0.611 [0.039] 0.572 [0.037]

13 0.899 [0.037] 0.898 [0.037] 0.898 [0.037] 0.711 [0.023] 0.645 [0.035] 0.615 [0.034]

14 0.899 [0.037] 0.897 [0.036] 0.898 [0.036] 0.706 [0.035] 0.628 [0.041] 0.599 [0.038]

15 0.896 [0.038] 0.893 [0.038] 0.894 [0.038] 0.704 [0.040] 0.630 [0.054] 0.601 [0.053]

Table 8.3 and Table 8.4 present the prediction results of Elman and RMLP, respectively.

As can be observed, the two models’ performance is quite similar, although the RMLP

testing results are a little better. It is found that RMLP is able to classify roughly an equal

number of samples in each class, while the Elman network is more biased on one class or

the other. In particular, the F1 indicator in the testing performance of RMLP is almost 4%

better than that of the Elman network. An interesting aspect is that one would find it difficult

to decide which sequence length (or a selection of window and step size) would bring about

the best network performance without an empirical trial and error procedure.

8.7.4 The long short term memory

One of the most powerful recurrent NN models, the LSTM, is implemented in this section.

This model is well known in the context of long time lag time series problems. It was

proven the long term dependency can be addressed very effectively by this model [26]. The

input sequence setting used for LSTM is maintained to be the same as for the RMLP and

Elman network. The experimental results of LSTM are given in Table 8.5. It is observed

that the LSTM provides fairly stable generalization ability since the oscillation in testing



8.7. Experimental results for preschool children data 182

Table 8.5: Performance of LSTM preschool children data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.803 [0.026] 0.744 [0.040] 0.750 [0.044] 0.765 [0.021] 0.688 [0.037] 0.650 [0.042]

2 0.887 [0.025] 0.833 [0.035] 0.839 [0.034] 0.820 [0.020] 0.756 [0.027] 0.723 [0.026]

3 0.891 [0.027] 0.837 [0.043] 0.845 [0.043] 0.815 [0.020] 0.732 [0.047] 0.697 [0.053]

4 0.901 [0.018] 0.839 [0.036] 0.849 [0.035] 0.808 [0.013] 0.717 [0.028] 0.680 [0.029]

5 0.904 [0.020] 0.844 [0.030] 0.857 [0.034] 0.820 [0.012] 0.739 [0.040] 0.705 [0.041]

6 0.912 [0.017] 0.853 [0.028] 0.864 [0.032] 0.824 [0.015] 0.752 [0.027] 0.716 [0.028]

7 0.892 [0.031] 0.821 [0.052] 0.831 [0.053] 0.805 [0.016] 0.723 [0.035] 0.690 [0.038]

8 0.907 [0.010] 0.845 [0.015] 0.857 [0.014] 0.817 [0.025] 0.757 [0.029] 0.725 [0.033]

9 0.919 [0.024] 0.867 [0.038] 0.883 [0.036] 0.820 [0.020] 0.755 [0.035] 0.723 [0.035]

10 0.907 [0.026] 0.851 [0.041] 0.860 [0.043] 0.806 [0.024] 0.739 [0.045] 0.704 [0.046]

11 0.937 [0.008] 0.893 [0.016] 0.908 [0.016] 0.833 [0.012] 0.788 [0.029] 0.753 [0.029]

12 0.905 [0.018] 0.850 [0.028] 0.862 [0.031] 0.809 [0.016] 0.748 [0.017] 0.718 [0.015]

13 0.911 [0.020] 0.853 [0.036] 0.867 [0.036] 0.818 [0.014] 0.759 [0.028] 0.722 [0.029]

14 0.925 [0.010] 0.884 [0.017] 0.895 [0.018] 0.800 [0.017] 0.752 [0.021] 0.720 [0.018]

15 0.914 [0.013] 0.867 [0.023] 0.877 [0.021] 0.803 [0.009] 0.742 [0.008] 0.706 [0.016]

performance is small given that the input sequences are changed. Generally, a significant

improvement in network performance can be seen when compared with the RMLP and

Elman models. In particular, while the training accuracy shows around a 2% improvement,

the generalization performance increases by more than 7% for ACC, around 9% for Recall,

and 7% for the F1 indicator.

8.7.5 The SSNN based learning models

The SSNN model is first implemented, then the integrated models taking advantages of

SSNN will be presented. This allows a comparison between the original SSNN and the

integrated complex models, namely SOM+SSNN and the long term dependency solving

model (SOM+SSNNin). The experimental performance of the SSNN model is given in

Table 8.6. As can be observed, the SSNN training performance is a little poorer than the

LSTM model. Nevertheless, its testing accuracy is better than that of the LSTM model.

However, the SSNN is not as good as the LSTM in recognizing small class samples. In

particular, its Recall and F1 indicators are seen to be 3% lower than LSTM’s results. Since

ACC is considered the most important evaluation metric for this problem, it is hard to dispute
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Table 8.6: Performance of SSNN on preschool children data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.768 [0.023] 0.637 [0.031] 0.621 [0.036] 0.774 [0.006] 0.662 [0.010] 0.626 [0.013]

2 0.866 [0.038] 0.767 [0.050] 0.763 [0.052] 0.821 [0.017] 0.716 [0.019] 0.683 [0.021]

3 0.849 [0.025] 0.734 [0.046] 0.723 [0.052] 0.795 [0.008] 0.674 [0.030] 0.637 [0.033]

4 0.874 [0.016] 0.764 [0.024] 0.773 [0.026] 0.820 [0.020] 0.705 [0.038] 0.672 [0.040]

5 0.905 [0.018] 0.820 [0.026] 0.826 [0.028] 0.848 [0.020] 0.753 [0.034] 0.728 [0.036]

6 0.875 [0.031] 0.753 [0.046] 0.746 [0.054] 0.827 [0.017] 0.707 [0.038] 0.671 [0.041]

7 0.798 [0.030] 0.645 [0.041] 0.633 [0.049] 0.760 [0.016] 0.594 [0.025] 0.549 [0.025]

8 0.851 [0.029] 0.729 [0.043] 0.730 [0.049] 0.791 [0.008] 0.658 [0.017] 0.619 [0.019]

9 0.867 [0.016] 0.742 [0.025] 0.737 [0.031] 0.809 [0.019] 0.681 [0.030] 0.644 [0.032]

10 0.798 [0.021] 0.635 [0.026] 0.622 [0.031] 0.773 [0.009] 0.602 [0.018] 0.556 [0.017]

11 0.806 [0.028] 0.646 [0.031] 0.634 [0.037] 0.774 [0.018] 0.601 [0.028] 0.556 [0.029]

12 0.844 [0.024] 0.695 [0.034] 0.683 [0.038] 0.783 [0.016] 0.628 [0.028] 0.588 [0.031]

13 0.800 [0.014] 0.630 [0.021] 0.612 [0.026] 0.776 [0.010] 0.600 [0.020] 0.556 [0.022]

14 0.807 [0.024] 0.634 [0.032] 0.613 [0.037] 0.789 [0.010] 0.600 [0.018] 0.554 [0.021]

15 0.785 [0.022] 0.595 [0.025] 0.561 [0.030] 0.773 [0.015] 0.582 [0.022] 0.535 [0.023]

Table 8.7: Performance comparison on preschool children data, when trained with different

SSNN based models.

Models
Training performance Testing performance

ACC Recall F1 ACC Recall F1

SSNN 0.905 [0.018] 0.820 [0.026] 0.826 [0.028] 0.848 [0.020] 0.753 [0.034] 0.728 [0.036]

SOM+SSNN 0.912 [0.015] 0.831 [0.027] 0.826 [0.029] 0.855 [0.014] 0.786 [0.027] 0.761 [0.029]

SOM+SSNNin 0.920 [0.019] 0.846 [0.034] 0.845 [0.039] 0.894 [0.011] 0.859 [0.028] 0.843 [0.033]

the promising aspects of the SSNN model.

Table 8.7 summarizes the performance of the two SSNN based integrated models. The

best SSNN experimental result is also present in this table for comparison purpose. The

unsupervised pre-training module SOM is shown to be helpful in the SOM+SSNN model.

Such integration helps to increase the generalization ability over the original SSNN. Impor-

tantly, the application of input modification in the SOM+SSNNin model is more beneficial.

Taking the SSNN as the baseline, the complex model’s testing ACC is increased by almost

5%, while more than 10% improvement for Recall and F1 indicators can be seen.
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Table 8.8: Performance of MLP on School and Adolescent (Trost) data.

Data selection
Training performance Testing performance

ACC Recall F1 ACC Recall F1

Temporal sequence data

10s data 0.909 [0.019] 0.907 [0.024] 0.911 [0.021] 0.824 [0.018] 0.805 [0.027] 0.808 [0.021]

30s data 0.899 [0.018] 0.893 [0.022] 0.897 [0.017] 0.826 [0.020] 0.807 [0.027] 0.811 [0.022]

60s data 0.910 [0.016] 0.905 [0.018] 0.910 [0.016] 0.828 [0.018] 0.809 [0.025] 0.814 [0.021]

Frequency transformed data

10s data 0.882 [0.013] 0.882 [0.013] 0.889 [0.011] 0.785 [0.015] 0.760 [0.012] 0.759 [0.016]

30s data 0.864 [0.008] 0.858 [0.014] 0.862 [0.011] 0.800 [0.010] 0.762 [0.018] 0.767 [0.013]

60s data 0.869 [0.008] 0.867 [0.012] 0.877 [0.010] 0.809 [0.006] 0.780 [0.010] 0.788 [0.009]

8.8 Experimental results on SCA data

The prediction results on SCA data will be given in this section. We will show the model

performance in the same order as for the preschool children data. The learning parameters

and experiment settings are kept the same. Some comparisons could be made to show the

result differences between the two datasets learning by the same prediction models.

8.8.1 The self organizing map

Figure 8.13 illustrates the output activation map of SOM for the SCA data, which are ob-

tained on the 60s data. The best map size selected is 58x54, which is larger than the one

used for the preschooler data, since this dataset involves a larger number of participants,

or a larger number of input samples. It can be observed that only sedentary and light HH

and games activities are seen to overlap, while all other samples are intuitively separated.

It reflects the fact that the SCA data does not contain as much noise as the small children

data, and that it is more likely to be separable by a standard neural network model. How-

ever, since several inter-weaves still appear in the map, a perfect classification performance

seems not possible for this data set.
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Figure 8.13: SOM activation map for SCA data with map size 58x54.

8.8.2 MLP learning

In this section, a conventional MLP is implemented. We use both the original temporal

sequence as well as the frequency data which is transformed from temporal via the Fast

Fourier Transform method. The classification results are shown in Table 8.8. As expected,

the classification performance for SCA data is significantly higher when compared with the

preschool children data. Almost 10% improvement in prediction accuracy is obtained when

experimenting with the same MLP learner. It is likewise anticipated that due to the trans-
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Table 8.9: Performance of Elman network on the SCA data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.794 [0.063] 0.744 [0.050] 0.757 [0.063] 0.792 [0.031] 0.760 [0.031] 0.774 [0.031]

2 0.778 [0.013] 0.699 [0.024] 0.717 [0.029] 0.779 [0.008] 0.714 [0.015] 0.736 [0.016]

3 0.812 [0.007] 0.755 [0.009] 0.774 [0.008] 0.805 [0.005] 0.761 [0.010] 0.781 [0.009]

4 0.807 [0.006] 0.741 [0.013] 0.762 [0.014] 0.798 [0.009] 0.744 [0.022] 0.765 [0.020]

5 0.804 [0.052] 0.755 [0.045] 0.767 [0.052] 0.799 [0.058] 0.768 [0.049] 0.777 [0.058]

6 0.819 [0.008] 0.766 [0.011] 0.785 [0.011] 0.820 [0.005] 0.787 [0.005] 0.804 [0.006]

7 0.820 [0.007] 0.766 [0.007] 0.786 [0.010] 0.816 [0.007] 0.781 [0.004] 0.799 [0.007]

8 0.829 [0.009] 0.779 [0.010] 0.799 [0.011] 0.819 [0.005] 0.792 [0.005] 0.808 [0.005]

9 0.841 [0.006] 0.799 [0.007] 0.820 [0.008] 0.836 [0.013] 0.814 [0.012] 0.824 [0.016]

10 0.838 [0.018] 0.798 [0.017] 0.819 [0.016] 0.824 [0.007] 0.799 [0.007] 0.811 [0.009]

11 0.824 [0.007] 0.775 [0.009] 0.793 [0.010] 0.816 [0.006] 0.787 [0.007] 0.803 [0.008]

12 0.840 [0.015] 0.800 [0.020] 0.817 [0.021] 0.830 [0.007] 0.803 [0.007] 0.817 [0.009]

13 0.805 [0.012] 0.749 [0.014] 0.769 [0.016] 0.811 [0.013] 0.777 [0.011] 0.795 [0.015]

formation to frequency data, the MLP performance decreases by 2%-3% for both training

and testing performance. The reason might be that some information loss occurs when the

temporal sequences are transformed into the frequency domain. It is observable that there

is no significant difference in the experimental results when learning with either 10s, 30s

or 60s data. Hence, we will use the 10s data (longer sequence length) in the next parts, to

compare the model effectiveness in learning temporal sequences.

8.8.3 Elman and RMLP learning

Two early versions of recurrent NNs, Elman network and RMLP, are deployed, and their

experimental results compared. Their corresponding training and prediction performances

are summarized in Table 8.9 and Table 8.10, respectively. It can be seen that the Elman

network is very much influenced by its initialization conditions. The range between the best

and the worst testing performance is large, about 9% in accuracy. Nevertheless, the result of

the Elman network is better than that of the MLP shown in Table 8.8.

Table 8.10 shows that the RMLP outperforms both the traditional MLP and the Elman

network. On average, an improvement of more than 3% regarding the ACC indicator can be

observed when compared with the Elman network performance. Both the Elman and RMLP
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Table 8.10: Performance of RMLP on the SCA data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.852 [0.014] 0.808 [0.017] 0.827 [0.016] 0.836 [0.015] 0.816 [0.020] 0.826 [0.020]

2 0.828 [0.008] 0.775 [0.013] 0.794 [0.012] 0.807 [0.008] 0.772 [0.021] 0.786 [0.017]

3 0.869 [0.003] 0.833 [0.007] 0.849 [0.006] 0.853 [0.008] 0.835 [0.011] 0.845 [0.012]

4 0.858 [0.011] 0.819 [0.014] 0.836 [0.012] 0.843 [0.007] 0.823 [0.012] 0.833 [0.009]

5 0.849 [0.015] 0.806 [0.018] 0.822 [0.019] 0.835 [0.015] 0.814 [0.020] 0.825 [0.020]

6 0.868 [0.008] 0.833 [0.008] 0.849 [0.009] 0.854 [0.008] 0.837 [0.006] 0.846 [0.007]

7 0.874 [0.015] 0.842 [0.017] 0.856 [0.017] 0.856 [0.005] 0.839 [0.008] 0.850 [0.007]

8 0.874 [0.008] 0.840 [0.011] 0.853 [0.011] 0.856 [0.007] 0.841 [0.010] 0.849 [0.009]

9 0.871 [0.003] 0.841 [0.006] 0.853 [0.005] 0.866 [0.005] 0.852 [0.008] 0.861 [0.008]

10 0.875 [0.007] 0.845 [0.010] 0.858 [0.009] 0.862 [0.001] 0.848 [0.004] 0.855 [0.003]

11 0.882 [0.009] 0.852 [0.009] 0.865 [0.008] 0.859 [0.007] 0.845 [0.007] 0.852 [0.008]

12 0.873 [0.007] 0.844 [0.007] 0.856 [0.007] 0.861 [0.004] 0.851 [0.005] 0.858 [0.006]

13 0.875 [0.006] 0.843 [0.009] 0.856 [0.009] 0.862 [0.005] 0.852 [0.008] 0.858 [0.007]

algorithms are negatively affected by the length of input sequences. In particular, the poorest

performance results from the longest sequence input. The RMLP performance for this data

is approximately 10% better than its results for the preschool children data. This implies

that the prediction task might be simpler for the case of older aged children activities.

8.8.4 Learning with the LSTM

The well known model being the least effected in learning very long temporal sequence, the

LSTM, is studied in this section. In other words, the LSTM model is capable of address-

ing the long term dependency problem effectively. The reason for this might be attributed

to the existence of memory block gates which are properly learned to open whenever the

relevant information comes, and to shut otherwise. That information is captured inside the

memory block as long as it is useful for the prediction task. The LSTM experimental results

are shown in Table 8.11. As can be seen, the LSTM is very stable with changes of input

sequence lengths as well as the sizes of input layer. The difference in the prediction perfor-

mance between the longest and the shortest input sequence is only 1% accuracy. That is also

the case between the smallest and the largest sizes of input layer. The standard deviations

are also small for generalization performance when compared with that of the MLP or El-
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Table 8.11: Performance of LSTM recurrent NN on SCA data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.874 [0.009] 0.845 [0.013] 0.855 [0.010] 0.864 [0.008] 0.848 [0.009] 0.858 [0.009]

2 0.863 [0.022] 0.831 [0.033] 0.843 [0.033] 0.843 [0.007] 0.819 [0.010] 0.830 [0.009]

3 0.901 [0.008] 0.885 [0.015] 0.892 [0.012] 0.858 [0.004] 0.849 [0.007] 0.850 [0.004]

4 0.900 [0.010] 0.882 [0.019] 0.889 [0.015] 0.854 [0.008] 0.845 [0.006] 0.845 [0.011]

5 0.879 [0.011] 0.855 [0.014] 0.865 [0.011] 0.865 [0.004] 0.849 [0.008] 0.860 [0.004]

6 0.885 [0.014] 0.858 [0.012] 0.869 [0.014] 0.871 [0.005] 0.860 [0.005] 0.868 [0.005]

7 0.895 [0.020] 0.873 [0.022] 0.881 [0.020] 0.873 [0.006] 0.857 [0.004] 0.866 [0.006]

8 0.886 [0.019] 0.860 [0.018] 0.870 [0.019] 0.873 [0.004] 0.855 [0.005] 0.867 [0.004]

9 0.885 [0.019] 0.858 [0.019] 0.869 [0.019] 0.870 [0.006] 0.857 [0.006] 0.865 [0.006]

10 0.904 [0.018] 0.888 [0.019] 0.893 [0.018] 0.884 [0.007] 0.866 [0.009] 0.872 [0.007]

11 0.898 [0.018] 0.885 [0.020] 0.889 [0.018] 0.876 [0.004] 0.865 [0.006] 0.871 [0.004]

12 0.897 [0.008] 0.872 [0.016] 0.881 [0.011] 0.878 [0.004] 0.868 [0.006] 0.875 [0.005]

13 0.890 [0.016] 0.861 [0.026] 0.874 [0.023] 0.874 [0.005] 0.862 [0.007] 0.871 [0.007]

man networks. In general, the LSTM always outperforms both Elman and RMLP models.

On average, the LSTM performance is more than 2% better than Elman and RMLP.

8.8.5 The SSNN based experiments

In this section, we conducted four sets of experiments. The original SSNN model is imple-

mented first, then the long term dependency solver with the SSNNin approach is present.

The two final set of experiments are related to the two integrated models (SOM+SSNN and

SOM+SSNNin), resulting from an incorporation of SOM with the SSNN and SSNNin mod-

els. The integrated models would take advantages of the selected parameters for individual

learning units. It would be seen that the prediction results increase when appropriate model

cooperation is taken into account.

First, the SSNN experimental results are presented in Table 8.12. The SSNN is seen to

be more effective than a bidirectional recurrent neural network in learning a input sequence.

While both models attempt to learn contextual information from the past to the present, and

also the relational information from the future to the present time, the advanced property of

the SSNN model is that it also approximates the stable state of all nodes in the sequence.

This state information would enable the model to better exploit the useful information lo-
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Table 8.12: Performance of SSNN on SCA data.

Exp.ID
Training performance Testing performance

ACC Recall F1 ACC Recall F1

1 0.970 [0.007] 0.967 [0.010] 0.971 [0.008] 0.926 [0.010] 0.922 [0.010] 0.924 [0.011]

2 0.813 [0.066] 0.699 [0.098] 0.666 [0.119] 0.785 [0.068] 0.676 [0.103] 0.643 [0.124]

3 0.971 [0.010] 0.969 [0.009] 0.973 [0.009] 0.936 [0.017] 0.930 [0.015] 0.936 [0.016]

4 0.964 [0.015] 0.962 [0.014] 0.965 [0.015] 0.926 [0.012] 0.923 [0.012] 0.927 [0.013]

5 0.837 [0.054] 0.734 [0.092] 0.712 [0.116] 0.815 [0.059] 0.719 [0.102] 0.694 [0.121]

6 0.962 [0.012] 0.961 [0.011] 0.962 [0.013] 0.928 [0.015] 0.922 [0.013] 0.925 [0.016]

7 0.941 [0.029] 0.933 [0.042] 0.938 [0.039] 0.913 [0.021] 0.908 [0.026] 0.912 [0.025]

8 0.870 [0.094] 0.798 [0.153] 0.779 [0.184] 0.846 [0.089] 0.781 [0.149] 0.759 [0.178]

9 0.956 [0.012] 0.956 [0.011] 0.960 [0.011] 0.923 [0.010] 0.917 [0.011] 0.923 [0.011]

10 0.963 [0.009] 0.962 [0.009] 0.964 [0.010] 0.928 [0.010] 0.922 [0.011] 0.927 [0.012]

11 0.933 [0.021] 0.925 [0.030] 0.927 [0.028] 0.903 [0.018] 0.896 [0.022] 0.901 [0.021]

12 0.894 [0.009] 0.876 [0.017] 0.887 [0.013] 0.880 [0.005] 0.868 [0.007] 0.878 [0.007]

13 0.960 [0.011] 0.958 [0.013] 0.962 [0.012] 0.924 [0.013] 0.919 [0.013] 0.925 [0.013]

cated far apart on the sequence. The model is quantitatively shown to be effective in this

experiment. An obvious improvement on both training and testing performance can be seen,

compared with previous models. On average, the SSNN performance increases from 5% to

7% compared with the best results obtained so far for this data cohort.

Secondly, the SSNNin results are shown via heatmaps in Figure 8.14, for the training

(upper part) and generalization performance (lower part). We deploy experiments regarding

all possible pairs of channel numbers and shortcut-link steps. Bringing past information to

the present learning point is theoretically reasonable because a learning system commonly

could not remember useful information located far away in the past, i.e for models with

no integrated long term memory. Real links established back to the distant history would

in fact alter the internal learning mechanism of the SSNN model, in the hope that it may

enable the model to recall some helpful information that happened in the past. As can be

observed, the results appearing at the bottom left corners of the heatmaps correspond to

the original SSNN performance, since both the channel number and shortcut link step are

equal to 1. This performance is taken as the base line. Generally, the SSNNin approach can

bring almost 5% improvement in prediction accuracy, compared with the base line. Even a

small number of channels (e.g from 1 to 3) would normally help. It is interesting that some
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Figure 8.14: The training (top) and testing (bottom) performance of SSNNin approach when

learning with frame-step of 3-3 for SCA dataset.
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Table 8.13: Performance of different SSNN-based models on the SCA data.

Models
Training performance Testing performance

ACC Recall F1 ACC Recall F1

SSNN 0.971 [0.010] 0.969 [0.009] 0.973 [0.009] 0.936 [0.017] 0.922 [0.015] 0.924 [0.016]

SOM+SSNN 0.977 [0.008] 0.975 [0.009] 0.978 [0.008] 0.948 [0.004] 0.931 [0.005] 0.936 [0.006]

SOM+SSNNin 0.989 [0.006] 0.987 [0.005] 0.990 [0.005] 0.970 [0.006] 0.974 [0.007] 0.975 [0.007]

information from the past is sometimes not relevant for learning the current node, resulting

in poorer performance. More specifically, when adding more links to the past nodes without

ranking the significance of those nodes, the contribution of other important nodes might

be faded out. This results in a decrease of classification performance in some cases. It is

generally suggested that if the shortcut link steps are large and the number of channels small,

the network performance is widely seen to be significantly improved.

The final two experiments in incorporating SOM with either the SSNN or SSNNin model

are shown in Table 8.13. The SSNN’s best result is presented here for an easy comparison.

As can be derived, the layer-wise models once again express robustness when learning the

SCA data. The SOM+SSNN model attains more than 1% improvement in generalization

accuracy compared with the original SSNN. The best performance is achieved by using the

SOM+SSNNin model. At least 2% accuracy improvement compared with the SOM+SSNN

model is observed. The final result confirms that older children activities are more likely

to correctly be classified than smaller children data. The two age-based cohorts results in

about 8% difference in prediction accuracy.

8.9 Conclusion

The current study has a number of strengths. It is the first study to evaluate machine learn-

ing approaches to accelerometry data analysis over a wide range of ages, preschool-aged,

school-aged and adolescent. The activities include a variety of intensity levels from seden-

tary to vigorous. Innovative modelling approaches that have not yet been explored in PA re-

search, involving layer-wise neural networks, were examined. The experiments have shown
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that the use of a more suitable classifier can improve the accuracy substantially.

A limitation of this study is that the relatively small number of preschool-aged partici-

pants might influence the generalization property of the findings. Likewise, the activity trials

were completed in a laboratory environment that might not reflect the real life behavior of

young children. Therefore, larger studies based on free-living activity protocols are required

to test the accuracy of different machine learning approaches for activity type recognition

in young children. Another limitation is that only discrete integration among spatial infor-

mation is made, while consideration of contextual information is neglected. More research

should be undertaken to structure the spatial information in an appropriate way, such as using

a graph model approach. This could be a graph learning approach, in which for each second

we construct a graph with nodes being the hip, left and right wrist. The graphs would be

connected as a time-series graph so that a graph-based learning model could actually learn

the spatial-temporal information appropriately.



Chapter 9

Conclusion

This thesis considered a number of research questions, with a special emphasis on the effects

of encoding relational data (input being described in terms of a graph together with feature

vectors associated with each node) in machine learning models. Such models can then be

used either for classification or for prediction purposes.

The starting point of the thesis is to investigate the architectural design conditions,

specifically how a composite or integrated neural network model can be obtained from a

number of building blocks: feedforward neural networks, self organizing map, for consider-

ing vectorial inputs, and PMGraphSOM, and Graph Neural Networks for considering graph

input data. This thesis also conducted a similar study based on kernel machine techniques,

specifically, with the building blocks consisting of support vector machine, kernel machine,

for vectorial inputs, and graph Laplacian for graph inputs. The thesis demonstrated that

combinations of several machine learning algorithms into integrated models qualitatively

improve the learning performance. We have also considered three associated issues related

to machine learning algorithms, viz., the high dimensionality of the input feature vectors,

the possible imbalance of output label distributions, and the long path dependency (long

term dependency) issue. We have empirically verified our proposed combined or integrated

models by applying them to benchmark datasets, e.g., UK 2006 and UK 2007 web spam de-

193
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tection datasets, the mutagenesis dataset, and the INEX 2008 XML document classification

dataset. In all these cases, we obtained improved results when compared with those obtained

using other state-of-the-art approaches. Moreover, we have evaluated our models on a pre-

diction of activity type of preschool and school children based on wearable accelerometer

measurements attached to various part of their bodies.

The rest of this chapter is organized as follows: Section 9.1 gives a summary of the major

findings of this thesis, Section 9.2 will indicate some of the limitations of our proposed

models, while Section 9.3 will provide some indications of future areas of research.

9.1 Summary of major findings

The main contributions of this thesis are summarized as follows:

• A systematic study has been made on different ways of combining fundamental build-

ing blocks, of both neural network models, and kernel machine models, with or with-

out graph inputs. It was shown that some combinations of these fundamental building

blocks led to improved results when compared with those obtained using other state-

of-the-art approaches. Such experimentation led to a set of design principles, which

could possibly provide guidelines on ways of how the fundamental building blocks

can be combined.

Moreover, by comparing the results of using neural network fundamental building

blocks with those obtained using kernel machine building blocks, we were able to

derive some insights into the behaviour of the network, which has not been observed

previously.

• We further considered some associated issues which often come with machine learn-

ing problems: high dimensionality of the input feature vectors, possible imbalance in

the output class distributions, and the long term dependency issue, and found that by
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devoting some effort to handling these could lead to further improvements of results

than those provided in the previous bullet point.

• We applied the proposed combined models to another practical problem of predicting

activity type of preschool and school children from measurements of wearable accel-

rometers attached to various parts of their bodies. This produces results which are

better than when the long term dependency issues are not explicitly considered.

9.2 Limitations of our proposed models

The following are limitations of our proposed models:

• Two models which have been given significant attention are the PMGraphSOM and

GNN algorithms. The PMGraphSOM compresses high dimensional feature vectors

associated with each node of a graph onto co-ordinates of low dimensional display

spaces. It appears that sometimes the two dimensional display space might not be suf-

ficient to contain useful information from the high dimensional feature space. More-

over, sometimes the mapping on the two dimensional display space might be oscilla-

tory, in that even though the algorithm has converged, the map co-ordinates undergo

significant changes in between one iteration and the next. We do not know if such

instability is caused by the fact that there has never been a satisfactory convergence

proof of the self organizing map, and hence we do not know how the algorithm will

converge (currently it converges because the learning rate goes to zero as the number

of iterations goes to infinity; it is not a model-based convergence, in that the conver-

gence is towards an underlying model), or some other unknown factors which might

have affected the stability of the converged results.

The GNN on the other hand, suffers from long term dependency issues, especially

when there are loops in the graph. The long term dependency issue exhibits itself
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when the activation function in the hidden layers of the network (used to form the state

space of each neuron) becomes vanishingly small due to the backprop error going to

zero as it traverses layer after layer of small values of hidden layer neuron activation

functions. This causes the parameters in the network to stop updating, even though

the backprop error might not be 0.

• Each component of the combined model works independently and sequentially, rather

than concurrently. In other words, in our approach, we wait until each component

has completed its action (converged) before starting the succeeding module. This

is not an issue in our case, as we are developing algorithms to work on benchmark

datasets. This will be an issue if we work in an online fashion, in other words, the

data is streaming in, e.g., in the case of web spam detection, as the information is

being crawled, or in the XML document classification problem, when the documents

are being collected online and we need to provide a solution immediately based on

either information received from the last piece of data, or the last block of received

data. Hence there is value in obtaining an online or streaming method.

• It is observed empirically that results obtained by GNN are more oscillatory than ones

obtained using the kernel machine counterpart. This might be due to the problem that

GNN suffers from long term dependency, while kernel machines do not. The long

term dependency problem could be quite severe when there are loops which might

involve a large number of nodes. The kernel machine is based on non parametric

theory, and hence there are no explicit parameters in the model which need to be

adapted.
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9.3 Future research directions

There are a number of possible directions for future research:

• It is possible to improve the PMGraphSOM. The PMGraphSOM works well in a wide

range of applications but can exhibit shortcommings in situations that require high

precision mappings. The shortcoming of the PMGraphSOM is based on the fact that

the display space is discrete and is of finite dimension. It will be useful if such cases

are delineated, and to consider strategies in which they could be overcome. One way

in which such an issue might be overcome is to investigate the possibility of a multi-

resolution PMGraphSOM, and that with the multi-resolution decomposition, some of

the noise could be filtered out, and that the clusters obtained would be more robust.

• It would be useful if the long term dependency issue in GNN could be considered

more carefully. Currently we overcome this, in some cases, using LSTM, or SSNN.

But these are implicit models, and not explicit models, with parameters which could

be tuned to overcome long term dependency. Hence, it might be useful if some further

investigation into GNN can be performed.

• It might be useful if a streaming version or online version of our combined models

could be developed. This would allow our proposed combined model to work either

in a streaming mode or online mode, which would enable its deployment in practice.

• While there is a GNN2 defined for GoG data applications, there is currently no SOM-

based approach to modelling GoGs. A possible way to address this would be using

a strategy which is similar to the one that developed the GNN model to the GNN2

model. That is, to use multiple levels of PMGraphSOMs to model the layers in a

GoG. The problem which would require attention is how to train these multiple layers

of PMGraphSOM as a single coherent system.



References

[1] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples,” The Journal of Ma-

chine Learning Research, vol. 7, pp. 2399–2434, 2006.

[2] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi, “A self-organizing map for adaptive

processing of structured data,” IEEE Transactions on Neural Networks, vol. 14, no. 3,

pp. 491–505, 2003.

[3] M. Kc, R. Chau, M. Hagenbuchner, A. C. Tsoi, and V. Lee, “A machine learning ap-

proach to link prediction for interlinked documents,” in Focused Retrieval and Evalu-

ation, S. Geva, J. Kamps, and A. Trotman, Eds. Springer Berlin / Heidelberg, 2010,

vol. 6203, pp. 342–354.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph

neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp.

61–80, January 2009.

[5] A. Sperduti and A. Starita, “Supervised neural networks for the classification of struc-

tures,” IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 714–735, May 1997.

[6] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., M. Horton, Ed.

Prentice Hall, 1999.

[7] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Bio-

logical cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[8] F. R. Chung, Spectral graph theory. AMS Bookstore, 1997, vol. 92.

[9] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,

pp. 273–297, 1995.

[10] M. Hagenbuchner, A. C. Tsoi, A. Sperduti, and M. Kc, “Efficient clustering of struc-

tured documents using graph self-organizing maps,” in Focused Access to XML Doc-

uments. Springer Berlin / Heidelberg, 2008, vol. 4862, pp. 20–221.

[11] S. Yong, M. Hagenbuchner, A. C. Tsoi, F. Scarselli, and M. Gori, “Document min-

ing using graph neural network,” in Comparative Evaluation of XML Information

198



References 199

Retrieval Systems, N. Fuhr, M. Lalmas, and A. Trotman, Eds. Springer Berlin /

Heidelberg, 2007, vol. 4518, pp. 458–472.

[12] F. Scarselli, S. Yong, M. Gori, M. Hagenbuchner, A. C. Tsoi, and M. Maggini, “Graph

neural networks for ranking web pages,” in Proceedings of the IEEE/WIC/ACM In-

ternational Conference on Web Intelligence, September 2005, pp. 666–672.

[13] A. Pucci, M. Gori, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi, “Applications of

graph neural networks to large–scale recommender systems some results,” in Pro-

ceedings of the International Multiconference on Computer Science and Information

Technology, 2006, pp. 189–195.

[14] L. Lu, R. Safavi-Naini, M. Hagenbuchner, W. Susilo, J. Horton, S. Yong, and A. C.

Tsoi, “Ranking attack graphs with graph neural networks,” in Information Security

Practice and Experience, F. Bao, H. Li, and G. Wang, Eds. Springer Berlin / Hei-

delberg, 2009, vol. 5451, pp. 34–359.

[15] D. Muratore, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi, “Sentence extraction

by graph neural networks,” in Proceedings of the 20th International conference on

Artificial neural networks: Part III, K. Diamantaras, W. Duch, and L. Iliadis, Eds.

Springer Berlin / Heidelberg, 2010, vol. 6354, pp. 237–246.

[16] S. Zhang, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi, “Supervised encoding of

graph-of-graphs for classification and regression problems,” in Focused Retrieval and

Evaluation. Springer Berlin / Heidelberg, 2010, vol. 6203, pp. 449–461.

[17] L. D. Noi, M. Hagenbuchner, F. Scarselli, and A. C. Tsoi, “Web spam detection by

probability mapping graphsoms and graph neural networks,” in Proceedings of the

International Conference on Artificial Neural Networks. Springer, 2010, pp. 372–

381.

[18] F. Scarselli, A. C. Tsoi, M. Hagenbuchner, and L. D. Noi, “Solving graph data is-

sues using a layered architecture approach with applications to web spam detection,”

Neural Networks, vol. 48, pp. 78–90, 2013.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural

computation, vol. 1, no. 4, pp. 541–551, 1989.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[21] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why

does unsupervised pre-training help deep learning?” Journal of Machine Learning

Research, vol. 11, pp. 625–660, February 2010.



References 200

[22] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief

nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[23] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training

of deep networks,” Advances in neural information processing systems, vol. 19, p.

153, 2007.

[24] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A convo-

lutional neural-network approach,” IEEE Transactions on Neural Networks, vol. 8,

no. 1, pp. 98–113, 1997.

[25] J. Schmidhuber, “Learning complex, extended sequences using the principle of

history compression,” Neural Computation, vol. 4, no. 2, pp. 234–242, March 1992.

[Online]. Available: http://dx.doi.org/10.1162/neco.1992.4.2.234

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[27] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering and nor-

malized cuts,” in Proceedings of the 10th international conference on Knowledge

discovery and data mining. ACM, 2004, pp. 551–556.

[28] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area v2,”

in Advances in neural information processing systems, 2007, pp. 873–880.

[29] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–211,

1990.

[30] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, “Choosing multiple param-

eters for support vector machines,” Machine learning, vol. 46, no. 1-3, pp. 131–159,

2002.

[31] M. Varma and B. R. Babu, “More generality in efficient multiple kernel learning,”

in Proceedings of the 26th Annual International Conference on Machine Learning.

ACM, 2009, pp. 1065–1072.
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