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Approximation Methods for the Item Parameters of Mental Test Models

Vern W. Urry

In item analytic procedures, two indices, item discrimination and item

difficulty, are conventionally computed. The index of item discrimination

is usually a biserial o. point-biserial correlation between the item and the

total test score. If the sample size is sufficiently large and the test is

of sufficient length and homogeneity, this index bears a close relationship

to the correlation between the item and the latent ability measured by the

test. The latter correlation is the parameter of item discrimination of

conventional interest. The correlation between the item and total test

score is test dependent; whereas, the correlation between an item and latent

ability is generalizable. The tmdex of item difficulty usually computed is

the proportion passing the item. In this instance, the conventional index

is also an estimate of an item parameter, the population proportion passing

the item.

Under certain conditions and assumptions, these estimates of the

parameters of conventional interest can also be used to obtain approximations

to the item parameters of stochastic mental test models. The stochastic

models we are concerned with are the generalized logistic and normal ogive

models.
1 The model parameters we wish to approximate are item discriminatory

1
The generalized normal ogive model and the generalized logistic model

are considered interchangeable in the present report. Indeed the generalized

logistic model may be viewed as a mathematically convenient form of the
generalized normal ogive model. The generalized model in both cases subsumes

the instances where guessing is or is not effective and the item discrimi-
natory powers are or are not constant. The interrelationships among the four

logistic models have been delineated elsewhere (Urry, 1970). The generalized

logistic model is the Birnbaum 3-parameter model. Its normal ogive counter-
part, strictly speaking, is the subject of the present report and has been
alluded to earlier by Lord (1968b, p. 384).
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power (a.), item difficulty (b.), and probability of chance success on the
-a -a

item (c.).
-a

The stochastic mental test models enable applications which have

captured the imagination of many resenxchers. An example is tailored

testing, where certain requirements need to be placed on the model parameters

to ensure an advantage of the tailored test over the usual paper and pencil

test. In view of these requirements, items need to be screened for appro-

priateness. For instance, a sizeable number of appropriate items is nec-

essary to constitute a bank from which sequential selections are made to

form an individualized or tailored test. A repetitive cycle is involved.

An item is selected, the item is responded to by the examinee, and the

extaminee's ability is (re-) estimated. The cycles terminate when the

information regarding an examinee's ability is considered sufficient. In

the establishment of an item bank, the separate items are deemed appropriate

when they conform to a configuration of item parameters. The configuration

found most effective in maintaining the superiority of tailored tests over

paper and pencil tests (lmr, 1970; 1971) consists of items with item dis-

criminatory powers (ai) greater than 0.8, enjoying a rectangular distribution

of item difficulties (bi), say: from -2.0 to 2.01 and with probabilities of

chance success (c.a ) less than or equal to .25. Given such a configuration,
-

tailored tests of 10 to 15 items may have a validity equal to that of a

paper and pencil test several times its length.

Approximations of the model parameters for a set of items may be used

to assess the efficacy of the set for the purpose of tailored testing.

Normally, inappropriate items would then be rejected and the residual set
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re-evaluated in view of the required configuration. Any deficiencies

would then require the use of additional items. Maximum likelihood esti-

mates of the model parameters for the final item bank would then be

obtained through the iterative method suggested by Birnbaum (1968) and

Lord (1968a). Since conventional procedures are, by far, the more econom-

ical, their use in the initial screening of items effects considerable

savings. The number of items for which maximum likelihood estimates of the

parameters are obtained is appropriately reduced, and the initial approxi-

mations can be used as the starting values for the parameter estimates

required by the maximum likelihood equations. The convergence of the

iterative method is hastened through the use of good initial values for the

parameter estimates.

We have already noted that the effect of guessing is made explicit in

the stochastic models. In conventional procedures it is largely neglected.

Since the presence of guessing has a systematic effect on the parameters

conventionally estimated, the probability of Chance success on the item

(c.) must be approximated first in the application of the proposed method.
-2

In rough work, one may take as the approximate value the reciprocal of the

number of itxn alternatives. More precisely, however, one could approxi-

mate the value from the left-hand asymptote of the proportion passing the

item regressed on the total test score minus the particular item. Lord

(1968a) has discussed the procedure in connection with maximum likelihood

estimation of the parameters of the Birnbaum 3-parameter logistic model.



The Equations

We are concerned with two cases. The first case represents the

situation where the items are in a free-response fcrm. The second case is

the instance where guessing is effective or when the items are of a

multiple-choice type.

Free-response case

When items are in a free-respanse mode, i.e., the ci equal zero or

the number of alternatives is infinite, the approximation method can be

rather direct. For a test of sufficient length and homogeneity, the item-total

test biserial correlation based on a large sample provides a close approxi-

mation to pie ) the biserial correlation between an item and the latent

ability (e). In consonance with the definition of the biserial correlation,

the subscript I indexes the normally (and continuously) distributed variable

assumed basic to the binary item. Some authors, most notably Brogden (1971),

refer to this hypothetical variable as the item ghost. In contradistinction,

the subscript i indexes the manifest binary or dichotomous item.

Item discriminatory power (ai) may be approximated through

(1) a. E - -
Pie

2
- pie

For convenience of reference, several values of ai are presented for

corresponding values of pie in Table 1. We observe through equation (1)

that a1 is zero when pie is z2ro and infinite when pie is unity.

Negative values of ai or pie are not of interest.

Now the proportion passing a free-response item (PI) is given by

the model as



Table 1

Values of Item Discriminatory Power (ai) Corresponding

to the Biserial Correlation Coefficient

a,
1 Pie

3.0 .949

2. 0 .894

1.6 .848

1.4 .814

1.2 .768

1.0 .707

.8 .625

7
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(2 )

-a oo 2
t

exp dtP (2y) f
2

7i

6

where yi is the point of cut on the continuous and normal distribution

underlying the binary item. In words, we consult a standard table of tbe

normal distribution. The baseline value is sought which isolates the upper

area corresponding to the estimated proportion passing the item. The base-

line value is the approximate value of yi . Since

(3)
7i

item difficulty (bi) can be approximated through

(4) b. =

PI()

While the above approach is both available and direct, few test itemr

in current use are of the free-response type. Also the above approach

does not generalize to the case where guessing is effective. For that case

we will use large sample estimates of the point-biserial correlation and

the proportion passing the item to obtain approximations to the model

parameters. The use of the same sample estimates is possible for the

free-response case. In fact, the equations may be illustrated as a special

case subsumed under the general case where guessing is effective.

In the prevlous r*nproach, approximations to the model parameters were

obtained computationally; whereas, in the present approach, the model

parameters are approximated graphically. la the graphic approach) the



equations are used to obtain exact values of the conventional parameters

assuming the model parameters to be known. The results may then be graphed

to allow the interpolation of the model parameters given large sample esti-

mates of the conventional parameters.

The subsequent equations are provided for the free-response case to

provide continuity in the present approach. We will need the relation

(5)
a.

Pie
2

1 + a.a
which is readily derived from equation (1). Now the variance of a binary

item, subscripted in lower case, is

(6) 2
. = P

(31

where P
I

is evaluated through equations (2) and (3). The proportion

failing an item, QI , is obtained from

(7) Qa 1 ?I

The covariance of a binary item and underlying ability is given by Brogden

(1971) as

(8)
aie Pie

where pre is given by equation (5) and

2
-2 7i

exp(9) 0(7i) = (2g)

9

2
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is the height of the ordinate at the point of cut on the continuous

distribution assumed basic to the binary item. Since underlying ability (e)

is assumed N(0,1), the point-biserial correlation between a binary item

and underlying ability is

(10)

0.
ie Pie 4)(7i)

8

Thus for assumed values of a. and b. (c. is null) the population
-a

valuesofPand.can be calculated. Given a.
1

p can be obtained
Ple - le

the
-a Yi

continuous distribution assumed basic to the binary item is given by equa-

tion (3). The proportion passing the item, PI , is evaluated by equation

2
(2). After employing equation (7), the variance of the binary item, .

al

is obtained through equation (6). The height of the ordinate at the point

of cut, 0(7i) , is given by equation (9). At this point, we have PI and

the necessary values to solve for pie by means of equation (10). This

feature will allow graphic approximations to the model parameters.

Multiple-choice case

When items are in multiple-choice form, the probabilities of chance

success (c.a ) are usually not zero. In this instance, the population
-

proportion passing an item and point-biserial correlation between a binary

item and underlying ability are designated by PI, and pi.e respectively.

The primes denote the presence of guessing. Success due to guessing inflates

PI. and attenuates pi:e . The magnitude of c. is directly related to

the degree of this distortion.

10
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When items are affected by guessing, the proportion passing an item

is given by

(n) ID

I
=

-1
c + (1 - c.) P

2 I

where P
I

is obtained through equation (2). Since

(12) Q1 = 1 - P
I

the variance of the binary item is merely

(13)
2

The covariance between a binary item affected by guessing and the latent

ability was derived by Brogden (1971) as

(14) ai (30 = (1 - ci) pie

where 0(71) is given by equation (9). Therefore, the point-biserial

correlation is

(15 ) pi a.
NfPI, Q

I.

Now if c. is zero, a review of equations (11) through (15) will indicate
-1

that the results of equations (2) and (10) are respectively identical to

the results of equations (11) and (15). When the population proportion

passing an item and the point-biserial correlation are used in this manner,

the free response case can be subsumed under the present case.

3 1



10

For purposes of illustration, we will employ equations (2), (3), (5),

(9), and (11) through (15). Let us assume a. , b. , and c. equal to 2.00,
-a -a -a

1.50, and .20, respectively, for a given item i. Through eauation (5) (or

by obtaining the value directly from Table 1), pie is found to be .854.

The point of cut (7i) on the assumed underlying distribution of the item

would be, through equation (3), 1.341. By equation (2), we note that PI

is obtained by getting the integral above yi in the normal distribution.

Most readily, this is obtained from standard tables of the normal distribu-

tion. In our particular case, PI is .090. Through equation (11), PI,

is .20 plus .80 times .090 or .272. (II- , through equation (12), is .728.

The height of the ordinate at yi (1)(7i) , is given by equation (9) as

.162. By direct substitution in equation (15) we have

(.80(.89)0(.162) 260pi =
Nr(.72-72)(.728)

Given c. 1 p.
e

and P
I

, can be calculated pairwise for any values of-a

a. and b. .

-1 -a

Method

Since pi.e and PI, can be calculated for systematic levels of a

and b , this will allow the establishment of a grid system for the model

parameters a and b (c is held constant) on the coordinates determined_ _

by the conventionally estimated parameters, PI, and pi-0 . The curves

obtained on the coordinate system when a or b is fixed define the grid

system for the model parameters.
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The systematic levels of a used in the present.report are given in

Table 1 where immediate translation to pie is possible. The levels were

3.0, 2.0, 1.6, 1.4, 1.2, 1.0, and .8. No value less than .8 was used since

item discriminatory powers of that magnitude are poorly suited to the pur-

pose of tailored testing. The systematic levels of b were 2.0, 1.8,...,2.0.

The range of values is also compatible with the objectives of tailored testing.

In the present report the fixed levels of c were chosen at .00, .20, .25,

.33, and .50. As pointed out earlier, these roughly correspond to

free-response, 5-, 4-, 3- alternative and true-false item types.

Computer programs have been developed to provide the necessary data

and to graph the results on a Calcomp Plotter. One graph is plotted for

each specified level of c . We discussed earlier a method of approximating

the c. from the left-hand asymptote of the proportion passing an item

regressed on the adjusted total test score. If the method is applied, graphs

of the appropriate probabilities of chance success should be used to enhance

the accuracy of approximation.

Results

The generated graphs are presented as Charts 1 through 5, eadh

correspondins to a specified level of c , probability of chance success.

The charts consist of the mapping of the grid system of the model parameters,

a and b , into a coordinate system where the population point-biserial

correlation (pie or pi,e) is the ordinate and the population proportion

passing an item (PI or PI,) is the abscissa. In each chart, the numeric

values centrally and vertically arranged on the grid system denote the levels

of a 1 item discriminatory power. Located at the base of the grid system
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are the numeric values for the levels of b , item difficulty. From the

charts, it may be noted that item difficulty (b) is inversely related to

the conventional measure of item difficulty, the proportion passing an item.

Displayed in Chart 1 is the free-response case where c equals zero.

The grid system is symmetric about b equal to zero. As b departs from

zero, the point-biserial correlation (pie) decreases even though the

biserial correlation (pie) remains constant. For example, the curve where

a equals 3.0 implies a constant biserial correlation of .949. Where the

proportion passing an item is .03 and .97, the corresponding point-biserial

correlations would both be .37. For a equal to 3.0, the maximum point-

biserial correlation would be .76. The maximum point-biserial correlation

occurs at the proportion passing an item of .5 (7 = b = 0.0). When the

biserial correlation is unity, we can see through equation (1) that a is

then infinite. The maximum value for the point-biserial correlation through

equation (10) would be -4)44=
oc21

or .80--twice the height of the ordinate

) .5 )

in the normal distribution at a baseline value of zero.

When the probability of chance success is not zero, the symmetry

observed in Mart I no longer obtains. This may be seen in Chart 2, where

the grid system is provided for c equal to .20. It may be recalled that

this level of probability of chance success approximates the case of items

with five alternatives. Noticeably, the grid system of the model parameters

is displaced to the right. The displacement reflects the inflation of the

proportion passing an item relative to the free-response case. Again

relative to the results depicted in Chart 1, the point-biserial correlations

are attenuated through error due to guessing. The attenuation is apparent

14
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in the general lowering of the grid system. Notice that the attenuation is

more severe for items of greater difficulty, i.e., where b is positive or

the proportion passing is low. If a is held constant at 3.0, the

point-biserial correlation ranges in value from .12, at b eaual to 2.0 or

a proportion passing of .22, to .63, at b equal to -.30 or a proportion

passing of .68. At b equal to -2.0 or a proportion passing of .98, the

point-biserial correlation is .33. Even though the model parameter of item

discriminatory power is held constant, there is still a range of values

possible for the conventional measure of itan discrimination, the point-

biserial correlation.

The results obtained when c equals .25 are portrayed in Chart 3. In

practice this case is approximated when 4-alternative items are used. The

distortion due to the probability of chance success--the inflation of the

probability of passing an item and the attenuation of the point-biserial

correlation--becomes more pronounced. For example, if a is 3.0 and b

is 2.0, the corresponding proportions passing an item and point-biserial

correlation would be .27 and .11. Similarly, for a equal to 3.0 and b

equal to -2.0, the proportion passing an item and the point-biserial correla-

tion would be .98 and .32. The maximum value for the point-biserial correla-

tion at a equal tO 3.0 is .60 and. occurs when b equals -.47 or the

proportion passing is .76. If a for a given item is 3.0, that item is

highly desirable because of its high level of discriminatory power; however,

an item with a point-biserial correlation as low as .11, for instance, might

under extant practices be rejected on the basis of what could be an erroneous

conclusion, i.e., the iten is not sufficiently discriminating. Hopefully,

17
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the point-biserial correlation would be examined with knowledge of the

proportion passing the item as well as the degree of effectiveness of guessing.

In Chart 4, the data are grap:hed for c equal to .33 or roughly the

3-alternative item case. The distortion noted above becomes progressively

more pronounced as the probability of chance success increases. The area

encompassed by the grid system is simultaneously reduced. Again if a is

held constant at 3.0, a b of 2.0 or a proportion passing of .35 provides

a point-biserial correlation of .09. At the same level of item discrimina-

tory power, the maximum point-biserial correlation of .56 occurs at b equal

to -.50 or a proportion passing of .78. When b is -2.0 and a is 3.0,

the proportion passing is .98 and the point-biserial correlation is .30. For

purposes of illustration, a has been held at a constant value of 3.0.

Analogous interpretations apply for any fixed value of item discriminatory

power. The point is that when item discriminatory power is fixed the con-

ventional measure of reputedly the same characteristic still has considerable

variability.

For results paralleling the true-false item case, Chart 5 may be

consulted. This is the case where the probability of chance success on the

item equals .50. The distortion noted earlier becomes more severe. The pro-

portion passing becomes more inflated and the degree of attemation is more

marked. The area encompassed by the grid system is again further diminished.

To the extent that errors in the estimation of the proportion passing an item

and the point-biserial correlation are dependent on samDle sizi!, the approxi-

mations of a and b for fixed sample size would become progressively worse

as c increases. Again, if a is fixed at 3.0: a b of 2.0 provides a

JE3
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proportion passing of .50 and a point-biserial correlation of .06; a

maximum for the point-biserial correlation, .46, is obtained at a b of

-.55 where the proportion passing is .85; and a b of -2.0 corresponds to

a proportion passing of .99 and a point-biserial correlation of .26. Item

discriminatory powers of the mapitude of 3.0 are rarely obtained in prac-

tice, yet some extant procedures of item selection might well reject desirable

items that could be so characterized.

The last two charts were included mainly for purposes of illustration.

Items with a pmbability of chance success in excess of .25 would not

ordinarily be recommended for use in tailored testing. We have noticed, for

example, that the approximation methods become less effective as the value

of c increases. Simultaneously the maximum likelihood procedures to obtain

estimates of the model parameters become more difficult. Also as c

increases, more items are required for validity in the tailoring process.

Discussion

There are certain conditions and assumptions tacit in the effective

application of the methods. Since equations and graphs that relate sets of

parameters to one another are used, the canputed vadues of the item-test

point-biserial correlations (the 1,i,e) and the proportions passing the

items (the PI') should be based on large samples. The condition can be

considered satisfied by a minimum of 2,000 cases. In the computation of the
A

the total test score is substituted forthe latent trait. To do thisPi 'e

meaningfully, the items in the test must be homogeneous with respect to the

latent ability being measured and sufficient in length to effectively reduce

the spurious component of such part-whole correlations. As evidence that
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these conditions have been satisfied, the Kuder-Richardson formula 20

reliability coefficient for the test should have a mininanivalue of .90;

and the number of items should be at least 80. It is assumed that the

narmal ogive mental test model is in reasonable agreement with empirical

data. Some evidence has been presented to support this assumption (Lord,

1952; Indow & Samejima, 1966). Further assumed is that the latent trait,

underlying ability, is normally distributed. While direct proof of this

assumption is elusive, tangential evidence tends to support the reasonable-

ness of the assertion.

If ci has been approximated and pi,e and PI, have been computed,

the appropriate chart may be consulted to obtain the approximate values of

a1 item discriminatory power, and b. item difficulty. One merely plots-s

the data point for the particular item with respect to pi.e the ordinate,

A
and PI, the abscissa. The values of a. and b. may then be interpo-

-1 -s

lated from the grid system. The total area encompassed by the grid system

will enclose the data points corresponding to items of potential value in

tailored testing for a fixed value of c . For instance if c is fixed for

a set of 100 items, a satisfactory distribution of the bi would be such

that roughly 5 item data points occur between the pairs of grid lines

A
denoting the systenmtic levels of b . The bi Should be rectangularly

distributed. For a set of such items, tailored testing is most effective

when the overall level of'item discrimdnatory power is highest. Even though

a minimum value of .8 has been set for item discriminatory powers tailored

testing can be improved in terms of a reduction in the average number of items

needed to evaluate examinees at a fixed level of validity when items of higher

23



22

discriminatory power are available. The minimum value of .8 assures that

tailored testing will maintain an advantage over conventional paper and

pcincil testing with respect to obtaining a given validity with the fewest

possible items.

The original intent of the present paper was to enable the screening of

items and to assess of the efficacy of a set of items for tailored testing

as well as to provide starting values for maximum likelihood estimation;

however, it has been brought to the author's attention that the approxima-
A^

tions,thea-andb.,correlate .89 and .97, respectively, with their

A
correspondingnaxtnumlaeldhoodestimates,thea-andbSince a

was a selection variable, the correlations are quite respectable. Assundng

independence of errors of estimation (approximation) in the above coeffi-

cients, the correlations between the approximations and true parameters are

probably of sufficient magnitude to entirely bypass the expense of maximum

likelihood estimation.

The investigator in the study providing the above data was Carl J.

Jensema, a doctoral candidate at the University of Washington. The approxi-

mations were obtained on 4,950 cases and 98 unscreened mathematics items

from the Washington Pre-College Test Battery. The Kuder Richardson formula

20 reliability coefficient for the 98 item test was .95. The maximum likeli-

hood estimates were obtained on 1,000 cases and 58 screened items. The model

of analysis was the Birnbaum 3-parameter logistic.

The correlation coefficients between the approximations and the maximum

likelihood estimates reflect a strong degree of accord between the corre-

sponding normal ogive and logistic models. In theory, the present normal
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ogive approach is more closely related to Bayesian procedures since the

distributional form of underlying ability is explicitly stated; whereas,

in maximum likelihood procedures, no a priori assumption is made regarding

the distributional form of the latent trait. Further the correlations

would confirm the reasonableness of the fit of the models to the empirical

data. Same initial concern in this regard was derived from the speededness

of the tests in which the items occurred and the instructions under which

the items were given that tended to discourage random guessing, an inte-

gral assumption in the models. Moreover, these substantial correlations

were obtained despite the serious questioning of the mathematical proper-

ties of the maximum likelihood solution in the instance of the Birnbaum

3-parameter model by at least one author (Samejima, 1970). In brief,

certain response vectors do not provide unique maximum likelihood estimates.

In the study alluded to here, this was most in evidence for response vectors

associated with scores in the chance score range. What this amounts to

during analyseS is the truncation of the lower end of the distribution of

A

latent ability. Since the e are rescaled to a mean of zero and a standard

deviation of one, the truncation would have the predictable effects of

A A
reducing the a. and increasing the absolute value of the b1 in the

negative range. Interestingly enough, despite the magnitude of the corre-

lations, these effects are in evidence in the canparison of the maximum

likelihood estimates and the approximations. It might well be that the

heuristic estimates obtained through the present approximation method are

to be preferred to maximum likelihood estimates where distortion of the

estimates is artifactually introduced by the nature of the analysis.
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A Monte Carlo investigation is currently under way to evaluate the

direct use of the heuristic estimates in the Bayesian tailored testing pro-

cedures derived by Owen (1969). In effect, tailored testing is to be simu-

lated under conditions (1) where all parameters are known, and (2) where

only the item parameters have been approximated. An evaluation of the loss

in validity occasioned by moving from condition (1) to condition (2) is seen

to be of substantial importance.
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