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Abstract

We provide the first interesting explicit lower bounds on efficient ap-

proximability for two closely related optimization problems in graphs,

Minimum Edge Dominating Set and Minimum Maximal Matching.

We show that it is NP-hard to approximate the solution of both problems

to within any constant factor smaller than 7

6
. The result extends with

negligible loss to bounded degree graphs and to everywhere dense graphs.
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1 Introduction

An edge dominating set for a simple graph G = (V,E) is a subset D of E such
that for all e ∈ E \ D there is an edge f ∈ D such that e and f are adjacent.
The Minimum Edge Dominating Set problem (shortly, Min-Eds) asks to
find an edge dominating set of minimum cardinality, eds(G) (resp. minimum
total weight in weighted case). The decision version of Min-Eds was shown to
be NP-complete even for planar (or bipartite) graphs of maximum degree 3 by
Yannakakis and Gavril [18]. Later Horton and Kilakos extended their results
showing NP-completeness also for planar bipartite graphs, line graphs, total
graphs, perfect claw-free graphs, and planar 3-regular graphs [13]. On the other
hand, the problem admits polynomial-time approximation scheme (PTAS) for
planar graphs [1], or for λ-precision unit disk graphs [14]. Some special classes
of graphs for which the problem is polynomially solvable have been discovered,
e.g. trees [15], claw-free chordal graphs, locally connected claw-free graphs, line
graphs of total graphs, line graphs of chordal graphs [13], bipartite permutation
graphs, cotriangulated graphs [17].
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An edge dominating set of minimum cardinality has close relationship with
minimum maximal matchings. A matching in a graph G = (V,E) is a subset of
edges E with no shared end nodes. A matching is maximal if no other matching
properly contains it (or, equivalently, if a matching is an edge dominating set).
The Minimum Maximal Matching problem (shortly, Min-Maxl-Match)
asks to find a maximal matching of minimum cardinality.

The fact that there are much more edge dominating sets than maximal
matchings in a graph does not distinguish the optimization problems Min-Eds
and Min-Maxl-Match significantly. In fact, the minimum cardinality of edge
dominating sets in a graph is achieved also on its maximal matchings. Even
more interestingly, there is a simple polynomial-time algorithm to transform
any given edge dominating set D in G to a maximal matching M in G such that
|M | ≤ |D| (see, e.g. [18]). Due to this fact the problems Min-Eds and Min-
Maxl-Match are equivalent. Any polynomial time ρ-approximation algorithm
for Min-Eds can be easily transformed to the one for Min-Maxl-Match with
the same performance ratio; the converse relation being trivial. It is easy to
observe that no matching in a graph can be more than twice larger than any
maximal matching. Therefore constructing any maximal matching (which is
possible in O(|E|) time) suffices to approximate the problems Min-Eds and
Min-Maxl-Match to within a factor 2. Recently, also weighted version of
Min-Eds was shown to be approximable efficiently to within a factor 2 ([10],
[16]).

For a graph G = (V,E) a subset C ⊆ V is a node cover, if every e ∈ E is
incident to some node in C. The Minimum Node Cover problem (shortly,
Min-NC) asks to find a node cover of minimum cardinality, nc(G). It is quite
straightforward via simple reduction (see [2]) that weighted Min-Eds is at least
as hard to approximate as Min-NC. Hence any inapproximability result for
Min-NC applies directly to weighted Min-Eds. In particular, the result of
Dinur and Safra [7] implies that it is NP-hard to approximate weighted Min-
Eds to within any constant factor smaller than 10

√
5 − 21 ≈ 1.36067.

For (unweighted) Min-Eds, or equivalently, Min-Maxl-Match, the gap
is much wider between the upper bound 2 and the known lower bound on
approximability. The transformation of Yannakakis and Gavril ([18]) showing
NP-completeness of Min-Maxl-Match reducing 3-Min-NC (the restriction of
Min-NC to 3-regular graphs) to it, may be regarded as an L-reduction and
hence gives APX-completeness for problems we are interested in. This implies
NP-hardness to approximate Min-Maxl-Match to within a factor 1 + δ for
some δ > 0. But lower estimates on δ obtained from inapproximability results
for 3-Min-NC, and from parameters of that L-reductions are only about 1

500 .
In Section 3 we prove that it is NP-hard to approximate the problem Min-

Eds (and hence also Min-Maxl-Match) to within any factor smaller than 7
6 .

We provide similar lower bound 7
6 − 24 log B

B for graphs of the maximum degree

B, B ≥ 462, and 7+θ
6+2θ for everywhere θ-dense graphs. In Section 4 we present

some results for very small degree instances: lower bound 1+ 1
487 for graphs with

maximum degree 3 and slightly better lower bounds for sparse bipartite graphs
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with all nodes but one of degree B. Namely we prove NP-hardness factors of
1 + 1

390 and 1 + 1
250 for B = 4 and B = 5, respectively.

2 Preliminaries

It is easy to see that a set of edges M ⊆ E is an edge dominating set of
G = (V,E) if and only if V (M), the set of end nodes of edges from M , is a
node cover of G. Hence any edge dominating set (in particular, any maximal
matching) M of G satisfies

2|M | ≥ |V (M)| ≥ nc(G). (1)

Consequently, nc(G) ≤ 2eds(G) holds for every graph G. Those graphs G, for
which bound nc(G) = 2eds(G) is achieved, will be of our main interest in what
follows.

Let us denote by G the class of graphs G = (V,E) for which a minimum
cardinality node cover C ⊆ V of G exists such that the subgraph induced by
C has a perfect matching, that is a matching M with V (M) = C. Clearly, any
perfect matching M in the graph induced by C is a maximal matching of G, as
its node set V (M) is a node cover of G. Moreover, as 2|M | = |V (M)| = |C| =
nc(G), M is a minimum maximal matching of G due to (1). Hence, we have
just verified that nc(G) = 2eds(G) for every G ∈ G. Due to this simple relation
between eds and nc, our goal is to prove suitable NP-hard gap results for the
Min-NC problem restricted to G. In fact, we will deal with even more restricted
class G0 ⊆ G of graphs G = (V,E) for which every minimal (inclusionwise) node
cover C ⊆ V of G induces the subgraph with a perfect matching. For this
purpose we have to show first that G0 is rich enough.

We start with some combinatorial notions and structural properties ensuring
that a graph belongs to G0.

Definition 1 A graph G[s] = (V [s], E[s]) is an s-padding (s being a positive
integer) of a graph G = (V,E), if G[s] is obtained from G by replacing every
node v ∈ V by a set v[s] := {v1, v2, . . . , vs} of s distinct copies of v, and taking
E[s] := {{ui, vj} : {u, v} ∈ E, i, j ∈ {1, 2, . . . , s}}.

This graph operation has been frequently used and many of its basic prop-
erties are well known. Clearly, whenever C ⊆ V is a node cover of G, then
C[s] := ∪v∈Cv[s] is a node cover of G[s]. Moreover, every minimal (inclusion-
wise) node cover of G[s] is of the form C[s] for some (necessarily minimal) node
cover C of G. In particular, nc(G[s]) = s · nc(G).

Definition 2 A (nonempty) graph G = (V,E) will be called s-matchable if its
s-padding has a perfect matching. A graph G is said to be s-safe if for every
node cover C of G the subgraph induced by C is s-matchable.

Remark. Any graph that admits covering of its node set by (pairwise) node
disjoint edges and cycles, is 2-matchable. Examples of 2-safe graphs are cliques
of size at least three, or cliques of size at least five without an edge.
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Clearly, the definition of an s-safe graph makes sense only for even positive
integer s. For s odd in each graph G there exists a node cover C with odd
number of nodes (either V , or V without a node). Thus s-padding of C has also
odd number of nodes and cannot has a perfect matching, which means that the
subgraph induced by C is not s-matchable.

Theorem 1 Let s be an even positive integer, and G = (V,E) be a graph with
the following property: there is a partition V1 ∪ V2 ∪ · · · ∪ Vp of the node set
V such that for each i ∈ {1, 2, . . . , p} the induced subgraph Gi = (Vi, Ei) of G
is s-safe. Then the s-padding of G, the graph G[s], has the following property:
every minimal node cover of G[s] induces the subgraph of G[s] with a perfect
matching. Hence G[s] ∈ G0 ⊆ G, and eds(G[s]) = 1

2nc(G[s]) = s
2nc(G).

Proof. Consider any minimal node cover of G[s], which is clearly of the form
C[s] for some (minimal) node cover C of G. The goal is to show that there is
a matching M of G[s] with the node set exactly C[s]. For each i = 1, 2, . . . , p,
C ∩ Vi is a node cover of Gi (not necessarily minimal). Let Hi be the subgraph
induced in Gi (or, equivalently, in G) by C ∩ Vi. As Gi is s-safe, Hi is s-
matchable, i.e. Hi[s] has a perfect matching. Take one such perfect matching
Mi of Hi[s] for each i ∈ {1, 2, . . . , p}. Then their union M := ∪p

i=1Mi is a
matching of G[s] with the node set exactly C[s], as required. ¤

The special case of Theorem 1, when s = 2 and all graphs Gi (i = 1, 2, . . . , p)
are cliques of size at least 3, is enough for the proof of the main Theorem 3 of
this paper.

3 General, bounded and dense instances

In this section we present two approaches how to achieve lower bound for the
Minimum Edge Dominating Set problem (and hence also Minimum Maxi-
mal Matching) for general graphs. The first capitalizes on inapproximability
result for linear equations systems. It can be modified either to bounded de-
gree, or to everywhere dense graphs. The second one relates the problem to
parameters in PCP characterization of NP class.

3.1 Reduction from linear equation systems

Definition 3 Max-E3-Lin-2 is the following optimization problem: Given a
system I of linear equations over Z2, with exactly 3 (distinct) variables in each
equation. The goal is to maximize, over all assignments ϕ to the variables, the

ratio sat(ϕ)
|I| , where sat(ϕ) is the number of equations of I satisfied by ϕ and

|I| is the cardinality of I. Denote Ek-Max-E3-LIN-2 the restriction of this
problem to systems I with exactly k occurrences of each variable used in I.

We use the notation Q(ε, k) for the following partial decision subproblem of
Max-E3-Lin-2: Given an instance of Ek-Max-E3-LIN-2, decide if the fraction
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of more than (1−ε) or less than ( 1
2 +ε) of all equations is satisfied by the optimal

(i.e. maximizing) assignment, under the promise that an input instance has its
optimum of one of two types above.

The following theorem follows from H̊astad’s results [12] and the proof can
be found in [4]

Theorem 2 For every ε ∈
(

0, 1
4

)

there is a constant k(ε) such that for every
k ≥ k(ε) the partial decision subproblem Q(ε, k) of Max-E3-Lin-2 is NP-hard.

Notation. Denote F (x) := −x log x− (1− x) log(1− x), x ∈ (0, 1), where log
means the natural logarithm. Further,

G(c, t) :=
F (t) + F (ct)

F (t) − ctF ( 1
c )

for 0 < t <
1

c
< 1,

g(t) := G( 1−t
t , t) for t ∈ (0, 1

2 ). More explicitly, g(t) = 2 · [−t log t − (1 −
t) log(1−t)]/[−2(1−t) log(1−t)+(1−2t) log(1−2t)]. Using Taylor series of the

logarithm near 1 we see that the denominator here is t2 ·∑∞
k=0

2k+2−2
(k+1)(k+2) t

k > t2,

and −(1 − t) log(1 − t) = t − t2
∑∞

k=0
1

(k+1)(k+2) t
k < t, consequently g(t) <

2
t (1 + log 1

t ).

To prove the main Theorem 3 for bounded instances we need some results
about regular bipartite expanders.

Definition 4 An n by n bipartite graph G = (V,E) is a (c, t, d)-expander if it
is d-regular and for each subset U ⊆ V with |U | ≤ tn we have |Γ(U)| ≥ c|U |,
where Γ(U) := {y: y is a node adjacent to some x ∈ U}.

In the standard model of random d-regular bipartite graphs it is well known
that the conditions 0 < t < 1

c < 1 and d > G(c, t) are sufficient for the existence
of a (c, t, d)-expander with n by n bipartition for every sufficiently large n (see
e.g. Theorem 6.6 in [3]).

An independent set in a graph G is a set of pairwise nonadjacent nodes. The
Maximum Independent Set problem (shortly, Max-IS) asks for an indepen-
dent set of maximum cardinality in G, α(G).

Lemma 1 Let t ∈ (0, 1
2 ) and d be an integer such that d > g(t). For every

sufficiently large positive integer n there is a d-regular n by n bipartite graph
H with bipartition (V0, V1), such that for each independent set J in H either
|J ∩ V0| ≤ tn, or |J ∩ V1| ≤ tn.

Proof. If d > g(t) (= G( 1−t
t , t)), by continuity of the function G also d > G(c, t)

for some c > 1−t
t . For n sufficiently large (c, t, d)-expanders exist, as mentioned

above, and they clearly have the required property. ¤

In the following we use acronym B in the notation of any graph problem
restricted to graphs of degree at most B.
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Theorem 3 For every δ ∈ (0, 1
6 ) it is NP-hard to approximate Min-Eds (Min-

Maxl-Match) to within 7
6 −δ, even in graphs of degree at most 6⌊g( δ

2 )⌋+12 ≤
6⌈ 4

δ (1+log 2
δ )⌉+6. Consequently, for any B ≥ 462 it is NP-hard to approximate

B-Min-Eds (B-Min-Maxl-Match) to within any constant smaller than 7
6 −

δ(B), where δ(B) := 2g−1(⌊B
6 ⌋− 1) < 24

B−12 (log(B− 12)+1− log 12) < 24 log B
B .

Proof. (a) First we prove the result for graphs without restriction on degrees.
Fix δ ∈ (0, 1

6 ), choose ε ∈ (0, 1
4 ) such that 7

6−δ < 7−2ε
6+2ε , and then take k for which

Q(ε, k) is NP-hard. We describe a simple reduction f from Ek-Max-E3-Lin-2
to graphs and check how the NP-hard gap of Q(ε, k) is preserved for the value
of eds.

Let I be an instance of Ek-Max-E3-Lin-2, V(I) be the set of variables of I,
and m := |V(I)|. Clearly the system I has mk

3 equations. For each equation we
take simple equation gadget, a clique of size 4. More precisely, if the equation
reads as x + y + z = j (j ∈ {0, 1}) we take a clique of size 4 whose nodes

have labels xyz = 00j , xyz = 01(1 − j) , xyz = 10(1 − j) , and xyz = 11j .

Notice, that nodes correspond to assignments to variables making the equation
satisfied. Now we add an edge for each pair of inconsistently labeled nodes.
The pair of nodes is inconsistent if a variable u ∈ V(I) exists that is assigned
differently in their labels. Let us denote the graph obtained in this way by GI ,
and f(I) := GI [2] its 2-padding.

Clearly GI has 4
3mk nodes. By Theorem 1, GI [2] ∈ G, hence eds(GI [2]) =

1
2nc(GI [2]) = nc(GI). Denote by α(GI) cardinality of the maximum indepen-

dent set in GI . We will show that α(GI) = mk
3 · OPT(I), where OPT(I) is the

fraction of maximum cardinality of satisfiable equations over all assignments
ϕ : V(I) → {0, 1}.

Given any assignment ϕ : V(I) → {0, 1}, let Jϕ consist of all nodes whose
partial assignment is the restriction of ϕ. Jϕ is an independent set and |Jϕ|
is just the number of equations from I that are satisfied by ϕ. Hence |Jϕ| ≤
mk
3 OPT(I) for each assignment. Furthermore, there is an assignment for which

the equality holds.
Let us consider now an arbitrary independent set J in GI . From the defi-

nition of edges in GI it follows that there are no inconsistencies among par-
tial assignments determined by nodes of J . Hence there is an assignment
ϕ such that J ⊆ Jϕ. Now α(GI) = mk

3 OPT(I) easily follows. Further,

nc(GI) = 4
3mk − α(GI) = mk

3 (4 − OPT(I)). Hence, the NP-hard question
of whether OPT(I) is greater than (1 − ε), or it is in the interval 〈 1

2 , 1
2 + ε)

is transformed to the NP-hard partial decision problem of whether nc(GI)
(= eds(GI [2]) is less than mk

3 (3 + ε), or it is in the interval (mk
3 ( 7

2 − ε), mk
3 · 7

2 〉.
Consequently, it is NP-hard to approximate the solution of both studied prob-

lems to within 7/2−ε
3+ε (> 7

6 − δ).

(b) To prove inapproximability within 7
6 − δ for bounded degree graphs one

can use the idea from [6]: to replace graph GI of all inconsistencies by its lower
degree subgraph with suitable expanding properties.
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Let δ ∈ (0, 1
6 ) be given, put d := ⌊g( δ

2 )⌋+ 1 (≤ ⌈ 4
δ (1 + log 2

δ )⌉). As d > g( δ
2 )

we choose t ∈ (0, δ
2 ) so that d > g(t). Further we take ε ∈ (0, 1

4 ) such that
7/2−ε−6t

3+ε > 7
6 − δ. Then a positive integer k is chosen so that (i) Q(ε, k) is

NP-hard (see Theorem 2), and (ii) there is a d-regular 2k by 2k bipartite graph
H with bipartition (V0, V1), such that for each independent set J in H either
|J ∩ V0| ≤ 2kt, or |J ∩ V1| ≤ 2kt (see Lemma 1). Keep one such graph H fixed
from now on.

Now we start with an instance I of Ek-Max-E3-Lin-2, and let m := |V(I)|.
We take the same equation gadget as in part (a). It means a clique of size 4,
with nodes labeled by all 4 satisfying assignments to variables in that equation.
Consider a variable u ∈ V(I). Let Vj(u) (j ∈ {0, 1}) be the set of all 2k nodes in
which u has assigned bit j. In the part (a) we created the graph GI such that
for each u ∈ V(I) the complete bipartite graph with bipartition (V0(u), V1(u)) is
the subgraph of GI . Now we create a graph GH

I on the same set of nodes as GI

(from the part (a)) but with maximum degree at most 3d + 3, as follows: For
each u ∈ V(I) we take edges between V0(u) and V1(u) exactly as prescribed by
the fixed expander H. Having this done one after another, for each u ∈ V(I),
we get the graph GH

I . Let h(I) := GH
I [2] be its 2-padding.

Clearly, the transformation h is polynomial, GH
I is the graph of maximum

degree at most 3d + 3, and h(I) is of maximum degree at most 6d + 6. Again
by Theorem 1, GH

I [2] ∈ G and hence eds(GH
I [2]) = 1

2nc(GH
I [2]) = nc(GH

I ).
Clearly, any independent set in GI is also an independent set in GH

I , hence
α(GH

I ) ≥ α(GI) = mk
3 OPT(I) and nc(GH

I ) ≤ nc(GI) = mk
3 (4 − OPT(I)).

On the other hand, we can show that α(GH
I ) ≤ α(GI) + 2kmt as follows:

consider an independent set J of GH
I with |J | = α(GH

I ). For each u ∈ V(I), one
after another, remove exactly one of sets J∩V0(u), J∩V1(u) from J , namely the
one with cardinality ≤ 2kt. (The existence of such set is ensured by properties
of our expander H, and the way how GH

I was created.) Having this done for all
u ∈ V(I), we get an independent set of GI (hence of size ≤ α(GI)) removing no
more than 2kmt nodes. Hence

α(GH
I ) ≤ α(GI) + 2kmt =

mk

3
(OPT(I) + 6t) and

nc(GH
I ) ≥ mk

3
(4 − OPT(I) − 6t).

It means, that the NP-hard question of whether OPT(I) is greater than (1− ε)
or less than 1

2 + ε, is transformed to the NP-hard partial decision problem

of whether nc(GH
I ) (= eds(GH

I [2])) is less than mk
3 (3 + ε), or greater than

mk
3 ( 7

2 − ε − 6t).
Consequently, it is NP-hard to approximate (on instances GH

I [2] of maximal

degree ≤ 6d+6) Min-Eds and Min-Maxl-Match to within 7/2−ε−6t
3+ε > 7

6 − δ.

(c) For large enough B we look for δ ∈ (0, 1
6 ) such that 6⌊g( δ

2 )⌋ + 12 ≤ B.
As g( 1

12 ) ≈ 75.62 and g is decreasing in (0, 1
12 〉, we can see that for B ≥ 462

any δ > δ(B) := 2g−1(⌊B
6 ⌋ − 1) will do. Trivial estimates on δ(B) (using

g(t) < 2
t (1 + log 1

t )) are δ(B) < 24
B−12 (log(B − 12) + 1 − log 12) < 24 log B

B .
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Consequences about inapproximability of B-Min-Eds (and also B-Min-Maxl-
Match) are straightforward. ¤

Definition 5 For a constant θ ∈ (0, 1), everywhere θ-dense graph is a graph
G = (V,E) of minimum degree at least θ|V |.

Theorem 4 For any θ ∈ (0, 1), it is NP-hard to approximate Min-Eds (Min-
Maxl-Match) on everywhere θ-dense graphs to within any constant smaller
than 7+θ

6+2θ .

Proof. Let θ ∈ (0, 1) be fixed and r ∈ (1, 7+θ
6+2θ ). To prove inapproximability to

within r on everywhere θ-dense graphs, we choose ε > 0 and ω > θ
1−θ such that

7−2ε+8ω
6+2ε+8ω > r. This is clearly possible by continuity, as for ε = 0 and ω = θ

1−θ

the last inequality reads as 7+θ
6+2θ > r.

Now we choose k for which Q(ε, k) is NP-hard. For any instance I of
Ek-Max-E3-Lin-2 we create the graph GI as in the proof of Theorem 3 (using
the same notation). Consider the graph G′

I obtained from GI by adding a clique
with ⌊ 4

3mkω⌋ nodes and connecting every node of the clique to every node of
GI . It is easy to check that G′

I and G′
I [2] are everywhere θ-dense (assuming

mk is large enough). By Theorem 1, G′
I [2] ∈ G, hence eds(G′

I [2]) = nc(G′
I).

Moreover, nc(G′
I) = nc(GI) + ⌊ 4

3mkω⌋ = mk
3 (4 − OPT(I)) + ⌊ 4

3mkω⌋. Hence,

OPT(I) > 1 − ε implies eds(G′
I [2]) < mk

6 (6 + 2ε + 8ω), and OPT(I) < 1
2 + ε

implies eds(G′
I [2]) > mk

6 (7 − 2ε + 8ω) − 1. Consequently, to approximate eds
on θ-dense instances G′

I [2] to within r is NP-hard. ¤

3.2 PCP based proof

We show that the problem Min-Eds relates in a straightforward way to param-
eters of PCP systems. Firstly, recall some basic notation for verifiers and the
parametric complexity classes.

A verifier V is an oracle probabilistic polynomial-time Turing machine.
During its computation, V reads an input, tosses random coins, and has or-
acle access to a string π called proof. A verifier V is called (r, q)-restricted
if for any input x and for any proof π, V generates a random string R toss-
ing r(x) coins and queries to π via oracle access q(x) times. Then it outputs
V π(x,R) ∈ {accept = 1, reject = 0}.

Definition 6 A language L belongs to the class PCPc,s[r, q], where c, s are
completeness and soundness probabilities, if there exists an (r, q)-restricted ver-
ifier V that given an input x and oracle access to π has the following properties:

• for x ∈ L there is a membership proof π such that the verifier accepts π
with probability ≥ c;

• for x /∈ L and each membership proof π the probability that the verifier V
accepts π is < s.
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The probability is taken over all random strings R ∈ {0, 1}r(|x|).

We consider the FGLSS graphs which naturally appear in a general reduction
(so called FGLSS-reduction [9]) from languages having efficient PCP (Proba-
bilistic Checking of Proof) systems to approximation versions of Maximum
Independent Set (or Maximum Clique) and Minimum Node Cover.

For a verifier V and an input x the graph Gx (more precisely GV,x), the
FGLSS graph corresponding to V and x, is defined as follows: Every node in
Gx corresponds to an accepting configuration (R,Q) ∈ {0, 1}r(x) × {0, 1}q(x) of
V ’s computation. That means, for each random string R we enumerate the
2q(x) possible binary sequences that represent possible sequence of answers to
V ’s oracle queries. For each such sequence Q, we include the pair (R,Q) as a
node of Gx if V accepts the sequence Q on random string R. The edges of Gx

correspond to inconsistencies among these configurations. That is, there is an
edge between (R,Q) and (R′, Q′) if there is a query π[i] that will be asked by
V on both (x,R) and (x,R′), and it has different responses in Q and Q′.

The accepting configurations of the form (R, ·) for a fixed random string R
form a layer. Each layer clearly induces a clique in Gx. A verifier has average
free bit complexity fav(x) if the sum of sizes of layers is 2r(x)+fav(x). Notice,
that this is the number of nodes of the graph Gx.

For application to problems like Min-NC it is important that fav is bounded
above by small constant, f∗, independent of x. For our application to Min-Eds
it is further important that we can work with verifiers for which all layers have
size at least 3. Then due to Theorem 1, 2-padding of Gx satisfies eds(Gx[2]) =
nc(Gx).

An independent set of Gx corresponds to a proof for x and the size of this set
is 2r times the probability that V accepts this proof. Thus if x ∈ L there is an
independent set of size c2r (hence nc(Gx) ≤ 2r(2fav − c)), whereas if x /∈ L the
size of any independent set in Gx is less than s2r (and hence nc(Gx) > 2r(2fav −
s)). As 2fav−s

2fav−c
= 1 + c−s

2fav−c
≥ 1 + c−s

2f∗−c
, any algorithm that approximates eds

(on graphs Gx[2]) to within 1 + c−s
2f∗−c

would be sufficient to decide if x ∈ L.
The reduction above has polynomial time complexity if r(x) = O(log |x|) and

q is bounded above by a constant. Hence if for some NP-complete language L
there is a proof that L ∈ PCPc,s[O(log |x|), O(1)] using verifier V with average
free bit complexity ≤ f∗ (f∗ being constant) and with at least 3 accepting
configurations for any random string R, then approximation of eds to within
1 + c−s

2f∗−c
is NP-hard. Applying H̊astad’s result [12] that for every ε ∈ (0, 1

4 )
NP ⊆ PCP1−ε,0.5+ε[O(log |x|), 3] using verifier with 3 queries and exactly 4
accepting configurations for any random string R (hence fav = f∗ = 2), we
obtain again that it is NP-hard to approximate Min-Eds to within any constant
smaller than 7

6 .
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4 Small degree and sparse instances

For small degree and sparse instances it is more difficult to obtain interesting
lower bounds on efficient approximability (unless P = NP). There is no surprise
that for these cases also trivial upper bound 2 can be improved. For example,
there is a polynomial time approximation algorithm for Min-Eds on 3-regular
graphs with the asymptotic performation ratio of 3

2 ([8]).

Theorem 5 It is NP-hard to approximate 3-Min-Eds (and hence 3-Min-Maxl-
Match) to within any constant smaller than 1 + 1

487 .

Proof. One of reductions of [18] starts with a 3-regular graph G with n nodes
and produces a graph f(G) of maximum degree 3 with 10n nodes and 21n

2 edges
for which eds(f(G)) = 2n + nc(G). Using currently the best inapproximability
results for Min-NC problem on 3-regular graphs ([5]) one can easily find that it
is NP-hard to distinguish the case of eds(f(G)) being larger than 2.51549586n
from that of being smaller than 2.5103305n. Hence inapproximability to within
1 + 1

487 follows, even on instances produced by f . ¤

Slightly better results can be obtained for sparse graphs for which one node is
allowed to be of large degree and all the others have small degree. The following
simple transformation g from the Min-NC problem is universal. Given a graph
G = (V,E) with n nodes and m edges, add one new special node 0, connect 0
with every u ∈ V by an edge, and replace every e = {u, v} ∈ E by a simple
gadget Ge depicted on the following figure:

u v

e1(u) e2(u) e2(v) e1(v)

e0

The bipartite graph g(G) constructed in this way has (n+4m+1) nodes and
n + 5m edges. The important fact is that eds(g(G)) is easily related to nc(G).

Lemma 2 eds(g(G)) = m + nc(G).

Proof. Consider the class E of edge dominating sets in g(G) that are related to
some node cover C of G as follows: Given a node cover C of G one can create
the corresponding edge dominating set F of g(G) of cardinality m + |C| that
contains all edges {u, 0}, u ∈ C, and for every e = {u, v} ∈ E one edge from
the gadget Ge, namely e2(u) or e2(v). More precisely, for the edge e = {u, v}
with u /∈ C we take e2(u); for the edge e = {u, v} with both nodes u, v in
C the choice of either e2(u) or e2(v) can be made arbitrarily. Easily, F is an
edge dominating set of g(G). Taking C optimally, i.e. with |C| = nc(G), we get
eds(g(G)) ≤ m + nc(G).

To show the opposite inequality, consider any edge dominating set F of g(G)
and the goal is to prove that |F | ≥ m + nc(G). We will show that F can be
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transformed, without increasing its size, into another edge dominating set F ′ of
g(G) such that F ′ ∈ E .

Firstly, every e0 edge (for e = {u, v} ∈ E) in F can be replaced by e2(u) or
e2(v) (arbitrarily), or possibly removed. Hence we can assume that F does not
contain such edges.

Consider now any e = {u, v} ∈ E.
(a) Assume first e2(u) ∈ F . If F ∩ {e1(v), e2(v)} 6= ∅, replace it in F by

an edge {v, 0}. If e1(u) ∈ F , replace it by {u, 0}. We will end with an edge
dominating set containing exactly one edge from Ge, the edge e2(u).

(b) Assume now e2(u) /∈ F . As e0 (/∈ F ) is dominated by F , e2(v) ∈ F
follows. Now we do the same as in (a) with the role of u and v interchanged.
Having this done for each e = {u, v} ∈ E, one after another, we will obtain F ′

with one edge from each gadget Ge (either e2(u) or e2(v)) and some edges of
the kind {u, 0}, u ∈ V . To see that C := {u : {u, 0} ∈ F ′} is a node cover of G
is easy. If for e = {u, v} ∈ E we have e2(u) ∈ F ′, clearly v ∈ C (otherwise e1(v)
would not be dominated by F ′), if e2(v) ∈ F ′, u ∈ C. Hence F ′ of cardinality
m+ |C| shows that |F | ≥ |F ′| = m+ |C| ≥ m+nc(G) that completes the proof.
¤

Theorem 6 It is NP-hard to approximate Min-Eds (and hence Min-Maxl-
Match) for bipartite graphs with all nodes but one of degree at most 4 (resp.
5) to within any constant smaller than 1 + 1

390 (resp., 1 + 1
250).

Proof. Using the reduction g above, these results easily follow from known
hardness results for bounded instances of the Minimum Node Cover problem
([5]). For a 3-regular graph G with n nodes the bipartite graph g(G) has 7n+1
nodes, 17

2 n edges, and all nodes but one of degree ≤ 4.
Applying the NP-hard gap results of [5] for the Minimum Node Cover

problem in 3-regular graphs, the corresponding NP-hard question is now to de-
cide of whether eds(g(G)) is larger than 2.01549586n, or smaller than 2.0103305n.
Hence to approximate eds on such instances to within 1 + 1

390 is NP-hard.
The lower bound is slightly better if we start with 4-regular graphs. For

a 4-regular graph G with n nodes the bipartite graph g(G) has 9n + 1 nodes,
11n edges, and all nodes but one of degree ≤ 5. Now it is NP-hard to decide of
whether eds(g(G)) is larger than 2.53036437246n, or smaller than 2.52024291497n.
Hence to approximate eds on such instances to within 1 + 1

250 is NP-hard. ¤

5 Other similar problems

Definition 7 If G = (V,E) is a graph then the total graph of G, denoted by
T (G), is defined as T (G) = (V ∪ E,E ∪ E′ ∪ E′′), where E′ = {{e, v}: e ∈ E,
v ∈ V and v is incident with e}, and E′′ = {{e, f}: e, f ∈ E are adjacent
edges}.

11



In the following theorem we present lower bound on approximability for some
graph optimization problems in total graphs. Recall that for given T (G) one
can reconstruct G in polynomial time, see [11].

Theorem 7 In the class of total graphs it is NP-hard to approximate the Max-
imum Independent Set problem to within any constant smaller than 10

9 , and
the Minimum Node Cover problem, Min-Eds, Min-Maxl-Match to within
any constant smaller than 1 + 1

1336 .

Proof. One can prove that α(T (G)) = |V (G)| − eds(G) (see, e.g. [18]). In the
proof of Theorem 3 we produced instances G = (V,E) with n := 8

3mk nodes for
which it was NP-hard to distinguish between the case of eds(G) < n

16 (6+2ε) and
the one of eds(G) > n

16 (7 − 2ε). For the problem of Maximum Independent
Set in total graphs T (G) (known as the Maximum Total Matching problem
for the original graph G) two cases above translate as α(T (G)) > n

16 (10 − 2ε)
and α(T (G)) < n

16 (9 + 2ε), respectively. Hence it is NP-hard to approximate
the Maximum Total Matching problem to within any constant smaller than
10
9 . On the other hand, it is easy to design 3

2 -approximation algorithm for
the Maximum Total Matching problem. It suffices to find any maximal
matching M of G and return M ∪ (V \V (M)); it is an independent set in T (G)
of size at least 2

3α(T (G)).
Passing to the complementary problem Min-NC one gets nc(T (G)) = |E(G)|+

eds(G). To obtain an interesting explicit lower bound on approximability of
Min-NC in total graphs, one can use the NP-hard gap result for Min-Eds in
sparse graphs. The NP-hard gap of Min-Eds for sparse graphs from Lemma 6
(all nodes but one of degree ≤ 5) transforms to the one showing that to ap-
proximate Min-NC in total graphs within 1 + 1

1336 is NP-hard. The NP-hard
gap with the same inapproximability applies to Min-Eds (Min-Maxl-Match)
in total graphs as well. This is due to the fact that in T (G) any node cover
with even number of nodes induces the graph with a perfect matching, assuming
that G was connected (see, e.g., [13]). It implies that for a connected graph G,

eds(T (G)) = ⌈nc(T (G))
2 ⌉. ¤

Having NP-hard gap result for Min-Eds in total graphs, we can use the
previous result for the graph T (G) in place of G to show the NP-hard gap result
for Max-IS of 2-iterated total graph of G, T (T (G)).

Using mathematical induction, for any positive integer r we can derive ex-
plicit NP-hard gap result for each of problems Max-IS, Min-NC, Min-Eds,
Min-Maxl-Match restricted to the r-iterated total graphs.

The fact, that the lower bounds for polynomial time approximability of these
problems converge very rapidly to 1 with increasing r, does not necessarily mean
that those results are weak. In fact, one can show the upper bounds of the form
1 + δr2

, for some constant δ ∈ (0, 1), for these problems on the r-iterated total
graphs.

Remark. Min-Eds is equivalent to the Minimum (Node) Dominating Set
problem (Min-DS) restricted to line graphs. Hence this restricted version of
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Min-DS is APX-complete, has simple 2-approximation algorithm, but it is NP-
hard to approximate to within 7

6 − δ for any δ > 0. Let us mention that for
general graphs Min-DS is not in APX; it is as hard to approximate as the set
cover problem.
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