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In this paper, we study rational approximations for algebraic functions
in characteristic p > 0. We obtain results for elements satisfying an equation
of the type α = (Aαq +B)/(Cαq +D), where q is a power of p.

1. Introduction and notations. Let K be a field, and let K((T−1))
be the field of formal Laurent series in 1/T . For f ∈ K((T−1)), deg(f) is
the integer defined by f =

∑deg(f)
n=−∞ anT

n, with adeg(f) 6= 0. We define an
absolute value on K((T−1)) by |f | = |T |deg(f), where |T | > 1. For each
f ∈ K((T−1)), there exists a polynomial E(f) in K[T ] (integral part of f)
such that |f − E(f)| < 1. We denote |f − E(f)| by ‖f‖.

Let α ∈ K((T−1)). For any real number µ, define

B(α, µ) = lim inf
|Q|→∞

|Q|µ‖Qα‖ .

We define the approximation exponent of α by

ν(α) = sup{µ | B(α, µ) <∞} .
Clearly B(α, 1) ≤ 1/|T |, hence ν(α) ≥ 1 for every α. Let (Qn)n∈N be the
sequence of the denominators of the convergents in the continued fraction
expansion of α. One has

ν(α) = lim sup deg(Qn+1)/deg(Qn) .

It is easy to see that ν(α) may be any real number ν ≥ 1 or ν = +∞.
It is well known that if K has characteristic 0, Roth’s Theorem remains

valid ([7]), i.e. ν(α) = 1 for every algebraic irrational element α ofK((T−1)).
On the other hand, if K has a positive characteristic, p, Roth’s Theorem
fails. The Liouville Theorem holds, i.e. ν(α) ≤ n − 1 if α is algebraic, of
degree n > 1, over K(T ). But this result is the best possible, as many
examples show. For instance, let q be a power of p, and q > 2. Let α =
T−1 + . . .+ T−qk

+ . . . ; this element satisfies the equation αq − α+ T−1 =
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0, and ν(α) = q − 1 (Mahler’s example). Osgood’s example is α such
that αq−1 = 1 + T−1, for which ν(α) = q − 2 (q > 3). One can also
cite α = 1 
 T + 1 
 T q + . . . + 1 
 T qk

+ . . . ; this element α satisfies
αq+1 + Tα− 1 = 0, and ν(α) = q (for q ≥ 2).

Nevertheless, there exist in K((T−1)) algebraic elements α of degrees
> 2 for which ν(α) = 1. The first example was obtained by Baum and
Sweet ([1]): in F2((T−1)), α such that α3 +T−1α+ 1 = 0 is a cubic element
for which ν(α) = 1 (and B(α, 1) = |T |−2). Other examples were given by
W. H. Mills and D. P. Robbins ([4]), for other characteristics. Examples of
algebraic elements α such that 1 < ν(α) < d(α)−1, where d(α) is the degree
of α over K(T ), were also found by Y. Taussat ([6]): for α ∈ F3((T−1)) such
that α4 +T−1α−1 = 0, one has ν(α) = 23/19 (and B(α, ν(α)) = |T |−21/19,
d(α) = 4). See also [8].

We always suppose K to be of positive characteristic p, and we prove
the following result:

Theorem. Let α be an irrational element of K((T−1)). Suppose that
there exist a power q = ps of p (s integer , s > 0), and polynomials A,B,C,D
in K[T ], with AD − BC 6= 0, such that α = (Aαq + B)/(Cαq +D). Then
ν(α) is a rational number , and B(α, ν(α)) 6= 0, 6= ∞.

Of course, this result is also true when q = 1 and C 6= 0, for then α is
quadratic. Hence we suppose q > 1.

It was already proved by J. F. Voloch ([8]) that for such an algebraic ele-
ment α, one has B(α, ν(α)) 6= 0, but this result is also a direct consequence
of the proof of the above theorem.

Let us remark that every algebraic element α in K((T−1)) of degree 3
over K(T ) satisfies an equation as in the Theorem. One can take q = p,
since the elements 1, α, αp, αp+1 are linearly dependent over K(T ).

All the examples of algebraic irrational elements in K((T−1)) for which
the value of ν(α) is known satisfy an equation as in the Theorem. Never-
theless, there exist algebraic irrational elements which do not satisfy any
equation of this type. For instance, let f(X) be the following polynomial
over K(T ):

f(X) = Xp2
+ T 2Xp − T 2X + T .

This polynomial is irreducible over K(T ), since it is a T -Eisenstein polyno-
mial. It has p roots in K((T−1)) since the polynomial T−2f(X) becomes
Xp−X in the residue class field K. A root α of f(X) in K((T−1)) may not
satisfy an equation of the type α = (Aαq + B)/(Cαq + D). Indeed, there
exist polynomials As, Bs, Cs in K[T ], for each s ≥ 0, with

αps

= Asα
p +Bsα+ Cs
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and, by induction, it is easily seen that for s ≥ 2,

deg(As) = deg(Bs) = 2(ps−1 − 1)/(p− 1) .

Hence As 6= 0 for every s ≥ 1. But

αps+1 = Asα
p+1 +Bsα

2 + Csα

and the elements 1, α, α2, . . . , αp+1 are linearly independent over K(T ). So
the elements αps+1, αps

, α, 1 are linearly independent over K(T ) for every
s ≥ 1.

To prove the Theorem, we will construct chains of rational approxima-
tions of α in the following way: starting from a rational approximation
P0/Q0, we take

P1/Q1 = (AP q
0 +BQq

0)/(CP
q
0 +DQq

0) ,

and then we iterate the process. Let P ′n, Q
′
n be relatively prime polynomials

in K[T ] such that P ′n/Q
′
n = Pn/Qn. A critical point is to calculate deg(Q′

n).
The next section is devoted to this.

2. Iterated sequences. Admissible equations

Lemma 1. Let E be a complete field of positive characteristic p, with a
discrete valuation. Suppose that the residue class field K of E is a finitely
generated extension of Fp. Let A, B, C and D be elements of E such that
AD − BC 6= 0. Let q = ps with s integer , s > 0. Set E′ = E ∪ {∞}, and
consider the map ϕ : E′ → E′, defined by ϕ(z) = (Azq + B)/(Czq + D).
There exists an integer h > 0 (depending only upon ϕ) such that for every
sequence (un)n∈N in E′ for which un = ϕ(un−1) for each n ≥ 1, either
the sequence (uhn)n∈N is convergent in E′, or for each a ∈ E, the sequence
(|un − a|)n∈N is constant , except for two values of n at most. (The last
eventuality is possible only when K is infinite.)

P r o o f. Let us begin with the particular case C = 0, i.e. ϕ of the type
ϕ(z) = a1z

q + b1, where a1, b1 are elements of E, a1 6= 0. Since we may
replace E by an extension of finite degree, we can suppose that there exists
z1 ∈ E such that ϕ(z1) = z1. Define φ(z) = a1z

q. Then ϕ(z)−z1 = φ(z−z1)
for every z ∈ E′, thus the sequence u′n = un − z1 satisfies u′n = φ(u′n−1)
for n ≥ 1. We can furthermore suppose that there exists z2 ∈ E such
that z1−q

2 = a1. Then the sequence u′′n = u′n/z2 satisfies u′′n = (u′′n−1)
q.

Accordingly, we have u′′n = (u′′0)qn

for each n. Hence if |u′′0 | < 1, we have
limu′′n = 0; if |u′′0 | > 1, we have limu′′n = ∞. Now suppose |u′′0 | = 1. Since
the residue class field K is finitely generated, the set of the elements of K
algebraic over Fp is a finite extension Fr of Fp. Let h be a positive integer
such that Fr ⊂ Fqh (one can take for h the degree of Fr over Fp). Denote by
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u′′n the image of u′′n in K. If u′′0 is algebraic over Fp, we have (u′′0)qh

= u′′0 .
That means that

|(u′′0)qh

− u′′0 | < 1 .

Since

|(u′′0)qh(n+1)
− (u′′0)qhn

| = |(u′′0)qh

− u′′0 |q
hn

,

the sequence (u′′hn)n∈N is convergent in E. Finally, if u′′0 is transcendental
over Fp, we have (u′′0)k 6= (u′′0)j for each pair (k, j) of distinct integers. Let
b ∈ E. If |b| 6= 1, we have |u′′n − b| = max(|b|, 1) for every n ∈ N; if |b| = 1,
let b̄ be the residue class of b (b̄ ∈ K). There exists at most one integer
n ≥ 0 such that (u′′0)qn

= b̄, so |u′′n − b| = 1 for every integer n ≥ 0, except
possibly for one value of n. Accordingly the sequence (un) satisfies the same
condition, i.e. either the sequence (uhn)n∈N is convergent in E′ or, for each
a ∈ E, |un − a| is constant except for one value of n, at most.

In the general case ϕ(z) = (Azq + B)/(Czq +D), we can suppose that
there exists z0 ∈ E such that ϕ(z0) = z0. Then there exists a function ψ
of the previous form such that 1/(ϕ(z)− z0) = ψ(1/(z − z0)). Hence there
exists h > 0 (depending only upon ϕ) such that, if we set vn = 1/(un − z0),
then either (vhn)n∈N is convergent in E′, or |vn − b| is constant except for
at most one value of n, for each b ∈ E. Thus either (uhn)n∈N is convergent
in E′, or |un − a| is constant except for two values of n at most, for each
a ∈ E. Indeed,

|un − a| = |1/vn + z0 − a| = |(1 + (z0 − a)vn)/vn| ,

and the sequences (|vn|) and (|vn + 1/(z0 − a)|), when a 6= z0, are both
constant, except for two values of n at most.

Corollary. Let E be a field of positive characteristic p, with a discrete
valuation. Suppose that the residue class field K of E is a finitely generated
extension of Fp. Let A, B, C and D be elements of E such that AD −BC
6= 0. Let q = ps where s is a positive integer. Denote by ϕ the map from
E′ = E ∪ {∞} into E′, defined by ϕ(z) = (Azq + B)/(Czq + D). For
any positive integer h, define ϕh = ϕ ◦ . . . ◦ ϕ (h times). Then there exist
coefficients Ah, Bh, Ch, Dh in E, with AhDh −BhCh 6= 0, such that

ϕh(z) = (Ahz
qh

+Bh)/(Chz
qh

+Dh) .

There is a positive integer h such that for every sequence (un)n∈N in E \{0}
such that un = ϕ(un−1) for each n ≥ 1 the sequences (|Chu

qh

hn + Dh|)n∈N

and (|Ah +Bh/u
qh

hn|)n∈N have both a constant finite positive value when n is
large.
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P r o o f. The form of ϕ is clear. We take the matrices

Mh =
[
Ah Bh

Ch Dh

]
satisfying

Mh = Mh−1

[
Aqh−1

Bqh−1

Cqh−1
Dqh−1

]
.

We have

AhDh −BhCh = det Mh = (AD −BC)(q
h−1)/(q−1) .

Since we may replace E by its completion, we can suppose that E is
complete. We choose h just as in Lemma 1; then we can suppose that h = 1.
If the sequence (un)n∈N is convergent in E′, then |Cuq

n +D| is constant for
n large. Indeed, let β = lim un. If β = ∞, one has C = 0, for ϕ(∞) = ∞,
and the result is trivial. If β 6= ∞, the sequence (Cuq

n +D) is convergent in
E to the limit Cβq +D 6= 0, for ϕ(β) = β. Hence |Cuq

n +D| = |Cβq +D|
when n is large. One sees in a similar way that |A + B/uq

n| is constant for
large n. If now the sequence (un) is not convergent in E′, then |un − a| is
constant except for two values of n at most. Clearly the same is true for
|Cuq

n +D| and for |A+B/uq
n|.

We can now define an admissible equation. We return to the Theorem:
let α be an element of K((T−1)) satisfying α = (Aαq + B)/(Cαq + D)
where A,B,C,D are polynomials in K[T ] with AD−BC 6= 0. Let Π be an
irreducible polynomial in K[T ]. We will use the Π-adic absolute value on
K(T ), which is defined by |Π|Π = 1/|Π| and |f |Π = 1 if f is a polynomial
not divisible by Π. Consider the map ϕ of the set K((T−1)) ∪ {∞} into
itself defined by ϕ(z) = (Azq + B)/(Czq + D). When Π is an irreducible
polynomial dividing AD − BC, we say that α = ϕ(α) is a Π-admissible
equation for α if the Corollary of Lemma 1 holds with h = 1 for the field
K(T ) with the Π-adic absolute value. Clearly, in proving the Theorem, we
may suppose that K is finitely generated over Fp; then so is the residue class
field of K(T ) for the Π-adic absolute value. Then the Corollary of Lemma
1 applies, and it is clear from the proof that there exists a positive integer
hΠ such that the Corollary holds for every multiple h of hΠ . Hence the
equation α = ϕh(α) is Π-admissible for every multiple h of hΠ . We say that
the equation α = ϕ(α) is admissible if it is Π-admissible for each irreducible
polynomial Π dividing AD − BC. Now, there does exist an admissible
equation for α. Indeed, there is only a finite number of irreducible divisors of
AD−BC, and so if h is a common multiple of the integers hΠ whenΠ divides
AD − BC, the equation α = ϕh(α) is admissible (since Ah, Bh, Ch, Dh are
polynomials such that AhDh−BhCh is a power of AD−BC, it follows that
AhDh −BhCh and AD −BC have the same irreducible divisors).
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Examples. For α ∈ K((T−1)) such that αq−1 = D/A, where A,D
are relatively prime polynomials such that |A| = |D| > 1, the equation α =
Aαq/D is trivially admissible. Baum and Sweet’s equation α = T/(Tα2 +1)
over F2(T ) is admissible. So is also Taussat’s equation α = T/(Tα3+1) over
F3(T ). But over F2(T ), the equation α3 = D/A, where A,D are relatively
prime polynomials such that |A| = |D| > 1, has the form α = D/(Aα2),
which is not admissible.

3. Chains of convergents

Lemma 2. Let α be an irrational element of K((T−1)) satisfying an
equation α = (Aαq + B)/(Cαq + D), where A,B,C,D are polynomials in
K[T ] such that AD − BC 6= 0, and q = ps (where s is a positive integer).
Let P,Q be polynomials in K[T ], Q 6= 0. Define

R = AP q +BQq, S = CP q +DQq .

Assume that

(i) |α− P/Q| < |αq +D/C|1/q if C 6= 0

(there is no condition if C = 0). Then S 6= 0 and

|α−R/S| = |AD −BC| |Cαq +D|−2|α− P/Q|q .

If furthermore we have

(ii) |α− P/Q| < |AD −BC|−1/(q−1)|Cαq +D|2/(q−1)

and

(iii) |α− P/Q| < |AD −BC|−1/(q−1)/|Q|2

then the polynomials R and S satisfy conditions (i), (ii), (iii). The ratio-
nal fractions P/Q, R/S, are convergents of α (in the continued fraction
expansion). If P ′, Q′, R′, S′ are polynomials in K[T ] such that (P ′, Q′) =
(R′, S′) = 1 and P/Q = P ′/Q′, R/S = R′/S′, then |S′| > |Q′|.

P r o o f. First notice that |C(P/Q)q + D| = |Cαq + D| by (i). Hence
|S| = |Cαq +D||Q|q > 0. Now we write

α−R/S = (Aαq +B)/(Cαq +D)− (AP q +BQq)/(CP q +DQq)

hence
|α−R/S| = |AD −BC||Cαq +D|−2|α− P/Q|q .

Define ε and η by

|α− P/Q| = ε/|Q|2 , |α−R/S| = η/|S|2 .
We have η = |AD−BC|εq, hence η < ε by (iii). By (ii) we have |α−R/S| <
|α− P/Q|. Thus conditions (i), (ii), (iii) are satisfied by the couple (R, S).
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Since η < ε < 1, P/Q and R/S are convergents of α, and |S′| > |Q′| as
|α−R/S| < |α− P/Q|.

The conditions of Lemma 2 are hereditary, so we can iterate the process.
But even if P and Q are relatively prime, R and S are not necessarily so.
In order to calculate the degree of their gcd, we have to use an admissible
equation for α.

Lemma 3. With the notations of Lemma 2, assume moreover that the
equation α = (Aαq +B)/(Cαq +D) is admissible. Let P and Q be relatively
prime polynomials in K[T ], Q 6= 0. Assume that the couple (P,Q) satisfies
the conditions (i), (ii), (iii) of Lemma 2. We define sequences of polynomials
(Pn)n∈N and (Qn)n∈N by

P0 = P, Q0 = Q ,

and for n ≥ 1:

Pn = AP q
n−1 +BQq

n−1 , Qn = CP q
n−1 +DQq

n−1 .

Then Qn 6= 0 for each n. Let P ′n and Q′
n be relatively prime polynomials such

that Pn/Qn = P ′n/Q
′
n.There exist real constants C1 > 0, C2, δ > 1, λ > 0

such that deg(Q′
n) = C1q

n + C2 and |Q′
n|δ‖Q′

nα‖ = λ for all sufficiently
large n. One has 0 < C1 ≤ deg(Q) +m/(q − 1) where |Cαq +D| = |T |m.
Moreover , δ is a rational number.

P r o o f. It is clear that the couple (Pn, Qn) satisfies conditions (i), (ii),
(iii) in Lemma 2, for each n. Hence Qn 6= 0. Set deg(α − Pn/Qn) = −rn
and deg(AD − BC) = c. By Lemma 2, we have rn = qrn−1 + 2m − c for
every n ≥ 1, thus

rn = (r0 + (2m− c)/(q − 1))qn − (2m− c)/(q − 1) for all n .

We are now going to calculate deg(Q′
n). First we calculate deg(Qn). Since

|Qn| = |Cαq +D||Qn−1|q ,
we have

deg(Qn) = q deg(Qn−1) +m ;
hence

deg(Qn) = (deg(Q) +m/(q − 1))qn −m/(q − 1) .
We are going to prove that we also have deg(Q′

n) = C1q
n + C2 for all large

n. It suffices to prove an analogous form for the degree of the (monic)
gcdDn = (Pn, Qn):

deg(Dn) = C3q
n + C4 (C3, C4 real constants) .

As (P0, Q0) = 1, Pn and Qn have no other common irreducible divisors
than the irreducible divisors of AD − BC. It suffices to calculate |Dn|Π
for each element Π of the finite set of the irreducible divisors of AD−BC.
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Denote by wΠ the Π-adic valuation on K(T ) such that |f |Π = |Π|−wΠ(f)

for all f ∈ K(T ), f 6= 0. Now it is clear that it suffices to prove that for
each irreducible divisorΠ of AD−BC, there exist real constants F, F ′, G,G′

(depending upon Π) such that wΠ(Pn) = Fqn+F ′ and wΠ(Qn) = Gqn+G′

when n is large.
We write Qn = (C(Pn−1/Qn−1)q + D)Qq

n−1. As the equation α =
(Aαq + B)/(Cαq + D) is admissible, |C(Pn−1/Qn−1)q + D|Π is constant
when n is large. Thus there exists a real constant b such that wΠ(Qn) =
qwΠ(Qn−1) + b for all large n. So we have wΠ(Qn) = Gqn + G′ where
G,G′ are real constants, for all large n. We can proceed in the same way to
compute wΠ(Pn), as Pn 6= 0 for all large n. Indeed, in K((T−1)) we have
lim Pn/Qn = α. Then we can write Pn = (A + B(Qn−1/Pn−1)q)P q

n−1 and
apply the Corollary of Lemma 1.

Thus deg(Q′
n) = C1q

n +C2 when n is large. As lim deg(Q′
n) = +∞, we

have C1 > 0. Moreover, C1 ≤ deg(Q) +m/(q − 1), for deg(Q′
n) ≤ deg(Qn).

Now, let δ = (r0 + (2m− c)/(q − 1))/C1 − 1. Then (δ + 1) deg(Q′
n)− rn is

constant when n is large. Hence |Q′
n|δ‖Q′

nα‖ is a positive constant when n is
large. We have δ > 1, for C1 ≤ deg(Q)+m/(q−1) < (r0+(2m−c)/(q−1))/2
by (iii). Clearly C1 is a rational number, accordingly so is δ.

Now we fix an admissible equation α = (Aαq + B)/(Cαq + D) for α,
and we call a sequence (P ′n/Q

′
n)n∈N of rational approximations of α as in

Lemma 3 a chain of convergents of α. That means that the couple (P ′0, Q
′
0)

satisfies the conditions (i), (ii), (iii) of Lemma 2, and that

P ′n/Q
′
n = (AP ′qn−1 +BQ′q

n−1)/(CP
′q
n−1 +DQ′q

n−1) for each n ≥ 1 .

For such a chain C = (P ′n/Q
′
n)n∈N, with relatively prime polynomials P ′n and

Q′
n for each n, it follows from Lemma 3 that there exists a rational constant

δ > 1 such that |Q′
n|δ‖Q′

nα‖ is constant when n is large. Then we say
that C is a δ-chain. As the sequence (deg(Q′

n)) is strictly increasing, every
chain is included in a maximal chain, that is to say, a chain (P ′′n /Q

′′
n)n∈N for

which there exists no rational fraction P ′′−1/Q
′′
−1 such that (P ′′n /Q

′′
n)n≥−1 is

a chain. Since the map z 7→ (Azq +B)/(Czq +D) is injective, any two chains
are either disjoint, or one is included in the other. Every chain including a
δ-chain is also a δ-chain. For any chain C we denote by δ(C) the constant δ
such that C is a δ-chain.

Lemma 4. Let δ0 be a real number , δ0 > 1. There exist only a finite
number of maximal chains C of convergents of α with δ(C) ≥ δ0.

P r o o f. Distinct maximal chains are disjoint. We will prove that if we
have N disjoint chains Ck (1 ≤ k ≤ N), with δ(Ck) ≥ δ0, then δN−1

0 <
q. Define Ck = (Pn,k/Qn,k)n∈N where Pn,k and Qn,k are relatively prime
polynomials. For each k there exist real constants Ck > 0 and C ′k such
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that deg(Qn,k) = Ckq
n + C ′k for all sufficiently large n. We can modify the

indexation by replacing n by n + nk for each k, where nk is an integer in
Z, so that we get 1 ≤ Ck < q. Notice that for k 6= j, the couples (Ck, C

′
k)

and (Cj , C
′
j) are distinct. Indeed, deg(Qn,k) 6= deg(Qn,j) for each n, since

Ck and Cj are disjoint. Thus, we can suppose that for each integer k such
that 1 ≤ k < N , we have Ck < Ck+1 or Ck = Ck+1 and C ′k < C ′k+1. If
Q is the denominator of a convergent of α, let Q∗ be the denominator of
the next convergent. One has ‖Qα‖ = 1/|Q∗| ([3]). Accordingly, as Ck is a
chain with δ(Ck) ≥ δ0, there exists a constant σ such that

deg(Q∗
n,k) ≥ δ0 deg(Qn,k)− σ .

Since, for any integer k such that 1 ≤ k < N , we have deg(Qn,k+1) >
deg(Qn,k) when n is large, thus we have

deg(Qn,k+1) ≥ δ0 deg(Qn,k)− σ for all large n .

Therefore

lim
n→∞

deg(Qn,k+1)/deg(Qn,k) = Ck+1/Ck ≥ δ0 .

Hence we conclude that δN−1
0 < q. One can notice, with a similar proof,

that we even have δN
0 ≤ q.

4. Proof of the Theorem.The result is obvious if B(α, 1) 6= 0 (thus
ν(α) = 1). If B(α, 1) = 0, it follows from Lemma 3 that there exist chains of
convergents of α (we have fixed an admissible equation for α). By Lemma
4, the numbers δ(C), where C runs over the set of chains of α, achieve
a maximum δ. For every δ-chain C, denote by λ(C) the (constant) value
of |Q|δ‖Qα‖ when P/Q ∈ C, with polynomials P,Q relatively prime, and
deg(Q) large. Since there exist only a finite number of maximal δ-chains
(when δ is maximal) we can define Λ as being the minimum of λ(C) for all
the δ-chains C. Clearly Λ is finite, but not zero. We are going to prove that
B(α, δ) = Λ. That will show that ν(α) = δ, and the Theorem will be proved.

Let (Pn/Qn) be a sequence of convergents of α, with relatively prime
polynomials Pn, Qn. We suppose that lim |Qn| = +∞, and that the se-
quence (|Qn|δ‖Qnα‖) is bounded. We must prove that for all large n,
Pn/Qn belongs to the union of the δ-chains. But by Lemma 3, Pn/Qn

is the first term of a chain for all large n. This chain is a νn-chain, with
νn = (%n +(2m−c)/(q−1))/Cn−1, where %n = −deg(α−Pn/Qn) and 0 <
Cn ≤ deg(Qn)+m/(q−1) (see Lemma 3). Since the sequence (|Qn|δ‖Qnα‖)
is bounded, there exists a real constant τ such that (δ+1) deg(Qn)−%n ≤ −τ ,
and thus

νn ≥ (δ deg(Qn) + τ + (m− c)/(q − 1))/(deg(Qn) +m/(q − 1)) .
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Hence lim νn = δ. Then we conclude by Lemma 4 that νn = δ for all large
n, so Pn/Qn belongs to the union of the δ-chains. Hence it is clear that
B(α, δ) = Λ.

5. Examples. We can now treat examples. We consider the case of
an equation Xe = R, where e is a positive integer, not divisible by p, and
R ∈ K(T ). Such an equation has a root in K((T−1)) if (and only if ) deg(R)
is a multiple of e and the first coefficient of R belongs to Ke. There exists a
positive integer s such that e divides ps−1 (we can take for s the order of p
in the multiplicative group (Z/eZ)∗). Therefore if an element α ∈ K((T−1))
is a root of an equation αe = R, with R ∈ K(T ), it also satisfies an equation
αq−1 = R′, with q = ps and R′ ∈ K(T ). We can write this equation as
α = Aαq/D where A,D are polynomials such that R′ = D/A. Accordingly,
if α 6∈ K(T ), our result applies. Notice that the equation α = Aαq/D is
trivially admissible.

We give explicit calculations in the case p = 2, e = 3. We prove:

Corollary. Let α, α′, α′′ be elements of F2((T−1)) such that α3 =
(T 3 +T +1)/T 3, α′3 = (T 4 +T 2 +T +1)/T 4, α′′3 = (T 4 +T +1)/T 4. One
has: ν(α) = 3/2, B(α, 3/2) = 1; ν(α′) = 4/3, B(α′, 4/3) = 1; ν(α′′) = 5/4,
B(α′′, 5/4) = |T |−3.

P r o o f. The first terms of the expansion of α in continued fraction are:

α = 1 + 1 
 T 2 + T + 1 
 T + 1 + 1 
 . . .

The first convergents are P0/Q0 = 1, P1/Q1 = (T 2 + T + 1)/(T 2 + T ), and
|α− P1/Q1| = |T |−5.

We start from the convergentP1/Q1, and we construct by Lemma 2 the
sequence of convergents (Pn,1/Qn,1)n∈N:

Pn,1/Qn,1 = (T 2 + T + 1)4
n

/((T + 1)4
n

T (T 3 + T + 1)(4
n−1)/3) ,

which is the sequence of rational (irreducible) fractions obtained from the
relations P0,1/Q0,1 = P1/Q1 and, for n ≥ 1,

Pn,1/Qn,1 = (T 3/(T 3 + T + 1))(Pn−1,1/Qn−1,1)4 .

Since |α− P1/Q1| = |T |−5, we have for each n, |α− Pn,1/Qn,1| = |T |−5·4n

.
We have deg(Qn,1) = 2 · 4n, hence deg(Q∗

n,1) = 3 · 4n. The sequence
(Pn,1/Qn,1) is a 3/2-chain (for n ≥ 1).

Now we notice that if we write the equation for α in the (non-admissible)
form α = D/Aα2 (with D = T 3 +T +1 and A = T 3), we see by Lemma 2(i)
that we can deduce from an approximation P/Q of α, with |α− P/Q| < 1,
the approximation DQ2/AP 2. We have |α − DQ2/AP 2| = |α − P/Q|2.
Hence for n ≥ 1, we obtain from Pn,1/Qn,1 the convergent

Pn,2/Qn,2 = (T + 1)2·4
n

(T 3 + T + 1)(2·4
n+1)/3/T (T 2 + T + 1)2·4

n

.
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We have |α − Pn,2/Qn,2| = |T |−10·4n

and deg(Qn,2) = 4n+1 + 1 (of course
Pn,2 and Qn,2 are relatively prime). Accordingly deg(Q∗

n,2) = 6 ·4n−1. The
sequence (Pn,2/Qn,2)n≥1 is another 3/2-chain. There is no other maximal δ-
chain, with δ ≥ 3/2, than (Pn,1/Qn,1) and (Pn,2/Qn,2), with n ≥ 1. Indeed,
for each denominator of a convergent Q of α such that 2 · 4n ≤ deg(Q) <
2 · 4n+1, with n ≥ 1, if Q 6= Qn,1 and Q 6= Qn,2, then deg(Q) and deg(Q∗)
both belong to one of the intervals [3·4n, 4n+1+1] or [6·4n−1, 2·4n+1], hence
it is clear that any other maximal chain is a δ-chain with δ ≤ 4/3. Therefore
we have ν(α) = 3/2. Since |Qn,1|3/2‖Qn,1α‖ = 1 and |Qn,2|3/2‖Qn,2α‖ =
|T |5/2 for each n ≥ 1, we have B(α, 3/2) = 1. It is easy to see that the
inequality |Q|3/2‖Qα‖ ≥ 1 holds for any polynomial Q of degree > 3.

For α′ and α′′, we only indicate sufficient chains of convergents; we
give the degrees of the denominators of these convergents and of the next
convergent.

For α′:

(3 · 4n, 4n+1), (6 · 4n, 8 · 4n) (n ≥ 0) ,
((4/3)(4n+2 − 1), (4/3)(17 · 4n + 1)) (n ≥ 0) ,

((4/3)(2 · 4n+2 + 1), (4/3)(34 · 4n − 1)) (n ≥ 1) .

For α′′:

((4/3)(4n − 1), (5 · 4n + 4)/3) (n ≥ 0) ,
((4/3)(8 · 4n + 1), (4/3)(10 · 4n − 1)) (n ≥ 1) ,

(2 · 4n+1, 9 · 4n), (4n+2, 18 · 4n) (n ≥ 0) .

6. Open problems. We know nothing (except the Liouville theorem)
about the approximation exponent of algebraic elements α which do not
satisfy any non-trivial equation of the form α = (Aαq + B)/(Cαq + D),
where q is a power of the characteristic p 6= 0 of K. One can ask if Roth’s
theorem ν(α) = 1 holds for these elements. For instance, it is possible to
calculate, by computer — I thank Y. Taussat — many terms of the expansion
in continued fraction of both the roots in F2((T−1)) of the equation X4 +
T 2X2 + T 2X + T = 0 (see §1). It seems that for a root α of this equation,
one has ν(α) = 1 (but B(α, 1) = 0).

For the algebraic elements satisfying a non-trivial equation

α = (Aαq +B)/(Cαq +D) ,

there are examples with ν(α) = 1 (see [1], [4]). But no criterion is known.
For instance, we do not know whether for an irrational element α of
K((T−1)) such that there exists a positive integer e with αe ∈ K(T ), one
may have ν(α) = 1 (when α is not quadratic).
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