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Abstract

We study approximation hardness of the Minimum Dominating Set problem and
its variants in undirected and directed graphs. Using a similar result obtained by
Trevisan for Minimum Set Cover we prove the first explicit approximation lower
bounds for various kinds of domination problems (connected, total, independent)
in bounded degree graphs. Asymptotically, for degree bound approaching infinity,
these bounds almost match the known upper bounds. The results are applied to
improve the lower bounds for other related problems such as Maximum Induced

Matching and Maximum Leaf Spanning Tree.

1 Introduction

A dominating set in a graph is a set of vertices such that every vertex in
the graph is either in the set or adjacent to a vertex in it. The Minimum

Dominating Set problem (shortly, Min-DS) asks for a dominating set of
minimum size. The variants of dominating set problems seek for a minimum
dominating set with some additional properties, e.g., to be independent, or to
induce a connected graph. These problems arise in a number of distributed
network applications, where the problem is to locate the smallest number

? An extended abstract appeared at the Proceedings of the 12th Annual European
Symposium on Algorithms, Bergen, Norway, September 14-17, 2004, LNCS 3221,
Springer, pp. 192–203.
∗ Corresponding author.

Email addresses: m.chlebik@sussex.ac.uk (M. Chleb́ık),
chlebikova@fmph.uniba.sk (J. Chleb́ıková).
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of centers in networks such that every vertex is nearby at least one center.
Furthermore, the approximation hardness results for dominating set problems
can be applied to achieve some inapproximability results for other problems.

Preliminaries and definitions

Let G be a simple graph. A set I of vertices is called independent if no two ver-
tices from I are adjacent by an edge in G. A dominating set D in a graph G is
an independent dominating set if the subgraph GD of G induced by D has no
edges; D is a total dominating set if GD has no isolated vertices; and D is a con-
nected dominating set if GD is a connected graph. The corresponding domina-
tion problems Minimum Independent Dominating Set (Min-IDS), Min-

imum Total Dominating Set (Min-TDS), and Minimum Connected

Dominating Set (Min-CDS) ask for an independent, total, and connected
dominating set of minimum size, respectively. When a graph problem is re-
stricted to the class of graphs with maximum degree at most B, called also as
B-bounded graphs, we use the acronym B in the notation, e.g., B-Min-DS.
Let ds(G) stand for the minimum cardinality of a dominating set in G. Simi-
larly, let ids(G), tds(G), and cds(G), stand for the corresponding minima for
Min-IDS, Min-TDS, and Min-CDS for G, respectively. For definiteness, the
corresponding optimal value is set to infinity if no feasible solution exists for
G. That means, tds(G) < ∞ iff G has no isolated vertices, and cds(G) < ∞
iff G is connected. It is easy to see that ds(G) ≤ ids(G), ds(G) ≤ tds(G), and
ds(G) ≤ cds(G). Moreover, tds(G) ≤ cds(G) unless ds(G) = 1.

In fact, dominating set problems are closely tied to the well-known Minimum

Set Cover problem (shortly, Min-SC). Let a set system G = (U ,S) be
given, where U is a universe and S is a collection of (nonempty) subsets of
U such that ∪S := ∪{S : S ∈ S} = U . Any subcollection S ′ ⊆ S such that
∪S ′ = U is termed a set cover. The Minimum Set Cover problem asks for
a set cover of minimum cardinality whose size is denoted by sc(G).

An instance G = (U ,S) of the Minimum Set Cover problem can be viewed
as a hypergraph G with vertices U and hyperedges S. For an element x ∈
U let deg(x) denote the number of sets in S containing x and deg(G) :=
maxx∈U deg(x) be degree of the instance G. Let ∆(G) denote size of the largest
set in S. The restriction of the set cover problem to instances G with bounded
both parameters ∆(G) ≤ k and deg(G) ≤ d will be denoted by (k, d)-Min-

SC. Hence, (k,∞)-Min-SC in this notation corresponds to the well studied
problem k-Min-SC, in which instances G are restricted to those with size of
the largest set bounded by k.

For a hypergraph G = (U ,S) define the dual hypergraph G̃ = (S,UG) such that
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vertices in G̃ are hyperedges of G, and hyperedges UG = {xG : x ∈ U} of G̃
correspond to vertices of G in the following sense: given x ∈ U , xG contains all
S ∈ S such that x ∈ S. (As we assume ∪S = U , every xG is nonempty.) In the
context of hypergraphs, the Minimum Set Cover problem is the Minimum

Vertex Cover problem (shortly, Min-VC) for the dual hypergraph. Recall
that for a hypergraph G = (U ,S) a vertex cover of G is a subset C ⊆ U such
that each hyperedge e in S intersects C, i.e., e∩C 6= ∅. Clearly, deg and ∆ are
dual notions in the hypergraph duality. In fact, the (k, d)-Min-SC problem is
the same as (d, k)-Min-VC, but in the dual formulation.

We say that an algorithm A is a c-approximation algorithms for maximization
(resp. minimization) problem Π for a constant c ≥ 1 if, for every instance I
of Π whose optimal solution has value OPT(I), the output of A on I satisfies
1
c
OPT(I) ≤ A(I) ≤ OPT(I) (resp. OPT(I) ≤ A(I) ≤ cOPT(I)). (More

generally, one allows c to be a function of an input instance I.) Any such c is
called approximation ratio of approximation algorithm A. For any NP-hard
optimization problem Π one can define approximation thresholds tP and tNP

of its constant factor approximability as follows

tP = inf{c > 1 : there is a polynomial c-approximation algorithm for Π}, and

tNP = sup{c ≥ 1 : achieving approximation ratio c for Π is NP-hard}.

For definiteness, inf ∅ := ∞. Hence tP < ∞ iff Π is in APX. Further, tP = 1
iff Π has a PTAS. Clearly tNP ≤ tP unless P = NP. For further optimization
terminology we refer the reader to Ausiello et. al. [2].

The Minimum Set Cover problem can be approximated by a natural greedy
algorithm that iteratively adds a set that covers the most number of yet un-
covered elements. It provides an H∆-approximation, where Hi := 1+ 1

2
+· · ·+ 1

i

is the i-th harmonic number. (Recall that ln i + γ < Hi < ln i + 1
2i

+ γ, where
γ ≈ 0.5772156649 is the Euler constant.) This factor has been improved by
Duh and Fürer [8] to H∆ − 1

2
. Additionally, Feige [9] has shown that the ap-

proximation ratio of ln n achieved by the greedy algorithm for the Minimum

Set Cover problem is the best possible (as a function of n := |U|, up to a
lower order additive term) unless the class NP has slightly superpolynomial-
time algorithms (namely, NP ⊆ DTIME(nO(log log n))).

Relation of Dominating Set Problems to Minimum Set Cover

It is easy to see, that the Minimum Dominating Set problem in general
graphs has the same approximation hardness as the Minimum Set Cover

problem. Using the standard reductions similar hardness results can be proved
also for other domination problems and even in some restricted graph classes.
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DS-SC reduction. Let G = (V, E) be a graph and for each vertex v ∈ V
denote by Nv the set of all neighbors of v. Each vertex v ∈ V will correspond
to an element of U , and the collection S will consist of the sets Nv ∪ {v} for
each vertex v ∈ V (resp., only Nv for the Minimum Total Dominating

Set problem).

The DS-SC reduction exactly preserves feasibility of solutions: every dominat-
ing set in G (resp., total dominating set for a graph without isolated vertices)
corresponds to a set cover of the same size in the set system (U ,S), and vice
versa.

Hence, using results for Minimum Set Cover [8], we get (H(deg(G)+1) −
1
2
)-

approximation algorithm for Minimum Dominating Set and (Hdeg(G) −
1
2
)-approximation algorithm for Minimum Total Dominating Set, where

deg(G) denotes the maximum degree of G. For the Minimum Connected

Dominating Set problem (Hdeg(G) + 2)-approximation algorithm is known
([11]).

Now we recall two reductions in the opposite direction that we use to obtain
inapproximability results for dominating set problems. Recall that a split graph
is a graph whose vertex set can be partitioned into a clique and an independent
set; a chordal graph is a graph which contains no cycle with at least four
vertices as an induced subgraph.

Definition 1 For an instance (U ,S) of the Minimum Set Cover problem,
the (U ,S)-bipartite graph is a bipartite graph with bipartition (U ,S) connecting
each set S ∈ S by an edge to each of its elements x ∈ S.

Split SC-DS reduction. Given an instance G = (U ,S) of Minimum Set

Cover, create first a (U ,S)-bipartite graph and then make a clique of all
vertices of S.

Any set cover in (U ,S) corresponds in the resulting split graph G to a dom-
inating set (contained in S) of the same size. It is not difficult to see that
a dominating set of minimum size in G is achieved also among dominating
sets which contains only vertices from S: any dominating set D in G can be
efficiently transformed to the one, say D′, with |D′| ≤ |D| and D′ ⊆ S.

Since a dominating set contained in S induces a clique, problems Mini-

mum Dominating Set, Minimum Total Dominating Set, and Mini-

mum Connected Dominating Set have the same complexity in graphs
constructed using the split SC-DS reduction.

Bipartite SC-DS reduction. Given an instance G = (U ,S) of Minimum
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Set Cover, create first a (U ,S)-bipartite graph. Then add two new vertices
y and y′, and connect the vertex y to each S ∈ S and to y′.

For the resulting bipartite graph G one can now confine to dominating sets
consisting of y and a subset of S corresponding to a set cover, hence we have
ds(G) = cds(G) = tds(G) = sc(G) + 1.

In order to transfer Feige’s ([9]) approximation lower bound of (1 − ε) ln |U|
from Minimum Set Cover to the lower bound (1−ε) ln n for dominating set
problems using split and bipartite SC-DS reductions, we need such hardness
result on instances of set cover satisfying ln(|U| + |S|) ≈ ln(|U|). It turns out
that this is indeed true analyzing of Feige’s construction. In this way one can
obtain the logarithmic lower bound for Minimum Dominating Set, Mini-

mum Total Dominating Set, and Minimum Connected Dominating

Set even in split and bipartite graphs.

Hence we can summarize the previous as

Theorem 1 Minimum Dominating Set, Minimum Total Dominating

Set, and Minimum Connected Dominating Set cannot be approximated
to within a factor of (1 − ε) lnn in polynomial time for any constant ε > 0
unless NP ⊆ DTIME(nO(log log n)). The same results hold also in bipartite and
split graphs (hence in chordal graphs, and in complements of chordal graphs
as well).

The Minimum Independent Dominating Set problem is NP-hard, and
it appears to be very difficult to approximate owing to non-monotonicity of
independent dominating sets, or equivalently, maximal (inclusionwise) inde-
pendent sets. In fact, no method to approximate ids within a factor better than
trivial one O(n) appears to be known. Halldórsson [12] proved that Minimum

Independent Dominating Set cannot be approximated in polynomial time
within a factor of n1−ε for any ε > 0, unless P = NP. This problem has the
strongest known approximation hardness results among unweighted NP-hard
problems under various complexity-theoretic assumptions.

Main results

In this paper we investigate the approximability of the dominating set problem
and its several variants in bounded degree graphs of large and small degree and
directed graphs. We apply these results to other graph optimization problems
to improve known or to obtain the first explicit inapproximability results for
them.

5



Problem (asympt.) B-Min-DS B-Min-CDS B-Min-TDS B-Min-IDS

Lower bound lnB − C ln lnB ln B − C ln ln B ln B − C ln ln B δB

Upper bound HB+1 −
1
2 HB + 2 HB − 1

2 B − B−1
B2+1

Table 1

Problem 3-Min-DS 4-Min-DS 5-Min-DS 3-Min-IDS 4-Min-IDS 5-Min-IDS

Lower bound 391
390

∗ 100
99

53
52

681
680

294
293

∗ 152
151

∗

Upper bound 19
12

107
60

117
60 2 65

17
63
13

Table 2

In B-bounded graphs we prove asymptotically tight lower bounds of lnB (up
to lower order terms) for Minimum Dominating Set, Minimum Total

Dominating Set, and Minimum Connected Dominating Set also in bi-
partite graphs (Section 2). As in general graphs, the Minimum Independent

Dominating Set problem completely differs from other studied variants of
dominating set problems. We present a lower bound for Minimum Indepen-

dent Dominating Set in B-bounded graphs that increases linearly with
B, similarly as an upper bound. Table 1 summarizes the current state of the
research for dominating set problems in the case when the degree bound B
increases. All lower bounds are new contributions of this paper and hold even
in bipartite graphs, upper bounds are due to [1], [8], [11].

In Section 3 we introduce various kinds of reductions to achieve lower bounds
for Minimum Dominating Set and Minimum Independent Dominat-

ing Set in graphs of very small maximum degree B. All these lower bounds
are summarized in Table 2 (∗ means that the lower bound is achieved also in
bipartite graphs), upper bounds follow from [1], [8]. To the best of our knowl-
edge no explicit approximation hardness results were known in these cases
prior this work.

Section 4 deals with domination problems in directed graphs. We show that
in directed graphs with indegree bounded by a constant B ≥ 2 the directed
version of Minimum Dominating Set has simple (B + 1)-approximation
algorithm, but it is NP-hard to approximate within any constant smaller than
B − 1 for B ≥ 3 (resp. 1.36 for B = 2). In directed graphs with outdegree
bounded by a constant B ≥ 2 we prove almost tight approximation lower
bound of ln B for directed version of the Minimum Dominating Set prob-
lem. We also point out that the problem to decide of whether there exists a
feasible solution for the Minimum Independent Dominating Set problem
in directed graphs is NP-complete even for graphs with small degree bound.
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In Section 5 we apply inapproximability results obtained for domination and
covering problems to improve on approximation hardness results of some graph
optimization problems. We improve the previous lower bound for the Maxi-

mum Induced Matching problems in graphs of maximum degree 3 to 294
293

,
and to 967

966
in graphs that are additionally bipartite (previous bounds of [7]

were 475
474

and 6660
6659

, respectively). Additionally, our lower bound for Maximum

Induced Matching in B-regular graphs (B large) almost matches known
linear upper bound in B-bounded graphs (only APX-completeness was previ-
ously known with a lower bound very close to 1, even for large B). We also
establish the first explicit lower bound 245

244
for the Maximum Leaf Spanning

Tree problem, even in bipartite graphs with all vertices but one of degree at
most 5.

2 Case of Graphs with Large Degree Bound

In this section we consider asymptotical approximation thresholds for domi-
nation problems in graphs of maximum degree bounded by a large constant B.
From known approximation algorithms mentioned in Section 2 we can obtain
the following results: tP(B-Min-DS) ≤ HB+1−

1
2
, tP(B-Min-TDS) ≤ HB−

1
2
,

and tP(B-Min-CDS) ≤ HB +2. In what follows we prove asymptotically tight
lower bounds of ln B (up to lower order terms) for all three mentioned prob-
lems.

2.1 Minimum Dominating Set in B-Bounded Graphs

Trevisan [17] in the analysis of Feige’s construction proved the following in-
approximability result for the Minimum Set Cover problem restricted to
instances with sets of size at most B.

Theorem 2 (Trevisan) There are absolute constants C > 0 and B0 ≥ 3
such that for every B ≥ B0 it is NP-hard to approximate the Minimum Set

Cover problem restricted to instances with sets of size at most B within a
factor of ln B − C ln lnB.

In fact, in the proof of the corresponding NP-hard gap type result an instance
Ψ of SAT of size n is converted to an instance G = (U ,S) of B-Min-SC.
Trevisan uses two parameters l and m where l = θ(ln ln B) and m = B

poly log B
.

The produced instances have the following properties: |U| = mnlpoly log B,
|S| = nlpoly log B, ∆(G) ≤ B, and deg(G) ≤ poly log B. Further, if Ψ is
satisfiable then sc(G) < α|S| (for some α easily computable from n and B),
but if Ψ is not satisfiable, then sc(G) > α|S|(ln B − C ln ln B).
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We use Trevisan’s result to prove inapproximability results for the Minimum

Dominating Set problem in graphs of (large) degree at most B. First, we
define the gap preserving reduction from (B − 1, B)-Min-SC to B-Min-DS.

SC-DS1 reduction. Let G = (U ,S) be an instance of the (B−1, B)-Min-SC

problem. Add a set W of
⌈
|S|
B

⌉
new vertices and connect them to the (U ,S)-

bipartite graph as follows: each vertex S ∈ S is connected to one vertex of W
and allocate these edges to vertices of W such that degree of each vertex in
W is also at most B. Let G denote the bipartite graph of degree at most B
constructed in this way.

Claim 1 The SC-DS1 reduction has the properties sc(G) ≤ ds(G) ≤ sc(G) +

⌈
|S|

B

⌉
.

Proof. Given a set cover S ′ (say, with |S ′| = sc(G)), S ′ ∪ W is clearly a
dominating set, hence the second inequality easily follows. The first inequality
is obvious, as any dominating set in G has to contain at least sc(G) vertices
already in U ∪ S. 2

Using this claim we can prove the following

Theorem 3 There are absolute constants C > 0 and B0 ≥ 3 such that for
every B ≥ B0 it is NP-hard to approximate the Minimum Dominating Set

problem in bipartite graphs of degree at most B within a factor of ln B −
C ln ln B.

Proof. The SC-DS1 reduction translates the NP-hard question for (B −
1, B)-Min-SC to decide of whether sc(G) < α|S|, or sc(G) > β|S| (for some
efficiently computable functions α, β) to the NP-hard question of whether
ds(G) < (α + 1

B
)|S|, or ds(G) > β|S| (assuming β − α > 1

B
).

It is easy to check that the SC-DS1 reduction from (B − 1, poly log B)-Min-

SC to B-Min-DS can decrease the approximation hardness factor of ln(B −
1) − C ln ln(B − 1) from Theorem 2 only marginally (by an additive term
of poly log B

B
). Hence an approximation threshold tNP for B-Min-DS (with B

sufficiently large) is again at least ln B−C ln ln B, with slightly larger constant
C than in Theorem 2. 2
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2.2 Minimum Total Dominating Set and Minimum Connected Dominating
Set in B-Bounded Graphs

To obtain essentially the same inapproximability results for other two prob-
lems, Minimum Total Dominating Set and Minimum Connected Dom-

inating Set in B-bounded graphs, we modify slightly the SC-DS1 reduction.

SC-DS2 reduction. For an instance G = (U ,S) of the (B − 1, B)-Min-SC

problem (with B sufficiently large) construct the (U ,S)-bipartite graph and

add a set W of
⌈

|S|
B−2

⌉
new vertices. Connect them to vertices of S in the same

way as in the SC-DS1 reduction and add a set W ′ of additional vertices, with
|W ′| = |W |. The vertices of W and W ′ are connected to a 2|W |-cycle with
vertices of W and W ′ alternating in it. The result of this reduction will be a
bipartite graph G of degree at most B.

Furthermore, the following claim can be proved analogously as for the SC-DS1

reduction.

Claim 2 The SC-DS2 reduction has the following properties sc(G) ≤ tds(G) ≤

sc(G) + 2
⌈

|S|
B−2

⌉
and sc(G) ≤ cds(G) ≤ sc(G) + 2

⌈
|S|

B−2

⌉
.

Hence we can prove essentially the same asymptotical results as for the Min-

imum Dominating Set problem in graphs of degree at most B.

Theorem 4 There are absolute constants C > 0 and B0 ≥ 3 such that for
every B ≥ B0 it is NP-hard in bipartite graphs of degree at most B to approx-
imate the problems Minimum Total Dominating Set, resp. Minimum

Connected Dominating Set, within a factor of ln B − C ln ln B.

Proof. It can be proved in the same way as Theorem 3 using the previous
claim.

2.3 Minimum Independent Dominating Set in B-Bounded Graphs

Similarly as in general case, the Minimum Independent Dominating Set

problem completely differs from all others studied variants of dominating set
problems in bounded degree graphs as well. In the following lemma we make
simple observation that in B-bounded graphs any inclusionwise maximal in-
dependent set (i.e., an independent dominating set) approximates Minimum

Independent Dominating Set within B.
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Lemma 1 Let G be a (B+1)-claw free graph, B ≥ 1. Then
is(G)

B
≤ ds(G) ≤ ids(G) ≤ is(G),

where is(G) denotes the maximum cardinality of an independent set in G.

Proof. It suffices to show is(G) ≤ Bds(G), i.e., |I| ≤ B|D| for every inde-
pendent set I and every dominating set D. Fix an independent set I and a
dominating set D in G. Denote Z := I ∩ D.

Each vertex v ∈ I \ Z is dominated by a vertex of D, hence it has a neighbor
in D \ Z. However, any u ∈ D \ Z has at most B neighbors in I \ Z, hence
|I \ Z| ≤ B|D \ Z|, and |I| ≤ B|D| follows. In particular, if U is any inclu-
sionwise maximal independent set in G (which can be found by simple greedy

algorithm), we have is(G)
B

≤ ds(G) ≤ ids(G) ≤ |U | ≤ is(G). Consequently,
any independent dominating set in a (B + 1)-claw free graph G approximates
a minimum independent dominating set, a minimum dominating set, and a
maximum independent set within B. 2

As any graph of maximum degree at most B is trivially (B + 1)-claw free,
Lemma 1 applies to B-bounded graphs as well. For many problems signifi-
cantly better approximation ratios are known for B-bounded graphs than for
(B +1)-claw free graphs. However, for the B-Minimum Independent Dom-

inating Set problem only slightly better upper bounds are known asymp-
totically ([1]), namely tP ≤ B − B−1

B2+1
for B ≥ 4, tP ≤ 2 for B = 3, and in

B-regular graphs tP ≤ B − 1 − B−3
B2+1

for B ≥ 5.

One can ask if there are polynomial time algorithms for the Minimum Inde-

pendent Dominating Set problem in B-bounded graphs with approxima-
tion ratios o(B) when B approaches infinity. We answer this question in the
negative (unless P = NP) proving the following

Theorem 5 There are absolute constants δ > 0 and B0 such that for ev-
ery B ≥ B0 in graphs of degree at most B the Minimum Independent

Dominating Set problem is NP-hard to approximate within δB. The same
hardness result applies to bipartite graphs as well.

Proof. We extract the core of arguments used in hardness results for Minimum

Independent Dominating Set by Halldórsson [12] (and earlier by Irwing
[14]), and adapt the construction to produce “hard instances” of bounded
degree.

A convenient starting point is the Maximum 3-Satisfiability problem
(Max-3SAT). The well known PCP Theorem implies the following NP-hard
gap version: for some constant α ∈ (0, 1) it is NP-hard to distinguish between
instances of Max-3SAT that are satisfiable (which we call yes instances)
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and instances in which every assignment satisfies at most a (1 − α)-fraction
of clauses (which we call no instances). This hardness result applies also to
a restricted version Max-E3SAT-E5 of Max-3SAT, in which every clause
contains exactly 3 literals, every variable appears in exactly 5 clauses, and a
variable does not appear in a clause more than once. Furthermore, any input
formula is promised to be either satisfiable or at most a (1−α)-fraction of its
clauses is simultaneously satisfiable. (See [9] for more details.)

For any fixed B so large that 5
3
αbB−1

5
c > 1 we will provide a gap preserving

reduction from Max-E3SAT-E5 to B-Min-IDS. Put t := bB−1
5

c. Let φ be a
Max-E3SAT-E5 instance with 3k variables x1, x2, . . . , x3k and 5k clauses C1,
C2, . . . , C5k. We will provide a graph Gφ,t of degree at most B with (5t + 6)k
vertices, and with the property that

(i) ids(Gφ,t) ≤ 3k, if φ is yes instance; and

(ii) ids(Gφ,t) > 5kαt, if φ is no instance.

The graph Gφ,t has two vertices labeled xi and xi, for every variable xi, and t
vertices, labeled Cj,1, Cj,2, . . . , Cj,t, for every clause Cj. The edges of Gφ,t are
{xi, xi} for each i = 1, 2, . . . , 3k, {xi, Cj,s} for all s ∈ {1, 2, . . . , t} whenever
literal xi is in a clause Cj, and {xi, Cj,s} for all s ∈ {1, 2, . . . , t} whenever
literal xi is in a clause Cj. The maximum degree of Gφ,t is at most 5t+1 ≤ B.

Now we prove the properties (i) and (ii).

(i) Suppose φ is yes instance and consider a particular satisfying assignment σ :
{x1, x2, . . . , x3k} → {0, 1}. Then the vertex set {xi : σ(xi) = 1}∪{xi : σ(xi) =
0} is an independent dominating set in Gφ,t of size 3k, hence ids(Gφ,t) ≤ 3k.

(ii) Let φ be no instance and consider an independent dominating set D in Gφ,t,
say with |D| = ids(Gφ,t). Let D1 denote the vertices of D that represent literals
and let D2 = D \ D1 represent (repeated) clauses. For each i ∈ {1, 2, . . . , 3k}
at most one of xi, xi belongs to D1. Hence D1 defines a partial assignment to
variables, and if a clause Cj contains a literal from D1, Cj is satisfied by this
partial assignment. We will call such clause good, otherwise it will be a bad
clause. Let the number of good clauses be (5k)g, and the number of bad ones
be (5k)b, where b + g = 1. Moreover, g ≤ 1 − α, hence b ≥ α.

For every bad clause Cj, all vertices labeled by Cj,1, Cj,2, . . . , Cj,t have to
belong to D2. Hence |D| = |D1| + |D2| = |D1| + (5k)bt. Moreover, any literal
in D1 makes at most 5 clauses good, hence 5|D1| ≥ (5k)g = 5k(1 − b), and
|D| ≥ (1 + b(5t − 1))k ≥ (1 + α(5t − 1))k > 5kαt follows. This finishes the
proof of the properties (i) and (ii).
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Whenever B is sufficiently large we can obtain the lower bound 5
3
αbB−1

5
c ≥

α
3
(B − 5). Hence choosing δ ∈ (0, α

3
), it is NP-hard to approximate the B-

Min-IDS problem within δB, for B sufficiently large.

The NP-hard gap can be proven also for bipartite instances of B-Min-IDS. It
is easy to see that graphs Gφ,t are bipartite whenever an instance φ of Max-

SAT is monotone (or non-mixed), i.e., none of clauses have both negated
and unnegated literals. For monotone variants of Max-SAT there are simi-
lar NP-hard gap results for highly restricted instances, as the one for Max-

E3SAT-E5. For example, H̊astad’s result [13] on Maximum E4-Set Split-

ting can be transformed using simple gadget (namely, replace the constraint
split (x1, x2, x3, x4) by two clauses (x1∨x2∨x3∨x4) and (x1∨x2∨x3∨x4)) to
the following: for any ε > 0, it is NP-hard for monotone Max-E4SAT with
at most Bε occurrences of every variable to distinguish satisfiable instances
and instances where at most a (15

16
+ ε)-fraction of clauses can be satisfied.

Fixing, e.g., ε = 1
32

, we can take this restricted version of Max-SAT instead
of Max-E3SAT-E5 to prove the theorem for bipartite instances. 2

3 Case of Graphs with Small Degree Bound

Now we explore the complexity of dominating set problems in very small
degree graphs. Graphs with degree at most 2 have simple structure and all
domination problems studied above can be solved efficiently in this class. Thus
we will consider the graphs of maximum degree at least 3.

3.1 Minimum Dominating Set problem

Using the standard DS-SC reduction and known approximation results for
the Minimum Dominating Set problem restricted to instances with sets of
size at most (B + 1) for small value of B [8], there is a polynomial time ap-
proximation algorithm with the performance ratio HB+1−

1
2

for the Minimum

Dominating Set problem in B-bounded graphs. It means 19
12

, 107
60

, and 117
60

for B = 3, 4, and 5, respectively.

We cannot rely on the split and bipartite SC-DS reductions from Section 2
to obtain a lower bound on approximability for the Minimum Dominating

Set problem in B-bounded degree graphs. The reason is that for any fixed B,
only finitely many instances of Minimum Set Cover will transform to B-
bounded instances of Minimum Dominating Set. However instead of that
we can use the following simple reduction f from Minimum Vertex Cover

to Minimum Dominating Set instead.

12



u vue ve

w1
e

w2
e

Fig. 1.

VC-DS reduction. Given a graph G = (V, E) with n vertices and m edges
(without isolated vertices), replace each edge e = {u, v} ∈ E by a simple
gadget Ge (see Fig. 1).

The constructed graph f(G) has n + 4m vertices and 6m edges. Moreover,
f(G) is bipartite, and if G is of maximum degree B (≥ 3) then the same is
true for f(G).

Claim 3 The VC-DS reduction has the property ds(f(G)) = vc(G) + m,
where vc(G) denote the minimum cardinality of a vertex cover in G.

Proof. Consider the class D of dominating sets in f(G) that are related to
some vertex cover C of G as follows: given a vertex cover C of G, one can
create the corresponding dominating set D of f(G) that contains C, and for
each e = {u, v} ∈ E it contains exactly one of vertices ue, ve. More precisely,
if u /∈ C we take ue, and for an edge e = {u, v} with both vertices u, v in C
the choice of either ue or ve can be made arbitrarily. Easily, D is a dominating
set in f(G) and its cardinality is |C| + m. Taking C optimally, i.e., with
|C| = vc(G) we get ds(f(G)) ≤ vc(G) + m.

To show the opposite inequality, consider any dominating set D of f(G) and
the goal is to prove that |D| ≥ vc(G) + m. We will show that D can be
transformed without increasing its size into another dominating set D′ of
f(G) such that D′ ∈ D. Consider any e = {u, v} ∈ E. Observe first that
De := D ∩ {ue, ve, w

1
e , w

2
e} 6= ∅. If u ∈ D, (resp., v ∈ D) replace De in D

by ve (resp., ue); if both u and v are in D, the choice of either ve or ue can
be made arbitrarily. If neither u ∈ D nor v ∈ D, then clearly |De| ≥ 2,
and we can replace De by either {u, ve} or {v, ue}. Having this done for each
e = {u, v} ∈ E one after another, we will obtain a dominating set D′ with
|D′| ≤ |D| such that C := D′ ∩ V is a vertex cover and |D′| = |C|+ m. Hence
|D| ≥ |D′| = |C| + m ≥ vc(G) + m, that completes the proof. 2

Hence we have the following

Theorem 6 It is NP-hard to approximate the Minimum Dominating Set

problem in bipartite graphs of degree at most 3 within 1 + 1
390

.

Proof. Applying the VC-DS reduction to a 3-regular graph G with n vertices

13



produces a bipartite graph f(G) of maximum degree at most 3 with 7n vertices
and 9n edges. Using NP-hard gap result for Min-VC in 3-regular graphs
[4] we obtain that it is NP-hard to decide of whether ds(f(G)) is greater
than 2.01549586n, or less than 2.0103305n, hence to approximate Min-DS in
bipartite graphs of degree 3 within 391

390
is NP-hard. 2

For larger value of B, B ≥ 4, better inapproximability results can be achieved
by the following SC-DS3 reduction.

SC-DS3 reduction. From an instance G = (U ,S) of Minimum Set Cover

construct firstly the (U ,S)-bipartite graph. Then for each S ∈ S pick one
fixed representative uS ∈ S and add new edges to the (U ,S)-bipartite graph
connecting S with each other S ′ ∈ S containing uS (without creating multiple
edges). Let G denote the resulting graph.

Claim 4 The SC-DS3 reduction has the property ds(G) = sc(G).

Proof. Firstly we prove that any set cover C ⊆ S is a dominating set in
G. Given a set cover C, all vertices in U (and in C itself) are dominated by
C. Consider any S ∈ S \ C and let uS be its fixed representative. As C is a
set cover, uS is contained in some S ′ ∈ C. According the definition there is an
edge connecting S and S ′ in G and hence S is dominated as well. In particular,
ds(G) ≤ sc(G).

If D ⊆ U ∪ S dominates the set U we can conclude that |D| ≥ sc(G) in the
same way as in the previous SC-DS reductions in Section 2. Hence, if D is a
minimum dominating set in G we get ds(G) ≥ sc(G) as well, and the equality
follows. 2

The SC-DS3 reduction can be used as a gap preserving reduction from the
Minimum Vertex Cover problem in (B−1)-bounded graphs with a perfect
matching to the Minimum Dominating Set problem in B-bounded graphs.
In this way we can obtain the following

Theorem 7 The Minimum Dominating Set problem is NP-hard to ap-
proximate within 1 + 1

99
in graphs of degree at most 4, within 1 + 1

52
in graphs

of degree at most 5, and within 1 + 1
50

in graphs of degree at most 6.

Proof. Let H = (V, E) be an instance of (B−1)-Min-VC with a fixed perfect
matching M in it. Let G̃ = (E, VH) be the dual hypergraph to (hyper)graph
H . Due to duality, G̃ can be viewed as a (B − 1, 2)-instance of Min-SC,
and sc(G̃) = vc(H). The corresponding (E, VH)-bipartite graph for G̃ is just
division of H (for every edge put a single vertex on it), if one identifies each

14



v ∈ V with the corresponding set vH containing all edges incident with v in H .
Now we consider the SC-DS3 reduction and for each set S (corresponding to
v ∈ V ) we take as uS exactly that edge adjacent to v in H that belongs to M .
Hence the resulting graph G can be obtained from a division of H by adding
edges of M . Therefore, G is of degree at most B and, due to the previous
claim, ds(G) = sc(G̃). Hence, ds(G) = vc(H) follows.

It is easy to verify that NP-hard gap results obtained in [4] for B-Min-VC

(B = 3, 4, and 5) apply to B-regular graphs with a perfect matching as well.
(For B = 3, 4 it is proved in [4] that produced hard instances are B-regular
and edge B-colorable, which implies the existence of a perfect matching in
them.) Thus for B ≥ 4 we obtain for B-Min-DS the same lower bound as for
(B − 1)-Min-VC. Namely, tNP(4-Min-DS) > 100

99
, tNP(5-Min-DS) > 53

52
, and

tNP(6-Min-DS) > 51
50

, respectively. 2

Remark. From results for the Minimum Edge Dominating Set problem
from [3] it also follows that for 4-regular graphs, which can be obtained as line
graphs of 3-regular graphs, it is NP-hard to approximate Minimum Domi-

nating Set within 1 + 1
390

. Recall that for the Minimum Dominating Set

problem restricted to line graphs there is a simple 2-approximation algorithm,
but it is NP-hard to approximate within any constant smaller than 7

6
, as easily

follows from results of [3].

3.2 Minimum Independent Dominating Set problem

For the Minimum Independent Dominating Set problem in small de-
gree graphs the best upper bounds are due to [1]: tP(4-Min-IDS) ≤ 65

17
,

tP(5-Min-IDS) ≤ 63
13

, tP(6-Min-IDS) ≤ 217
37

, and tP(3-Min-IDS) ≤ 2. To
obtain inapproximability results in such restricted cases we use the following
polynomial time reduction from the Minimum Set Cover problem.

SC-IDS reduction. Let an instance G = (U ,S) of (B − 1, B)-Min-SC be
given. Start with the corresponding (U ,S)-bipartite graph and for each S ∈ S
add two new vertices S ′, S ′′, and two edges {S, S ′}, {S ′, S ′′}. The resulting
graph G is bipartite of maximum degree at most B.

Claim 5 The SC-IDS reduction has the properties ids(G) = ds(G) = sc(G)+
|S|.

Proof. Since ds ≤ ids, it suffices to prove that (i) ids(G) ≤ sc(G) + |S|, and
(ii) ds(G) ≥ sc(G) + |S|.

15



(i) For a given set cover C ⊆ S consider the following set D := C ∪ {S ′′ : S ∈
C}∪{S ′ : S ∈ S \C} of vertices in G. Clearly, D is an independent dominating
set in G of cardinality |C| + |S| and ids(G) ≤ sc(G) + |S| follows.

(ii) Given any dominating set D in G (say, with |D| = ds(G)), it can be
easily transformed to another dominating set D1 with |D1| ≤ |D| such that
D1 ∩ U = ∅, and D1 ∩ {S ′, S ′′} = S ′ for each S ∈ S. Then clearly D1 ∩ S is a
set cover in G, and ds(G) = |D| ≥ |D1| ≥ sc(G) + |S| follows. 2

Using the previous claim one can obtain an NP-hard gap result for the Mini-

mum Independent Dominating Set problem in graphs of degree at most
B (and Minimum Dominating Set as well) from the one for (B − 1, B)-
Min-SC or equivalently, for the (B, B − 1)-Min-VC problem. Due to lack
of such results we use inapproximability results for (2, B − 1)-Min-VC, it
means for Minimum Vertex Cover in (B − 1)-bounded graphs. More pre-
cisely, one can translate NP-hard gap results of [4] for Minimum Vertex

Cover in (B − 1)-bounded graphs to the ones for Minimum Independent

Dominating Set in B-bounded graphs as follows.

Theorem 8 The Minimum Independent Dominating Set is NP-hard to
approximate within 1 + 1

293
in graphs of degree at most 4, within 1 + 1

151
in

graphs of degree at most 5, and within 1 + 1
145

in graphs of degree at most 6.
The same hardness results applies to bipartite graphs.

Proof. We start from a 3-regular instance for Minimum Vertex Cover with
n vertices. Using the SC-IDS reduction and results of [4] we obtain a bipartite
graph G of degree at most 4 and with the NP-hard question of whether ids(G)
is greater than 1.51549586n or less than 1.5103305n. Hence, it is NP-hard to
approximate 4-Min-IDS even in bipartite graphs within 294

293
. Starting from

a 4-regular graph with n vertices the corresponding NP-hard question for 5-
Min-IDS is of whether the optimum is greater than 1.5303643725n or less
than 1.520242915n, hence inapproximability within 152

151
follows. Analogously

starting from a 5-regular graph with n vertices the corresponding NP-hard
question is of whether the optimum is greater than 1.5316455696n or less
than 1.5210970464n, hence inapproximability within 146

145
follows for 6-Min-

IDS. 2

To obtain a lower bound for the Minimum Independent Dominating Set

problem in graphs of degree at most 3, let us consider the following reduction h
from Minimum Vertex Cover to Minimum Independent Dominating

Set:

VC-IDS reduction. Given a graph G = (V, E) with n vertices and m edges
(without isolated vertices), replace each edge e = {u, v} ∈ E by a simple edge

16
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gadget Ge (see Figure 2).

The graph h(G) constructed in this way has n + 6m vertices and 8m edges.
Moreover, if G is of maximum degree at most B (≥ 3) then the same is true
for h(G).

Claim 6 The VC-IDS reduction has the property ids(h(G)) = vc(G) + 2m.

Proof. (i) Given a vertex cover C of G (say, with |C| = vc(G)), one can
create the corresponding independent dominating set D in h(G) of cardinality
|C| + 2m as follows: for e = {u, v} with u /∈ C (that implies v ∈ C) we take
exactly ue and v2

e to D from the gadget Ge; for e = {u, v} with both u, v ∈ C
we take u1

e and v2
e . This shows that ids(h(G)) ≤ vc(G) + 2m.

(ii) To show the opposite inequality, consider an independent dominating set
D in h(G) (say, with |D| = ids(h(G)). The goal is to prove that D can be
transformed without increasing its size into another dominating set D′ in h(G)
such that in each Ge (e ∈ E) D′ is one of the forms as in (i). Fix e = {u, v} ∈ E.
If D∩{u, v} 6= ∅ then it is easy to see that |D∩{ue, u

1
e, u

2
e, ve, v

1
e , v

2
e}| ≥ 2, and if

D∩{u, v} = ∅ then |D∩{ue, u
1
e, u

2
e, ve, v

1
e , v

2
e}| ≥ 3. Hence one can easily modify

D to a dominating set D′ with ids(h(G)) = |D| ≥ |D′| ≥ vc(G) + 2m. 2

Therefore we can prove

Theorem 9 It is NP-hard to approximate the Minimum Independent Dom-

inating Set problem in graphs of degree at most 3 within 1 + 1
680

.

Proof. Applying the VC-IDS reduction to a 3-regular instance G of Min-VC

(with n vertices) and using NP-hard gap result for it [3], we obtain that it
is NP-hard to decide of whether ids(h(G)) is greater than 3.51549586n, or
less than 3.5103305n. Hence to approximate 3-Min-IDS within 681

680
is NP-

hard. 2
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4 Minimum Dominating Set in Directed Graphs

In a directed graph G = (V,
−→
E ) a set D ⊆ V is a dominating set if for

each v ∈ V \ D there is u ∈ D such that
−→
uv ∈

−→
E . For a vertex v ∈ V

denote by N+
v := {v} ∪ {u ∈ V :

−→
vu ∈

−→
E } the set of its neighbors. Then

|N+
v | = 1 + dout(v) and |{u ∈ V : v ∈ N+

u }| = 1 + din(v), where dout(v), resp.
din(v), denotes outdegree, resp. indegree, of v in G.

Similarly as in undirected case, the Minimum Dominating Set problem in
directed graph is special case of the Minimum Set Cover problem due to
the following simple reduction:

Directed DS-SC reduction. For a directed graph G = (V,
−→
E ) we define

an instance (U ,S) of Min-SC as U := V and S := {N+
v : v ∈ V }. For such

instance (U ,S) set covers are in one-to-one correspondence with dominating
sets in G.

4.1 Minimum Dominating Set in Graphs with Bounded Indegree

Due to the directed DS-SC reduction, instances of Minimum Dominating

Set with indegree bounded by a constant B can be viewed as instances of
Minimum Set Cover with degree at most B + 1. Hence the problem has a
simple (B +1)-approximation algorithm in this case. Furthermore, case B = 1
can be easily solved exactly. Asymptotically, we can obtain almost matching
lower bound as follows from the following theorem.

Theorem 10 It is NP-hard to approximate the Minimum Dominating Set

problem in directed graphs with indegree bounded by a constant B within any
constant smaller than B − 1 for B ≥ 3, and within 1.36 for B = 2. On the
other hand, the problem has a simple (B + 1)-approximation algorithm for
B ≥ 2.

Proof. Consider the following reduction from restricted instances of Min-SC

to directed instances of Min-DS: for an instance G = (U ,S) with deg(G) ≤ B
construct a graph G with the vertex set V = U ∪ S ∪ {S0}, where S0 is a

new vertex. Add edges
−−→
S0S in G for each S ∈ S, and an edge

−→
Sx for each

S ∈ S and each x ∈ S. The directed graph G = (V,
−→
E ) created in this

way has indegree bounded by B. Obviously, there are minimum dominating
sets in G consisting of S0 and C ⊆ S, where C is a minimum set cover in
(U ,S). Hence this reduction preserves NP-hard gap results for (∞, B)-Min-

SC, i.e., Min-SC restricted to instances G with deg(G) ≤ B. Recall that this
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is equivalent to the hypergraph (B,∞)-Min-VC problem for which Dinur et
al. ([5]) gave nearly tight lower bound (B−1) on approximability in B-uniform
hypergraphs, B ≥ 3. For B = 2 the lower bound 1.36 follows from currently
the best approximation hardness result for the Min-VC problem on graphs
[6]. 2

4.2 Minimum Dominating Set in Graphs with Bounded Outdegree

Instances of the Minimum Dominating Set problem with outdegree bounded
by a constant B can be viewed as instances of set cover with sets of size at most
B+1. Hence the problem is polynomially solvable for B = 1. For B ≥ 2 a poly-
nomial time approximation algorithm with the ratio HB+1 −

1
2

< lnB + O(1)
is known [8].

To obtain a lower bound, replace in undirected B-bounded instances of Min-

imum Dominating Set every edge {u, v} by two directed edges
−→
uv,

−→
vu. It

can be seen that instances have both, outdegree and indegree, bounded by a
constant B and the reduction preserves dominating sets. Hence, the Minimum

Dominating Set problem in directed case is at least as hard as in undirected
and applying Theorem 3 we can obtain

Theorem 11 There are absolute constants C > 0 and B0 ≥ 3 such that
for every B ≥ B0 it is NP-hard to approximate the Minimum Dominating

Set problem in directed graphs with outdegree bounded by a constant B within
ln B − C ln ln B. However, there exists (HB+1 −

1
2
)-approximation algorithm

for the problem for any B ≥ 2.

4.3 Other Dominating Set Problems in Directed Graphs

The variants of the Minimum Dominating Set problem, namely Minimum

Total Dominating Set, Minimum Connected Dominating Set, and
Minimum Independent Dominating Set can be formulated for directed
graphs as well. For connected domination problems, in particular, there are
many interesting questions left open.

Let us point out that the Minimum Independent Dominating Set prob-
lem in directed graphs is very different from its undirected counterpart. The
problem to decide of whether there exists a feasible solution (i.e., an inde-
pendent dominating set) in a given directed graph is NP-complete, even in
bounded degree graphs. To see that, consider the following reduction from
Max-3SAT-5: given an instance φ, create a graph Gφ with two vertices la-
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beled by x and x, for every variable x, and three vertices labeled by c, c′′, and
c′′, for every clause C. Edges are chosen so that every pair x, x is a 2-cycle

, every triple c, c′, c′′ is a directed 3-cycle , and there is an edge
−→
lc whenever literal l is in a clause C. One can easily check that Gφ has an
independent dominating set if and only if φ is satisfiable. Moreover, Gφ has
fulldegree bounded by 7.

5 Application to Other Problems

In this section we apply the inapproximability results for domination and
covering problems to improve on approximation hardness results of some other
graph optimization problems.

5.1 Maximum Induced Matching problem

Definition 2 A matching in a graph G = (V, E) is a subset of edges E with
no shared endvertices. A matching M is induced if for each edge e = {u, v} ∈
E, u, v ∈ V (M) implies e ∈ M . The objective of the Maximum Induced

Matching problem (Max-IM) is to find a maximum induced matching in
G, let im(G) denote its cardinality.

The problem is known to be NP-complete even in bipartite graphs of degree at
most 3 and the current state of the art can be found in [7], [15], and [18]. For the
Maximum Induced Matching problem in B-bounded graphs, B ≥ 3, any
inclusionwise maximal induced matching approximates the optimal solution
within 2(B − 1) and in B-regular graphs within B − (B−1)

(2B−1)
([18]). This was

improved to an asymptotic ratio B−1 in B-regular graphs in [7], where also the
proof of APX-completeness of Maximum Induced Matching in B-regular
graphs is given.

In what follows we present a lower bound for the Maximum Induced Match-

ing problem in B-regular graphs (for large B) that approaches infinity with
B and almost matches linear upper bound.

Theorem 12 The Maximum Induced Matching problem is NP-hard to
approximate within 1 + 1

293
in graphs of degree at most 3, and within 1 +

1
966

in graphs that are additionally bipartite. Further, Maximum Induced

Matching is NP-hard to approximate within 1 + 1
94

in graphs of degree at
most 4, within 1+ 1

47
in graphs of degree at most 5, and within 1+ 1

45
in graphs

of degree at most 6. Asymptotically, it is NP-hard to approximate Maximum

Induced Matching in B-bounded graphs within a factor B

2O(
√

ln B)
and this
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asymptotical lower bound applies to B-regular graphs as well.

Proof. Firstly, one can easily check that the lower bound of B

2O(
√

ln B)
given by

Trevisan [17] for B-Max-IS applies to B-regular graphs as well. Now consider
the following transformation g for a (B − 1)-regular graph G = (V, E): take
another copy G′ = (V ′, E ′) of the same graph G (with v′ ∈ V ′ corresponding
to v ∈ V ), and make every pair {v, v′} adjacent. The resulting graph is B-
regular and it is easy to observe that is(G) ≤ im(g(G)) ≤ 2is(G). Hence a
lower bound on approximability for B-Max-IM in B-regular graphs is at least
1
2

of Trevisan’s one, it means again of the form B

2O(
√

ln B)
.

For all B ≥ 4 we can use the following simple reduction f from (B−1)-Max-

IS to B-Max-IM: f(G) is constructed from a graph G adding a pending
{v, v′} at each vertex v of G. Obviously, im(f(G)) = is(G) and hence NP-
hard gap results for (B − 1)-Max-IS directly translates to the one for B-
Max-IM. In particular, tNP(4-Max-IM) > 95

94
, tNP(5-Max-IM) > 48

47
, and

tNP(6-Max-IM) > 46
45

.

The problem to obtain any decent lower bound for 3-Max-IM is more difficult.
One can observe (see, e.g., [15]) that for any graph G = (V, E) its subdivision
G0 (G0 is obtained from G replacing every edge {u, v} with a path u, w, v
through a new vertex w) satisfies im(G0) = |V | − ds(G). Using NP-hard gap
result for 3-Min-DS from Theorem 6, we obtain instances G0 of maximum
degree at most 3 with 16n vertices, 18n edges with the NP-hard question to
decide of whether im(G0) is greater than 4.9896695n, or less than 4.9845042n.
Hence to approximate 3-Max-IM even in subdivision (and, in particular, bi-
partite) graphs within 967

966
is NP-hard. It improves the previous lower bound

6660
6659

for the 3-Max-IM problem in bipartite graphs from [7]. Using the reduc-
tion from Max-IS to Max-IM presented in [7], we can improve also a lower
bound 475

474
for 3-Max-IM in general graphs. From a 3-regular instance G of

3-Max-IS with n vertices, in the combination with NP-hard gap results for
them ([4]), we produce an instance G′ of 3-Max-IM (with 5n vertices, 11

2
n

edges and with im(G′) = n + is(G)) with the NP-hard question to decide of
whether im is greater than 1.51549586n or less than 1.5103305n. Hence it is
NP-hard to approximate 3-Max-IM within 294

293
. 2

5.2 Maximum Leaf Spanning Tree Problem

The goal of the Maximum Leaf Spanning Tree problem (Max-LST) is
for an input (connected) graph to find a spanning tree with the maximum
number of leaves. The problem is approximable within 3 [16] and known to
be APX-complete [10].
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If G = (V, E) is a connected graph with |V | ≥ 3 then it is easy to see that |V |−
cds(G) is the maximum number of leaves in a spanning tree of G. This simple
observation allows us to obtain the first explicit inapproximability results for
the Maximum Leaf Spanning Tree problem.

Theorem 13 It is NP-hard to approximate (even in bipartite graphs with all
vertices but one of degree at most 5) the Maximum Leaf Spanning Tree

problem within 1 + 1
244

.

Proof. The NP-hard gap result for Min-VC in 4-regular graphs [4] implies
the same NP-hard gap for the (4, 2)-Min-SC problem due to the duality of
both problems. Hence it is NP-hard to decide if the optimum for (4, 2)-Min-

SC is greater than 0.5303643725n or smaller than 0.520242915n, where n is
the number of vertices for dual 4-regular graph. Applying the bipartite SC-

DS reduction from Introduction for such hard instances of (4, 2)-Min-SC we
obtain a bipartite graph with 3n + 2 vertices, all but one of degree at most
5, and with the NP-hard question for Max-LST to decide of whether the
optimum is less than 2.469635627n + 1, or greater than 2.479757085n + 1.
Hence inapproximability within 245

244
follows. 2
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