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APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L2(Rd)

CARL DE BOOR, RONALD A. DEVORE, AND AMOS RON

Abstract. A complete characterization is given of closed shift-invariant sub-
spaces of L2(Rd) which provide a specified approximation order. When such
a space is principal (i.e., generated by a single function), then this characteri-
zation is in terms of the Fourier transform of the generator. As a special case,
we obtain the classical Strang-Fix conditions, but without requiring the gener-
ating function to decay at infinity. The approximation order of a general closed
shift-invariant space is shown to be already realized by a specifiable principal
subspace.

1. Introduction

We are interested in the approximation properties of closed shift-invariant
subspaces of L2(Rd). We say that a space S? of complex-valued functions
defined on Rd is shift-invariant if, for each / £ y, the space y also contains
the shifts f(-+a), a £ Zd . In other words, 5? contains all the integer translates
of / if it contains /. A particularly simple example is provided by the space

of all finite linear combinations of shifts of a single function </>. We call its
L2(Rd)-closure the principal shift-invariant space generated by cf> and denote it
by

y ((/,).
Of course, a closed shift-invariant subspace of L2(R ) need not be principal;
it need not even be generated by the shifts of finitely many functions.

Shift-invariant spaces are important in a number of areas of analysis. Many
spaces, encountered in approximation theory and in finite element analysis,
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788 CARL DE BOOR, R. A. DEVORE, AND AMOS RON

are generated by the shifts of a finite number of functions tp on Rd . Shift-
invariant spaces also play a key role in the construction of wavelets. In each of
these applications, one is interested in how well a general function / can be
approximated by the elements of the scaled spaces

S?h:={s(./h):s£y}.

We postpone discussion of the literature until we have introduced some addi-
tional terminology and stated our main results.

Associated to any closed subspace 5? of L2(Rd) and any function / £
L2(Rd), the approximation error is

(1.1) E(f,y):=min{\\f-s\\:s£y}.
In this paper, we describe the properties of 5? which govern the decay rates
of E(f, yh). We characterize when the scaled subspaces yh are dense in
the sense that limA_0^(/> ^h) = 0 for every / e L2(Rd). More generally,
we characterize when the spaces 5fih approximate suitably smooth functions
to order 0(hk) as h —> 0.

Our definitions of approximation orders are in terms of the potential space
Wk(Rd), k£R+, defined by

W2k(Rd) := {/ 6 L2(Rd): \\f\\w}m := (2n)-dl2\\(l + \ ■ \ff\\ < ex,}.

(Here and later, we use |x| := (x2 H-\- xj)1/2 to denote the Euclidean norm
of a point x = (xi, ... , Xd) in Rd .) When Ac is a positive integer, these are
the usual Sobolev spaces. We say that S? provides approximation order k if,
for every f £ W2k(Rd),

(1.2) E(f,y") Kconstyh'WfW^^.
A variant of this problem is to characterize when, for a given k > 0, we have

for each / £ W2k(Rd) (in addition to (1.2)),

(1.3) E(f,yh) = o(hk),        h^O.

When Ac = 0, this is the density problem. For this reason, we say that y
provides density order k whenever (1.3) holds.

Our characterizations of density, approximation order, and density order are
in terms of Fourier transforms. If / G Lx(Rd), its Fourier transform / is
defined by

f(y)-= [ f(x)e~ix'ydx.

Many authors have shown (under various restrictive conditions on 0) that the
approximation properties of a principal shift-invariant space 3*((p) are related
to the order of the zeros of the Fourier transform of </> at the integer multiples of
2n . It is therefore not surprising that our characterizations of approximation
order involve the behavior near zero of the 2^-periodization of \(p\2, i.e., the
L2(Td)-function

(1.4) [<M]:=   £   \k- + ß)\2-
ß£2nZd
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This function enters our considerations as part of the function A¿ £ Loo(C),
defined on the centered cube in Rd of side length 2n,

(" 2   \ 1/7
X-TTTA      '    on C:=[-n..n]d.

[<P,<P]J
Here (and below without further comment), we identify the space L2(Td) of
functions on the ¿-dimensional torus Td with the space L2(C) of functions
on the fundamental domain C. Our characterization of approximation order
is in terms of the function y i-> A^(}>)/|}>|/c.

It is the behavior of A^ at the origin, or, more precisely, the behavior of the
function y i-> \y\~kA<i,(y), that turns out to be crucial for the approximation
order of S?((p). Indeed, we shall prove

Theorem 1.6. The principal shift-invariant subspace y(</>) of L2(Rd) provides
approximation order k > 0 if and only if | • \~kA(f) is in L^C).

The analogue of this result for density orders is

Theorem 1.7. The principal shift-invariant subspace y (4?) of L2(Rd) provides
density order k > 0 if and only if \ • \~kA<f, is in Loo(C) and

(1.8) limh~d !   M-2*[A*lv)r> = 0.
A^O JnC

Of course, in the case Ac = 0, (1.8) characterizes when we have density.
It is rather remarkable that these conditions also characterize approximation

and density orders for arbitrary closed shift-invariant subspaces of L2(Rd).
Namely, we shall prove:

Theorem 1.9. A closed shift-invariant subspace y of L2(Rd) provides approxi-
mation order k > 0 if and only if it contains a function 4> for which \ • \~kA(fl is
in Loo(C). The space y provides density order k > 0 if and only if it contains
a function (j> for which \ • |-fcA,¿ e Loo(C) and (1.8) holds.

We prove the last theorem by showing in §3 that the case of approximation
by arbitrary closed shift-invariant subspaces of L2(Rd) can be reduced to the
case of principal shift-invariant spaces.

In the case of principal shift-invariant spaces, our method of proof is based
on two results which we feel will have other important applications. The first
is an explicit formula for the best L2(Rd)-approximation from y(4>). The
second is the following characterization

(1.10) y\(p) = {T(7> e L2(Rd): x is 27r-periodic}

of the space y((p) in terms of its Fourier transform. Here and later, for a set F
of functions, we denote by F := {/: f e F} the set of its Fourier transforms.

It turns out that our analysis applies equally well to the more general situa-
tion where the A-refinement of the space y is obtained by means other than
scaling. Such cases are known and are of interest in both spline theory (e.g.,
exponential box splines, cf. [DR]) and radial basis function theory (cf. the de-
tailed discussion in [BR2]). In the nonscaling case, we employ a family {yn}n
of shift-invariant spaces, and consider the rates of decay of E(f, yhh) as a
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790 CARL DE BOOR, R. A. DEVORE, AND AMOS RON

function of h . The notions of "approximation order k " or "density order k "
for the sequence {yn}h are obtained by replacing each E(f,yh) in the above
definitions by E(f,yhh).

We close this section with a brief discussion of the connections between the
results of this paper and results in the literature. Schoenberg, in his seminal
paper [S], was the first to recognize the importance of the Fourier transform
for describing approximation properties of principal shift-invariant spaces. For
the case d = 1, and with 0 a piecewise continuous function with exponential
decay at infinity, Schoenberg showed that all algebraic polynomials of degree
< Ac can be written in the form J2a&Zd 0(- - a)c(a) in case

(1.11) 0(0) + 0 and Dy4> = 0 on 2nZd\0 for all |y| < k
holds (with d = 1).

Strang and Fix [SF] have treated the approximation properties of the space

y(<p)
of all linear combinations J^ez* <P(--ot)c(a) (finite or not) of the integer shifts
of a compactly supported function 0. There is no problem of convergence of
such sums since, for any point x £ Rd, at most finitely many terms of the
sum are nonzero at x. Strang and Fix necessarily restricted attention to the
subspace

y2((j>):=y((p)nL2(Rd).

While this space is, in general, not closed in L2(Rd), one can show (see Theorem
2.16 below) that its L2(Rd)-closure is y(4>). Strang and Fix proved that y2(4>)
provides approximation order k whenever (1.11) holds.

To compare this result with Theorem 1.6 above, note that, for a compactly
supported 0, [0,0] is a trigonometric polynomial, since then

(1.12) [0,0]= y^û(a)ea,    with a(a) := I   (p(x - a)(p(x)dx.
aez* U"

Here and later, we use the abbreviation

ea(y) := eia^.

If (1.11) holds, then [0, 0] does not vanish at the origin and A¿ of (1.5) has a
zero of multiplicity k there. Thus, \-\~kA,p is in Loo(C) (as we know it must
be). However, there are two important points to bear in mind concerning our
Theorem 1.6 and the Strang-Fix result. First of all, our theorem does not require
that 0 be compactly supported, nor even that it decay at infinity. Secondly, it
applies even when 0 vanishes at the origin, a case of practical importance yet
not accessible to earlier approaches.

Actually, Strang and Fix proved more than we have just stated since they
showed that the approximation order 0(hk) to a given / e W2k(Rd) by the
elements of y2((p)h can be achieved with a control on the coefficients of the
approximants sn £ y2((p)h . Namely, if the approximants are represented with
respect to the .¿^-normalized functions 0(a, h, x) := h~dl24>(x/h-a) by sn =
Yla&a ch(a)4>(a, h,-), then

(1.13) \\Ch\\h(if) < const/ .
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The introduction of such controlled approximation is important, since Strang
and Fix show that, conversely, if y2(4>) provides controlled approximation
order k, then (1.11) holds. In other words, for compactly supported 0, y2(4>)
provides controlled approximation order k if and only if ( 1.11 ) holds. Since
it can be easily seen that our condition in Theorem 1.6 is weaker than (1.11)
(even for compactly supported 0), it follows that there are cases when the
achievable approximation order cannot be obtained in a controlled manner. In
this connection, it is worthwhile to point out (as is done in [SF]) that positive
controlled approximation order forces 0(0) ^ 0.

There is a rich literature of clarifications and extensions of the Strang-Fix
result, including extensions to noncompactly supported 0 [BH2, J2, DM2, BJ,
Bl, R, CL, JL, HL, BR2]. In addition, there are many papers studying the ap-
proximation order of specific principal (and other) shift-invariant spaces, some
of them [Bui, Bu2, BD, BuD, BH1, BRI, DJLR, DM1, DR, Ja, Jl, L, LJ, M,
MN1, MN2, Ra, RS] are included in the references; see also the surveys [B2, C,
P] and the references therein. By making assumptions on 0 weaker than those
used in any of the above references, we can still translate our conditions on A^
into simple conditions on 0. For example, we show in §5 the following:

Theorem 1.14. Assume that 0 is bounded on some neighborhood of the origin.
If y ((p) provides approximation order k, then 0 has a zero of order k at every
ß £ 2nZd\0. In particular, Dy(f>(ß) = 0 for all \y\ < k in case 0 is k times
differentiable (in the classical sense) at such ß .

Note that the boundedness of 0 required here holds, for example, if 0 is
continuous at 0. In particular, it holds for every 0 e Lx(Rd).

We also show in §5 the following converse:

Theorem 1.15. Assume that 1/0 is bounded on some neighborhood of the origin
and that, for some p > k + d/2, all derivatives of 0 of order < p are in
L2(A), with A := Be + (2nZd\0) for some open ball BE centered at the origin.
If Z>W) = 0 for all \y\ < k and all ß £ 2nZd\0, then y(<p) provides
approximation order k.

For most of the examples of a noncompactly supported 0 in the literature
(e.g., radial basis functions, see [P]), 0 is very smooth on Rd\0, but has a
singularity at the origin. On the other hand, the present standard approach to
the derivation of approximation orders (viz., the polynomial reproduction argu-
ment) requires 0 to decay at oo (at least) like 0(\ • \~(k+d)), hence requires 0
to be globally smooth. To circumvent this obstacle, one usually seeks a function
\p £ yo(4>) (or in some superspace of ¿?o(0)) whose Fourier transform \p is
smoother than 0, since this implies a more favorable decay of \p at oo. This
"localization" process constitutes the main effort in establishing approximation
orders for a noncompactly supported 0. Our theorem, though, does not require
0 to decay at oo at any particular rate, thus obviating the search for such \p .
Results (weaker than the above theorem) about Loo(Rd)-approximation orders,
that apply to functions which decay only mildly at oo, were derived in [BR2].
The approach there exploits the fact that the exponential functions ee , 0 eRd ,
are in the space in which approximation takes place. In contrast, the approach
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here makes use of the simple and explicit formula for the orthogonal projection
onto y((p).

2. The orthogonal projector onto y (if)

In this section, we derive two important facts about the principal shift-
invariant space y((f>) which will be the basis of much of the analysis that
follows. The first is a simple formula (given in Theorem 2.9) for the (Fourier
transform of the) best ¿^-approximation from y((f>). The second is the de-
scription

(2.1) y((f>) = {t0 e L2(Rd): x is 2^-periodic}
of y ((p) in terms of Fourier transforms mentioned in the introduction.

The yet to be proven (2.1) suggests that the calculation of integrals and inner
products involving functions from y ((f)) should be taken over the torus T1.
This can be accomplished by periodization. If g e Lx(Rd), then

(2.2) / g=   E    /     g= [ g°,
with

g°-=   E   S(- + ß)
ß£2nZd

the  (2n)-periodization of g.   Here, the sum is to be taken in the sense of
Lx(Td)-convergence, which makes sense since, by assumption, g e Lx(Rd). In
particular, g° £ Lx(Td).

Similarly, we have

(2.3) /   g0gx =     [go,g\]Jw Jc
for the inner product of two functions go, gx^ L2(Rd), with

(2.4) [go,gi]:=(gogx)°=   E   go(- + ß)gx(- + ß)-
ße2jizd

Note that [g0, g\\ is in Lx(Td) since gQgx e Lx(Rd). Also, by the Cauchy-
Schwarz inequality,

(2.5) \[go,gx]\2<[go,go][gx,gx],
and the right side of (2.5) is finite a.e. We will most often use (2.3) in the form

(2.6) / t/0= /t[/,0]
J&d Jc

which is valid for arbitrary /, 0 e L2(Rd) and arbitrary 2n-periodic x for
which xf e L2(Rd). We note that (2.6) implies the estimate

(2-7) I|t0||L2(R<O < IM|L2(T¿)||[0, 0111^(1-)

of use when [0, 0] is bounded, e.g., when 0 is compactly supported.
After these brief remarks, let us consider the problem of finding a formula

for the projection of L2(Rd) onto y((f>). Let P :— P^ denote the orthogonal
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projector onto y (tf>). The Pf is the unique best ¿^(R^-approximation to
/ from y ((p), and is characterized by the fact that it lies in y ((f)) while
its difference from / is orthogonal to y ((f)). Since the Fourier transform
preserves orthogonality, it follows (for example from the uniqueness of best
approximation in L2(Rd)) that the orthogonal projector P onto y (if) satisfies
Pf = Pf.

We consider first what it means for a function / to be orthogonal to y ((f)).
Since finite linear combinations of the (integer) shifts 0(- + a) of 0 are dense
in «5^(0), / e L2(Rd) is orthogonal to y (if) iff / is orthogonal to e_a0 for
every a e Zd , i.e. (with (2.6)), iff

0 = / fej = [[/, 0>Q   for all a e Zd .
JRd JC

This proves
Lemma 2.8. The orthogonal complement y ((f))1 of y (i)) in L2(Rd) consists
of exactly those f e L2(Rd) for which [/, 0] = 0.

From Lemma 2.8, we can easily determine Pf. Suppose, as is suggested by
(2.1), that Pf = T0, with x some 27t-periodic function. Then, from Lemma
2.8, _

[/,0] = [P/,0] = [T0,0] = T[0,0].
This motivates the following:

Theorem 2.9. For each f e L2(Rd), P^f = t/0, with the 2n-periodic function
Xf defined by

(2 10) r   :=(tf'^/tó,¿]   onÇï*>
\ 0 otherwise,

and Q¿ defined up to a null-set by
Q0 := supp[0, 0] := {co e Td : [0, 4>](co) ¿ 0} .

Proof. It is enough to show that Pf = Xf<f> for each / e L2(Rd). We first want
to see that T/0 is in L2(Rd). By (2.5), |Ty|2[0, 0] <[/,/]. With this, two
applications of (2.6) give

(2.11) /  \xfi>\2= [ \xf\2[i,J]< /[/,/]= /  l/l2.
Jw> Jc Jc Jw

Consequently, t/0 e L2(Rd) and moreover the linear map

Q:L2(Rd)^L2(Rd):f~xfj>

is well defined and norm-reducing on L2(Rd). We next prove that Q-P.

If / e y(i))    = (y(i))L)~, then Lemma 2.8 gives that xf = 0, hence
Qf = 0. Thus Q = P on y (if)   . On the other hand, on Q^, = supp[0, 0],

^(•+a) = [ea<¡>, 0]/[0,4>\ = ea,    for all a e Zd.

Since 0 = 0 on the complement of Q^, + 2nZd, this implies that Q maps
the Fourier transform of each integer shift of 0 to itself.  Since Q is linear
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and bounded, and coincides with P on a fundamental set for y (if), we have
Q = P on y\i>). By linearity, Q = P on all of L2(E<i).   D
Remark. With the convention (which we use throughout this paper) that 0
times any extended number is 0, we are entitled to write

(2.12) Tf = [f,faMJ]   and   F¡J =[f, tiî>/[4>, î>]-
Note that (2.11) supplies the following lemma.

Lemma 2.13. If <f>,fe L2(Rd), then t/0 £ L2(Rd), and ||t/0|| < ||/||.
As a consequence, we obtain the characterization (2.1) of the space y (if) in

terms of its Fourier transform.
Theorem 2.14. A function f is in y (if) if and only if f = t0 for some 2n-
periodic x with t0 g L2(Rd).  In particular, x(f> £ y (if) for every bounded
x.
Proof. If f £ y (if), then Pf = f. Hence, by Theorem 2.9, / = xf<¡> with xf
the 27T-periodic function [/, 0]/[0, 0], and T/0 g L2(Rd) because of Lemma
2.13.

Conversely, if x is defined on Td, and t0 g L2(Rd), then the inverse
transform / of t0 is also in L2(Rd) and satisfies Xf = [t0, 0]/[0, 0] = x
on Q^, = supp[0, 0]. Since 0 vanishes off Q<¿, + 2nZd, this implies with
Theorem 2.9 that Pf = T/0 = t0 = /. Consequently, Pf = / and hence
/ G y (if). Finally, if x is bounded, then t0 g L2(Rd) since 0 G L2(Rd).   D
Remark 2.15. Asher Ben-Artzi has pointed out to us that Theorem 2.14 could
have been derived from general results (cf. Theorem 8 of [H, p. 59]) concern-
ing closed subspaces of L2(T, l2) which are invariant under multiplication by
exponentials. Furthermore, the lemma of [H, p. 58] shows that Theorem 2.14
implies Theorem 2.9.

Remark. The representation t0 for / g y (if) is in general not unique. If
To0 = Ti0, we can only conclude that To = xx a.e. on £2^. However, if the
shifts of 0 are an orthonormal basis or, more generally, an L2(R</)-stable basis,
then, as is well known, [0, 0] and its reciprocal are both in L^ and not only
is the representation unique but the function x is in L2(Td). It is interesting
to note further that we have a unique representation even when the shifts of 0
are not an L2(Mrf)-stable basis provided Q^ differs from Td only by a null-set.

The following consequence of Theorem 2.14 is of importance when compar-
ing our results with related results in the literature.
Theorem 2.16. If 0 G L2(Rd) has compact support, then y (if) is the L2(Rd)-
closure of y2(i>) = y((f>) n L2(Rd).
Proof. Since y (if) is the L2( Rd) -closure of ^(0) and «5*6(0) is contained in
«52(0) (since 0 G L2(Rd)), we only have to prove that
(2.17) y2a>) c y (i>).
We now prove this by showing that P^f = / for every / G «5^(0), i.e., with
(2.12), that

(2.18) /=[/,0]07[<M].
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Since 0 has compact support, [0, 0] is a trigonometric polynomial (cf. (1.12)),
hence (2.18) is equivalent to the equation

(2.19) [0,0]/=[/,0]0   a.e,
and it is this equation we now verify for any / in L2(Rd) of the form

"£<?(■-ß)c(ß).
ß<iZd

We do this by showing that both sides of (2.19) are the Fourier transform
of the function £a6Zd /*(• + a)a(a), with a(a) = JRd 0(- - a)0 the (Fourier)
coefficients of the trigonometric polynomial [0, 0], see (1.12). This is imme-
diate for the left side of (2.19) since (Eaez¿ /(" + a)aia))^ = Œaezd a(a)ea)f
for any / G L2(Rd) and any finite sequence (a(a)), and [0, 0] is indeed a
finite sum of exponentials since 0 is compactly supported. As to the right side
of (2.19), [/, 0] isa 2/T-periodic L2-function (since 0 is compact supported,
thus 0 is bounded), hence the L2(T</)-limit of its Fourier series Y^y^id b(y)e7,
with b given by

b(y):=(2n)-d /[/,0>_r = / /0(. + y)
Jc Jmd

(j,(.-ß)c(ß)t(. + y)= Y,c(ß)a(y + ß).' ht, Lßezd  Rä ß€Zd

By (2.7), [/,0]0 is the L^Himit of EYezd Hï)eÂ, whence ([/, 0]0)v
is the L2(Rd)-limit of Ylyezd $(' + 7)Hv) ■ Since this last sum also converges
uniformly on compact sets, these two limits must be the same. This implies
that the right side of (2.19) is the Fourier transform of

E>(- + y)YJc(ß)a(y + ß)
yezd ß£Zd

= E E ¿(' + « - ß)<ß)a(a) = E /(• + <*)<<*) >
aeZd ß£Zd a£Zd

with the rearrangement of the sums justified by the fact that all sums are fi-
nite.   D

We now turn to our main objective, viz. the error of the best approximation.
If / is supported in one of the cubes ß + C, ß g 2nZd , this error takes a very
simple form:

Theorem 2.20. Let <f> £ L2(Rd). If f £ L2(Rd) and supp/ c ß + C for some
ß £ 2nZd, then

(2.21)   E(f, y((p))2 = (2nydE(f, yji-))2 = (2*)-" /  |/|2 ( 1 - Ä-1 .
hd        \      [0,0]/

Proof. Since supp/ c C + ß for some ß £ 2nZd, we have [/, 0] =
/(. + /?)?(. + ß) on C. Therefore, with (2.6),

IMI|2=   /l/(- + A)|2|0(- + /5)|2/[0,0]=   /    l/|2|0|2/[^,0].JC JfLd
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By Theorem 2.9, this shows that

\\Ptt>f\\2 = (2n)-d [  |/|2|0Ï/[0,0],
jRd

and this finishes the proof since \\f - P+f \\2 = \\f \\2 - \\P4fW2 .   G

3. The reduction to the principal case
The explicit and simple expression, derived in the previous section, for the

orthogonal projector onto a principal shift-invariant space will also prove to be
very useful in the discussion of approximation from a general shift-invariant
space. For, remarkably, the approximation power of a general shift-invariant
space, however large, is already contained in a single (suitably chosen) princi-
pal shift-invariant subspace of it. The next proposition provides the algebraic
background for this fact. We use repeatedly the simple observation that the best
approximation Pf to / from y is also the best approximation Pp/f to /
from y (Pf), i.e., PPff = Pf.
Proposition 3.1. Let P be the orthogonal projector onto the closed shift-invariant
subspace y of L2(Rd) and denote by P the corresponding orthogonal projector
onto y. Then P(xf) = xP(f) for any f £ L2(Rd) and any 2n-periodic x
for which xf £L2(Rd).
Proof. If y is principal, then the conclusion follows directly from (2.12). For
the general case, the assumptions on x and / imply with Theorem 2.14 that
xf £ y(f). Since y(f) is, by definition, the L2(R</)-closure of «56(/),
and «56(/) = {xnf: x„ a trig.polynomial}, it follows that xf is the L2(Rd)-
limit of xnf for some sequence (t„) of trigonometric polynomials. The shift-
invariance of y and the uniqueness of the best ¿^-approximation imply that
P(f(- + a)) = (Pf)(- + a) for every / G L2(Rd) and every a £ Zd .^Hence,
taking finite linear combinations of Fourier transforms, P(x„f) = x„Pf, and
so, by the continuity of P,

P(xf)= lim P(xJ)= lim xnPf.
n—»oo n—»oo

Each x„Pf is in the closed space y(Pf), therefore also P(xf) lies in y(Pf).
Thus, projecting xf onto y is the same as projecting it onto the subspace
y(Pf) of y. Since we already know that P^xf) = xP^f for any <f>, f £
L2(Rd), this means that we obtain

P(*f) = Ppfixf) = rPpf(f) = rff,
the last equality since PPff = Pf.   D
Corollary 3.2. If P is the orthogonal projector onto some shift-invariant subspace
of L2(Rd) and g £ L2(Rd), then PPg = PPgPg .

Proof. If f £ L2(Rd), then Pgf = xg for some 27t-periodic x and therefore
by Proposition 3.1, P(Pg~f) = xFg. On the other hand, pTg(Pgl') = Ppg(rg) =
?Ppgg = tfg.   D
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Theorem 3.3. For any closed shift-invariant subspace y of L2(Rd) and any
f,g£L2(Rd),

(3.4)      E(f, y) < E(f, y(Pg)) < E(f, y) + ie(j, y(g)),

with P = P$> the orthogonal projector onto y.
Proof. Only the second inequality needs proof. By Corollary 3.2,

f-PPgf = f-Pf+Pf- PPgf + PPgPgf - PPgf,
and therefore

(3.5) \\f-Ppgf\\<\\f-Pf\\ + \\f-Pgf\\ + \\Pgf-f\\.   D
This theorem shows that the approximation order of the particular principal

subspace y(Pg) of y is the same as that of all of y, provided that the
approximation order of the principal space y(g) is at least as good as that
of y. This suggests the use of a special function g* for which y(g*) has
arbitrarily high approximation order. We can take g* to be the inverse Fourier
transform of the characteristic function of the cube C = [-n..n]d , i.e., g* :=
(Xcy . We note that, by (2.12), Pg.f= [/, Xc\l\Xc, XdXc = Xcf ■ Hence,

(3.6) E(f, y(g*)) = (2AT)-d/2||(l - xc)f\\ ■

This allows us to show easily that the space y(g*) provides approximation
and density order k for all k > 0. For this, we follow the example of [BR2]
and consider, equivalently, the approximation of the scaled function

fh := f(h-)
from the fixed space y instead of the approximation of the function / from
the scaled space yh . For,

(3.7) E(f,y") = hdi2E(fn,y),

as is easily established by a change of variables.

Lemma 3.8. Let f £ Wk(Rd), k > 0, h > 0. 77a£?aa

E(f,y(g*)h)<Bf(h)hkWf\\w!(*)>

with the (nonnegative) function e/ defined by

(3 9) c (m2--W)/»(1 + I'I)2*I/|2
f /„(i + l-l)2*!/!2    '

hence e/(h) < 1, and e/(0+) = 0.
Proof. Since / G Wk(Rd), the function v := (1 + | • \)kf is in L2(Rd), and
II/IIh?(r-) = (2n)-d/>\\ ■ Since % = h~df(fh) ,(3.7) and (3.6) imply that
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(2n)dE(f, y (g*)")2 = (2n)dhdE(fh , y (g*))2

= hd\\(l-xc)fn\\2 = hd [     \fh(y)\2dy
jRd\C

= h-d[      \f(y/h)\2dy = h2k-d f      P^dy
jRd\c Jw\c (h + \y\YK

<h2k~d [      \v(y/h)\2dy
Jmd\c

= h2k [
Ja(R«\C)/h

W\2 = (2n)dh2kef(h)2\\f\\2vkm

We note for later reference the following useful result established during the
proof of Lemma 3.8.

Corollary 3.10. For each f £ Wk(Rd),

hdl2\\(l -Xc)fh\\ < (2n)dl2ef(h)hk\\f\\w,m,

with Sf given by (3.9).

Now let y be an arbitrary closed shift-invariant subspace of L2(Rd) and
let 0* :=Pg* bethebest L2(Rd)-approximation to g* from y. Using (3.7)
and Lemma 3.8 in (3.4), we obtain

(3.11)    E(f, yh) < E(f, y(p)h) < E(f, yh) + 2Ef(h)hk\\f\\wim,

with Ef(h) given by (3.9). This means that y provides approximation order
Ac > 0 or density order Ac > 0 if and only if its principal shift-invariant subspace
y((p*) does. More than that, since e/(h) does not depend on y, it proves
the following:

Theorem 3.12. The sequence {yn}h of closed shift-invariant subspaces of L2(Rd)
provides approximation order k > 0 or density order k > 0 if and only if the
corresponding sequence {y(i)*h)}h of principal shift-invariant subspaces (with
Ph:= P^h(g*) and g*=x%) does.

4. Approximation orders and density orders
In this section we give a complete characterization of approximation orders

and density orders from the sequence {yn}n of shift-invariant spaces. In view
of Theorem 3.12, we need only to consider the special case when each yh is
principal. For 0 G L2(Rd), we let A¿ g Loo(C) be defined as in the introduc-
tion

A, := (i _ JílV2 ,    onC.

In terms of this A¿, (2.21) gives that

(4.1) ¿í(/,«5!'(0)) = (2ít)-'í/2||/A^||   ifsupp/cC.
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For / G L2(Rd) with / not just supported in C, we estimate E(f, y(<f>)) =
(2n)~dl2E(f, y (if)) with the aid of Corollary 3.10 and the simple observation
that _ ___

\E(f,y)-E(xcf,y)\<\\(i-xc)f\\
for an arbitrary subspace y of L2(Rd) • Indeed, with the aid of (3.7), this
estimate implies that

\E(f,yh)-(h/2nf2E(xcfh,y)\
= \hd'2E(fh, y) - (h/27t)di2E(xcfh, y)\

= (h/2n)dl2\E(fh, y) - E(xcfh, &)\ < (h/2n)dl2\\(l - Xc)fh\\ ■

Therefore, Corollary 3.10 establishes

(4.2) \E(f, y") - (h/2n)dl2E(xcfh , &)\ < ef(h)hk\\f\\wim.

Theorem 4.3. For {i)n}n C L2(Rd), the sequence {y(i>n)}h provides approxi-
mation order k if and only if

+ i-i)*L(h +
is bounded in L^C).

Remark. Since each A^ is nonnegative and bounded above by 1, and since
each (aa + | -\)k is bounded below by aa* , it is clear that each A^J(h + | • \)k is
an element of Loo(C). So it is the uniform boundedness of A^/(A + | • \)k as
h -» 0 that characterizes the approximation order k .

Proof. In view of (4.2), {«5^(0/,)}/, provides approximation order k if and
only if there exists some constant c such that for every / G Wk(Rd) and every
h>0,

(4.4) hd'2E(xc]h , y&h)) < chk\\f\\W2k{Rd).

Since xcfn is supported in C, we may appeal to (4.1) (i.e., to Theorem 2.20)
to conclude that

hdE(Xcfh,y(i)n))2 = hd [ \fh\2A2h
(4.5)

= h-d f \f(./h)\2A2h= [  i/rX(/*.)2.
Jc Jc/h

For / G Wk(Rd), the function v := (1 +1• \)kf is in L2(Rd), and \\f ||^(R¿) =
(27t)_d/'2||A/||. With the aid of v , the last expression in (4.5) can be rewritten
as

,2 A* (A-)2L\v\
Ic/h     (i + H)2*'

Further, when / varies over all of W2k(Rd), v varies over all of L2(Rd), i.e.,
g := \v\2 varies over all nonnegative functions in Lx(Rd).  This means that
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the Ac-approximation order requirement is equivalent to the existence of c > 0
such that

A^(h-)2
(4.6) A g\Xc/h-(]

Rd \l + \2k <ch2k\\g\\Lim,    V/a>0, Vg6Li(Rrf).

A¿.(A¡- considered as a linearFixing A, the last condition states that Xc/h (i+i.i)a >
functional on Li(Rd), is bounded by ch2k . Consequently, having {«5^(0/,)}/,
provide approximation order Ac is equivalent to the existence of c > 0 such
that

Afci»
(1 + l-D*

<chk
Lx(C/h)

The proof is thus completed, since upon rescaling the last condition becomes
A,*,

(4.7) (h + < c.
Loo(C)

Proof of Theorem 1.6. In the case of this theorem, 0A = 0 for all h > 0. Using
this in (4.7) and letting A -» 0, we get that (4.7) is equivalent to | • \~kA<t> g
Loo(C).    D

Remark. Note that the cube C that appears in the characterization of approxi-
mation orders is entirely incidental. Since, for every h , A^ is bounded by 1,
and also (A + | • \)~k is bounded, independently of A , in any complement of a
neighborhood of the origin, the cube C can be replaced by ízaav neighborhood
of the origin.

Another remark concerns the case k = 0 which will soon be considered in
the context of density orders. We have not discussed approximation order 0
simply because of lack of any mathematical interest: the requirement in this
case is vacuous. This is in agreement with Theorem 4.3, for the boundedness
of {A^/(l + | • |)°}a *s also a vacuous condition, since each A^ is uniformly
bounded by 1. This means that the statement of Theorem 4.3 is valid also for
rC = 0.

With Theorem 4.3 in hand, we turn our attention to the characterization of
density orders. Our result concerning density orders is as follows.

Theorem 4.8. For {4>h}h C L2(Rd), the sequence {y(i>h)}n provides density
order k if and only if {A^/(A + | • \)k}„ is bounded in Loo(C), and

r A2
(4.9) limh~d        ,,     ,**       =0,       Va>0.

A-o       Jhac(h + \-\)2k
Proof. In view of Theorem 4.3 and the definition of density orders, the theorem
here  is  proved  as  soon  as  we  show  that,   under  the  assumption  that

\)kh
V/G W2k(Rd)

{A,à/(A +
(4.10)

we
i, is bounded, the condition

0,limhdl2-kE(fn,y((f)h))
h->0

is equivalent to (4.9). For this we can follow the proof of Theorem 4.3 up to
(4.6) to conclude that (4.10) is equivalent to the condition that

(4.11) lim A
A—o

-2k /   \g\Xc/h
A^-)2

(1 + 1-IP = 0,        VgGLi!
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Choosing g := Xac in (4.11) and rescaling, we obtain (4.9), so that the necessity
of (4.9) for Ac-density order is proved.

To prove the sufficiency, we define

;     -h-2kv A^-)2 «L.r,Xh-H        *C/*(H-|.|)2*' h>0-

We view the Xh as elements of Lx(Rd)*. We want to show that (4.11) holds,
namely that {AA}A converges weak-* to 0. We know that {Àn}n are positive,
uniformly bounded, and by (4.9), ^hiXac) ~* 0 for every a > 0. This latter
condition implies that Àh(Xx) -» 0 for any compact K. By linearity, An(g)
tends to 0 for each compactly supported simple function g. Since such func-
tions are dense in Lx(Rd), we obtain (4.11).   D

Proof of Theorem 1.7. Since (A + | • |) 2k < \ • \ 2k , (1.8) implies that

JhC
d I   -<h-_ Q

£T    Jhc(h + \-\)2k    U'
which is the case a = 1 in (4.9), and implies the rest of (4.9), since here i>n = 0
for all A , hence A^ does not change with A . Thus, Theorem 4.8 implies the
sufficiency of (1.8).

On the other hand, if «5^(0) provides density order ac , then (4.9) holds (with
Ah = A0, all A). Since \y\~2k < c(h + \y\)~2k for y G hC\(hC/2) and some
absolute constant c, we obtain from (4.9) (with a = 1)

(4-12) / ^#<eWAd
Jhc\(hc/2) \yr

where lim^o^A) = 0. Summing these estimates gives

(4.13) /   ^0- < Y e(2-jh)2-jdhd < 2 max e(u)hd.
Jhc  \y\2k   ~f^Q ~   0<"£A

Since the right side of (4.13) is o(hd), we obtain the necessity of (1.8).   D
Combining the two last theorems with Theorem 3.12, we obtain

Theorem 4.14. Let {«5^} be a sequence of shift-invariant spaces. For each A,
let i>h be the best approximation from yn to g* = Xc ■ Then, {yn}n provides
approximation order k ifandonlyif{Al¡>J(h + \-\)k}h is bounded in L^C),
and {yn}h are kth-order dense if and only if, in addition to the above,

r A2
(4.15) limh~d-^it=- = 0,        Va>0.

A-o       JnaC (A + | • \)2k
Proof of Theorem 1.9. This follows from Theorem 1.6, Theorem 1.7, and the
reduction to the principal shift-invariant case given by Theorem 3.12 (with
0* = 0* = Pyg* for all A).   D

5. The Strang-Fix conditions
As mentioned in the introduction, approximation orders from the scaled

spaces {yh}h were characterized in [SF] under the assumptions that (a) the
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space yh is obtained as the A-dilate of the same principal shift-invariant space
y (4>) ; (b) the generator 0 of «5"(0) is compactly supported; and (c) the ap-
proximation order is realized in a controlled manner. The controlled approxi-
mation assumption, in turn, forces the condition 0(0) ^ 0.

In order to compare these conditions to the characterization of approximation
orders for principal shift-invariant spaces that we obtain in the present paper, we
assume in this section that we have in hand a sequence {«5^(0/, )}¿ of principal
shift-invariant spaces which satisfy one or both of the following conditions,
in which Q is some neighborhood of the origin, and n and p are positive
constants

(5.1) 3Q,p,hQ   s.t.   \(j)h(x)\<p   a.e. onQ, V0<A<A0;
(5.2) 3Q.,n,h0   s.t.   n<\4>n(x)\   a.e. on Q, V0 < A < A0.
Note that, in case tf)n does not change with A (i.e., when assumption (a) above
holds), and 0 is continuous at the origin (e.g., 0 is compactly supported, as in
assumption (b) above), (5.1) is satisfied automatically and (5.2) is reduced to
the mere condition

(5.3) 0(0)^0.
We recall (see the remark after the proof of Theorem 1.6) that the uniform
boundedness required in Theorem 4.3 for k-approximation order can be
checked in any neighborhood Q of the origin, hence we can replace the cube
C in the theorem by Q. As the next results show, A^ can often be replaced
by

(5.4) Mh:=l    £     |0A(- + /?)|2)      =([0a!,0/,]-|0a!|2)1/2-
\ß€2nZ'l\0 J

Lemma 5.5. ¿f(5.1) holds and the sequence {y(i>t,)}h provides approximation
order k, then

(5.6) \(h + \-\)kih<K

is bounded in Loo(Q') for some 0-neighborhood Q,' and some h'0 > 0.   On
the other hand, if (5.2) holds and (5.6) is bounded in L^Çl') for some 0-
neighborhood Í2 and some h'0, then {y(i>n)}h provides approximation order
k.
Proof. If {y((f)n)}h provides approximation order k, then, by Theorem 4.3,
{{h + \'\)~kh.<i>h}h is bounded, say by c,on Q. This, together with (5.1), implies
that
(5.7) (A + | - \y2kM2 < c(M2 + |0„|2) < c(M2 + p2),

and therefore, ((A + | • \)~2k - c)Mj; < cp? . Thus, for sufficiently small A and
some neighborhood ii' c il of the origin, the leftmost term in (5.7) does not
exceed 2cp2 .

Conversely, (5.2) implies that, on Q,

Ai = i-T#4^<Ä<r'M,
Ml + I«2 " I*,!2
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Therefore, by Theorem 4.3, the boundedness of (5.6) implies that {«5^(0/,)}/,
provides approximation order ac .   D

We now consider in more detail necessary conditions for approximation
order which follow from our characterization of approximation order. Since
I0a(- + ß)\ < Mn for all ß £ 2nZd\0, the next theorem is a direct consequence
of the last lemma:

Theorem 5.8. 7/(5.1) holds and {«5*(0¿)}a provides approximation order k,
then, for all 0 < A < Ao and for all ß £ 2nZd\0, and in some 0-neighborhood,

\4>h(. + ß)\<c(h + \.\)k,
for some c independent of ß and A.

In case 0 does not change with A, we may let A —» 0 in the last display
and so obtain Theorem 1.14. This shows that the necessity of the Strang-Fix
conditions (1.11) for Ac-approximation order holds in a very general setting.
This is remarkable, since this implication is considered to be the "harder" one.
An analogous Loo-result has been obtained in [BR2] by other means.

We now consider in more detail sufficient conditions for approximation or-
der. There is no reason to believe that (upon assuming (5.2)) the assumptions

(5.9) D7j> = 0   on 27rZ¿\0   for all \y\ < k
would suffice for approximation order k since from Lemma 5.5 we only can
deduce the following:

Corollary 5.10. If 0 < r\ < 0 a.e. on some neighborhood Q of the origin, and if

(5.11) E    \k- + ß)\2<c\-\2k,    a.e.onQ,
^e2nz¿\o

then y ((p) provides approximation order k.

However, assumptions like (5.9) can only imply that, for each individual
ß e 2nZd\0,

\fc + ß)\2<cß\-\*,
hence will not in general yield (5.11). On the other hand, there are several
results in the literature which show that, under additional assumptions on 0,
(5.9) does imply that y (if) provides approximation order k. For example,
standard polynomial reproduction/quasi-interpolation arguments show that if

(5.12) \(f>(x)\ = 0(\x\-k~d-e),     asx^oo,

and if 0(0) ^ 0, then (5.9) implies that y (if) provides approximation order
ac (cf. e.g., Proposition 1.1 and Corollary 1.2 in [DJLR]). Unfortunately, the
decay conditions (5.12) fail to hold for many functions 0 of interest (primar-
ily radial basis functions, and usually because 0 is not smooth enough at 0),
and in such a case, the polynomial reproduction argument either fails, or is not
easily converted into approximation orders. Circumventing the polynomial re-
production argument was actually the major objective of [BR2]. In our context,
Theorem 1.6 leads to a remarkable result, which allows (5.12) to be replaced by
a much weaker condition, and which we now describe.
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For this result, we need a local version W2P(Q) of the potential spaces
^(R^). If p is an integer, then this space is simply the Sobolev space of
all functions whose (weak) derivatives up to order p (inclusive) are in L2(Q).
In this case, if {Qß}ß€l is a disjoint collection of open subsets of Rd , we have
£/,e/ H/llir'^) = ll/lliy'tu^) • As is wel1 known, there are several equivalent
extensions of the definition of W2P(ÇÏ) to the case of a fractional p (see, e.g.,
[A, Chapter 7]). For fractional p, we have the following subadditivity property:

(5-13) EH/H2H-W< 41/11 2*í'(U,6,q,) .
ß€l

whenever, say, {fi/?}^ is a disjoint collection of cubes; (cf. [A, p. 225]). Our
result is as follows:

Theorem 5.14. Assume that 0 < n < 0 a.e. on some cube fi centered at the
origin. Let A := \Jß€2nz<i\o(Q + ß) ■ V <t> e W2P(A) for some p> k + d/2, and
if (5.9) holds, then y (if) provides approximation order k.

The virtue of this theorem is that we can take fi to be so small that A does
not contain the origin. This is important since in many cases of interest 0
is smooth on Rd\0 but has some singularity at the origin (this happens, e.g.,
when 0 is obtained by the application of a difference operator to a fundamental
solution of an elliptic equation). But, if 0 satisfies (5.12), then 0 is globally
smooth, since we obtain from (5.12) that 0 G W2p(Rd) for p = k + d/2 + e/2
as well as 0 G Ck(Rd). Thus, Theorem 5.14 and Theorem 1.14 together imply
the following result.
Corollary 5.15. If 0 satisfies (5.12) and 0(0) ^ 0, aA«?aa y (if) provides approx-
imation order k if and only if (5.9) holds.
Proof of Theorem 5.14. It follows from (5.9) that, for every ß e 2nZd\0, and
with Clß := fi + ß ,

(5.16) \4>{x + ß)\ < c\x\kmax Wi)\\Loo(aß),    forxefi.
\y\=k

Since p > k + d/2, the Sobolev embedding theorem (cf. [A, p. 217]) implies
that W2p(Clß) is continuously embedded in the Sobolev space W^(Qß). Thus,

m^DrM\Lx{Qt)<cS\\w,(Qt),

with cx independent of ß (since all the Qß are translates of each other).
Substituting this into (5.16) we obtain that

|0(x + y3)|<c2k|fc||0||^(£ii),    xeii, ß£2nZd\0.

Squaring the last inequality and summing over ß £ 2nZd\0, we obtain, in view
of (5.13), that

J]      \i>(X + ß)\2< C.lX^ÛW^.
/362äZ''\0

Lemma 5.5 now supplies the conclusion that y (if) provides approximation
order k .   D

In applications, it might be convenient to take p to be the least integer that
satisfies p > k + d/2. For this case, Theorem 5.14 reduces to Theorem 1.15.
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