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APPROXIMATION ERRORS IN TRUNCATED

DIMENSIONAL DECOMPOSITIONS

SHARIF RAHMAN

Abstract. The main theme of this paper is error analysis for approxima-
tions derived from two variants of dimensional decomposition of a multivari-
ate function: the referential dimensional decomposition (RDD) and analysis-
of-variance dimensional decomposition (ADD). New formulae are presented
for the lower and upper bounds of the expected errors committed by bi-
variately and arbitrarily truncated RDD approximations when the reference
point is selected randomly, thereby facilitating a means for weighing RDD
against ADD approximations. The formulae reveal that the expected error

from the S-variate RDD approximation of a function of N variables, where
0 ≤ S < N < ∞, is at least 2S+1 times greater than the error from the
S-variate ADD approximation. Consequently, ADD approximations are ex-
ceedingly more precise than RDD approximations. The analysis also finds
the RDD approximation to be sub-optimal for an arbitrarily selected refer-
ence point, whereas the ADD approximation always results in minimum error.
Therefore, the RDD approximation should be used with caution.

1. Introduction

Uncertainty quantification of complex systems mandates stochastic computa-
tions of a multivariate output function y that depends on X := (X1, · · · , XN ),
a high-dimensional random input with a positive integer N . For practical appli-
cations, encountering hundreds of variables or more is not uncommon, where a
function of interest, defined algorithmically via numerical solution of algebraic, dif-
ferential, or integral equations, is all too often expensive to evaluate. Therefore,
there is a need to develop low-dimensional approximations of y by seeking to exploit
the hidden structure potentially lurking underneath a function decomposition.

The dimensional decomposition of

(1.1) y(X) =
∑

u⊆{1,··· ,N}
yu(Xu)

can be viewed as a finite, hierarchical expansion in terms of its input variables
with increasing dimensions, where u ⊆ {1, · · · , N} is a subset with the comple-
mentary set −u = {1, · · · , N}\u and cardinality 0 ≤ |u| ≤ N , and yu is a |u|-
variate component function describing a constant or the cooperative influence of
Xu = (Xi1 , · · · , Xi|u|), 1 ≤ i1 < · · · < i|u| ≤ N , a subvector of X, on y when |u| = 0

or |u| > 0. The summation in (1.1) comprises 2N terms, with each term depending
on a group of variables indexed by a particular subset of {1, · · · , N}, including the
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empty set ∅. This decomposition, first presented by Hoeffding [1] in relation to his
seminal work on U -statistics, has been studied by many other researchers [2]: Sobol
[3] used it for quadrature and analysis of variance (ANOVA) [4]; Efron and Stein
[5] applied it to prove their famous lemma on jackknife variances; Owen [6] pre-
sented a continuous space version of the nested ANOVA; Hickernell [7] developed a
reproducing kernel Hilbert space version; and Rabitz and Alis [8] made further re-
finements, referring to it as high-dimensional model representation (HDMR). More
recently, the author’s group formulated this decomposition from the perspective of
Taylor series expansion, solving a number of stochastic-mechanics problems [9–11].

In a practical setting, the multivariate function y, fortunately, has an effective
dimension [12] much lower than N , meaning that y can be effectively approximated
by a sum of lower-dimensional component functions yu, |u| � N . Given an integer
0 ≤ S < N , the truncated dimensional decomposition

(1.2) ŷS(X) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

yu(Xu)

then represents a general S-variate approximation of y(X), which for S > 0 includes
cooperative effects of at most S input variables Xi1 , · · · , XiS , 1 ≤ i1 < · · · < iS ≤
N , on y. However, for (1.2) to be useful, one must ask the fundamental question:
what is the approximation error committed by ŷS(X) for a given 0 ≤ S < N? The
answer to this question, however, is neither simple nor unique, because there are
multiple ways to construct the component functions yu, 0 ≤ |u| ≤ S, spawning ap-
proximations of distinct qualities. Indeed, there exist two important variants of the
decomposition: (1) referential dimensional decomposition (RDD) and (2) ANOVA
dimensional decomposition (ADD), both representing sums of lower-dimensional
component functions of y(X). While ADD has desirable orthogonal properties, the
ANOVA component functions are difficult to compute due to the high-dimensional
integrals involved. In contrast, the RDD lacks orthogonal features with respect to
the probability measure of X, but its component functions are much easier to ob-
tain. For RDD, an additional question arises regarding the reference point, which,
if improperly selected, can mar the approximation. Existing error analysis, lim-
ited to the univariate truncation of y(X), reveals that the expected error from the
RDD approximation is at least four times larger than the error from the ADD
approximation [13]. Although useful to some extent, such a result alone is not ade-
quate when evaluating multivariate functions requiring higher-variate interactions
of input [9–11]. No error estimates exist yet in the current literature, even for a
bivariate approximation. Therefore, a more general error analysis pertaining to a
general S-variate approximation of a multivariate function should provide much-
needed insight into the mathematical underpinnings of dimensional decomposition.

The purpose of this paper is twofold. Firstly, a brief exposition of ADD and
RDD is given in Section 2, including clarifications of parallel developments and
synonyms used by various researchers. The error analysis pertaining to the ADD
approximation is described in Section 3. Secondly, a direct form of the RDD ap-
proximation, previously developed by the author’s group, is tapped for providing
a vital link to subsequent error analysis. Section 4 introduces new formulae for
the lower and upper bounds of the expected errors from the bivariate and general
S-variate RDD approximations. These error bounds, so far available only for the
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univariate approximation, are used to clarify why ADD approximations are exceed-
ingly more precise than RDD approximations. There are seven new results stated
or proved in this paper: Proposition 3.1, Theorems 4.6, 4.12, and Corollaries 4.8,
4.13, 4.15, 4.16. Proofs of other results can be obtained from the references cited,
including a longer version of this paper (http://www.engineering.uiowa.edu/

~rahman/moc_longpaper.pdf). Conclusions are drawn in Section 5.

2. Dimensional decomposition

Let N, N0, Z, R, and R
+
0 represent the sets of positive integer (natural), non-

negative integer, integer, real, and non-negative real numbers, respectively. For k ∈
N, denote by R

k the k-dimensional Euclidean space and by N
k
0 the k-dimensional

multi-index space. These standard notations will be used throughout the paper.
Let (Ω,F , P ) be a complete probability space, where Ω is a sample space, F is

a σ-field on Ω, and P : F → [0, 1] is a probability measure. With BN representing
the Borel σ-field on R

N , consider an R
N -valued independent random vector X :=

(X1, · · · , XN ) : (Ω,F) → (RN ,BN ), which describes the statistical uncertainties
in all system and input parameters of a given stochastic problem. The probability
law of X is completely defined by its joint probability density function fX : RN →
R

+
0 . Assuming independent coordinates of X, its joint probability density fX(x) =

Πi=N
i=1 fi(xi) can be expressed by a product of marginal probability density functions

fi of Xi, i = 1, · · · , N , defined on the probability triple (Ωi,Fi, Pi) with a bounded
or an unbounded support on R.

Consider a non-negative, multiplicative, otherwise general, weight function w :

R
N → R

+
0 , satisfying w(x) =

∏N
i=1 wi(xi) with the marginal weight functions

wi : R → R
+
0 , i = 1, · · · , N . For u ⊆ {1, · · · , N}, let w−u(x−u) :=

∏N
i=1,i/∈u wi(xi)

define the joint weight function associated with −u. Without loss of generality, as-
sume that the weight functions have been normalized to integrate to

∫
R
wi(xi)dxi =∫

RN−|u| w−u(x−u)dx−u =
∫
RN w(x)dx = 1. Let y(X) := y(X1, · · · , XN ), a real-

valued, measurable transformation on (Ω,F), define a stochastic response of inter-
est and L2(Ω,F , P ) represent a Hilbert space of square-integrable functions y with
respect to the induced generic measure w(x)dx supported on R

N . The represen-
tation in (1.1) is called dimensional decomposition if the component functions yu,
u ⊆ {1, · · · , N}, are uniquely determined from the requirements

(2.1)

∫
R

yu(xu)wi(xi)dxi = 0 for i ∈ u.

Indeed, integrating (1.1) with respect to the measure w−u(x−u)dx−u, that is, over
all variables except xu, and using (2.1) yields a recursive form

y(X) =
∑

u⊆{1,··· ,N}
yu(Xu),

y∅ =

∫
RN

y(x)w(x)dx,

yu(Xu) =

∫
RN−|u|

y(Xu,x−u)w−u(x−u)dx−u −
∑
v⊂u

yv(Xv),

(2.2)

of the decomposition with (Xu,x−u) denoting an N -dimensional vector whose ith
component is Xi if i ∈ u and xi if i /∈ u. When u = ∅, the sum in the last line of
(2.2) vanishes, resulting in the expression of the constant function y∅ in the second
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line. When u = {1, · · · , N}, the integration in the last line of (2.2) is on the empty
set, reproducing (1.1) and hence finding the last function y{1,··· ,N}. Indeed, all
component functions of y can be obtained by literally interpreting the last line of
(2.2). On inversion, (2.2) results in

(2.3) y(X) =
∑

u⊆{1,··· ,N}

∑
v⊆u

(−1)|u|−|v|
∫
RN−|v|

y(Xv,x−v)w−v(x−v)dx−v,

providing an explicit form of the same decomposition.
It is important to emphasize that the measure involved in expressing the dimen-

sional decomposition in (2.2) or (2.3) may or may not represent the probability
measure of X. Indeed, different measures will create distinct yet exact represen-
tations of y, all exhibiting the same structure of (1.1). There exist two important
variants of dimensional decomposition, described as follows.

2.1. ADD. The ADD is generated by selecting the probability measure of X as the
generic measure, that is, w(x)dx=fX(x)dx in (2.2) or (2.3), yielding the recursive
form

y(X) =
∑

u⊆{1,··· ,N}
yu,A(Xu),(2.4a)

y∅,A =

∫
RN

y(x)fX(x)dx,(2.4b)

yu,A(Xu) =

∫
RN−|u|

y(Xu,x−u)f−u(x−u)dx−u −
∑
v⊂u

yv,A(Xv),(2.4c)

that is commonly found in the ANOVA literature [4, 5], although for the uniform
probability measure dx. The explicit version takes the form

(2.5) y(X) =
∑

u⊆{1,··· ,N}

∑
v⊆u

(−1)|u|−|v|
∫
RN−|v|

y(Xv,x−v)f−v(x−v)dx−v,

where f−v(x−v) =
∏N

i=1,i/∈v fi(xi) is the marginal probability density function of

X−v := X{1,··· ,N}\v. Equations (2.4) and (2.5) can also be derived from other per-
spectives, including commuting projections on a linear space of real-valued functions
invoked by Kuo et al. [14] for the uniform probability measure.

If E is the expectation operator with respect to the measure fX(x)dx, then two
important properties of the ADD component functions, inherited from (2.1), are as
follows.

Proposition 2.1. The ADD component functions yu,A, ∅ �= u ⊆ {1, · · · , N}, have
zero means, i.e.,

E [yu,A(Xu)] =

∫
R|u|

yu,A(xu)fu(xu)dxu = 0.

Proposition 2.2. Two distinct ADD component functions yu,A and yv,A, where
∅ �= u ⊆ {1, · · · , N}, ∅ �= v ⊆ {1, · · · , N}, and u �= v, are orthogonal, i.e., they
satisfy the property

E [yu,A(Xu)yv,A(Xv)] =

∫
R|u∪v|

yu,A(xu)yv,A(xv)fu∪v(xu∪v)dxu∪v = 0.
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Traditionally, (2.4) or (2.5) with Xj , j = 1, · · · , N , following independent, stan-
dard uniform distributions, has been identified as the ANOVA decomposition [4];
however, the author’s recent works [15,16] reveal no fundamental requirement for a
specific probability measure of X, provided that the resultant integrals in (2.4) or
(2.5) exist and are finite. In this work, the ADD should be interpreted with respect
to an arbitrary but product type probability measure for which it is always endowed
with desirable orthogonal properties. However, the ADD component functions are
difficult to ascertain, because they require calculation of high-dimensional integrals.

2.2. RDD. Consider a reference point c = (c1, · · · , cN ) ∈ R
N and the associated

Dirac measure
∏N

i=1 δ(xi − ci)dxi. The RDD is created when
∏N

i=1 δ(xi − ci)dxi is
chosen as the generic measure in (2.2), leading to the recursive form

y(X) =
∑

u⊆{1,··· ,N}
yu,R(Xu; c),(2.6a)

y∅,R = y(c),(2.6b)

yu,R(Xu; c) = y(Xu, c−u)−
∑
v⊂u

yv,R(Xv; c),(2.6c)

presented as cut-HDMR [8], anchored decomposition [13, 14, 17], and anchored-
ANOVA decomposition [18], with the latter two referring to the reference point
as the anchor. Xu and Rahman introduced (2.6) with the aid of Taylor series
expansion, calling it dimension-reduction [10] and decomposition [11] methods for
calculating statistical moments and reliability of mechanical system responses, re-
spectively. Again, these various synonyms of the same decomposition exist due
to diverse perspectives employed by researchers in disparate fields. Analogous to
ADD, the RDD can also be described explicitly, for instance [13, 14, 17],

(2.7) y(X) =
∑

u⊆{1,··· ,N}

∑
v⊆u

(−1)|u|−|v|y(Xv, c−v),

where (Xv, c−v) denotes an N -dimensional vector whose ith component is Xi if
i ∈ v and ci if i /∈ v. The second argument “c” introduced in yu,R and yv,R is
a reminder that the RDD component functions depend on the reference point,
although y does not, as (2.7) is exact.

An important property of the RDD component functions, also inherited from
(2.1), is as follows [14].

Proposition 2.3. The RDD component functions yu,R, ∅ �= u ⊆ {1, · · · , N},
vanish when any of its own variables Xi with i ∈ u takes on the value of ci, i.e.,

yu,R(Xu; c) = 0 whenever Xi = ci for all i ∈ u.

Clearly, the RDD component functions lack orthogonal features with respect to
the probability measure of X, but are relatively easy to obtain as they only involve
function evaluations at a chosen reference point. However, the RDD component
functions can be orthogonal with respect to other inner products [14].
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2.3. Truncation. When a dimensional decomposition, whether ADD or RDD or
others, of a multivariate function is truncated by retaining only lower-dimensional
terms, the result is an approximation. However, due to the special structure of the
decomposition, the approximation is endowed with an error-minimizing property,
described in Theorem 2.4.

Theorem 2.4 ([8]). For a multivariate function y : RN → R and 0 ≤ S < N , if

ŷS(X) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

yu(Xu),

y∅ =

∫
RN

y(x)w(x)dx,

yu(Xu) =

∫
RN−|u|

y(Xu,x−u)w−u(x−u)dx−u −
∑
v⊂u

yv(Xv),

(2.8)

represent an S-variate approximation, obtained by truncating at 0 ≤ |u| ≤ S the
dimensional decomposition of y(X) with respect to the generic measure w(x)dx,
then the component functions yu, 0 ≤ |u| ≤ S, are uniquely determined from

min
yu,0≤|u|≤S

∫
RN

[
y(x)−

∑
u⊆{1,··· ,N}
0≤|u|≤S

yu(xu)

]2
w(x)dx,

subject to

∫
R

yu(xu)wi(xi)dxi = 0 for i ∈ u.

(2.9)

Rabitz and Alis [8] proved this theorem on pages 202-207 of their paper. The L2

error in (2.9) committed by a truncated dimensional decomposition is minimized,
but only for a specific measure. Given a measure, no other choices of the component
functions of ŷS will produce approximations that are better than the one derived
from (2.8). However, different measures will create different truncated decompo-
sitions, resulting in distinct approximation errors. Therefore, selecting a measure
is vitally important for determining the approximation quality of a dimensional
decomposition.

3. ADD approximation

3.1. Second-moment properties. The S-variate ADD approximation ŷS,A(X),
say, of y(X), where 0 ≤ S < N , is obtained by truncating the right side of (2.4a)
at 0 ≤ |u| ≤ S, yielding

(3.1) ŷS,A(X) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

yu,A(Xu).

By applying the expectation operator on y(X) and ŷS,A(X) from (2.4a) and (3.1),
respectively, and noting Proposition 2.1, the mean E [ŷS,A(X)] = y∅,A of the S-
variate ADD approximation matches the exact mean E [y(X)] :=

∫
RN y(x)fX(x)dx

= y∅,A, regardless of S. Applying the expectation operator again, this time on
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(
ŷS,A(X)− y∅,A

)2
, and recognizing Proposition 2.2 results in splitting the variance

(3.2) σ̂2
S,A := E

[(
ŷS,A(X)− y∅,A

)2]
=

∑
∅�=u⊆{1,··· ,N}

1≤|u|≤S

σ2
u =

S∑
s=1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u

of the S-variate ADD approximation, where σ2
u := E

[
y2u,A(Xu)

]
represents the

variance of the zero-mean ADD component function yu,A, ∅ �= u ⊆ {1, · · · , N}.
Clearly, the approximate variance in (3.2) approaches the exact variance

σ2 := E

[(
y(X)− y∅,A

)2]
=

∑
∅�=u⊆{1,··· ,N}

σ2
u =

N∑
s=1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

the sum of all variance terms, when S → N . A normalized version σ2
u/σ

2 is often
called the global sensitivity index of y for Xu [19].

3.2. Error from general approximation. Define a mean-squared error

(3.3) eS,A := E

[
(y(X)− ŷS,A(X))

2
]
:=

∫
RN

[y(x)− ŷS,A(x)]
2
fX(x)dx

committed by the S-variate ADD approximation ŷS,A(X) of y(X). Replacing y
and ŷS,A in (3.3) with the right sides of (2.4a) and (3.1), respectively, and then
recognizing Propositions 2.1 and 2.2 yields

(3.4) eS,A =
∑

∅�=u⊆{1,··· ,N}
S+1≤|u|≤N

σ2
u =

N∑
s=S+1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

which completely eliminates the variance terms of σ2 that are associated with S-
and all lower-variate contributions, an attractive property of ADD. By setting S =
0, 1, 2, · · · , the error can be expressed for any truncation of ADD.

3.3. Optimality. Among all possible measures, the probability measure endows
the ADD approximation with an error-minimizing property, explained as follows.

Proposition 3.1. For a given S, the S-variate ADD approximation is optimal in
the mean-square sense.

Proof. Consider a generic S-variate approximation ŷS(X) of y(X) other than the
ADD approximation ŷS,A(X). Since y(X)− ŷS,A(X) contains only higher than S-
variate terms and ŷS,A(X)− ŷS(X) contains at most S-variate terms, y− ŷS,A and
ŷS,A − ŷS are orthogonal, satisfying E [(y(X)− ŷS,A(X)) (ŷS,A(X)− ŷS(X))] = 0.
Consequently, the second-moment error from an S-variate approximation

eS := E

[
(y(X)− ŷS(X))

2
]

= E

[
(y(X)− ŷS,A(X))2

]
+ E

[
(ŷS,A(X)− ŷS(X))2

]
= eS,A + E

[
(ŷS,A(X)− ŷS(X))2

]
≥ eS,A,

proving the mean-square optimality of the S-variate ADD approximation. �
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Therefore, given a truncation, an RDD approximation, regardless of how the
reference point is selected, cannot be better than an ADD approximation for calcu-
lating variance. Further details of RDD approximation errors are described in the
next section.

4. RDD approximation

4.1. Direct form. The S-variate RDD approximation ŷS,R(X; c), say, of y(X),
where 0 ≤ S < N , is obtained by truncating the right side of (2.6a) at 0 ≤ |u| ≤ S,
yielding

(4.1) ŷS,R(X; c) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

yu,R(Xu; c),

which depends on the reference point, needing the second argument “c” in ŷS,R.
For error analysis, however, a suitable direct form of (4.1) is desirable. Theorem
4.1 supplies such a form, which was originally obtained by Xu and Rahman [10]
using the Taylor series expansion. The same form was reported later by Kuo et al.
[14].

Let jk = (j1, · · · , jk) ∈ N
k
0 , 1 ≤ k ≤ S, be a k-dimensional multi-index with each

component representing a non-negative integer. The multi-index, used in Theorem

4.1, obeys the following standard notations: (1) |jk| =
∑p=k

p=1 jp; (2) jk! =
∏p=k

p=1 jp!;

(3) ∂jky(c) = ∂j1+···+jky(c)/∂Xj1
i1

· · · ∂Xjk
ik
; (4) (Xu − cu)

jk =
∏p=k

p=1(Xip − cip)
jp ,

1 ≤ i1 < · · · < ik ≤ N .

Theorem 4.1 (Multivariate Function Theorem [10]). For a differentiable multi-
variate function y : RN → R and 0 ≤ S < N , if

(4.2) ŷS,R(X; c) =

S∑
k=0

(−1)k
(
N − S + k − 1

k

) ∑
u⊆{1,··· ,N}
|u|=S−k

y(Xu, c−u)

represents an S-variate RDD approximation of y(X), then ŷS,R(X; c) consists of
all terms of the Taylor series expansion of y(X) at c that have less than or equal
to S variables, i.e.,

ŷS,R(X; c) =
S∑

k=0

tk,

where

t0 = y(c),

tk =
∑

jk∈N
k
0

j1,··· ,jk �=0

1

jk!

∑
∅�=u⊆{1,··· ,N}

|u|=k

∂jky(c) (Xu − cu)
jk ; 1 ≤ k ≤ S.

Xu and Rahman [10] proved this theorem on pages 1996-2000 of their paper
when c = 0 without loss of generality. The stochastic method associated with the
RDD approximation was simply called the “decomposition method” [11]. Theorem
4.1 implies that the RDD approximation ŷS,R(X; c) in (4.2), when compared with
the Taylor series expansion of y(X), yields a residual error that includes only terms
of dimensions S + 1 and higher. All higher-order S- and lower-variate terms of
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y(X) are included in (4.2), which should therefore generally provide a higher-order
approximation of a multivariate function than the equation derived from an S-order
Taylor expansion.

Equations (4.1) and (4.2) both follow the same structure as (1.2). However, due
to the distinct perspectives involved, it is not obvious if these equations represent
the same function ŷS,R. A lemma and a theorem recently proved by the author
demonstrate that, indeed, they do [20].

Corollary 4.2. When S = 0, 1, and 2, (4.2) degenerates to the zero-variate RDD
approximation

(4.3) ŷ0,R(X; c) = y(c),

the univariate RDD approximation

(4.4) ŷ1,R(X; c) =

N∑
i=1

y(Xi, c−{i})− (N − 1)y(c),

and the bivariate RDD approximation

ŷ2,R(X; c) =

N−1∑
i=1

N∑
j=i+1

y(Xi, Xj , c−{i,j})−(N − 2)

N∑
i=1

y(Xi, c−{i})

+
1

2
(N − 1)(N − 2)y(c),

(4.5)

respectively.

Remark 4.3. Since the right side of (4.4) comprises only univariate functions, the
interpolation or integration of ŷ1,R(X; c) is essentially univariate. Similarly, the
right side of (4.5), which contains at most bivariate functions, requires at most
bivariate interpolation or integration of ŷ2,R(X; c). Therefore, appellation of the
terms “univariate approximation” and “bivariate approximation” for ŷ1,R(X; c) in
(4.4) and ŷ2,R(X; c) in (4.5), respectively, is more appropriate than referring to
them as first-order and second-order approximations.

4.2. Expected error. Following similar consideration, define another mean-
squared error

eS,R(c) := E

[
(y(X)− ŷS,R(X; c))2

]
:=

∫
RN

[y(x)− ŷS,R(x; c)]
2 fX(x)dx(4.6)

associated with the S-variate RDD approximation ŷS,R(X; c) of y(X), which de-
pends on the reference point c. Wang [13] suggested choosing a random reference
point uniformly distributed over [0, 1]N and then calculating the error on average.
But, X defined here may follow an arbitrary probability law with density fX(x).
Therefore, selecting the reference point characterized by the probability density
fX(c) is more appropriate, which leads to

E [eS,R(c)] :=

∫
RN

eS,R(c)fX(c)dc

=

∫
R2N

[y(x)− ŷS,R(x; c)]
2
fX(x)fX(c)dxdc

(4.7)

as the expected value of the RDD error. Simplifying (4.7) in terms of the variance
components of y, as done for the ADD error in (3.4), for arbitrary S and N may
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appear formidable. Here, the zero-variate (S = 0), univariate (S = 1), and bivariate
(S = 2) approximation errors for arbitrary N will be derived first, followed by error
analysis for a general S-variate approximation. In all cases, the derivations require
using (1) the relationships,

y∅,A =

∫
RN

y(c)fX(c)dc,(4.8a)

yu,A(xu) =

∫
RN

yu,R(xu; c)fX(c)dc,(4.8b)

ŷS,A(x) =

∫
RN

ŷS,R(x; c)fX(c)dc,(4.8c)

that exist between ADD and RDD component functions and approximations and
(2) Sobol’s formula [19]

(4.9) Du :=
∑
v⊆u

σ2
v =

∫
R2N−|u|

y(x)y(xu, c−u)fX(x)fX−u
(c−u)dxdc−u − y2∅,A

for select choices of u described in the following subsection. Equations (4.8a) and
(4.8b) follow from Propositions 2.1, 2.2, and 2.3 and definitions of respective com-
ponent functions in (2.4) and (2.6), eventually leading to (4.8c). The term Du

in Sobol’s formula represents a sum of variance terms contributed by the ADD
component functions that belong to ∅ �= u ⊆ {1, · · · , N}.

4.3. Expected errors from zero-variate, univariate, and bivariate approx-
imations. Theorems 4.4, 4.5, and 4.6 show how the expected errors from the
zero-variate, univariate, and bivariate RDD approximations, respectively, depend
on the variance components of y.

Theorem 4.4. Let c = (c1, · · · , cN ) ∈ R
N be a random vector with the joint prob-

ability density function of the form fX(c) =
∏j=N

j=1 fj(cj), where fj is the marginal
probability density function of its jth coordinate. Then the expected error committed
by the zero-variate RDD approximation for 1 ≤ N < ∞ is

E [e0,R(c)] = 2σ2,

where σ2 := E

[(
y(X)− y∅,A

)2]
= E

[
y2(X)

]
− y2∅,A is the variance of y.

Proof. Setting S = 0 in (4.7) and using the expression of ŷ0,R(x; c) from (4.3), the
expected error from the zero-variate RDD approximation becomes

E [e0,R(c)] =

∫
R2N

[y(x)− y(c)]2 fX(x)fX(c)dxdc

=

∫
RN

y2(x)fX(x)dx+

∫
RN

y2(c)fX(c)dc

− 2

∫
RN

y(x)fX(x)dx

∫
RN

y(c)fX(c)dc

= σ2 + y2∅,A + σ2 + y2∅,A − 2y2∅,A

= 2σ2,

where the third equality exploits the ADD-RDD relationship in (4.8a). Hence, the
theorem is proven. �
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Theorem 4.5. Let c = (c1, · · · , cN ) ∈ R
N be a random vector with the joint prob-

ability density function of the form fX(c) =
∏j=N

j=1 fj(cj), where fj is the marginal
probability density function of its jth coordinate. Then the expected error committed
by the univariate RDD approximation for 2 ≤ N < ∞ is

(4.10) E [e1,R(c)] =
N∑
s=2

(
s2 − s+ 2

) ∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

where σ2
u = E

[
y2u,A(Xu)

]
is the variance of the zero-mean ADD component function

yu,A, ∅ �= u ⊆ {1, · · · , N}.

Proof. Setting S = 1 in (4.7), the expected error from the univariate RDD approx-
imation on expansion is a sum

E [e1,R(c)] = I1,1 + I1,2 + I1,3

of three integrals

I1,1 :=

∫
R2N

y2(x)fX(x)fX(c)dxdc,

I1,2 := −2

∫
R2N

y(x)ŷ1,R(x; c)fX(x)fX(c)dxdc,

I1,3 :=

∫
R2N

ŷ21,R(x; c)fX(x)fX(c)dxdc

on R
2N , where their first indices represent the univariate approximation. The first

integral

(4.11) I1,1 = E
[
y2(X)

]
= y2∅,A + σ2 = y2∅,A +

N∑
s=1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

expressed in terms of the variance components, is independent of S. However, the
second integral depends on S, yielding

I1,2 = −2

∫
RN

y(x)ŷ1,A(x)fX(x)dx

= −2

∫
RN

ŷ21,A(x)fX(x)dx

= −2E
[
ŷ21,A(X)

]
= −2

(
y2∅,A + σ̂2

1,A

)
= −2y2∅,A − 2

∑
∅�=u⊆{1,··· ,N}

|u|=1

σ2
u,

(4.12)

where the first, second, and fifth lines are obtained by (1) employing the ADD-RDD
relationships in (4.8c) for S = 1, (2) recognizing y− ŷ1,A and ŷ1,A to be orthogonal,
satisfying E [(y(X)− ŷ1,A(X)) ŷ1,A(X)] = 0, and (3) applying (3.2) for S = 1,
respectively. Using the expression of ŷ1,R(x; c) from (4.4) and noting independent
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coordinates of X and c, the expanded third integral becomes

I1,3 =

∫
R2N

[ N∑
i=1

y(xi, c−{i})− (N − 1)y(c)

]2
fX(x)fX(c)dxdc

=

∫
R2N

[ N∑
i=1

y2(xi, c−{i}) + 2

N−1∑
i=1

N∑
j=i+1

y(xi, c−{i})y(xj , c−{j})

+ (N − 1)2y2(c)− 2(N − 1)
N∑
i=1

y(Xi, c−{i})y(c)

]
fX(x)fX(c)dxdc.

(4.13)

Further evaluation of this integral requires exploiting Sobol’s formula in (4.9) for
u = −{i} and u = −{i, j}, where i, j = 1, · · · , N , i < j, yielding

I1,3 = (N2 −N + 1)
(
σ2 + y2∅,A

)
− 2(N − 1)

N∑
i=1

(
D−{i} + y2∅,A

)

+ 2

N−1∑
i=1

N∑
j=i+1

(
D−{i,j} + y2∅,A

)
= y2∅,A +

∑
∅�=u⊆{1,··· ,N}

|u|=1

σ2
u + 3

∑
∅�=u⊆{1,··· ,N}

|u|=2

σ2
u

+ · · ·+
(
s2 − s+ 1

) ∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u + · · ·+

(
N2 −N + 1

) ∑
∅�=u⊆{1,··· ,N}

|u|=N

σ2
u

= b1(0)y
2
∅,A +

N∑
s=1

b1(s)
∑

∅�=u⊆{1,··· ,N}
|u|=s

σ2
u,

(4.14)

where
b1(s) = s2 − s+ 1, 0 ≤ s ≤ N,

is the generic s-variate coefficient for the univariate approximation, obtained by
counting the number of y2∅,A or σ2

u for |u| = s (e.g., σ2
1 for s = 1, σ2

12 for s = 2, and

so on) due to symmetry. Adding all terms in (4.11), (4.12), and (4.14), with the
recognition that b1(0) = b1(1) = 1, yields (4.10), completing the proof. �
Theorem 4.6. Let c = (c1, · · · , cN ) ∈ R

N be a random vector with the joint prob-

ability density function of the form fX(c) =
∏j=N

j=1 fj(cj), where fj is the marginal
probability density function of its jth coordinate. Then the expected error committed
by the bivariate RDD approximation for 3 ≤ N < ∞ is

(4.15) E [e2,R(c)] =

N∑
s=3

1

4

(
s4 − 2s3 − s2 + 2s+ 8

) ∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

where σ2
u = E

[
y2u,A(Xu)

]
is the variance of the zero-mean ADD component function

yu,A, ∅ �= u ⊆ {1, · · · , N}.
Proof. Setting S = 2 in (4.7), the expected error from the bivariate RDD approxi-
mation on expansion is another sum

E [e2,R(c)] = I2,1 + I2,2 + I2,3
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of three 2N -dimensional integrals

I2,1 :=

∫
R2N

y2(x)fX(x)fX(c)dxdc,

I2,2 := −2

∫
R2N

y(x)ŷ2,R(x; c)fX(x)fX(c)dxdc,

I2,3 :=

∫
R2N

ŷ22,R(x; c)fX(x)fX(c)dxdc,

where their first indices represent the bivariate approximation. Since the first inte-
gral does not depend on S,

(4.16) I2,1 = y2∅,A + σ2 = y2∅,A +
N∑
s=1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u

is the same as I1,1. Following a similar reasoning employed for the univariate
approximation, the second integral

I2,2 = −2

∫
RN

y(x)ŷ2,A(x)fX(x)dx

= −2

∫
RN

ŷ22,A(x)fX(x)dx

= −2E
[
ŷ22,A(X)

]
= −2

(
y2∅,A + σ̂2

2,A

)
= −2y2∅,A − 2

∑
∅�=u⊆{1,··· ,N}

|u|=1

σ2
u − 2

∑
∅�=u⊆{1,··· ,N}

|u|=2

σ2
u

(4.17)

contains variance terms associated with at most two variables. Using the expression
of ŷ2,R(x; c) from (4.5), the expanded third integral becomes

I2,3 =

∫
R2N

[N−1∑
i=1

N∑
j=i+1

y(xi, xj , c−{i,j})−(N − 2)
N∑
i=1

y(xi, c−{i})

+
1

2
(N − 1)(N − 2)y(c)

]2
fX(x)fX(c)dxdc

=

∫
R2N

{[N−1∑
i=1

N∑
j=i+1

y(xi, xj , c−{i,j})

]2
+(N − 2)2

[ N∑
i=1

y(xi, c−{i})

]2

+
1

4
(N − 1)2(N − 2)2y2(c)

− 2(N − 2)

[N−1∑
i=1

N∑
j=i+1

y(xi, xj , c−{i,j})

][ N∑
i=1

y(xi, c−{i})

]

− (N − 1)(N − 2)2
[ N∑
i=1

y(xi, c−{i})

]
y(c)

+ (N − 1)(N − 2)

[N−1∑
i=1

N∑
j=i+1

y(xi, xj , c−{i,j})

]
y(c)

}
fX(x)fX(c)dxdc.
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Employing Sobol’s formula, this time for u = −{i}, u = −{j}, u = −{i, j}, u =
−{i, k}, u = −{j, k}, u = −{i, j, k}, and u = −{i, j, k, l}, where i, j, k, l = 1, · · · , N ,
i < j < k < l, results in

I2,3 =
N(N − 1)

2

(
σ2 + y2∅,A

)
+ 2

N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

(
D−{i,j} +D−{i,k} +D−{j,k} + 3y2∅,A

)

+ 6
N−3∑
i=1

N−2∑
j=i+1

N−1∑
k=j+1

N∑
l=k+1

(
D−{i,j,k,l} + y2∅,A

)
+N(N − 2)2

(
σ2 + y2∅,A

)

+ 2(N − 2)2
N−1∑
i=1

N∑
j=i+1

(
D−{i,j} + y2∅,A

)
+

1

4
(N − 1)2(N − 2)2

(
σ2 + y2∅,A

)

− 2(N − 2)
N−1∑
i=1

N∑
j=i+1

(
D−{i} +D−{j} + 2y2∅,A

)

− 6(N − 2)
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

(
D−{i,j,k} + y2∅,A

)

− (N − 1)(N − 2)2
N∑
i=1

(
D−{i} + y2∅,A

)

+ (N − 1)(N − 2)

N−1∑
i=1

N∑
j=i+1

(
D−{i,j} + y2∅,A

)
= y2∅,A +

∑
∅�=u⊆{1,··· ,N}

|u|=1

σ2
u +

∑
∅�=u⊆{1,··· ,N}

|u|=2

σ2
u + 7

∑
∅�=u⊆{1,··· ,N}

|u|=3

σ2
u

+ · · ·+ 1

4

(
s4 − 2s3 − s2 + 2s+ 4

) ∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u

+ · · ·+ 1

4

(
N4 − 2N3 −N2 + 2N + 4

) ∑
∅�=u⊆{1,··· ,N}

|u|=N

σ2
u

= b2(0)y
2
∅,A +

N∑
s=1

b2(s)
∑

∅�=u⊆{1,··· ,N}
|u|=s

σ2
u,

(4.18)

producing the generic s-variate coefficient

b2(s) =
1

4

(
s4 − 2s3 − s2 + 2s+ 4

)
, 0 ≤ s ≤ N,

for the bivariate approximation. Adding all terms in (4.16), (4.17), and (4.18),
with the understanding that b2(0) = b2(1) = b2(2) = 1, yields (4.15), proving the
theorem. �
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Corollary 4.7. The expected error E [e0,R] from the zero-variate RDD approxima-
tion, expressed in terms of the error e0,A from the zero-variate ADD approximation,
is

E [e0,R] = 2e0,A, 1 ≤ N < ∞.

Corollary 4.8. The lower and upper bounds of the expected errors E [e1,R] and
E [e2,R] from the univariate and bivariate RDD approximations, respectively, ex-
pressed in terms of the errors e1,A and e2,A from the univariate and bivariate ADD
approximations, are

4e1,A ≤ E [e1,R] ≤
(
N2 −N + 2

)
e1,A, 2 ≤ N < ∞,

and

8e2,A ≤ E [e2,R] ≤
1

4

(
N4 − 2N3 −N2 + 2N + 8

)
e2,A, 3 ≤ N < ∞,

respectively.

Remark 4.9. When X comprises independent and identically distributed uniform
random variables over [0, 1], the results of the zero-variate and univariate RDD
approximations presented in Theorems 4.4 and 4.5 coincide with those derived
by Wang [13]. However, the results of the bivariate RDD approximation − that
is, Theorem 4.6 − are new. Theorems 4.5 and 4.6 demonstrate that on average
the error from the univariate RDD approximation eliminates the variance terms
associated with the univariate contribution. For the bivariate RDD approximation,
the variance portions resulting from the univariate and bivariate terms have been
removed as well. The univariate and bivariate ADD approximations also satisfy this
important property. However, the coefficients of higher-variate terms in the RDD
errors are larger than unity, implying greater errors from RDD approximations than
from ADD approximations.

Remark 4.10. From Corollary 4.7, the zero-variate RDD approximation on average
commits twice as many errors as does the zero-variate ADD approximation. Since a
zero-variate approximation, whether derived from ADD or RDD, does not capture
the random fluctuations of a stochastic response, the error analysis associated with
a zero-variate approximation is useless. Nonetheless, the zero-variate results are
reported here for completeness.

Remark 4.11. Corollary 4.8 shows that the expected error from the univariate RDD
approximation is at least four times larger than the error from the univariate ADD
approximation. In contrast, the expected error from the bivariate RDD approxi-
mation can be eight times larger or more than the error from the bivariate ADD
approximation. Given a truncation, an ADD approximation is superior to an RDD
approximation. In addition, RDD approximations may perpetrate very large er-
rors at upper bounds when there exist a large number of variables and appropriate
conditions. For instance, consider a contrived example involving a function of 100
variables with a finite variance σ2 > 0 and the following distribution of the variance
terms:

∑
|u|=1 σ

2
u = 0.999σ2,

∑
2≤|u|≤99 σ

2
u = 0, and

∑
|u|=100 σ

2
u = 0.001σ2. Then,

the errors from the univariate and bivariate ADD approximations are both equal
to 0.001σ2, which is negligibly small. In contrast, the error from the univariate
RDD approximation reaches (1002 − 100 + 2)× 0.001σ2 ∼= 9.9σ2, an unacceptably
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large magnitude already. Furthermore, the error from the bivariate RDD approx-
imation jumps to an enormously large value of 1

4 (100
4 − 2 × 1003 − 1002 + 2 ×

100 + 8)× 0.001σ2 ∼= 24, 498σ2. More importantly, the results reveal a theoretical
possibility for a higher-variate RDD approximation to commit a larger error than
a lower-variate RDD approximation − an impossible scenario for the ADD approx-
imation. However, it is unlikely for this odd behavior to be exhibited for realis-
tic functions, where the variances of higher-variate component functions attenuate
rapidly or vanish altogether. Nonetheless, caution is warranted when employing
RDD approximations for stochastic analysis of high-dimensional systems.

4.4. Expected error from general approximation. The error analysis pre-
sented so far is limited to at most the bivariate approximation. In this subsection,
the approximation error from a general S-variate truncation is derived as follows.

Theorem 4.12. Let c = (c1, · · · , cN ) ∈ R
N be a random vector with the joint prob-

ability density function of the form fX(c) =
∏j=N

j=1 fj(cj), where fj is the marginal
probability density function of its jth coordinate. Then the expected error committed
by the S-variate RDD approximation for 0 ≤ S < N, S + 1 ≤ N < ∞ is

(4.19) E [eS,R(c)] =

N∑
s=S+1

[
1 +

S∑
k=0

(
s− S + k − 1

k

)2(
s

S − k

)] ∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

where σ2
u = E

[
y2u,A(Xu)

]
is the variance of the zero-mean ADD component function

yu,A, ∅ �= u ⊆ {1, · · · , N}.

Proof. Expanding the square in (4.7), the expected error from the S-variate RDD
approximation is

(4.20) E [eS,R(c)] = IS,1 + IS,2 + IS,3,

where

IS,1 :=

∫
R2N

y2(x)fX(x)fX(c)dxdc,

IS,2 := −2

∫
R2N

y(x)ŷS,R(x; c)fX(x)fX(c)dxdc,

IS,3 :=

∫
R2N

ŷ2S,R(x; c)fX(x)fX(c)dxdc

(4.21)

are three generic 2N -dimensional integrals. The first integral,

(4.22) IS,1 = y2∅,A + σ2 = y2∅,A +

N∑
s=1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,
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is the same as before. The second integral,

IS,2 = −2

∫
RN

y(x)ŷS,A(x)fX(x)dx

= −2

∫
RN

ŷ2S,A(x)fX(x)dx

= −2E
[
ŷ2S,A(X)

]
= −2

(
y2∅,A + σ̂2

S,A

)
= −2y2∅,A − 2

S∑
s=1

∑
∅�=u⊆{1,··· ,N}

|u|=s

σ2
u,

(4.23)

comprises variance terms associated with at most S variables. The third integral,
using ŷS,R(x; c) from (4.2), takes the form

IS,3 =

∫
R2N

[ S∑
k=0

(−1)k
(
N − S + k − 1

k

) ∑
u⊆{1,··· ,N}
|u|=S−k

y(xu, c−u)

]2
fX(x)fX(c)dxdc

= bS(0)y
2
∅,A +

N∑
s=1

bS(s)
∑

∅�=u⊆{1,··· ,N}
|u|=s

σ2
u

(4.24)

with the generic s-variate coefficient bS(s), s = 0, 1, · · · , N, for the S-variate ap-
proximation yet to be determined. Of N + 1 such coefficients, the last one,

(4.25) bS(N) =

S∑
k=0

(
N − S + k − 1

k

)2(
N

S − k

)
,

is easier to determine. It is obtained from the expansion coefficients of the square
in (4.24) that are associated with all variance terms of σ2. To determine other
coefficients, bS(s), s = 0, 1, · · · , N − 1, the procedure used before for the univariate
or bivariate approximation is unwieldy. An alternative scheme proposed here stems
from the realization that the expressions of those coefficients consist of terms from
two sources: (1) terms that depend solely on N , which can be described by a
function f , say, of N ; and (2) terms that depend on both N and s, which can be
described by another function g, say, of N and s. Following this rationale, let a
generic coefficient be expressed by

(4.26) bS(s) = f(N)− g(N, s)

for any 0 ≤ N < ∞ and 0 ≤ s ≤ N. Switching the variables N and s, (4.26)
produces

(4.27) bS(N) = f(s)− g(s,N).

At s = N , (4.26) and (4.27) result in g(s, s) = g(N,N) = 0. Either of these two
equations at s = N with g(s, s) = g(N,N) = 0 in mind yields f(N) = bS(N) or
f(s) = bS(s), where the function bS is already described in (4.25). Therefore, the
generic s-variate coefficient

(4.28) bS(s) =
S∑

k=0

(
s− S + k − 1

k

)2(
s

S − k

)
, 0 ≤ s ≤ N,
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where the binomial coefficients should be interpreted more generally than their
classical combinatorial definition; for instance,

(4.29)

(
r

k

)
:=

⎧⎪⎪⎨
⎪⎪⎩

1

k!
r−k =

1

k!
r(r − 1) · · · (r − k + 1) if k > 0,

1 if k = 0,

0 if k < 0,

valid for any real number r ∈ R and any integer k ∈ Z. Adding all terms in (4.22),
(4.23), and (4.24), with the cognizance that bS(s) = 1 for all 0 ≤ s ≤ S, yields
(4.19), proving the theorem. �
Corollary 4.13. The lower and upper bounds of the expected error E [eS,R] from
the S-variate RDD approximation, expressed in terms of the error eS,A from the
S-variate ADD approximations, are

(4.30) 2S+1eS,A ≤ E [eS,R] ≤
[
1 +

S∑
k=0

(
N − S + k − 1

k

)2(
N

S − k

)]
eS,A,

0 ≤ S < N < ∞, where the coefficients of the lower and upper bounds are obtained
from

(4.31) 1 + bS(S + 1) = 1 +

S∑
k=0

(
S + 1

S − k

)
=

S+1∑
k=0

(
S + 1

k

)
= 2S+1

and

(4.32) 1 + bS(N) = 1 +

S∑
k=0

(
N − S + k − 1

k

)2(
N

S − k

)
,

respectively.

Remark 4.14. Both Theorem 4.12 and Corollary 4.13 are new and provide a general
result pertaining to RDD error analysis for an arbitrary truncation. The specific
results of the zero-variate or univariate or bivariate RDD approximation, derived
in the preceding subsection, can be recovered by setting S = 0 or 1 or 2 in (4.19)
through (4.32). From Corollary 4.13, the expected error from the S-variate RDD
approximation of a multivariate function is at least 2S+1 times larger than the
error from the S-variate ADD approximation. In other words, the ratio of RDD
to ADD errors doubles for each increment of the truncation. Consequently, ADD
approximations are exceedingly more precise than RDD approximations at higher-
variate truncations.

Although the relative disadvantage of using RDD over ADD worsens drastically
with the truncation S, one hopes that the approximation error is also decreasing
with increasing S. For instance, given a rate at which σ2

u decreases with |u|, what
can be inferred from how fast eS,A and E [eS,R] decay with respect to S? Corollary
4.15 and subsequent discussions provide some insights.

Corollary 4.15. If the variance of the zero-mean ADD component function yu,A
diminishes according to σ2

u ≤ Cp−|u|, where ∅ �= u ⊆ {1, · · · , N}, and C > 0 and
p > 1 are two real-valued constants, then

(4.33) eS,A ≤ C

N∑
s=S+1

(
N

s

)
p−s
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and

(4.34) E [eS,R] ≤ C

N∑
s=S+1

[
1 +

S∑
k=0

(
s− S + k − 1

k

)2(
s

S − k

)](
N

s

)
p−s

for 0 ≤ S < N < ∞.

When the equality holds in (4.33), eS,A decays strictly monotonically with re-
spect to S for any rate parameter p. In contrast, E [eS,R], according to (4.34), does
not follow suit for an arbitrary p. However, there exists a minimum threshold,
say, pmin, when crossed, E [eS,R] also decays monotonically. The threshold can be
determined from the condition that E [e0,R] = E [e1,R], resulting in the relationship

(4.35)
2

pmin
=

(N − 1)

(
1 +

1

pmin

)N

(1 + pmin)2

between N and pmin. Equation (4.35) supports an exact solution of

(4.36) N = 1 +
1

ln

(
1 +

1

pmin

)W

(
2(1 + pmin) ln

(
1 +

1

pmin

))

in terms of pmin, expressed by employing the Lambert W function W , and can be
inverted easily. For instance, when N = 20, (4.36) yields pmin = 21.5187, the only
real-valued solution of interest. Depicted in Figure 1 (left), pmin derived from (4.36)
increases monotonically and strikingly close to linearly with N for the ranges of the
variables examined.

Using the equalities in (4.33) and (4.34), Figure 1 (right) presents plots of two
normalized errors, E [eS,R] /σ

2 and eS,A/σ
2, against S, each obtained for N = 20

and p = 5 or 50, where the variance σ2 = C[(1 + 1
p )

N − 1]. When the rate

parameter is sufficiently low (e.g., p = 5 < pmin), the expected RDD error initially
rises before falling as S becomes larger. The non-monotonic behavior of the RDD
error is undesirable, but it vanishes when the rate parameter is sufficiently high
(e.g., p = 50 > pmin). No such anomaly is found in the ADD error for any p.

Corollary 4.16. The expected error E [eN−1,R] from the best RDD approximation,
expressed in terms of the error eN−1,A from the best ADD approximation, where
the best approximations are obtained by setting S = N − 1, is

(4.37) E [eN−1,R] = 2NeN−1,A, 1 ≤ N < ∞.

Remark 4.17. Due to the factor 2N in (4.37), the expected error from the best
RDD approximation as N → ∞ can be significantly large unless the best ADD
approximation commits an error equal to or smaller than 2−N . In reference to
Corollary 4.15, suppose that σ2

u ≤ Cp−|u|. Then E [eN−1,R] ≤ C(2/p)N . Therefore,
E [eN−1,R] → 0 as N → ∞ for p > 2.

The error analysis presented in this paper pertains to only second-moment char-
acteristics of y(X). Similar analyses or definitions aimed at higher-order moments
or probability distribution of y can be envisioned, but no closed-form solutions
and simple expressions are possible. However, if y satisfies the requirements of the
Chebyshev inequality or its descendants − a condition fulfilled by many realistic

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2818 SHARIF RAHMAN

0 10 20 30 40 50 60 70 80 90 100

N

0

30

60

90

120
p m

in

0 2 4 6 8 10 12 14 16 18 20

S

10 -11
10 -10
10 -9
10 -8
10 -7
10 -6
10 -5
10 -4
10 -3
10 -2
10 -1
10 0
10 1
10 2
10 3

[e
S,
R]

/ σ
2 , e S

,A
/ σ

2

RDD
(p=50)

N = 20

ADD
(p=50)

ADD
(p=5)

RDD
(p=5)

 
 

Figure 1. Relationship between pmin and N (left) and normalized
RDD and ADD errors versus S for N = 20, p = 5 or 50 (right).

functions − then the results and findings from this work can be effectively exploited
for stochastic analysis. See the longer version of the paper for further details.

5. Conclusions

Two variants of dimensional decomposition, namely, RDD and ADD, of a mul-
tivariate function, both representing finite sums of lower-dimensional component
functions, were studied. The approximations resulting from the truncated RDD
and ADD were explicated, including clarifications of parallel developments and
synonyms used by various researchers. For the RDD approximation, a direct form,
previously developed by the author’s group, was found to provide a vital link to sub-
sequent error analysis. New theorems were proven about the expected errors from
the bivariate and general RDD approximations, so far available only for the uni-
variate RDD approximation, when the reference point is selected randomly. They
furnish new formulae for the lower and upper bounds of the expected error com-
mitted by an arbitrarily truncated RDD, providing a means to grade RDD against
ADD approximations. The formulae indicate that the expected error from the S-
variate RDD approximation of a function of N variables, where 0 ≤ S < N < ∞,
is at least 2S+1 times larger than the error from the S-variate ADD approxima-
tion. Consequently, ADD approximations are exceedingly more precise than RDD
approximations at higher-variate truncations. The analysis also finds the RDD ap-
proximation to be sub-optimal for an arbitrarily selected reference point, whereas
the ADD approximation always results in minimum error. Therefore, RDD approx-
imations should be used with caveat.
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