Approximation exponents for algebraic functions in positive characteristic

by
Bernard de Mathan (Talence)

In this paper, we study rational approximations for algebraic functions in characteristic $p>0$. We obtain results for elements satisfying an equation of the type $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$, where q is a power of p.

1. Introduction and notations. Let K be a field, and let $K\left(\left(T^{-1}\right)\right)$ be the field of formal Laurent series in $1 / T$. For $f \in K\left(\left(T^{-1}\right)\right), \operatorname{deg}(f)$ is the integer defined by $f=\sum_{n=-\infty}^{\operatorname{deg}(f)} a_{n} T^{n}$, with $a_{\operatorname{deg}(f)} \neq 0$. We define an absolute value on $K\left(\left(T^{-1}\right)\right)$ by $|f|=|T|^{\operatorname{deg}(f)}$, where $|T|>1$. For each $f \in K\left(\left(T^{-1}\right)\right)$, there exists a polynomial $E(f)$ in $K[T]$ (integral part of f) such that $|f-E(f)|<1$. We denote $|f-E(f)|$ by $\|f\|$.

Let $\alpha \in K\left(\left(T^{-1}\right)\right)$. For any real number μ, define

$$
B(\alpha, \mu)=\liminf _{|Q| \rightarrow \infty}|Q|^{\mu}\|Q \alpha\|
$$

We define the approximation exponent of α by

$$
\nu(\alpha)=\sup \{\mu \mid B(\alpha, \mu)<\infty\} .
$$

Clearly $B(\alpha, 1) \leq 1 /|T|$, hence $\nu(\alpha) \geq 1$ for every α. Let $\left(Q_{n}\right)_{n \in \mathbb{N}}$ be the sequence of the denominators of the convergents in the continued fraction expansion of α. One has

$$
\nu(\alpha)=\lim \sup \operatorname{deg}\left(Q_{n+1}\right) / \operatorname{deg}\left(Q_{n}\right) .
$$

It is easy to see that $\nu(\alpha)$ may be any real number $\nu \geq 1$ or $\nu=+\infty$.
It is well known that if K has characteristic 0 , Roth's Theorem remains valid $([7])$, i.e. $\nu(\alpha)=1$ for every algebraic irrational element α of $K\left(\left(T^{-1}\right)\right)$. On the other hand, if K has a positive characteristic, p, Roth's Theorem fails. The Liouville Theorem holds, i.e. $\nu(\alpha) \leq n-1$ if α is algebraic, of degree $n>1$, over $K(T)$. But this result is the best possible, as many examples show. For instance, let q be a power of p, and $q>2$. Let $\alpha=$ $T^{-1}+\ldots+T^{-q^{k}}+\ldots$; this element satisfies the equation $\alpha^{q}-\alpha+T^{-1}=$

0 , and $\nu(\alpha)=q-1$ (Mahler's example). Osgood's example is α such that $\alpha^{q-1}=1+T^{-1}$, for which $\nu(\alpha)=q-2(q>3)$. One can also cite $\alpha=1 \sqrt{T}+1 \sqrt{T^{q}}+\ldots+1 \sqrt{T^{q^{k}}}+\ldots$; this element α satisfies $\alpha^{q+1}+T \alpha-1=0$, and $\nu(\alpha)=q($ for $q \geq 2)$.

Nevertheless, there exist in $K\left(\left(T^{-1}\right)\right)$ algebraic elements α of degrees >2 for which $\nu(\alpha)=1$. The first example was obtained by Baum and Sweet ([1]): in $\mathbb{F}_{2}\left(\left(T^{-1}\right)\right), \alpha$ such that $\alpha^{3}+T^{-1} \alpha+1=0$ is a cubic element for which $\nu(\alpha)=1$ (and $B(\alpha, 1)=|T|^{-2}$). Other examples were given by W. H. Mills and D. P. Robbins ([4]), for other characteristics. Examples of algebraic elements α such that $1<\nu(\alpha)<d(\alpha)-1$, where $d(\alpha)$ is the degree of α over $K(T)$, were also found by Y. Taussat ([6]): for $\alpha \in \mathbb{F}_{3}\left(\left(T^{-1}\right)\right)$ such that $\alpha^{4}+T^{-1} \alpha-1=0$, one has $\nu(\alpha)=23 / 19$ (and $B(\alpha, \nu(\alpha))=|T|^{-21 / 19}$, $d(\alpha)=4)$. See also [8].

We always suppose K to be of positive characteristic p, and we prove the following result:

Theorem. Let α be an irrational element of $K\left(\left(T^{-1}\right)\right)$. Suppose that there exist a power $q=p^{s}$ of p (s integer, $s>0$), and polynomials A, B, C, D in $K[T]$, with $A D-B C \neq 0$, such that $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$. Then $\nu(\alpha)$ is a rational number, and $B(\alpha, \nu(\alpha)) \neq 0, \neq \infty$.

Of course, this result is also true when $q=1$ and $C \neq 0$, for then α is quadratic. Hence we suppose $q>1$.

It was already proved by J. F. Voloch ([8]) that for such an algebraic element α, one has $B(\alpha, \nu(\alpha)) \neq 0$, but this result is also a direct consequence of the proof of the above theorem.

Let us remark that every algebraic element α in $K\left(\left(T^{-1}\right)\right)$ of degree 3 over $K(T)$ satisfies an equation as in the Theorem. One can take $q=p$, since the elements $1, \alpha, \alpha^{p}, \alpha^{p+1}$ are linearly dependent over $K(T)$.

All the examples of algebraic irrational elements in $K\left(\left(T^{-1}\right)\right)$ for which the value of $\nu(\alpha)$ is known satisfy an equation as in the Theorem. Nevertheless, there exist algebraic irrational elements which do not satisfy any equation of this type. For instance, let $f(X)$ be the following polynomial over $K(T)$:

$$
f(X)=X^{p^{2}}+T^{2} X^{p}-T^{2} X+T .
$$

This polynomial is irreducible over $K(T)$, since it is a T-Eisenstein polynomial. It has p roots in $K\left(\left(T^{-1}\right)\right)$ since the polynomial $T^{-2} f(X)$ becomes $X^{p}-X$ in the residue class field K. A root α of $f(X)$ in $K\left(\left(T^{-1}\right)\right)$ may not satisfy an equation of the type $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$. Indeed, there exist polynomials A_{s}, B_{s}, C_{s} in $K[T]$, for each $s \geq 0$, with

$$
\alpha^{p^{s}}=A_{s} \alpha^{p}+B_{s} \alpha+C_{s}
$$

and, by induction, it is easily seen that for $s \geq 2$,

$$
\operatorname{deg}\left(A_{s}\right)=\operatorname{deg}\left(B_{s}\right)=2\left(p^{s-1}-1\right) /(p-1)
$$

Hence $A_{s} \neq 0$ for every $s \geq 1$. But

$$
\alpha^{p^{s}+1}=A_{s} \alpha^{p+1}+B_{s} \alpha^{2}+C_{s} \alpha
$$

and the elements $1, \alpha, \alpha^{2}, \ldots, \alpha^{p+1}$ are linearly independent over $K(T)$. So the elements $\alpha^{p^{s}+1}, \alpha^{p^{s}}, \alpha, 1$ are linearly independent over $K(T)$ for every $s \geq 1$.

To prove the Theorem, we will construct chains of rational approximations of α in the following way: starting from a rational approximation P_{0} / Q_{0}, we take

$$
P_{1} / Q_{1}=\left(A P_{0}^{q}+B Q_{0}^{q}\right) /\left(C P_{0}^{q}+D Q_{0}^{q}\right)
$$

and then we iterate the process. Let $P_{n}^{\prime}, Q_{n}^{\prime}$ be relatively prime polynomials in $K[T]$ such that $P_{n}^{\prime} / Q_{n}^{\prime}=P_{n} / Q_{n}$. A critical point is to calculate $\operatorname{deg}\left(Q_{n}^{\prime}\right)$. The next section is devoted to this.

2. Iterated sequences. Admissible equations

Lemma 1. Let E be a complete field of positive characteristic p, with a discrete valuation. Suppose that the residue class field K of E is a finitely generated extension of \mathbb{F}_{p}. Let A, B, C and D be elements of E such that $A D-B C \neq 0$. Let $q=p^{s}$ with s integer, $s>0$. Set $E^{\prime}=E \cup\{\infty\}$, and consider the map $\varphi: E^{\prime} \rightarrow E^{\prime}$, defined by $\varphi(z)=\left(A z^{q}+B\right) /\left(C z^{q}+D\right)$. There exists an integer $h>0$ (depending only upon φ) such that for every sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in E^{\prime} for which $u_{n}=\varphi\left(u_{n-1}\right)$ for each $n \geq 1$, either the sequence $\left(u_{h n}\right)_{n \in \mathbb{N}}$ is convergent in E^{\prime}, or for each $a \in E$, the sequence $\left(\left|u_{n}-a\right|\right)_{n \in \mathbb{N}}$ is constant, except for two values of n at most. (The last eventuality is possible only when K is infinite.)

Proof. Let us begin with the particular case $C=0$, i.e. φ of the type $\varphi(z)=a_{1} z^{q}+b_{1}$, where a_{1}, b_{1} are elements of $E, a_{1} \neq 0$. Since we may replace E by an extension of finite degree, we can suppose that there exists $z_{1} \in E$ such that $\varphi\left(z_{1}\right)=z_{1}$. Define $\phi(z)=a_{1} z^{q}$. Then $\varphi(z)-z_{1}=\phi\left(z-z_{1}\right)$ for every $z \in E^{\prime}$, thus the sequence $u_{n}^{\prime}=u_{n}-z_{1}$ satisfies $u_{n}^{\prime}=\phi\left(u_{n-1}^{\prime}\right)$ for $n \geq 1$. We can furthermore suppose that there exists $z_{2} \in E$ such that $z_{2}^{1-q}=a_{1}$. Then the sequence $u_{n}^{\prime \prime}=u_{n}^{\prime} / z_{2}$ satisfies $u_{n}^{\prime \prime}=\left(u_{n-1}^{\prime \prime}\right)^{q}$. Accordingly, we have $u_{n}^{\prime \prime}=\left(u_{0}^{\prime \prime}\right)^{q^{n}}$ for each n. Hence if $\left|u_{0}^{\prime \prime}\right|<1$, we have $\lim u_{n}^{\prime \prime}=0$; if $\left|u_{0}^{\prime \prime}\right|>1$, we have $\lim u_{n}^{\prime \prime}=\infty$. Now suppose $\left|u_{0}^{\prime \prime}\right|=1$. Since the residue class field K is finitely generated, the set of the elements of K algebraic over \mathbb{F}_{p} is a finite extension \mathbb{F}_{r} of \mathbb{F}_{p}. Let h be a positive integer such that $\mathbb{F}_{r} \subset \mathbb{F}_{q^{h}}$ (one can take for h the degree of \mathbb{F}_{r} over \mathbb{F}_{p}). Denote by
$\overline{u_{n}^{\prime \prime}}$ the image of $u_{n}^{\prime \prime}$ in K. If $\overline{u_{0}^{\prime \prime}}$ is algebraic over \mathbb{F}_{p}, we have $\left(\overline{u_{0}^{\prime \prime}}\right)^{q^{h}}=\overline{u_{0}^{\prime \prime}}$. That means that

$$
\left|\left(u_{0}^{\prime \prime}\right)^{q^{h}}-u_{0}^{\prime \prime}\right|<1
$$

Since

$$
\left|\left(u_{0}^{\prime \prime}\right)^{q^{h(n+1)}}-\left(u_{0}^{\prime \prime}\right)^{q^{h n}}\right|=\left|\left(u_{0}^{\prime \prime}\right)^{q^{h}}-u_{0}^{\prime \prime}\right|^{q^{h n}}
$$

the sequence $\left(u_{h n}^{\prime \prime}\right)_{n \in \mathbb{N}}$ is convergent in E. Finally, if $\overline{u_{0}^{\prime \prime}}$ is transcendental over \mathbb{F}_{p}, we have $\left(\overline{u_{0}^{\prime \prime}}\right)^{k} \neq\left(\overline{u_{0}^{\prime \prime}}\right)^{j}$ for each pair (k, j) of distinct integers. Let $b \in E$. If $|b| \neq 1$, we have $\left|u_{n}^{\prime \prime}-b\right|=\max (|b|, 1)$ for every $n \in \mathbb{N}$; if $|b|=1$, let \bar{b} be the residue class of $b(\bar{b} \in K)$. There exists at most one integer $n \geq 0$ such that $\left(\overline{u_{0}^{\prime \prime}}\right)^{q^{n}}=\bar{b}$, so $\left|u_{n}^{\prime \prime}-b\right|=1$ for every integer $n \geq 0$, except possibly for one value of n. Accordingly the sequence $\left(u_{n}\right)$ satisfies the same condition, i.e. either the sequence $\left(u_{h n}\right)_{n \in \mathbb{N}}$ is convergent in E^{\prime} or, for each $a \in E,\left|u_{n}-a\right|$ is constant except for one value of n, at most.

In the general case $\varphi(z)=\left(A z^{q}+B\right) /\left(C z^{q}+D\right)$, we can suppose that there exists $z_{0} \in E$ such that $\varphi\left(z_{0}\right)=z_{0}$. Then there exists a function ψ of the previous form such that $1 /\left(\varphi(z)-z_{0}\right)=\psi\left(1 /\left(z-z_{0}\right)\right)$. Hence there exists $h>0$ (depending only upon φ) such that, if we set $v_{n}=1 /\left(u_{n}-z_{0}\right)$, then either $\left(v_{h n}\right)_{n \in \mathbb{N}}$ is convergent in E^{\prime}, or $\left|v_{n}-b\right|$ is constant except for at most one value of n, for each $b \in E$. Thus either $\left(u_{h n}\right)_{n \in \mathbb{N}}$ is convergent in E^{\prime}, or $\left|u_{n}-a\right|$ is constant except for two values of n at most, for each $a \in E$. Indeed,

$$
\left|u_{n}-a\right|=\left|1 / v_{n}+z_{0}-a\right|=\left|\left(1+\left(z_{0}-a\right) v_{n}\right) / v_{n}\right|
$$

and the sequences $\left(\left|v_{n}\right|\right)$ and $\left(\left|v_{n}+1 /\left(z_{0}-a\right)\right|\right)$, when $a \neq z_{0}$, are both constant, except for two values of n at most.

Corollary. Let E be a field of positive characteristic p, with a discrete valuation. Suppose that the residue class field K of E is a finitely generated extension of \mathbb{F}_{p}. Let A, B, C and D be elements of E such that $A D-B C$ $\neq 0$. Let $q=p^{s}$ where s is a positive integer. Denote by φ the map from $E^{\prime}=E \cup\{\infty\}$ into E^{\prime}, defined by $\varphi(z)=\left(A z^{q}+B\right) /\left(C z^{q}+D\right)$. For any positive integer h, define $\varphi^{h}=\varphi \circ \ldots \circ \varphi$ (h times $)$. Then there exist coefficients $A_{h}, B_{h}, C_{h}, D_{h}$ in E, with $A_{h} D_{h}-B_{h} C_{h} \neq 0$, such that

$$
\varphi^{h}(z)=\left(A_{h} z^{q^{h}}+B_{h}\right) /\left(C_{h} z^{q^{h}}+D_{h}\right)
$$

There is a positive integer h such that for every sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in $E \backslash\{0\}$ such that $u_{n}=\varphi\left(u_{n-1}\right)$ for each $n \geq 1$ the sequences $\left(\left|C_{h} u_{h n}^{q^{h}}+D_{h}\right|\right)_{n \in \mathbb{N}}$ and $\left(\left|A_{h}+B_{h} / u_{h n}^{q^{h}}\right|\right)_{n \in \mathbb{N}}$ have both a constant finite positive value when n is large.

Proof. The form of φ is clear. We take the matrices

$$
M_{h}=\left[\begin{array}{ll}
A_{h} & B_{h} \\
C_{h} & D_{h}
\end{array}\right]
$$

satisfying

$$
M_{h}=M_{h-1}\left[\begin{array}{ll}
A^{q^{h-1}} & B^{q^{h-1}} \\
C^{q^{h-1}} & D^{q^{h-1}}
\end{array}\right] .
$$

We have

$$
A_{h} D_{h}-B_{h} C_{h}=\operatorname{det} M_{h}=(A D-B C)^{\left(q^{h}-1\right) /(q-1)} .
$$

Since we may replace E by its completion, we can suppose that E is complete. We choose h just as in Lemma 1; then we can suppose that $h=1$. If the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent in E^{\prime}, then $\left|C u_{n}^{q}+D\right|$ is constant for n large. Indeed, let $\beta=\lim u_{n}$. If $\beta=\infty$, one has $C=0$, for $\varphi(\infty)=\infty$, and the result is trivial. If $\beta \neq \infty$, the sequence $\left(C u_{n}^{q}+D\right)$ is convergent in E to the limit $C \beta^{q}+D \neq 0$, for $\varphi(\beta)=\beta$. Hence $\left|C u_{n}^{q}+D\right|=\left|C \beta^{q}+D\right|$ when n is large. One sees in a similar way that $\left|A+B / u_{n}^{q}\right|$ is constant for large n. If now the sequence $\left(u_{n}\right)$ is not convergent in E^{\prime}, then $\left|u_{n}-a\right|$ is constant except for two values of n at most. Clearly the same is true for $\left|C u_{n}^{q}+D\right|$ and for $\left|A+B / u_{n}^{q}\right|$.

We can now define an admissible equation. We return to the Theorem: let α be an element of $K\left(\left(T^{-1}\right)\right)$ satisfying $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$ where A, B, C, D are polynomials in $K[T]$ with $A D-B C \neq 0$. Let Π be an irreducible polynomial in $K[T]$. We will use the Π-adic absolute value on $K(T)$, which is defined by $|\Pi|_{I I}=1 /|\Pi|$ and $|f|_{\Pi}=1$ if f is a polynomial not divisible by Π. Consider the map φ of the set $K\left(\left(T^{-1}\right)\right) \cup\{\infty\}$ into itself defined by $\varphi(z)=\left(A z^{q}+B\right) /\left(C z^{q}+D\right)$. When Π is an irreducible polynomial dividing $A D-B C$, we say that $\alpha=\varphi(\alpha)$ is a Π-admissible equation for α if the Corollary of Lemma 1 holds with $h=1$ for the field $K(T)$ with the Π-adic absolute value. Clearly, in proving the Theorem, we may suppose that K is finitely generated over \mathbb{F}_{p}; then so is the residue class field of $K(T)$ for the Π-adic absolute value. Then the Corollary of Lemma 1 applies, and it is clear from the proof that there exists a positive integer h_{Π} such that the Corollary holds for every multiple h of h_{Π}. Hence the equation $\alpha=\varphi^{h}(\alpha)$ is Π-admissible for every multiple h of h_{Π}. We say that the equation $\alpha=\varphi(\alpha)$ is admissible if it is Π-admissible for each irreducible polynomial Π dividing $A D-B C$. Now, there does exist an admissible equation for α. Indeed, there is only a finite number of irreducible divisors of $A D-B C$, and so if h is a common multiple of the integers h_{Π} when Π divides $A D-B C$, the equation $\alpha=\varphi^{h}(\alpha)$ is admissible (since $A_{h}, B_{h}, C_{h}, D_{h}$ are polynomials such that $A_{h} D_{h}-B_{h} C_{h}$ is a power of $A D-B C$, it follows that $A_{h} D_{h}-B_{h} C_{h}$ and $A D-B C$ have the same irreducible divisors).

Examples. For $\alpha \in K\left(\left(T^{-1}\right)\right)$ such that $\alpha^{q-1}=D / A$, where A, D are relatively prime polynomials such that $|A|=|D|>1$, the equation $\alpha=$ $A \alpha^{q} / D$ is trivially admissible. Baum and Sweet's equation $\alpha=T /\left(T \alpha^{2}+1\right)$ over $\mathbb{F}_{2}(T)$ is admissible. So is also Taussat's equation $\alpha=T /\left(T \alpha^{3}+1\right)$ over $\mathbb{F}_{3}(T)$. But over $\mathbb{F}_{2}(T)$, the equation $\alpha^{3}=D / A$, where A, D are relatively prime polynomials such that $|A|=|D|>1$, has the form $\alpha=D /\left(A \alpha^{2}\right)$, which is not admissible.

3. Chains of convergents

Lemma 2. Let α be an irrational element of $K\left(\left(T^{-1}\right)\right)$ satisfying an equation $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$, where A, B, C, D are polynomials in $K[T]$ such that $A D-B C \neq 0$, and $q=p^{s}$ (where s is a positive integer). Let P, Q be polynomials in $K[T], Q \neq 0$. Define

$$
R=A P^{q}+B Q^{q}, \quad S=C P^{q}+D Q^{q} .
$$

Assume that

$$
\begin{equation*}
|\alpha-P / Q|<\left|\alpha^{q}+D / C\right|^{1 / q} \quad \text { if } C \neq 0 \tag{i}
\end{equation*}
$$

(there is no condition if $C=0$). Then $S \neq 0$ and

$$
|\alpha-R / S|=|A D-B C|\left|C \alpha^{q}+D\right|^{-2}|\alpha-P / Q|^{q} .
$$

If furthermore we have

$$
\begin{equation*}
|\alpha-P / Q|<|A D-B C|^{-1 /(q-1)}\left|C \alpha^{q}+D\right|^{2 /(q-1)} \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
|\alpha-P / Q|<|A D-B C|^{-1 /(q-1)} /|Q|^{2} \tag{iii}
\end{equation*}
$$

then the polynomials R and S satisfy conditions (i), (ii), (iii). The rational fractions $P / Q, R / S$, are convergents of α (in the continued fraction expansion). If $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$ are polynomials in $K[T]$ such that $\left(P^{\prime}, Q^{\prime}\right)=$ $\left(R^{\prime}, S^{\prime}\right)=1$ and $P / Q=P^{\prime} / Q^{\prime}, R / S=R^{\prime} / S^{\prime}$, then $\left|S^{\prime}\right|>\left|Q^{\prime}\right|$.

Proof. First notice that $\left|C(P / Q)^{q}+D\right|=\left|C \alpha^{q}+D\right|$ by (i). Hence $|S|=\left|C \alpha^{q}+D\right||Q|^{q}>0$. Now we write

$$
\alpha-R / S=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)-\left(A P^{q}+B Q^{q}\right) /\left(C P^{q}+D Q^{q}\right)
$$

hence

$$
|\alpha-R / S|=|A D-B C|\left|C \alpha^{q}+D\right|^{-2}|\alpha-P / Q|^{q} .
$$

Define ε and η by

$$
|\alpha-P / Q|=\varepsilon /|Q|^{2}, \quad|\alpha-R / S|=\eta /|S|^{2} .
$$

We have $\eta=|A D-B C| \varepsilon^{q}$, hence $\eta<\varepsilon$ by (iii). By (ii) we have $|\alpha-R / S|<$ $|\alpha-P / Q|$. Thus conditions (i), (ii), (iii) are satisfied by the couple (R, S).

Since $\eta<\varepsilon<1, P / Q$ and R / S are convergents of α, and $\left|S^{\prime}\right|>\left|Q^{\prime}\right|$ as $|\alpha-R / S|<|\alpha-P / Q|$.

The conditions of Lemma 2 are hereditary, so we can iterate the process. But even if P and Q are relatively prime, R and S are not necessarily so. In order to calculate the degree of their gcd, we have to use an admissible equation for α.

Lemma 3. With the notations of Lemma 2, assume moreover that the equation $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$ is admissible. Let P and Q be relatively prime polynomials in $K[T], Q \neq 0$. Assume that the couple (P, Q) satisfies the conditions (i), (ii), (iii) of Lemma 2. We define sequences of polynomials $\left(P_{n}\right)_{n \in \mathbb{N}}$ and $\left(Q_{n}\right)_{n \in \mathbb{N}}$ by

$$
P_{0}=P, \quad Q_{0}=Q,
$$

and for $n \geq 1$:

$$
P_{n}=A P_{n-1}^{q}+B Q_{n-1}^{q}, \quad Q_{n}=C P_{n-1}^{q}+D Q_{n-1}^{q} .
$$

Then $Q_{n} \neq 0$ for each n. Let P_{n}^{\prime} and Q_{n}^{\prime} be relatively prime polynomials such that $P_{n} / Q_{n}=P_{n}^{\prime} / Q_{n}^{\prime}$. There exist real constants $C_{1}>0, C_{2}, \delta>1, \lambda>0$ such that $\operatorname{deg}\left(Q_{n}^{\prime}\right)=C_{1} q^{n}+C_{2}$ and $\left|Q_{n}^{\prime}\right|^{\delta}\left\|Q_{n}^{\prime} \alpha\right\|=\lambda$ for all sufficiently large n. One has $0<C_{1} \leq \operatorname{deg}(Q)+m /(q-1)$ where $\left|C \alpha^{q}+D\right|=|T|^{m}$. Moreover, δ is a rational number.

Proof. It is clear that the couple (P_{n}, Q_{n}) satisfies conditions (i), (ii), (iii) in Lemma 2, for each n. Hence $Q_{n} \neq 0$. Set $\operatorname{deg}\left(\alpha-P_{n} / Q_{n}\right)=-r_{n}$ and $\operatorname{deg}(A D-B C)=c$. By Lemma 2, we have $r_{n}=q r_{n-1}+2 m-c$ for every $n \geq 1$, thus

$$
r_{n}=\left(r_{0}+(2 m-c) /(q-1)\right) q^{n}-(2 m-c) /(q-1) \quad \text { for all } n .
$$

We are now going to calculate $\operatorname{deg}\left(Q_{n}^{\prime}\right)$. First we calculate $\operatorname{deg}\left(Q_{n}\right)$. Since

$$
\left|Q_{n}\right|=\left|C \alpha^{q}+D\right|\left|Q_{n-1}\right|^{q},
$$

we have

$$
\operatorname{deg}\left(Q_{n}\right)=q \operatorname{deg}\left(Q_{n-1}\right)+m ;
$$

hence

$$
\operatorname{deg}\left(Q_{n}\right)=(\operatorname{deg}(Q)+m /(q-1)) q^{n}-m /(q-1) .
$$

We are going to prove that we also have $\operatorname{deg}\left(Q_{n}^{\prime}\right)=C_{1} q^{n}+C_{2}$ for all large n. It suffices to prove an analogous form for the degree of the (monic) $\operatorname{gcd} D_{n}=\left(P_{n}, Q_{n}\right)$:

$$
\operatorname{deg}\left(D_{n}\right)=C_{3} q^{n}+C_{4} \quad\left(C_{3}, C_{4} \text { real constants }\right) .
$$

As $\left(P_{0}, Q_{0}\right)=1, P_{n}$ and Q_{n} have no other common irreducible divisors than the irreducible divisors of $A D-B C$. It suffices to calculate $\left|D_{n}\right|_{\Pi}$ for each element Π of the finite set of the irreducible divisors of $A D-B C$.

Denote by w_{Π} the Π-adic valuation on $K(T)$ such that $|f|_{\Pi}=|\Pi|^{-w_{\Pi}(f)}$ for all $f \in K(T), f \neq 0$. Now it is clear that it suffices to prove that for each irreducible divisor Π of $A D-B C$, there exist real constants $F, F^{\prime}, G, G^{\prime}$ (depending upon Π) such that $w_{\Pi}\left(P_{n}\right)=F q^{n}+F^{\prime}$ and $w_{\Pi}\left(Q_{n}\right)=G q^{n}+G^{\prime}$ when n is large.

We write $Q_{n}=\left(C\left(P_{n-1} / Q_{n-1}\right)^{q}+D\right) Q_{n-1}^{q}$. As the equation $\alpha=$ $\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$ is admissible, $\left|C\left(P_{n-1} / Q_{n-1}\right)^{q}+D\right|_{\Pi}$ is constant when n is large. Thus there exists a real constant b such that $w_{\Pi}\left(Q_{n}\right)=$ $q w_{\Pi}\left(Q_{n-1}\right)+b$ for all large n. So we have $w_{\Pi}\left(Q_{n}\right)=G q^{n}+G^{\prime}$ where G, G^{\prime} are real constants, for all large n. We can proceed in the same way to compute $w_{\Pi}\left(P_{n}\right)$, as $P_{n} \neq 0$ for all large n. Indeed, in $K\left(\left(T^{-1}\right)\right)$ we have $\lim P_{n} / Q_{n}=\alpha$. Then we can write $P_{n}=\left(A+B\left(Q_{n-1} / P_{n-1}\right)^{q}\right) P_{n-1}^{q}$ and apply the Corollary of Lemma 1.

Thus $\operatorname{deg}\left(Q_{n}^{\prime}\right)=C_{1} q^{n}+C_{2}$ when n is large. As $\lim \operatorname{deg}\left(Q_{n}^{\prime}\right)=+\infty$, we have $C_{1}>0$. Moreover, $C_{1} \leq \operatorname{deg}(Q)+m /(q-1)$, for $\operatorname{deg}\left(Q_{n}^{\prime}\right) \leq \operatorname{deg}\left(Q_{n}\right)$. Now, let $\delta=\left(r_{0}+(2 m-c) /(q-1)\right) / C_{1}-1$. Then $(\delta+1) \operatorname{deg}\left(Q_{n}^{\prime}\right)-r_{n}$ is constant when n is large. Hence $\left|Q_{n}^{\prime}\right|^{\delta}\left\|Q_{n}^{\prime} \alpha\right\|$ is a positive constant when n is large. We have $\delta>1$, for $C_{1} \leq \operatorname{deg}(Q)+m /(q-1)<\left(r_{0}+(2 m-c) /(q-1)\right) / 2$ by (iii). Clearly C_{1} is a rational number, accordingly so is δ.

Now we fix an admissible equation $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$ for α, and we call a sequence $\left(P_{n}^{\prime} / Q_{n}^{\prime}\right)_{n \in \mathbb{N}}$ of rational approximations of α as in Lemma 3 a chain of convergents of α. That means that the couple ($P_{0}^{\prime}, Q_{0}^{\prime}$) satisfies the conditions (i), (ii), (iii) of Lemma 2, and that

$$
P_{n}^{\prime} / Q_{n}^{\prime}=\left(A P_{n-1}^{\prime q}+B Q_{n-1}^{\prime q}\right) /\left(C P_{n-1}^{\prime q}+D Q_{n-1}^{\prime q}\right) \quad \text { for each } n \geq 1
$$

For such a chain $\mathcal{C}=\left(P_{n}^{\prime} / Q_{n}^{\prime}\right)_{n \in \mathbb{N}}$, with relatively prime polynomials P_{n}^{\prime} and Q_{n}^{\prime} for each n, it follows from Lemma 3 that there exists a rational constant $\delta>1$ such that $\left|Q_{n}^{\prime}\right|^{\delta}\left\|Q_{n}^{\prime} \alpha\right\|$ is constant when n is large. Then we say that \mathcal{C} is a δ-chain. As the sequence $\left(\operatorname{deg}\left(Q_{n}^{\prime}\right)\right)$ is strictly increasing, every chain is included in a maximal chain, that is to say, a chain $\left(P_{n}^{\prime \prime} / Q_{n}^{\prime \prime}\right)_{n \in \mathbb{N}}$ for which there exists no rational fraction $P_{-1}^{\prime \prime} / Q_{-1}^{\prime \prime}$ such that $\left(P_{n}^{\prime \prime} / Q_{n}^{\prime \prime}\right)_{n \geq-1}$ is a chain. Since the map $z \mapsto\left(A z^{q}+B\right) /\left(C z^{q}+D\right)$ is injective, any two chains are either disjoint, or one is included in the other. Every chain including a δ-chain is also a δ-chain. For any chain \mathcal{C} we denote by $\delta(\mathcal{C})$ the constant δ such that \mathcal{C} is a δ-chain.

Lemma 4. Let δ_{0} be a real number, $\delta_{0}>1$. There exist only a finite number of maximal chains \mathcal{C} of convergents of α with $\delta(\mathcal{C}) \geq \delta_{0}$.

Proof. Distinct maximal chains are disjoint. We will prove that if we have N disjoint chains $\mathcal{C}_{k}(1 \leq k \leq N)$, with $\delta\left(\mathcal{C}_{k}\right) \geq \delta_{0}$, then $\delta_{0}^{N-1}<$ q. Define $\mathcal{C}_{k}=\left(P_{n, k} / Q_{n, k}\right)_{n \in \mathbb{N}}$ where $P_{n, k}$ and $Q_{n, k}$ are relatively prime polynomials. For each k there exist real constants $C_{k}>0$ and C_{k}^{\prime} such
that $\operatorname{deg}\left(Q_{n, k}\right)=C_{k} q^{n}+C_{k}^{\prime}$ for all sufficiently large n. We can modify the indexation by replacing n by $n+n_{k}$ for each k, where n_{k} is an integer in \mathbb{Z}, so that we get $1 \leq C_{k}<q$. Notice that for $k \neq j$, the couples (C_{k}, C_{k}^{\prime}) and $\left(C_{j}, C_{j}^{\prime}\right)$ are distinct. Indeed, $\operatorname{deg}\left(Q_{n, k}\right) \neq \operatorname{deg}\left(Q_{n, j}\right)$ for each n, since \mathcal{C}_{k} and \mathcal{C}_{j} are disjoint. Thus, we can suppose that for each integer k such that $1 \leq k<N$, we have $C_{k}<C_{k+1}$ or $C_{k}=C_{k+1}$ and $C_{k}^{\prime}<C_{k+1}^{\prime}$. If Q is the denominator of a convergent of α, let Q^{*} be the denominator of the next convergent. One has $\|Q \alpha\|=1 /\left|Q^{*}\right|([3])$. Accordingly, as \mathcal{C}_{k} is a chain with $\delta\left(\mathcal{C}_{k}\right) \geq \delta_{0}$, there exists a constant σ such that

$$
\operatorname{deg}\left(Q_{n, k}^{*}\right) \geq \delta_{0} \operatorname{deg}\left(Q_{n, k}\right)-\sigma
$$

Since, for any integer k such that $1 \leq k<N$, we have $\operatorname{deg}\left(Q_{n, k+1}\right)>$ $\operatorname{deg}\left(Q_{n, k}\right)$ when n is large, thus we have

$$
\operatorname{deg}\left(Q_{n, k+1}\right) \geq \delta_{0} \operatorname{deg}\left(Q_{n, k}\right)-\sigma \quad \text { for all large } n
$$

Therefore

$$
\lim _{n \rightarrow \infty} \operatorname{deg}\left(Q_{n, k+1}\right) / \operatorname{deg}\left(Q_{n, k}\right)=C_{k+1} / C_{k} \geq \delta_{0}
$$

Hence we conclude that $\delta_{0}^{N-1}<q$. One can notice, with a similar proof, that we even have $\delta_{0}^{N} \leq q$.
4. Proof of the Theorem. The result is obvious if $B(\alpha, 1) \neq 0$ (thus $\nu(\alpha)=1$). If $B(\alpha, 1)=0$, it follows from Lemma 3 that there exist chains of convergents of α (we have fixed an admissible equation for α). By Lemma 4, the numbers $\delta(\mathcal{C})$, where \mathcal{C} runs over the set of chains of α, achieve a maximum δ. For every δ-chain \mathcal{C}, denote by $\lambda(\mathcal{C})$ the (constant) value of $|Q|^{\delta}\|Q \alpha\|$ when $P / Q \in \mathcal{C}$, with polynomials P, Q relatively prime, and $\operatorname{deg}(Q)$ large. Since there exist only a finite number of maximal δ-chains (when δ is maximal) we can define Λ as being the minimum of $\lambda(\mathcal{C})$ for all the δ-chains \mathcal{C}. Clearly Λ is finite, but not zero. We are going to prove that $B(\alpha, \delta)=\Lambda$. That will show that $\nu(\alpha)=\delta$, and the Theorem will be proved.

Let $\left(P_{n} / Q_{n}\right)$ be a sequence of convergents of α, with relatively prime polynomials P_{n}, Q_{n}. We suppose that $\lim \left|Q_{n}\right|=+\infty$, and that the sequence $\left(\left|Q_{n}\right|^{\delta}\left\|Q_{n} \alpha\right\|\right)$ is bounded. We must prove that for all large n, P_{n} / Q_{n} belongs to the union of the δ-chains. But by Lemma $3, P_{n} / Q_{n}$ is the first term of a chain for all large n. This chain is a ν_{n}-chain, with $\nu_{n}=\left(\varrho_{n}+(2 m-c) /(q-1)\right) / C_{n}-1$, where $\varrho_{n}=-\operatorname{deg}\left(\alpha-P_{n} / Q_{n}\right)$ and $0<$ $C_{n} \leq \operatorname{deg}\left(Q_{n}\right)+m /(q-1)$ (see Lemma 3). Since the sequence $\left(\left|Q_{n}\right|^{\delta}\left\|Q_{n} \alpha\right\|\right)$ is bounded, there exists a real constant τ such that $(\delta+1) \operatorname{deg}\left(Q_{n}\right)-\varrho_{n} \leq-\tau$, and thus

$$
\nu_{n} \geq\left(\delta \operatorname{deg}\left(Q_{n}\right)+\tau+(m-c) /(q-1)\right) /\left(\operatorname{deg}\left(Q_{n}\right)+m /(q-1)\right)
$$

Hence $\lim \nu_{n}=\delta$. Then we conclude by Lemma 4 that $\nu_{n}=\delta$ for all large n, so P_{n} / Q_{n} belongs to the union of the δ-chains. Hence it is clear that $B(\alpha, \delta)=\Lambda$.
5. Examples. We can now treat examples. We consider the case of an equation $X^{e}=R$, where e is a positive integer, not divisible by p, and $R \in K(T)$. Such an equation has a root in $K\left(\left(T^{-1}\right)\right)$ if (and only if) $\operatorname{deg}(R)$ is a multiple of e and the first coefficient of R belongs to K^{e}. There exists a positive integer s such that e divides $p^{s}-1$ (we can take for s the order of p in the multiplicative group $\left.(\mathbb{Z} / e \mathbb{Z})^{*}\right)$. Therefore if an element $\alpha \in K\left(\left(T^{-1}\right)\right)$ is a root of an equation $\alpha^{e}=R$, with $R \in K(T)$, it also satisfies an equation $\alpha^{q-1}=R^{\prime}$, with $q=p^{s}$ and $R^{\prime} \in K(T)$. We can write this equation as $\alpha=A \alpha^{q} / D$ where A, D are polynomials such that $R^{\prime}=D / A$. Accordingly, if $\alpha \notin K(T)$, our result applies. Notice that the equation $\alpha=A \alpha^{q} / D$ is trivially admissible.

We give explicit calculations in the case $p=2, e=3$. We prove:
Corollary. Let $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$ be elements of $\mathbb{F}_{2}\left(\left(T^{-1}\right)\right)$ such that $\alpha^{3}=$ $\left(T^{3}+T+1\right) / T^{3}, \alpha^{\prime 3}=\left(T^{4}+T^{2}+T+1\right) / T^{4}, \alpha^{\prime \prime 3}=\left(T^{4}+T+1\right) / T^{4}$. One has: $\nu(\alpha)=3 / 2, B(\alpha, 3 / 2)=1 ; \nu\left(\alpha^{\prime}\right)=4 / 3, B\left(\alpha^{\prime}, 4 / 3\right)=1 ; \nu\left(\alpha^{\prime \prime}\right)=5 / 4$, $B\left(\alpha^{\prime \prime}, 5 / 4\right)=|T|^{-3}$.

Proof. The first terms of the expansion of α in continued fraction are:

$$
\alpha=1+1 \sqrt{T^{2}}+T+1 \sqrt{T}+1+1 \sqrt{\cdots}
$$

The first convergents are $P_{0} / Q_{0}=1, P_{1} / Q_{1}=\left(T^{2}+T+1\right) /\left(T^{2}+T\right)$, and $\left|\alpha-P_{1} / Q_{1}\right|=|T|^{-5}$.

We start from the convergent P_{1} / Q_{1}, and we construct by Lemma 2 the sequence of convergents $\left(P_{n, 1} / Q_{n, 1}\right)_{n \in \mathbb{N}}$:

$$
P_{n, 1} / Q_{n, 1}=\left(T^{2}+T+1\right)^{4^{n}} /\left((T+1)^{4^{n}} T\left(T^{3}+T+1\right)^{\left(4^{n}-1\right) / 3}\right),
$$

which is the sequence of rational (irreducible) fractions obtained from the relations $P_{0,1} / Q_{0,1}=P_{1} / Q_{1}$ and, for $n \geq 1$,

$$
P_{n, 1} / Q_{n, 1}=\left(T^{3} /\left(T^{3}+T+1\right)\right)\left(P_{n-1,1} / Q_{n-1,1}\right)^{4} .
$$

Since $\left|\alpha-P_{1} / Q_{1}\right|=|T|^{-5}$, we have for each $n,\left|\alpha-P_{n, 1} / Q_{n, 1}\right|=|T|^{-5 \cdot 4^{n}}$. We have $\operatorname{deg}\left(Q_{n, 1}\right)=2 \cdot 4^{n}$, hence $\operatorname{deg}\left(Q_{n, 1}^{*}\right)=3 \cdot 4^{n}$. The sequence $\left(P_{n, 1} / Q_{n, 1}\right)$ is a $3 / 2$-chain (for $n \geq 1$).

Now we notice that if we write the equation for α in the (non-admissible) form $\alpha=D / A \alpha^{2}$ (with $D=T^{3}+T+1$ and $A=T^{3}$), we see by Lemma 2(i) that we can deduce from an approximation P / Q of α, with $|\alpha-P / Q|<1$, the approximation $D Q^{2} / A P^{2}$. We have $\left|\alpha-D Q^{2} / A P^{2}\right|=|\alpha-P / Q|^{2}$. Hence for $n \geq 1$, we obtain from $P_{n, 1} / Q_{n, 1}$ the convergent

$$
P_{n, 2} / Q_{n, 2}=(T+1)^{2 \cdot 4^{n}}\left(T^{3}+T+1\right)^{\left(2 \cdot 4^{n}+1\right) / 3} / T\left(T^{2}+T+1\right)^{2 \cdot 4^{n}} .
$$

We have $\left|\alpha-P_{n, 2} / Q_{n, 2}\right|=|T|^{-10 \cdot 4^{n}}$ and $\operatorname{deg}\left(Q_{n, 2}\right)=4^{n+1}+1$ (of course $P_{n, 2}$ and $Q_{n, 2}$ are relatively prime). Accordingly $\operatorname{deg}\left(Q_{n, 2}^{*}\right)=6 \cdot 4^{n}-1$. The sequence $\left(P_{n, 2} / Q_{n, 2}\right)_{n \geq 1}$ is another $3 / 2$-chain. There is no other maximal δ chain, with $\delta \geq 3 / 2$, than $\left(P_{n, 1} / Q_{n, 1}\right)$ and ($P_{n, 2} / Q_{n, 2}$), with $n \geq 1$. Indeed, for each denominator of a convergent Q of α such that $2 \cdot 4^{n} \leq \operatorname{deg}(Q)<$ $2 \cdot 4^{n+1}$, with $n \geq 1$, if $Q \neq Q_{n, 1}$ and $Q \neq Q_{n, 2}$, then $\operatorname{deg}(Q)$ and $\operatorname{deg}\left(Q^{*}\right)$ both belong to one of the intervals $\left[3 \cdot 4^{n}, 4^{n+1}+1\right.$] or $\left[6 \cdot 4^{n}-1,2 \cdot 4^{n+1}\right]$, hence it is clear that any other maximal chain is a δ-chain with $\delta \leq 4 / 3$. Therefore we have $\nu(\alpha)=3 / 2$. Since $\left|Q_{n, 1}\right|^{3 / 2}\left\|Q_{n, 1} \alpha\right\|=1$ and $\left|Q_{n, 2}\right|^{3 / 2}\left\|Q_{n, 2} \alpha\right\|=$ $|T|^{5 / 2}$ for each $n \geq 1$, we have $B(\alpha, 3 / 2)=1$. It is easy to see that the inequality $|Q|^{3 / 2}\|Q \alpha\| \geq 1$ holds for any polynomial Q of degree >3.

For α^{\prime} and $\alpha^{\prime \prime}$, we only indicate sufficient chains of convergents; we give the degrees of the denominators of these convergents and of the next convergent.

For α^{\prime} :

$$
\begin{aligned}
& \left(3 \cdot 4^{n}, 4^{n+1}\right), \quad\left(6 \cdot 4^{n}, 8 \cdot 4^{n}\right) \quad(n \geq 0) \\
& \left((4 / 3)\left(4^{n+2}-1\right),(4 / 3)\left(17 \cdot 4^{n}+1\right)\right) \quad(n \geq 0) \\
& \left((4 / 3)\left(2 \cdot 4^{n+2}+1\right),(4 / 3)\left(34 \cdot 4^{n}-1\right)\right) \quad(n \geq 1) .
\end{aligned}
$$

For $\alpha^{\prime \prime}$:

$$
\begin{aligned}
& \left((4 / 3)\left(4^{n}-1\right),\left(5 \cdot 4^{n}+4\right) / 3\right) \quad(n \geq 0) \\
& \left((4 / 3)\left(8 \cdot 4^{n}+1\right),(4 / 3)\left(10 \cdot 4^{n}-1\right)\right) \quad(n \geq 1), \\
& \left(2 \cdot 4^{n+1}, 9 \cdot 4^{n}\right), \quad\left(4^{n+2}, 18 \cdot 4^{n}\right) \quad(n \geq 0) .
\end{aligned}
$$

6. Open problems. We know nothing (except the Liouville theorem) about the approximation exponent of algebraic elements α which do not satisfy any non-trivial equation of the form $\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)$, where q is a power of the characteristic $p \neq 0$ of K. One can ask if Roth's theorem $\nu(\alpha)=1$ holds for these elements. For instance, it is possible to calculate, by computer - I thank Y. Taussat - many terms of the expansion in continued fraction of both the roots in $\mathbb{F}_{2}\left(\left(T^{-1}\right)\right)$ of the equation $X^{4}+$ $T^{2} X^{2}+T^{2} X+T=0$ (see $\S 1$). It seems that for a root α of this equation, one has $\nu(\alpha)=1$ (but $B(\alpha, 1)=0$).

For the algebraic elements satisfying a non-trivial equation

$$
\alpha=\left(A \alpha^{q}+B\right) /\left(C \alpha^{q}+D\right)
$$

there are examples with $\nu(\alpha)=1$ (see [1], [4]). But no criterion is known. For instance, we do not know whether for an irrational element α of $K\left(\left(T^{-1}\right)\right)$ such that there exists a positive integer e with $\alpha^{e} \in K(T)$, one may have $\nu(\alpha)=1$ (when α is not quadratic).

References

[1] L. E. Baum and M. M. Sweet, Continued fractions of algebraic power series in characteristic 2, Ann. of Math. 103 (1976), 593-610.
[2] A. Blanchard et M. Mendès-France, Symétrie et transcendance, Bull. Sci. Math. 106 (3) (1982), 325-335.
[3] B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France. Mém. 21 (1970).
[4] W. H. Mills and D. P. Robbins, Continued fractions for certain algebraic power series, J. Number Theory 23 (1986), 388-404.
[5] C. F. Osgood, Effective bounds on the "diophantine approximation" of algebraic functions over fields of arbitrary characteristic and applications to differential equations, Indag. Math. 37 (1975), 105-119.
[6] Y. Taussat, Approximations diophantiennes dans un corps de séries formelles, Thèse de 3ème cycle, Bordeaux, 1986.
[7] S. Uchiyama, On the Thue-Siegel-Roth theorem III, Proc. Japan Acad. 36 (1960), 1-2.
[8] J. F. Voloch, Diophantine approximation in positive characteristic, Period. Math. Hungar. 19 (3) (1988), 217-225.

UNIVERSITÉ DE BORDEAUX 1, MATHÉMATIQUES
(AND U.A. C.N.R.S. 226)
351 COURS DE LA LIBÉRATION
F-33405 TALENCE CEDEX, FRANCE

