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Abstract
Model reduction is often required in several applications, typically due to
limited available time, computer memory or other restrictions. In problems
that are related to partial differential equations, this often means that we
are bound to use sparse meshes in the model for the forward problem.
Conversely, if we are given more and more accurate measurements, we have to
employ increasingly accurate forward problem solvers in order to exploit the
information in the measurements. Optical diffusion tomography (ODT) is an
example in which the typical required accuracy for the forward problem solver
leads to computational times that may be unacceptable both in biomedical and
industrial end applications. In this paper we review the approximation error
theory and investigate the interplay between the mesh density and measurement
accuracy in the case of optical diffusion tomography. We show that if the
approximation errors are estimated and employed, it is possible to use mesh
densities that would be unacceptable with a conventional measurement model.

1. Introduction

Consider the following inverse problem with additive noise model: estimate a parameter x
from noisy data y,

y = A(x) + e, (1)

where e denotes the noise and A is a known mapping. The data vector y is assumed to be
finite dimensional, y ∈ R

m, while the function x is a distributed parameter. The mapping
A may be linear or non-linear, the focus in this paper being on non-linear models. For the
sake of definiteness, let us specify the inverse problem as that of optical diffusion tomography
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(ODT): a bounded body � ∈ R
d , d = 2, 3, with unknown optical properties is illuminated

with known near-infrared sources and the scattered and transmitted light is measured on the
body’s surface. In this application, the estimated variable x is considered to be a pair of
real functions (µa, µs) representing the optical absorption and scattering coefficients, and the
forward model is a diffusion equation. For a general reference of this problem, see [1].

The forward model in optical tomography is defined by a partial differential equation.
The distributed parameter that we are interested in appears as a non-constant coefficient of
the equation. Since in general, no analytic solutions can be found, the forward model (1) is
approximated by a discrete numerical scheme, e.g. finite element approximation. Typically,
the distributed parameter x is approximated by a representation in finite-dimensional basis and
the continuous model (1) is then replaced by an approximate equation,

y = Ah(xh) + e, (2)

where xh ∈ R
n is a vector containing the degrees of freedom of the finite-dimensional

approximation of x, and h > 0 is a mesh parameter controlling the level of discretization.
The theory of finite element method guarantees that for standard FEM discretizations,
Ah(xh) → A(x) as h → 0+, i.e. the approximation (2) becomes exact within the measurement
accuracy.

From the point of view of inverse problems, the convergence of the forward model alone
is not necessarily sufficient. As h → 0+, the dimensionality of the approximation xh usually
increases, i.e. n → ∞. This means that the complexity of the inverse problem of estimating
xh increases as the approximation improves. Hence, when the forward model is accurate, the
inverse problem may be prohibitively large to be tackled by any computational scheme. On the
other hand, if the forward model is inaccurate, the discretization error may become significant
compared to the measurement error. Together with the fact that the inverse problem is ill posed,
the approximation error may destroy the quality of the estimate of xh. This dichotomy is one
of the bottlenecks of diffuse tomographic methods, in particular in three spatial dimensions,
where the computational complexity is an issue even when relatively coarse meshes are used.

To overcome this dichotomy, we employ the Bayesian statistical inversion theory. The
key idea in this paper is to represent not just the measurement noise, but also computational
model inaccuracy as a random variable. Hence, instead of the model (2), we write an accurate
model,

y = Ah(xh) + [A(x) − Ah(xh)] + e = Ah(xh) + ε(x) + e, (3)

where the term ε(x) is the modelling error. Since in the Bayesian paradigm, all variables, x
included, are random variables, we can determine the probability distribution of the modelling
error and thus treat it as noise.

The paper is organized as follows: section 2 summarizes the Bayesian framework of
inverse problems and the statistical approximation error theory. An overview of the application,
the optical diffusion tomography, is given in section 3. Section 4 contains computed examples
where the statistical theory is applied to the ODT inverse problem.

2. Methods

In this section, we give a brief review of the Bayesian framework for inverse problems and
apply it to the approximation error analysis. For general accounts on statistical inversion
theory, see for example the recent books [2, 3]. For the basics of approximation error theory
see [2, 4].
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2.1. Inverse problems in Bayesian framework

In the Bayesian approach, the inverse problems are viewed as problems of statistical inference.
Hence, all variables are modelled as random variables, and measurements are used to infer
on the probability distribution of the parameter of primary interest. We assume that xh and
y are random variables in finite-dimensional spaces R

n and R
m, respectively. Assume that

their joint probability distribution in R
n × R

m is absolutely continuous with respect to the
Lebesgue measure, and hence expressible in terms of a joint probability density π(xh, y). The
key identity relates the conditional probability densities to the joint probability density,

π(xh, y) = π(xh)π(y | xh) = π(y)π(xh | y), (4)

where the marginal probability densities are

π(xh) =
∫

R
m

π(xh, y) dy, π(y) =
∫

R
n

π(xh, y) dxh.

If xh is the variable to be estimated based on the observed values of y, we call π(xh) the prior
probability density and π(y | xh) the likelihood density. In this framework, the solution of the
inverse problem is the posterior probability density π(xh | y) that according to (4) is

π(xh | y) = π(xh)π(y | xh)

π(y)
, y = ymeasured, (5)

which is the well-known Bayes’ formula. In particular, if the noise is additive and the noise e
and the unknown xh are mutually independent, formula (2) leads to the likelihood density

π(y | xh) = πnoise(y − Ah(xh)),

where πnoise is the probability distribution of the noise e. A particular but versatile special
case is when xh and e are mutually independent and Gaussian,

xh ∼ N
(
xh∗, �xh

)
, e ∼ N (e∗, �e),

where xh∗ ∈ R
n and e∗ ∈ R

m are the means and the symmetric positive definite matrices
�xh

∈ R
n×n and �e ∈ R

m×m are the covariance matrices, respectively. In this case, the
posterior density (5) becomes

π(xh | y) ∝ exp
(− 1

2 (xh − xh∗)T�−1
xh

(xh − xh∗)

− 1
2 (y − Ah(xh) − e∗)T�−1

e (y − Ah(xh) − e∗)
)
. (6)

Observe that this equation applies only if xh and e are mutually independent. If this is not the
case, no closed formula for the posterior density can be written. A notable exception is when
the mapping Ah is linear, i.e., we have the linear additive model

y = Ahxh + e.

In this case, the joint probability density is the Gaussian, with mean and covariance

E

{(
xh

y

)}
=

(
E{xh}
E{y}

)
=

(
xh∗

Ahxh∗ + e∗

)
,

cov

(
xh

y

)
=

(
�xh

�xhy

�yxh
�y

)
=

(
�xh

�xh
AT

h + �xhe

Ah�xh
+ �exh

Ah�xh
AT

h + �xheA
T
h + Ah�xhe + �e

)
,

where �xh
, �y and �e denote the covariance matrices of the random vectors xh, y and e,

respectively, and the double subindex notation such as �xhy means the cross covariance of xh

and y defined as

�xhy = E{(xh − E{xh})(y − E{y})T} ∈ R
n×m,



178 S R Arridge et al

and the other cross correlations correspondingly. The posterior density in this case is also the
Gaussian with mean and covariance

E{xh | y} = xh∗ + �xhy�
−1
y (y − E{y}) (7)

cov(xh | y) = �̃xh
(8)

where �̃xh
= �xh

− �xhy�
−1
y �yxh

is the Schur complement of �xh
.

2.2. Approximation errors

In this section we develop the central technique to treat the approximation errors. The starting
point is the accurate model (1), where x is a distributed parameter. There are very few general
results concerning the statistical inversion theory in infinite-dimensional spaces. The notable
exception is when the variables are Gaussian and the forward map is linear. For the Hilbert
space theory, see, e.g., [5], and for more general distribution space theory, [6]. To avoid
theoretical difficulties, we assume that the continuous model x �→ A(x) can be approximated
in a satisfactory manner by a densely discretized finite-dimensional model

R
N → R

m, xδ �→ Aδ(xδ), δ > 0 small.

Hence, the discretized model that is exact within the measurement accuracy is

y = Aδ(xδ) + e, xδ ∈ R
N, N = Nδ. (9)

Consider now a model reduction: choose a discretization parameter h > δ, and let
xh ∈ R

n, n = nh < N , denote the representation of the distributed parameter in this coarse
mesh. Assume further that there is a linear model reduction map,

P : R
N → R

n, xδ �→ xh.

Furthermore, let Ah : R
n → R

m denote the discretized forward map in the coarse mesh. We
write the exact reduced model as

y = Ah(xh) + [Aδ(xδ) − Ah(xh)] + e = Ah(xh) + ε(xδ) + e. (10)

Within the deterministic inversion paradigm there are few means to estimate the approximation
error ε(xδ), except possibly for the upper bound of its norm. The same applies to the frequentist
statistical paradigm as well. However, in the Bayesian paradigm, where xδ is modelled as a
random variable with the prior probability distribution, techniques for estimating the modelling
error distribution are readily available.

We can define the approximation error problem as follows: given the probability density
of (xδ, e), the model reduction operator P and the forward models Aδ and Ah, derive a
computational model for the posterior density π(xh | y).

In the literature, methods of treating errors in the forward model have been discussed.
A classical problem, known as total least squares (TLS), considers linear models where the
forward map is of the form A = Ao + E : R

n → R
m, where Ao is a known matrix and E

is unknown (see, e.g., [7, 8]). Such problems are encountered, e.g. in blind deconvolution.
Since in the present case, the dimensions of xh and xδ are not necessarily the same, while
the mappings Ah and Aδ are known, the TLS is not applicable, even in the framework of
local linearization. However, the modelling error approach discussed here can be used as an
alternative for resolving the TLS problems from the Bayesian viewpoint.
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2.3. Implementation

In the Gaussian linear case, the approximation error problem can be solved exactly by using
the results of subsection 2.1. These results have been presented in [4] and not repeated
here. Nonlinear forward models or non-Gaussian distributions usually require stochastic
simulations.

Let π(xδ) be the prior probability density in R
N corresponding to the accurate discrete

model (9). We can generate a sample of vectors in R
N ,

S = {
x

(1)
δ , x

(2)
δ , . . . , x

(L)
δ

}
,

such that these vectors are distributed according to the prior density. If the prior is Gaussian
or another standard parametric distribution, efficient random vector generators can be used.
More generally, the sample can be generated by using Markov chain Monte Carlo (MCMC)
techniques. Let πnoise(e) denote the probability distribution of the additive noise vector e ∈ R

m.
The probability density of the random vector

n = ε(xδ) + e = [Aδ(xδ) − Ah(Pxδ)] + e

can be written as

π(n) =
∫

R
N

π(n | xδ)π(xδ) dxδ =
∫

R
N

πnoise(n − [Aδ(xδ) − Ah(Pxδ)])π(xδ) dxδ,

and, using the sample S, we have the approximation as a sample average,

π(n) ≈ 1

L

L∑
�=1

πnoise
(
n − [

Aδ

(
x

(�)
δ

) − Ah

(
Px

(�)
δ

)])
.

With a similar reasoning, one can easily find an expression for the sample-based approximation
for the joint probability distribution of (xh, y) and thus for the posterior distribution.

The above expression is not very useful except for generating samples of the noise vector
n. In practical calculations, we use a Gaussian approximation for the noise covariance. The
Gaussian approximation for the approximation error and the unknown is both easy to construct
and easy to exploit when compared to more complicated models. In most cases this is what
we would first try since this model often leads to efficient computational implementation for
the inverse solver and efficiency is what we are after in the first place.

To this end, we calculate first the sample-based approximations for the mean and
covariance of the noise vector n = ε + e. We have

E{n} ≈ 1

L

L∑
�=1

[
Aδ

(
x

(�)
δ

) − Ah

(
Px

(�)
δ

)]
+ e∗ = ε∗ + e∗,

and

cov(n) ≈ 1

L

L∑
�=1

[
Aδ

(
x

(�)
δ

) − Ah

(
Px

(�)
δ

) − ε∗
][

Aδ

(
x

(�)
δ

) − Ah

(
Px

(�)
δ

) − ε∗
]T

+ �e = �n.

The Gaussian approximation for the noise covariance is thus

π(n) ≈ πG(n)

∝ exp
(− 1

2 (n − ε∗ − e∗)T�−1
n (n − ε∗ − e∗)

)
.

To simplify the analysis further, we write an approximation where the mutual dependence of
xh and the approximation error are ignored. By (6), this leads to an approximation that is
referred to as enhanced error model [4, 2],

π(xh | y) ∝ exp
(− 1

2 (xh − xh∗)T�−1
xh

(xh − xh∗)

− 1
2 (y − A(xh) − ε∗ − e∗)T�−1

n (y − A(xh) − ε∗ − e∗)
)
, (11)
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where

xh∗ = P E{xδ} ∈ R
n, �xh

= P�xδ
P T ∈ R

n×n.

Let us write the factorizations (e.g., Cholesky factorizations),

LT
xh

Lxh
= �−1

xh
, LT

e+εLe+ε = �−1
n ,

we observe that the computation of the maximum a posteriori (MAP) estimate, within the
validity of the approximations above, amounts to minimizing the functional

F(xh) = ‖Le+ε(y − Ah(xh) − ε∗ − e∗)‖2 + ‖Lxh
(xh − xh∗)‖2. (12)

This computational problem is superficially of the same form as the computation of a Tikhonov
regularized solution. The most common choice for the Tikhonov regularization would be to
set ε ≡ 0, �xh

= α−1I, x∗ = 0 and e ∼ N (0, σ 2I ) so that the problem (12) would reduce to
the minimization of the functional

xh �→ 1

σ 2
‖y − Ah(xh)‖2 + α‖xh‖2.

Thus the enhanced error model (12) is appealing because we incorporate the model inaccuracy
into the same framework as our general machinery for MAP estimation.

Previous studies [2, 4] show that in some cases, neglecting the stochastic dependence of
the estimated signal xh and the modelling error has a negligible effect and in others a significant
effect. The effect was negligible in the electrical impedance tomography (EIT) studies in [2]
which suggests that the situation might be the same with ODT.

Finally, we note that the approximation error theory also fits into the framework of iterative
regularization methods,wherein the prior term ‖Lxh

(xh − xh∗)‖2 in (12) is not explicitly stated
but instead an iterative scheme is used for the approximate minimization of the likelihood term
‖Le+ε(y − Ah(xh) − ε∗ − e∗)‖2 and truncation of the iterations prior to convergence takes the
role of regularization.

3. Optical diffusion tomography

Optical diffusion tomography (ODT) is a non-invasive imaging method in which images of
the optical absorption and scattering functions within a turbid medium are derived based on
measurements of near-infrared light on the surface of the object [1]. The main emphasis in
the application of ODT has been in medicine, where applications include the detection and
classification of tumours from breast tissue, monitoring of infant brain tissue oxygenation
level and functional brain activation studies. For a recent review on the clinical applications,
see [9]. In addition to medical applications, there has been recently a growing interest towards
the use of optical methods in industrial process tomography [10].

In the experimental set-up, ms optic fibres are placed on the source positions εk ⊂ ∂� on
the boundary of the body �, and md optic fibres are placed in the detector positions ζi ⊂ ∂�.

In this paper we consider the so-called frequency domain measurements. Light from
a sinusoidally modulated laser source is guided to the body via one of the source locations
at εk and the amplitudes and phase shifts of the transmitted light are measured on all the
detector locations ζi, i = 1, . . . , md using the detector fibres and light sensitive detectors.
This process is then repeated for all the ms source locations. The objective is to reconstruct the
absorption and scattering functions within the body � based on these transmission data. This
reconstruction problem is a nonlinear and highly ill-posed inverse boundary value problem. In
the following, we discuss briefly the models and methods that are used for the ODT problem
in this paper.
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3.1. Diffusion approximation model

The most commonly used forward model for optical diffusion tomography is the diffusion
approximation (DA) to the radiative transfer equation (RTE). The diffusion approximation
model is also used in this paper. In this paper we assume that the diffusion approximation is
an accurate representation of the ODT measurements. The issue how well the diffusion
model approximates the radiative transfer equation or the actual ODT measurements is not
considered in this paper. For further details on derivation and properties of the forward models
and boundary conditions, see [1, 2, 11, 12].

Let � ⊂ R
p(p = 2, 3) denote the model domain. The frequency domain version of the

diffusion approximation with the Robin-type boundary condition is of the form [12]:

−∇ · κ(r)∇�k(r, ω) + µa(r)�k(r, ω) +
iω

c
�k(r, ω) = q0,k(r, ω), r ∈ � (13)

�k(r, ω) +
1

2γ
κ(r)

∂�k(r, ω)

∂ν
= gk(r, ω) r ∈ ∂�, (14)

where ω is the modulation frequency of the light source, �k(r, ω) is the photon density (for the
source at εk ⊂ ∂�), µa(r) is the absorption coefficient (mm−1), κ(r) = (p(µa(r) + µs(r)))

−1

(mm) is the diffusion coefficient, p = 2, 3 is the dimension of the domain, µs(r) is the
reduced scattering coefficient (mm−1), c is the speed of light in the medium, q0,k(r, ω) is the
distribution of sources inside �, gk(r, ω) models the boundary sources at the source sites εk, γ

is a dimension-dependent constant (γ2 = 1/π, γ3 = 1/4) and ν is the outer normal at ∂�

[12, 2]. As the model for the sources we use the diffuse boundary source model in which the
source is modelled as an inward directed diffuse photon current fs at the source sites:

gk(r, ω) =



fs

2γ
r ∈ εk

0 r ∈ ∂�\εk.

(15)

and the internal source term is q0,k(r, ω) = 0. Assume that ri is a point at the detector site ζi .
The measured flux zi,k(ri, ω) is obtained as:

zi,k(ri, ω) = 2γ�k(ri, ω). (16)

3.2. FEM implementation of the diffusion model

The numerical solution of the diffusion approximation model (13)–(15) is based on the finite
element method (FEM). The derivation of the finite element discretization has been presented
in previous publications, see e.g. [1, 11–14]. Here we repeat only the resulting FEM equations.

In the FEM approximation, the domain � is divided into Ne elements �� which are joined
by Nn node points. The photon density is approximated in a finite-dimensional basis

�h =
Nn∑
i=1

φiϕi(r), (17)

where ϕi are the nodal basis functions of the finite element mesh. In this paper, we use
piecewise linear polynomials ϕi which have support over the elements that are joined by
node i. By inserting approximation (17) into the variational formulation of (13)–(15) and
using the basis functions ϕj as the test functions, we arrive at the matrix equation

(K(κ) + C(µa) + R + iωZ)�h = G, (18)
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where the elements of the system matrices are given by

Ki,j =
∫

�

κ∇ϕi · ∇ϕj dr (19)

Ci,j =
∫

�

µaϕiϕj dr (20)

Zi,j = 1

c

∫
�

ϕiϕj dr (21)

Ri,j =
∫

∂�

2γ ϕiϕj dS (22)

and the source vector is of the form

Gj =
∫

∂�

2fsϕj dS. (23)

The FEM approximation �h
k for the kth source is obtained formally as

�h
k = (K(κ) + C(µa) + R + iωZ)−1G.

The complex measurement vector

z(k) = (
z1,k, . . . , zmd ,k

)T ∈ C
md

containing the measured flux at the measurement sites {ζi} for the source at εk is obtained by

z(k) = M�h
k,

where the elements of the measurement matrix M are defined by

Mi,� =
{

2γ, if node r� ∈ ζi ⊂ ∂�

0, otherwise
, i = 1, . . . , md � = 1, . . . , Nn. (24)

To complete the specification on the forward model of ODT, we give the notation that
will be used for the data and the FEM-based forward solver in the subsequent sections. Let

z = (z(1), . . . , z(ms))T ∈ C
mdms

denote the concatenated vector of complex data for all the ms sources. The practical devices for
frequency-domain optical tomography measure the amplitude and phase shift of the complex-
valued flux. The forward solution can be represented in the corresponding form by

y =
(

re(log(z))

im(log(z))

)
∈ R

m, m = 2msmd. (25)

At this stage, we specify the discretization for the unknowns (µa, µs) for the inverse
problem. We use piecewise constant approximations

µa(r) =
np∑

j=1

µa,jχj (r) (26)

µs(r) =
np∑

j=1

µs,j χj (r), (27)

where χj denote the characteristic function of disjoint image pixels. Within the expression
(26)–(27), we identify the coefficients (distributed parameters) (µa(r), µs(r)) with the vectors
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µa = (
µa,1, . . . , µa,np

)T ∈ R
np (28)

µs = (
µs,1, . . . , µs,np

)T ∈ R
np (29)

and the parameter vector for the inverse problem becomes

xh =
(

µa

µs

)
∈ R

n, n = 2np. (30)

For the FEM-based forward solver we use the notation

y = Ah(xh), (31)

where the subindex h refers to the finite element mesh that is used.

3.3. MAP estimate for ODT

In this section, we briefly describe the Bayesian MAP estimation problems for optical diffusion
tomography with the conventional and enhanced error models. The Bayesian approach to
optical diffusion tomography with the conventional likelihood (measurement) model has
previously been considered in [12, 14–19].

We assume here that the prior distribution of the unknown target xh is modelled by a
proper Gaussian density:

xh ∼ N
(
xh∗, �xh

)
, �−1

xh
= LT

xh
Lxh

. (32)

Consider first the conventional likelihood model. A typical assumption in ODT is that the
measurements are corrupted by additive zero-mean Gaussian noise e which is independent of
the unknown xh. This assumption is also made here, and thus, we write the observation model
as

y = Ah(xh) + e, e ∼ N (0, �e), �−1
e = LT

e Le. (33)

The computation of the MAP estimate for models (32)–(33) amounts to the minimization
problem:

‖Le(y − Ah(xh))‖2 +
∥∥Lxh

(xh − xh∗)
∥∥2 −→ min . (34)

In the subsequent sections, we refer to the solution of (34) as the MAP estimate with the
conventional likelihood (measurement) model.

Consider next the application of the enhanced error model. If we write an observation
model of the form (10) with the assumption e ∼ N (0, �e) and proceed as in section 2.3, the
computation of the MAP estimate amounts to minimizing

‖Le+ε(y − Ah(xh) − ε∗)‖2 +
∥∥Lxh

(xh − xh∗)
∥∥2 −→ min, (35)

where LT
e+εLe+ε = (�e + �ε)

−1 = �−1
n . In the following, we refer to the solution of (35) as

the MAP estimate with the enhanced error model.
The minimization problems (34)–(35) can be solved, for example, by the Gauss–Newton

algorithm. Note that when the number n of unknowns is large, the Gauss–Newton updates
can be efficiently computed with the implicit Gauss–Newton method, see for example [20].

3.4. A proper smoothness prior model

The conventional smoothness prior for the image vector xh = (µa, µs)
T ∈ R

n is usually
defined as

π(xh) ∝ exp
{− 1

2‖Lxh‖2
} = exp

{− 1
2xT

h Bxh

}
, (36)
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where B = LTL,L is a block matrix

L =
(

αµaD 0
0 αµsD

)
(37)

and D is a first-order difference matrix between adjacent pixels in the image basis. The
prior density (36) is improper (i.e., B is not invertible) because matrix D has null space
N (D) = span{c}, where c = −√

2/n(1, 1, . . . , 1)T ∈ R
n/2. Therefore, the conventional

smoothness prior cannot be directly applied in the approximation error theory. However, we
can use (36) as a starting point in the construction of a proper smoothness prior model.

To get a proper density, we follow the procedure in [2, 21]. Assume that we have prior
information on the actual values and uncertainty of the absorption and scattering functions
at some of the image pixels. Let k be the number of these pixels. By possibly reordering
the elements of xh, we may write the partition xh = (xh,1, xh,2)

T ∈ R
n, where xh,2 ∈ R

2k

contain the absorption and scattering parameters of the ‘specified’ pixels where we can specify
the prior model for the actual absorption and scattering values, and xh,1 ∈ R

n−2k contain the
absorption and scattering parameters of the remaining, ‘unspecified’ pixels. By partitioning
accordingly the matrix

LTL = B =
(

B11 B12

B21 B22

)
in equation (36), we can write a proper conditional smoothness prior for xh,1 conditioned on
xh,2 as [2]:

π(xh,1|xh,2) ∝ exp
{− 1

2

(
xh,1 + B−1

11 B12xh,2
)T

B−1
11

(
xh,1 + B−1

11 B12xh,2
)}

. (38)

Next, assume that the absorption and scattering in the specified pixels is modelled by a
Gaussian prior

π(xh,2) ∝ exp
{− 1

2 (xh,2 − xh∗,2)
T�−1

0 (xh,2 − xh∗,2)
}
. (39)

Using equations (38)–(39), we can now obtain a new, proper smoothness prior for xh as [2]:

π(xh,1, xh,2) = π(xh,1|xh,2)π(xh,2) ∝ exp
{− 1

2 (xh − xh∗)T�−1
xh

(xh − xh∗)
}
, (40)

where

xh∗ =
(−B−1

11 B12xh∗,2

xh∗,2

)
, �−1

xh
=

(
B11 B12

B21 B21B
−1
11 B12 + �−1

0

)
. (41)

Furthermore, let us denote the Cholesky decompositions of B11 and �−1
0 by B11 = LT

1 L1 and
�−1

0 = LT
0L0. Then we can write the prior model (40)–(41) as

π(xh) ∝ exp
{− 1

2

∥∥Lxh
(xh − Qxh∗,2)

∥∥2}
, (42)

where

Lxh
=

(
L1 L1B

−1
11 B12

0 L0

)
, Q =

(−B−1
11 B12

I

)
. (43)

4. Numerical results

4.1. The ODT set-up

We evaluate the enhanced error model in the case � ⊂ R
2. The object domain is a circle with

radius of 25 mm. The measurement set-up in the simulations consists of ms = 16 sources and
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Figure 1. Two finite element meshes used in the simulations. Left: h1 (Nn = 4217, Ne = 7920)

is the mesh for the accurate forward model, i.e. Ah1 (xh) = Aδ(xδ). Right: h5 (Nn = 713, Ne =
1296) is the mesh for a target model. The asterisks denote the locations of the ‘specified’
(conditioned) pixels in the construction of the proper smoothness prior model (see section 4.2).
The elements of xh,2 ∈ R

14 correspond to the absorption and scattering coefficients of the seven
specified pixels.

Table 1. The finite element meshes for the simulations. Mesh h0 is used for the simulation of
the measurement data. h1 is the mesh for the accurate forward model, i.e. Ah1 (xh) = Aδ(xδ).
hk, k = 2, . . . , 5 are meshes for the target models with different accuracy. Nn is the number of
nodes and Ne is the number of triangle elements in the mesh.

Mesh Nn Ne

h0 5625 10 736
h1 4217 7 920
h2 2057 3 856
h3 1513 2 768
h4 1001 1 744
h5 713 1 296

md = 16 detectors, located at equispaced intervals on the boundary ∂�. With this set-up, the
vector of frequency domain ODT data (25) in the simulations is y ∈ R

512.
For the finite-element discretization, we create a set of different meshes with triangular

elements. The details of the meshes are given in table 1. The mesh h0 is used for the
simulation of the measurement data, h1 is the mesh for the accurate forward model (i.e.,
Ah1(xh) = Aδ(xδ)) and hk, k = 2, . . . , 5 are meshes for the target models. Images of the
meshes h1 and h5 are shown in figure 1.

For the representation of the functions (µa, µs), we divide the domain � into np = 524
quadrilateral pixels, and the functions (µa, µs) are approximated in piecewise constant bases
of the form (26)–(27), leading to xh ∈ R

1048 unknowns in the inverse problem. The MAP
estimation problems (34) and (35) are solved by a Gauss–Newton algorithm with an explicit
line search algorithm. For further details see [14, 20].

4.2. The prior model and the Gaussian approximation for the approximation error

We construct a proper first-order smoothness prior distribution as explained in section 3.4. We
aim to control the approximative correlation length of the coefficient distributions as follows.
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0.005 0.043 0.006 0.045

0.005 0.045

Figure 2. Four draws from the proper smoothness prior model (42). The correlation length is
approximately one-quarter of the diameter of the disk.

We choose seven pixels as ‘specified’ pixels such that their distances from each other is
approximately one-quarter of the diameter of the domain �. The locations of the specified
pixels are shown with asterisks in figure 1. The absorption and scattering parameters of the
specified pixels define elements xh,2 ∈ R

14 of the unknown xh. For the marginal distribution
of the parameters xh,2, we specify a Gaussian prior model of the form (39) with diagonal
covariance matrix �0 (i.e., elements of xh,2 are assumed mutually independent). For the prior
mean of xh,2, we assume values µa∗ = 0.025 mm−1 and µs∗ = 2 mm−1. The standard
deviations

(
σµa , σµs

)
are chosen such that [µa∗ − 3σµa , µa∗ + 3σµa ] = [0.005, 0.045] mm−1

and [µs∗ − 3σµs , µs∗ + 3σµs ] = [0.5, 3.5] mm−1, respectively.
These choices correspond to the assumption that absorption and scatter values at the

specified pixels are with prior probability 0.99 in the given intervals. These intervals of
parameter values are approximations for the range of absorption and scattering values found
typically in medical applications of ODT. Once the marginal distribution for xh,2 has been
specified, the parameters αµa and αµs for the difference operator, see equation (37), are tuned
such that the pixelwise variances in the proper smoothness prior model π(xh), equation (42),
for the absorption and scattering images become approximately equal. That is, we choose αµa

and αµs such that we have varπ(xh)(µa,k) ≈ c1 and varπ(xh)(µs,k) ≈ c2 for all k. For general
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details on the equalization of the variances over subdomains, see [21]. Figure 2 shows four
random draws from the resulting prior model π(xh).

In this study, we ignore the cross correlation of xh and ε, that is, we employ the enhanced
error model (12). The results given below indicate that this would be sufficient choice for
ODT. To compute the enhanced error model between a target model (meshes hk, k = 2, . . . 5)
and the accurate forward model (mesh h1) we proceed as explained in section 2.3. We draw
a set of i.i.d. samples

{
x

(�)
h , � = 1, . . . , r

}
from the prior distribution π(xh) and compute the

corresponding approximation errors

ε
(�)

hk = Ah1

(
x

(�)
h

) − Ahk

(
x

(�)
h

)
, k = 2, . . . , 5. (44)

Note that we use the same 524-pixel representation for the absorption and scattering images
in the accurate forward model and the target models. Therefore, the vectors ε

(�)

hk do not
contain error due to the projection of the unknown xh from a higher-dimensional space to a
lower-dimensional one (i.e., we have P = I ). The distribution of the approximation error
εhk ∼ N

(
εhk∗, �εhk

)
is approximated from the samples as

εhk∗ = 1

r

r∑
�=1

ε
(�)

hk , �εhk
= 1

r − 1

r∑
�=1

ε
(�)

hk ε
(�)

hk

T − εhk∗εT
hk∗. (45)

In this study, we use r = 2500 samples for the construction of the enhanced error model.
Figure 3 shows an example of the approximation errors. The thick lines in the top figures

show the absolute value of the mean εh5∗ which was computed using the accurate forward
model Ah1 and the target model Ah5 (amplitude on left, phase shift on right). The thin line
shows the standard deviations of the random noise e with the relative noise level δe = 0.5%,
which is used for the evaluation of the enhanced error model for different meshes in the
next section. As can be seen, the means of the channelwise approximation errors between
the models Ah1 and Ah5 exceed clearly the typical levels of random noise for ODT. The
bottom figures show the estimated standard deviations of εh5 with thick lines and the standard
deviations of e with thin lines. As can be seen, with the relative noise level δe = 0.5% the
standard deviations in amplitude are of the same magnitude but in the phase data the standard
deviations of εh5 are larger than the standard deviations of e. Based on these figures, we would
expect to get poor reconstructions if we were to use target model Ah5 with the conventional
likelihood (measurement) model.

4.3. Estimation results over the prior distribution

The effects of a fixed approximation error to reconstruction with different noise levels were
studied in [2]. The investigated problems were full angle computerized tomography (CT) and
electrical impedance tomography (EIT). In both problems the result was that once the additive
noise level gets as small as the approximation error level, the estimation errors E{‖x − x̂‖2}
tend to grow with decreasing noise levels. On the other hand, if the approximation error
was modelled, the estimation errors decreased first and then, with very small noise levels,
stagnated or increased very slowly. The latter behaviour can be conjectured to be due to
(a) using the enhanced error model instead of the complete approximation error model, (b)
approximate prior models and (c) using a Gaussian approximation error model while the actual
approximation errors were non-Gaussian.

4.3.1. Fixed noise level, decreasing accuracy of the target model. We compute the estimation
errors

�(x̂h) = E{‖xh − x̂h‖2}(tr �xh
+ ‖xh∗‖2

)−1
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Figure 3. Example of the approximation error. Top: the absolute value of the mean of the
approximation errors |εh5∗| between the accurate model Ah1 (Nn = 4217, Ne = 7920) and
the target model Ah5 (Nn = 713, Ne = 1296) is shown with thick line. The thin line shows the
standard deviations σe,j of the random noise e corresponding to the relative noise level δe = 0.5%
(i.e., σe,j = δe|y∗,j |/100). Left image shows the amplitude part and right image the phase shift
part of the approximation error vector. The abscissae denote the measurement index j . Bottom:
thick line shows the standard deviations σε

h5 of the approximation errors εh5 . Thin line shows the
standard deviations of e with δe = 0.5%.

separately for the absorption and scattering coefficients. There is a common conjecture that the
absorption coefficient is more sensitive to the amplitude data whereas the scattering coefficient
is more sensitive to the relative phase data.

The employed target models (meshes hk, k = 2, . . . , 5) have numbers of nodes between
2057 and 713 while the accurate forward model (h1) has 4027 nodes. To compute the simulated
data, we draw another set of 100 i.i.d. samples from the prior distribution and compute the
respective forward solutions in the mesh h0 with 5625 nodes and add random noise to the
simulated data as y = Ah0(x) + e, where realizations of e are drawn from the distribution
N (0, �e) with �e = diag

(
σ 2

e,1, . . . , σ
2
e,m

)
and σe,j = δe|y∗,j |/100 (i.e., we assume that the

channelwise standard deviation of the noise is δe per cent of the absolute value of the computed
data). Here we use relative noise level δe = 0.5%.

In figure 4, we show the approximation errors for both amplitude and relative phase data
together with the estimation errors �(µa,MAP) and �(µs,MAP) for the absorption and scattering
coefficients. The estimation errors are computed as the ensemble mean of the reconstructions
from the 100 realizations of the data. The MAP estimates with the conventional likelihood
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Figure 4. Top row: expected relative approximation errors E{‖Ah1 (xh) − Ahk (xh)‖/‖Ah1 (xh)‖}
with respect to the number of nodes in the FE-mesh. Left: amplitude data. Right: phase data. The
dashed line indicates the relative level (δe = 0.5%) of the additive random noise that is used in the
simulation. Bottom row: the expected errors E{‖µa,MAP − µa‖2}(trace(�µa ) + ‖µa∗‖2)−1 (left)
and E{‖µs,MAP − µs‖2}(trace(�µa ) + ‖µs∗‖2)−1 (right) in the reconstructed images with respect
to the number of nodes Nn in the FE-mesh. The errors with the enhanced error model are shown
with circles (o) and the errors with the conventional likelihood model are shown with crosses (x).
The expectation is computed as sample average over 100 realizations of data that were simulated
in the mesh h0.

model are computed by solving (34) and the respective estimates with the enhanced error model
by solving (35). The estimates are computed with the Gauss–Newton algorithm with an explicit
line search. For details, see [14, 20]. The results show the following. If the conventional
likelihood model is used, the estimate errors start to increase when the approximation errors
exceed the noise level. Note the similarity in the trends of amplitude data and µa, and phase
data and µs. This similarity supports the common conception that the amplitude data are more
sensitive to absorption and phase data more sensitive to scattering. On the other hand, if the
enhanced error model is employed, the estimate errors increase only marginally even when
the target model is reduced drastically.

It is to be noted that the estimation errors for both coefficients are not extremely large
with a ∼ 1000-node mesh even when the conventional likelihood model is used. This is in
contrast with the common conception of how dense the meshes with ODT should be. The
reason here is probably due to that the correct, albeit discretized, prior model was used. On
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Figure 5. The expected errors E{‖µa,MAP −µa‖2}(trace(�µa )+‖µa∗‖2)−1 (left) and E{‖µs,MAP −
µs‖2}(trace(�µa ) + ‖µs∗‖2)−1 (right) in the reconstructed images with respect the noise level δe

(%). The error with conventional likelihood model in the dense computation mesh h1 (Nn = 4217)

is shown with (+), the error with the conventional likelihood model in the sparse computation mesh
h5 (Nn = 713) is shown with (x), and the error with the enhanced error model in the sparse mesh
h5 (Nn = 713) is shown with (o). The expectations are computed as sample averages over 100
realizations of the data.

the other hand, if this is the sole reason, it can be argued that the previously required mesh
densities may be mostly due to poor prior models or infeasible regularization methods.

4.3.2. Fixed mesh, decreasing noise level. We employ the target model Ah5 with the
713 node mesh here. With this mesh the approximation errors are larger than the noise
levels. The estimation errors with different relative noise levels δe between 3% and 0.05%
are shown in figure 5. We also show estimation errors when the accurate forward model
Ah1(xh) (Nn = 4217) with conventional likelihood model is used. The estimation errors
�(µa,MAP) and �(µs,MAP) are again estimated based on 100 reconstructed data sets. The
behaviour of the estimation errors has the same characteristics as with previous studies with
different problems. When the target model Ah5(xh) and conventional likelihood model is
used, the estimation errors increase although the noise level decreases. On the other hand, the
estimate errors decrease monotonically with both the accurate forward model Ah1(xh) using
the conventional likelihood model and the target model Ah5(xh) with the enhanced error model.
The fact that the estimate errors when using the enhanced and target models are not much
worse than when using an accurate forward model, supports the simpler choice of enhanced
error model over the more accurate approximation error model which takes into account the
cross correlation between xh and ε.

4.3.3. Reconstruction of a test phantom. As explained above and shown in figure 2, the prior
probability distribution is concentrated on coefficients with smooth spatial distribution, and
moreover, the absorption and scattering coefficients are modelled as mutually independent
random variables. We expect that for such coefficients, the prior model is reliable and the
estimates are reasonable. When the estimation algorithm is applied to simulated or real data
corresponding to coefficients that have a low probability with respect to the prior distribution,
the estimates can be very poor. This question is pronounced when the approximation error
model is employed since the statistics of the modelling error is inferred from the prior
distribution.
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Figure 6. Reconstructed absorption images µa. Top left: the target. Top right: reconstruction
with conventional likelihood model using the accurate forward model Ah1 (xh) (Nn = 4217).
Bottom left: reconstruction with the conventional likelihood model using the target model Ah5 (xh)

(Nn = 713). Bottom right: reconstruction with the enhanced error model using the target model
Ah5 (xh) (Nn = 713). The relative noise level was δe = 0.5%.

To avoid too optimistic results and to assess the robustness of the modelling error theory
developed here, we compute the MAP estimates when the actual spatial coefficient distributions
are discontinuous and thus in conflict with the belief expressed by the prior density. The MAP
estimates are again computed with the accurate model Ah1(xh) (Nn = 4217) with conventional
likelihood model and the 713-node target model Ah5(xh) with enhanced error model and the
conventional likelihood model. The actual spatial coefficient distributions and the estimates
are shown in figures 6 and 7. The relative noise level δe was 0.5%.

The results with the accurate model and the target model with enhanced error model
are essentially equivalent while the target model with conventional likelihood model exhibits
severe annular estimation errors. The errors are largest near the boundaries and have a similar
overcompensation–undercompensation structure as with the EIT results in [2], where the
results concerned ensemble characteristics over the correct prior model.

Note that there is little or no crosstalk between the estimates of the absorption and
scattering coefficients. This suggests that the often encountered crosstalk may be due to the
implicit regularization properties of the employed inversion method. With many regularization
methods it can be difficult to approximate the implicit prior model behind the computational
scheme.
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Figure 7. Reconstructed scatter images µs. Top left: the target. Top right: reconstruction
with conventional likelihood model using the accurate forward model Ah1 (xh) (Nn = 4217).
Bottom left: reconstruction with the conventional likelihood model using the target model Ah5 (xh)

(Nn = 713). Bottom right: reconstruction with the enhanced error model using the target model
Ah5 (xh) (Nn = 713). The relative noise level was δe = 0.5%.

4.3.4. Approximate estimate errors. One of the most appealing topics in the statistical
inversion paradigm is that it is possible to provide reliable statistics for the estimation errors.
The actual reliability has to be assessed with respect to the accuracy of the underlying likelihood
and prior models: if they are correct or at least feasible, the error estimates are reliable; if
they are not, very little can be said. On the other hand, since with inverse problems the prior
variances are usually much larger than the likelihood variances, the accuracy of the prior
model is not as stringent as with the likelihood. Thus, when significant approximation errors
are present, the reliability of the estimate error can be very low.

In some applications the reliability of the estimates can be fundamental. Such a case is
the screening of patients for tumours, to decide who should be subjected to more extensive
diagnoses. Making a false positive screening decision, that is, claim no tumour when a tumour
is present, is a grave one. More generally, statistical decision limits are always computed
based on the distributions themselves rather than the point estimates [22].

In figure 8, we show the Gaussian approximations for marginal densities for both
coefficients in the three pixels which are marked in figure 7. The computation of the actual
marginal densities requires the implementation of a MCMC algorithm for the problem. In the
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Figure 8. The (approximate) marginal densities of the absorption (left) and scattering coefficients
(right) in the three pixels shown in figure 7. The vertical lines denote the actual values, the
solid lines the marginal densities with the accurate forward model Ah1 (xh) (Nn = 4217) with
conventional likelihood model. The dashed lines denote the marginal densities with target model
Ah5 (xh) (Nn = 713) with enhanced error model and the dotted lines denote the marginals with the
target model Ah5 (xh) with the conventional likelihood model. The densities are nonnormalized.
The relative noise level was δe = 0.5%.

case of most pixels, the target model with enhanced error model gives reliable error estimates
which are comparable or very near to those which were obtained when the accurate forward
model with conventional likelihood model is employed. On the other hand, in the case of
pixel number 50 when using the target model with conventional likelihood model, the actual
coefficient values have essentially zero probability with respect to the approximate marginal
density. In other words, we would claim that given the measurements, the correct value is
impossible. Thus, at least in the present case, the approximation error model yields also more
accurate (approximate) estimates for the accuracy of the (point) estimates.
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5. Conclusions

We have shown that the accuracy of the computational model for the forward problem can
be relaxed if the approximation error model is used with optical diffusion tomography. The
setting up of the approximation error model is a computationally intensive task while the use of
the model is as with the conventional error model. The approach is especially attractive when
the noise levels tend to be very small, in which cases the approach allows for the exploitation
of the actual accuracy of the measurements with computationally efficient forward models.

It was shown that at least in the studied case, the approach is tolerant even to a qualitative
misspecification of the prior model. Furthermore, the reliability of the estimation errors was
improved over the ones given when using the conventional error model.

In practice, optical diffusion tomography should be modelled with three-dimensional
models. The extension of the enhanced error model to 3D is straightforward. We also expect
that the relative reduction in the model size is more significant in 3D than in 2D. In this study,
we assumed that the diffusion approximation to the radiative transfer equation (RTE) would be
an accurate model for the actual ODT measurements, and we considered the compensation of
reduction in the discretization accuracy by the approximation error theory. The future topics
for the research include investigation of how well the approximation error method could be
used to compensate the modelling errors between the diffusion approximation and arguably
more accurate but computationally tedious RTE.
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