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Abstract 

 

We provide approximation methods for the standard deviation of flow time in system for a 

general multi-server queue with infinite waiting capacity ( sGG // ). The approximations require 

only the mean and standard deviation or the coefficient of variation of the inter-arrival and 

service time distributions, and the number of servers.  

 

These approximations are simple enough to be implemented in manual or spreadsheet 

calculations, but in comparisons to Monte Carlo simulations have proven to give good 

approximations (within %10± ) for cases in which the coefficients of variation for the inter-

arrival and service times are between 0 and 1. The approximations also have the desirable 

properties of being exact for the specific case of Markov queue model / /M M s , as well as 

some imbedded Markov queuing models ( 1// MEk and 1// αEM ). 

 

The practical significance of this research is that (1) many real world queuing problems involve 

the sGG // queuing systems, and (2) predicting the range of variation of the time in the system 

(rather than just the average) is needed for decision making. For example, one job shop facility 

with which the authors have worked, guarantees its customers a nine day turnaround time and 

must determine the minimum number of machines of each type required to achieve nine days as a  

“worst case” time in the system. In many systems, the “worst case” value of flow time is very 

relevant because it represents the lead time that can safely be promised to customers. To estimate 

this we need both the average and standard deviation of the time in system.  

 

The usefulness of our results stems from the fact that they are computationally simple and thus 

provide quick approximations without resorting to complex numerical techniques or Monte Carlo 

simulations. While many accurate approximations for the sGG // queue have been proposed 

previously, they often result in algebraically intractable expressions. This hinders attempts to 

derive closed-form solutions to the decision variables incorporated in optimization models, and 

inevitably leads to the use of complex numeric methods. Furthermore, actual application of many 

of these approximations often requires specification of the actual distributions of the inter-arrival 

time and the service time. Also, these results have tended to focus on delay probabilities and 
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average waiting time, and do not provide a means of estimating the standard deviation of the time 

in the system.  

 

We also extend the approximations to computing the standard deviation of flow times of each 

priority class in the sGG // priority queues and compare the results to those obtained via Monte 

Carlo simulations. These simulation experiments reveal good approximations for all priority 

classes with the exception of the lowest priority class in queuing systems with high utilization. In 

addition, we use the approximations to estimate the average and the standard deviation of the total 

flow time through queuing networks and have validated these results via Monte Carlo 

Simulations. 

 

The primary theoretical contributions of this work are the derivations of an original expression for 

the coefficient of variation of waiting time in the sGG //  queue, which holds exactly for 

sMG // and  / /1M G  queues. We also do some error sensitivity analysis of the formula and 

develop interpolation models to calculate the probability of waiting, since we need to estimate the 

probability of waiting for the sGG // queue to calculate the coefficient of variation of waiting 

time.   

 

 Technically we develop a general queuing system performance predictor, which can be used to 

estimate all kinds of performances for any steady state, infinite queues. We intend to make 

available a user friendly predictor for implementing our approximation methods. The advantages 

of these models are that they make no assumptions about distribution of inter-arrival time and 

service time. Our techniques generalize the previously developed approximations and can also be 

used in queuing networks and priority queues. Hopefully our approximation methods will be 

beneficial to those practitioners who like simple and quick practical answers to their multi-server 

queuing systems. 

 

Key words and Phrases: Queuing System, Standard Deviation, Waiting Time, Stochastic 

Process, Heuristics, sGG // , Approximation Methods, Priority Queue, and Queuing Networks.  
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Chapter 1 

Introduction and motivation 
 

1.1 Introduction 

 

The goal is to develop approximation methods for estimating both average and standard 

deviations of flow times in the sGG // queue and networks of sGG // queues with or without 

priority classes.  

 

We present approximations for the standard deviation of waiting time in system for a general 

multi-server queue with infinite waiting capacity ( sGG // ). The sGG // model has a single 

service facility with s identical servers, unlimited waiting capacity and the first come first served 

queue discipline. The inter-arrival times are independent and identically distributed (i.i.d.) with a 

general distribution, the service times are also independent and identically distributed with a 

general distribution.  

 

We also extend the approximations to computing the standard deviation of flow times of each 

priority class in the sGG // priority queues. In addition, we use the approximations to estimate 

the average and the standard deviation of the total flow time through queuing networks. We have 

validated these results via Monte Carlo Simulations by using Extend simulation program. 

 

Most real world queuing problems are the sGG // systems. They do not satisfy the assumptions 

of Markov queuing model / /M M s . Inter-arrival times are not always exponential; service 

times are also unlikely to be exponential. To address systems with non-exponential inter-arrival 

and service time distributions, we must turn to the sGG // queue, which reflects the real world. 

 

Unfortunately, without the memory-less property of the exponential distribution to facilitate 

analysis, we can not compute exact performance measures for the sGG // queue. When it comes 

to exact solutions of multi-server queuing systems, the more one departs from the assumption of 

exponential, the thornier the problem becomes, especially if this happens for the service time. 

Due to its inherent complexity, analysis of the sGG // queue in general is notoriously difficult.  
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However, this does not mean that we should give up on modeling queuing systems, only that we 

need to be concerned with finding good approximations. In contrast, an exact formula may be 

capable of giving the exact answers to the wrong problem or a mathematically intractable answer 

to the problem of interest. Consequently, approximations have been studied extensively.  

 

The purpose of this research is to provide a simple yet good approximation for the standard 

deviation of a general multi-server queue with infinite waiting capacity ( sGG // ). We provide a 

new method for the analysis of the sGG // queue that is based on heuristic and interpolation 

methods. 

 

We develop models by means of a two-moment approximation, which makes use of only the 

mean and standard deviation or coefficient of variation ( c ) of the interarrival and service time 

distributions. The approximation method was motivated by the results of sMM // queue and 

imbedded Markov chain queues / /G M s  and / /1M G .This formula has the form of the exact 

variance of waiting times for these queues and hence it can be easily calculated. The quality of 

the approximation is tested by comparing it with simulation results or by comparing it with a few 

known numerical results in particular cases.  

 

To develop the approximation of the standard deviation of waiting time, we have studied the 

equivalent (under the assumption that a good approximation exists for the average time in the 

queue) problem of finding a mathematically tractable formula of estimating the coefficient of 

variation of waiting time qqq Wc σ= , where qW and qσ are respectively the average and 

standard deviation of the time in queue. 

 

We first derive exact results of qc  for Markov queues and some imbedded Markov queue 

models 1// MM , sMM //  sMGGM //,1// queues, and then we apply heuristic and 

interpolation methods to approximate the sGG // queue and extend the approximation results to 

priority queues and queuing networks. 

 

For sMG // queuing models, we find that the coefficient of variation of waiting time is just a 

function of the probability of waiting. They are not all related to the distribution of inter-arrival 
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time and service time. We then generalize the expression to the 1// GM queue. We conjecture 

that for the sGG // queue these relationships still hold and all queuing systems have the same 

relationship. Since we do not assume that G  is specified, we must estimate it by assuming some 

known distribution for the service times, e.g. gamma, for which the third moment can be 

computed as a function of the average and standard deviation. We also have to 

estimate )0( =qTP . Therefore, we need to do error sensitivity analysis to show that our result is 

relatively insensitive to errors in estimating these inputs. 

 

Similarly, we propose approximations for queuing networks and priority classes of the 

sGG // queue. For the sMM // queuing series, the departure time distribution from an 

sMM // queue is identical to the inter-arrival time distribution, namely, exponential. Hence, all 

stations are sMM // models. In general sGG // queues, our model can estimate all situations 

by using entering ac  as departure dc of the previous queue. So we can estimate all kinds of 

sGG // queuing networks. When sGG // models appear as sub-models, simple closed form 

analytic formulas are useful. For multi-class jobs, we use the law of total variance to calculate 

pooled average and pooled variance.For priority queues, we conjecture the approximations still 

hold for each priority classes. 

 

Since no closed-form analytical results are available for sGG // models, to evaluate the 

accuracy of our approximations, we conduct Monte Carlo simulation experiments by using the 

Extend simulation program to gain insight into the heuristic methods for calculating approximate 

steady-state performance measures of sGG // queuing system. The testing of our 

approximations has been based on extensive simulation experiments. These simulation 

experiments are indispensable parts of our research on the sGG // queue. 

 

Although the approximation derivations may appear complicated, this approximation is simple 

enough to be implemented in manual or spreadsheet calculations, but in comparison to Monte 

Carlo simulations has proven to give good approximations (within + 10%) for cases in which the 

coefficients of variation for the inter-arrival and service times are between 0 and 1. The 

approximation also has the desirable property of being consistent with the specific case of 

sMM //  queue, as well as some imbedded Markov chain queuing models / /1M G , .// sMG   
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This makes it possible to couple the single queue approximation with the multiple linking 

equations to create a spreadsheet tool for analyzing all kinds of performances of queuing 

networks. Although it is not the focus of this research, we believe that the research can be further 

extended to more complicated situations such as queues with balking, batching, and optimal 

design etc. 

 

 

1.2 Motivation 

 

We intend to provide a quick spreadsheet alternative to more elaborate simulation models for 

analyzing real world systems. Recent years have witnessed a growing volume of good quality 

approximations for average waiting time of the sGG // queue qW (Sakasegawa 1977, Kimura 

1986, Whitt 2004). While the accuracy of these approximations is usually satisfactory, they often 

result in algebraically intractable expressions. This hinders attempts to derive closed-form 

solutions to the decision variables incorporated in optimization models, and inevitably leads to 

the use of complex numerical methods or to recursive schemes of calculation. Further more, 

actual application of many of these approximations is often obstructed due to the thorough 

specification that is needed of inter-arrival or service time distribution.  

 

Because of mathematical complications, closed-form solutions have been difficult to achieve. 

Consequently, approximations have been studied extensively. However, all existing 

approximations appear to be cumbersome or computationally demanding. It often turns out that it 

is not possible to develop analytical models for some queuing systems, such as the 

sGG // queue. It is the popular realization of this fact that has lead to the rush towards 

simulation techniques. While simulation may offer a way out for many analytical intractable 

models, it is not in itself a panacea. Simulation needs special training and is at a relatively high 

cost. There are also a considerable number of pitfalls one may encounter in using simulation. The 

success or failure of simulation study often lies in how it is used and how the output is interpreted. 

Because of this, simulation analysis has often been referred to as an art. Therefore, we should 

explore and propose analytical approximation models. 
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In addition, all current literature focuses on delay probability and average waiting time. We have 

seen very little literature dealing with variance of waiting time in the sGG // queue as well as its 

queuing networks and priority classes. Only bounds or approximations of waiting time have been 

found in the literature. When these bounds are used as approximations, they appear to be rather 

crude (Boxma 1979). Nevertheless, understanding the variance of flow times in the system is 

essential to understanding the performance of a queuing system.  

 

We focus on the standard deviation of the total flow time in a system. In many systems, the 

“worst case” value of flow time is very relevant because it represents the lead time that can safely 

be promised to the customers. Predicting the range of variation of the time in the system (rather 

than just the average) is needed for decision making. To estimate this they need both the average 

and standard deviation of the time in system. 

 

Another considerable portion of real world queuing situations contain priority considerations. 

Priority queues are generally more difficult to model than non-priority situations, but nevertheless, 

the priority models should not be oversimplified merely to permit solution. Full consideration of 

priorities is absolutely essential when we consider costs of a queuing system and optimal design. 

In current literature, tractable priority queuing formulas are limited to / /M M s . In this research, 

we only focus on the non-preemptive sGG // system with many priorities and introduce 

formulas for performance estimation. 

 

Furthermore, existing methods are not designed to handle queuing networks. The characteristics 

of real world queuing systems are that they are often networked. The arrivals at a queue may be 

the output or a fraction of the output of more than one queue. Also, there may be several classes 

of jobs each having different service time distributions.  

 

Queuing networks can be described as a group of nodes where each node represents a service 

facility of some kind with servers at nodes. In most general cases, customers may arrive from 

outside the system to any node and may depart from the system from any nodes. Thus, customers 

may enter the system at some node, traverse from node to node in the system, and depart from 

some node, where not all customers necessarily enter and leave at the same nodes or taking the 

same path once having entered the system. In our research we consider tandem queue models in 
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which there is a series of service stations through which each service unit must progress prior to 

leaving the system.  

 

The advantages of these models are that they make no assumptions about distribution of inter-

arrival time and service time. Therefore, they are more general than other infinite queuing models. 

Our techniques generalize the previously developed approximations and can be used in all kinds 

of real world queue situations including queuing networks and priority queues. 
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Chapter 2 

Literature review 
 

Queuing theory has been studied thoroughly throughout the past decades, but many problems still 

remain unsolved, in spite of the effort and intelligence devoted to them. Among these problems, 

the analysis of the sGG // queuing system has survived the attacks of many excellent 

mathematician and management scientists, due to its inherent complexity.  

 

Queuing systems have provided many models for different kinds of queues. There are many 

queuing systems of practical interest for which exact analysis is difficult due to the generality in 

their stochastic structures. Most real world queuing systems are sGG // queuing systems. They 

don’t satisfy the assumptions of the sMM // queuing model.  

 

Unfortunately, without the memory-less property of the exponential to facilitate analysis, we 

can’t compute exact performance measures for the sGG // queue. To deal with the difficulty, we 

often need approximation. Therefore, sGG // approximation models are still subject to active 

research (Whitt 2004 etc). The following is a brief literature review on the approximations of 

sGG // queue over the last 30 years. 

 

Sakasegawa (1977) provided a closed-form approximation formula for the sGG // queue. He 

suggested the following closed-form expression for approximating the mean waiting time in the 

sGG // queue. 

2( 1) 12 2 1( / / )
2 (1 )

s
a s

q
c cW G G s

s
ρ

ρ μ

+ −⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 

 

This approximation has several nice properties. First, it is exact for the sMM // queue. It neatly 

separates into three terms: a dimensionless variability term V, utilization term U and a time term 

T (service time). Whitt (1983) discussed this formula. Although it may appear complicated, it 

does not require any type of iterative algorithm to solve and is therefore easily implemented in a 

spreadsheet program. This also makes it possible to couple the single queue approximation with 

multiple-server to create a spreadsheet tool for analyzing the performance of a series of queues.  
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Kimura (1986) provided a simple two-moment approximation formula for the mean waiting time 

in a sGG // queue. This formula has the form of a combination of the exact mean waiting times 

for / /D M s , / /M D s and sMM // queues, and hence it can be easily calculated. It depends 

only on the first two moments sMM //  of inter-arrival times and service times.  

 

Bertsimas (1987) discussed an analytic approach to a general class of a sGG // queuing system, 

but he assumed G is the class of Coxian probability density functions, which is a subset of the 

PDF that have rational Laplace transforms. Although the method of stages he presented is not 

immediately extendable to distributions which do not have rational Laplace transform, he 

believed that this separable property holds for the more general model. He used conjecture 

methods. Whitt (1983) also made some conjectures about the equilibrium waiting time 

distribution in the / /M G s queue. He presented several conjectures about the qualitative 

behavior of multi-servers queues and some supporting evidence based on light-traffic limits and 

heavy-traffic limits and a special family of service time distributions. 

 

Whitt (1988) developed a closed form approximation for the mean steady-state workload or 

virtual waiting time in a 1// GG queue, using the first two moments of the service-time 

distribution. Girish and Hu proposed an approximation technique which combines the light and 

heavy traffic characteristics. They showed how this can be applied for estimating the waiting time 

moments of the 1// GG queue.  

 

Whitt (1993) briefly mentioned an alternative approach for approximating the variance of waiting 

time. It is to approximate the tail probability by a simple exponential 

distribution xexWP ηα −≈> )( , where η and α are obtained from the 

limit ∞→→> xasxWPe x αη )( . Since the asymptotic is known to hold in considerable 

generality. Whitt conjecture that for sGG //  it still holds and analogs could be established.  

 

Kimura (1994) developed a diffusion-approximation model for stable sGG // queues. He 

considered the standard sGG // queuing system with s homogenous servers in parallel, 

unlimited waiting spaces, the FIFO discipline, and IID service times which are independent of a 
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renewal arrival process. For the sGG // case, possible approaches are quite limited and 

essentially heuristic by nature. The queuing length in sGG // queue is approximated by a 

diffusion process on the non-negative real line. Some heuristics on the state space and the 

infinitesimal parameters of the approximating diffusion process are introduced to obtain an 

approximation formula for the steady-state queuing length distribution. It is shown that the 

formula is consistent with the exact results for the sMM //  and sMG // queues.  

 

An alternative approach to approximating steady-state distributions is simple exponential 

approximation using an asymptotic method: approximate the steady-state waiting-time tail 

probability )( xWP > by xe ηα − , where η and α are called determined from the 

limit ∞→→> xasxWPe ααη )( . The parameters η and α are called the asymptotic decay 

rate and asymptotic constant, respectively. Abate and Whitt (1994) discussed exponential 

approximations for steady-state distributions in the sGG // model based on asymptotic method. 

The key quantity is the asymptotic decay rateη , which in general depends on more than basic 

queuing parameters.  

 

Gross & Harris (2002) and Kleinrock, L. (1975 & 1976) systematically summarized all queuing 

concepts and theories in their book “Fundamentals of Queuing Theory” and “Queuing Systems”. 

We develop our formula and approximations mostly based on the basic theories and extensive 

discussions of the concepts and theory of the steady state queues in the books.  

 

The above discussions focused on delay probability or mean waiting time or queuing length. We 

have seen very few discussions about the standard deviation of waiting time in the 

sGG // queue in the literature. Only Whitt (1993) mentioned the approximation for the variance 

of steady state waiting time. However, no further details were provided. He just suggested using 

the formula for M/G/1 as approximations for M/G/s and sGG // . The idea is that the conditional 

delay should depend much more on the service time distribution than the inter-arrival time 

distribution. Seelen and Tijms (1984) provided additional support for this approximation principle. 

 

Whitt (2004) summarized the diffusion approximation for the sGG // queue. He developed 

diffusion approximation for the queue length stochastic process in the sGG // queuing model. 
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He pointed out that because the asymptotic delay probability function has proven to be so 

important for the Markovian sMM // queue, he found analogs for the non-Poisson arrival 

process and non-exponential service-time distribution. In his research he primarily focused on an 

approximation for the steady-state delay probability and the steady-state probability that all 

servers are busy in the sGG // model. 

 

A serious defect in the previous diffusion approximation models is that they are not consistent 

with exact results available for particular cases (Kimura 1986 and Whitt 2004). For instance, none 

of the previous diffusion approximations for the queuing length distribution in the sGG // queue 

are consistent with any exact results, even with the sMM // queue. It is obvious that the lack of 

consistency makes diffusion models less reliable.  

 

In our research, we estimate the average and standard deviation of waiting time by means of two 

moment approximation, which makes use of only the mean, and standard deviation or coefficient 

of variation ( c ) of inter-arrival and service time distribution. We consider the standard 

sGG // queuing system with s homogeneous servers in parallel, unlimited waiting capacity, the 

first come first served discipline and independent sequence of independent and identically 

distributed (i.i.d.) inter-arrival times and service times. 
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Chapter 3  

Queuing theory basics and assumptions 
 

In this chapter, we first introduce basic queuing concepts and notations, as well as the theory 

basics behind them. We then outline the research design and methodology. 

 

Variability is the quality of non-uniformity of a class of entities. Variability exists in all 

operations systems and can have an enormous impact on performance. Worst cases represent 

systems where performance is degraded by variability. From a management point of view, it is 

clear that the ability to deal effectively with variability and uncertainty will be an important skill 

for the foreseeable future. For this reason, the ability to measure, understand, and manage 

variability is crucial to effective operations management (Hopp and Spearman 2001).  

 

To effectively analyze variability, we must be able to quantify it. We do this by using standard 

measures from statistics and stochastic models to define a set of variability classes. Variance is a 

measure of absolutely variability, as is the standard deviation, defined by the square root of the 

variance. Often, however, absolute variability is less important than relative variability. A 

reasonable relative measure of variability of a random variable is the standard deviation divided 

by the mean, which is the coefficient of variation. Using this unit-less ratio, we can make 

consistent comparisons of the level of variability in both process and flows. We use the 

coefficient of variation for representing and analyzing variability in operations systems.  

 

The subject of queuing systems is not directly concerned with optimization. Rather it attempts to 

explore, understand, and compare various queuing situations and thus indirectly achieve 

optimization approximately. In general, unlike optimization theory in which the main concern is 

to maximize or minimize an objective function subject to constraints, queuing theory is mostly a 

mathematically descriptive theory. It attempts to formulate, interpret, and predict for the purpose 

of better understanding of queues and for the sake of introducing remedies.  
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3.1 Queuing systems basics 

 

Queuing systems represent an example of a much broader class of interesting dynamic systems, 

which, for convenience, we refer to as “systems of flow”. Flow systems are one in which some 

customers or items flow, move, or are transferred through one or more channels in order to go 

from one point to another. In this research, we merely consider steady flow. 

 

Queuing theory is a branch of applied mathematics utilizing concepts from the field of stochastic 

processes. It has been developed in an attempt to predict fluctuating demands from observational 

data and to enable an organization to provide adequate service for its customers with tolerable 

waiting. However, the theory also basically improves understanding of a queuing situation, 

enabling better control. The predictions help the management to anticipate situations and to take 

appropriate measures to alleviate congestion.  

 

In practice, we observe that actual process time typically represents only a small fraction (5 to 10 

percent) of the total cycle time in a plant (Hopp and Spearman 2001). This has been documented 

in numerous published surveys (e.g. Bradt 1983). The majority of the extra time is spent waiting 

for various resources (e.g. workstations transport devices, machine operations, etc).So it is 

important to estimate the variance of waiting time. 

 

A queuing system combines the components that have been considered so far: an interarrival 

process, a service process, and a queue. Arrivals can consist of individual customers or batches. 

Customers can be identical or have different characteristics. Interarrival times can be constant or 

random. The work station can have a single server or several servers in parallel, which can have 

constant or random process times. The queuing discipline can be first come first served (FIFO), 

last come first serve (LIFO), and a variety of priority schemes. The variety of queuing systems is 

almost endless. 

 

Regardless of the queuing system under consideration, the primary job of queuing theory is to 

characterize performance measures in terms of descriptive parameters.  
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Queuing Notations and Measures 

 

To use queuing theory to describe the performance of a single queue, we assume the following 

basic parameters are known: 

 

λ : Arrival rate of entering customers 

μ : Service rate of each servers 

ρ : Average utilization of servers ( ρ = μλ s/ ) 

s : Number of parallel servers at station 

ac : Coefficient of variation of inter-arrival time 

sc : Coefficient of variation of service time 

 

The performance measures we will focus on are: 

 

L : Average number of customers in system 

qL : Average number of customers waiting in queue 

W : Average time a customer spends in system 

qW : Average time a customer spends waiting in queue 

qσ : Standard deviation of waiting time 

qc : Coefficient of variation of waiting time 

)(tPn =probability of n customers in system at time t  

 

In addition to the above parameters, a queuing system is characterized by a host of specific 

assumptions, including the type of arrival and process time distributions, dispatching rules, 

balking protocols, batch arrivals or processing, whether it consists of a networking of queues, 

whether it has single or multiple customer classes and many others. Following convention, we use 

Kendall’s notation, which characterizes a queuing station by means of four 

parameters: bsBA ///  
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Where A describes the distribution of inter-arrival times, B describes the distribution of service 

times, s is the number of servers at the stations, and b is the maximum number of customers that 

can be in the system. For instance: 

D: constant (deterministic) distribution 

M: exponential (Markov) distribution 

kE : Erlang distribution  

Eα : Gamma distribution 

G: general distribution  

 

In many situations, queue size is not explicitly restricted (e.g. the buffer is very large). 

We indicate this case as ∞/// sBA   or simply as sBA // . In our research, we focus on 

sGG // queue. 

 

Some fundamental relations  

 

Before considering specific queuing systems, we note that some important relationships hold for 

all single queue systems (i.e. regardless of the assumptions about inter-arrival and process time 

distributions, number of servers, etc.) 

 

(1) Utilization, which is the measure of traffic intensity, is given by sμλρ =  

(2) Relation between total mean time spent in the system and mean time spent in queue qW  . 

Since means are additive, we have E (time in system) =E (time in queue) +E (time in service), 

i.e. sq tWW +=  

(3) Applying Little’s rule to any queue yields a relation among ,, LW qW , qL  and the arrival 

rate λ : WL λ= ; qq WL λ= .Using these relations and knowledge of any one of the four 

performance measures LandLWW qq ,,, , we can complete the other three. 

 

All fundamental relations are exact, even if the independence assumptions of the sGG //  model 

are dropped. As a consequence, in a complicated open queuing network model, these relations are 

valid without any assumption.  
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3.2. Stochastic process and Markov chains 

 

Queuing theory is also a branch of management science utilizing concepts from the field of 

stochastic processes. A stochastic process is the mathematical abstraction of empirical process 

whose development is governed by probability laws. From the point of view of the mathematical 

theory of probability, a stochastic process is best defined as a family of random 

variables,{ }TttX ∈),(  defined over some index set or parameter spaceT . The set T  is 

sometimes also called the time range and  )(tX  denotes the state of the process at time t.  

Depending upon the nature of the time range, the process is either a discrete parameters or 

continuous Markov chain as follows: 

 

(i) If T is a countable sequence, for example, { },...2,1,0 ±±=T  

Then the stochastic process { }TttX ∈),(  is said to be a discrete time process defined on the 

index set T. 

 

(ii) If T is an interval or an algebraic combination of intervals, for example 

{ } { }+∞<<=+∞<<−∞= TtTorTtT 0::   

Then the stochastic process { }TttX ∈),( is called a continuous time process defined on the index 

set T. 

 

Markov Process 

 

A discrete  stochastic process { },...2,1,0),( =ttX  or a continuous-parameter stochastic process 

{ }0),( >ttX  is said to be a Markov process if, for any set of n time points nttt <<< ...21  in 

the index set or time range of the process, the conditional distribution of  )( ntX , given the values 

of )(),...,(),(),( 1321 −ntXtXtXtX , depends only on )( 1−ntX , the immediately preceding value; 

more precisely, for any real numbers ,,...,, 21 nxxx  

{ }
{ }11

1111

)()(Pr

)(,...)()(Pr

−−

−−

=≤=

==≤

nnnn

nnnn

xtXxtX

xtXxtXxtX
 

Markov processes are classified according to: 
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(i) The nature of the index set of the process( whether discrete  or continuous );  

(ii) The nature of state space of the process. 

 

A real number x is said to be a state of a stochastic process { }TttX ∈),( if there exists a time 

point t in T such that the { }hxtXhx +<<− )(Pr if possible for every h>0. The set of possible 

states constitutes the state space of the process. If the state space is discrete, the Markov process 

is a Markov chain. 

 

A discrete Markov process with discrete state space is a discrete Markov chain. A Markov chain 

is finite if the space is finite; otherwise, it is s denumerable or infinite Markov chain. Since the 

system is observed at a discrete set of time points, let the successive observations be denoted by 

,0X ,1X ,2X …, ,nX …. It is assumed that nX is a random variable whose value represents the 

state of the system at the nth  time point. The sequence { }nX  is called a chain if it is assumed 

that there are only a finite number of states in which the system may be found at any point within 

the given time range. The sequence { }nX is thus a Markov chain if each random variable nX is 

discrete and the following holds: for any integer m>2 and any set of m points 

,...21 mnnn <<< the conditional distribution of
mnX , given values of  

,,...,
121 −mnnn

XXX Depend only on
1−mnX , the immediately preceding value; that is, 

{ } { }
11111

Pr,...Pr 1 −−−−
======

mmmmmmmm nnnnnnnnn xXxXxXxXxX  

 

A continuous Markov process with discrete state space is called a continuous Markov chain, 

while for continuous state space and discrete parameter space, the process is called a discrete 

parameter of Markov process. If both the state spaces and parameters spaces are continuous, it is 

called a continuous parameter Markov process. 
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3.3 Research design and methodology  

 

In general, models can be classified into two types: descriptive and prescriptive. Descriptive 

models which describe some current real world situation, while prescriptive models are models 

which prescribe what the real world situation should be, that is optimal behavior at which to aim. 

Most of the queuing models are descriptive in that for given types of arrivals and service patterns, 

and specified queuing discipline and configuration, the state probabilities, expected value 

measures of effectiveness, and variations which describe the system are obtained.  

 

The subject of queuing is not directly concerned with optimization. Rather it attempts to explore, 

understand, and compare various queuing situations and thus indirectly achieve optimization 

approximately. In general, unlike optimization theory in which the main concern is to maximize 

or minimize an objective function subject to constraints, queuing theory is mostly a 

mathematically descriptive theory. It attempts to formulate, interpret, and predict for the purpose 

of better understanding of queues and for the sake of introducing remedies.  

 

For simplicity, we restrict our consideration to systems with a single job class (i.e. single 

customer, no batching). Of course, most operations systems have multiple products. But we can 

develop the key insights into the role of variability in systems with single job class models. More 

ever, these models can be extended to approximate the behavior of multiple job classes and 

batching systems.  

In this research, we develop descriptive models. We consider initially the / /1M M  and 

sMM // queuing systems because they yield important intuition and serve as building blocks 

for more general systems. Then we analyze imbedded Markov chain queuing models. We present 

the exact formula for / /1M M , sMM // and the imbedded Markov chain queuing models 

/ / , / /1G M s M G  and show how we apply approximation methods to extend it to general 

sGG // queue. We validate our results via Monte Carlo simulation by using the Extend 

simulation program. The following is the outline of the next two chapters. 
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I.  An exact method for estimating the standard deviation of waiting time, applicable to sMM // , 

/ /G M s and / /1M G . 

a. Formula for coefficient of variation of waiting time, applicable to sMM // , 

/ /G M s and / /1M G . 

b. Formula for )0( >qTP  for sMM // , / /1M G and / /1kE M . 

II. A heuristic approximation method for the sGG // queues  

a. First approximate sGG // queue using the / /1M G having the same λ  and μ . 

b. Then approximate the sMM // queue with / /1M M queue having the same 

arrival rate and same probability of waiting )0( >qTP . 

c. Do error sensitivity analysis to show the   formula is relatively insensitive to errors 

in estimating inputs. 

d. Then use the interpolation method to estimate )0( >qTP  for / /G G s queue 

having the same ac and sc and the same arrival rate and service rate as 1// GG . 
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Chapter 4 

Exact Methods for M/M/s, G/M/s and M/G/1 

4.1. Formula for the coefficient of variation of waiting time  

(1)Exact coefficient of variation of waiting time for / /1M M  queue 

 

One of the simplest queuing systems to analyze is / /1M M . This model assumes exponential 

inter-arrival times, a single server with exponential process times, a first come first served 

discipline, and unlimited space for customers waiting in queue.  While not an accurate 

representation of most systems, the / /1M M queue is tractable and offers valuable insights into 

more complex and realistic systems. 

 

The key to analyzing the / /1M M queue is the memory-less property of the exponential 

distribution. To begin, we require information about the inter-arrival and service times. Since 

both are assumed to be exponential, all we need to know are the means (because the standard 

deviation is equal to the mean for the exponential distribution). Beyond that, the only other 

information we need is how many customers are currently in the system. Because the inter-arrival 

and process time distributions are memory-less, the time since the last arrival and the time the 

current customer  has been in process are irrelevant to the future behavior of the system. Because 

of this, the state of the system can be expressed as a single number n , representing the number of 

costumers currently in the system. By computing the long-run probability of being in each state, 

we can characterize all the long-term (steady state) performance measures, 

including qq WandWLL ,,, . 

 

Performance measures 

 

The various steady state performance measures for / /1M M queue can be computed from the 

results derived in many literatures (Gross and Harris 2002, Kleinrock 1975). 

Some basic notations and fundamental relations and performance measures for / /1M M : 
22 )]([)()( XEXExVar −=  (For all queues) 
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1 ,
1

L
ρ

=
−

         
1

2

ρ
ρ
−

=qL  

1
1qW ρ

ρ μ
= ⋅

−
 ,

μ
1

+= qWW  

)(tPn =probability of n customers in system at time t  

(1 )        where   ( / )n
nP ρ ρ ρ λ μ= − =  

0P =probability of no customers in system            )1(0 ρ−=P  

01 P−=ρ : Probability of a customer waiting 

 

Assumptions for / /1M M and sMM // : 

 

• Infinite model assuming that there is no limit to the waiting capacity.  

• Identical servers and infinite waiting capacity 

• Interarrival times and service times are exponentially distributed 

• First come first served discipline 

• 1)/( <= μλρ s  ( steady state) 

 

For the / /1M M model, we first parallel Gross & Harris (1985) .The density function for the 

inter-arrival times and services times are given respectively, as  

( )                 b( )t ta t e t eλ μλ μ− −= =  

Where 1/  λ is the mean inter-arrival time;    1/μ  is the mean service time. We define: 

qT =time spent waiting in queue 

)(tWq = the probability of a customer waiting a time less than or equal to t for service. 

q q(0) Pr{ system empty at an arrival }=Pr{T 0} Pr{T 0}qW = ≤ = =  

nq =conditional probability of n customers in the system given arrival is about to occur 

0(0) 1qW P ρ= = −  
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Since the service distribution is memory-less, the distribution of the time required for 

n completions is independent of the time of the current arrival and is the convolution of n  

exponential random variables. 

 

In addition, since the input is Poisson, the arrival points are uniformly spaced and hence the 

probability that an arrival finds n  in the system as identical to the stationary distribution of 

system size. 

 

Therefore, we may write that: 

 

n
1

t n-1
n x

n=1 0

t n-1
x

n=10
t

x(1- )

0

( ) Pr{ }

[Pr{  completions in  t arrival found n in system } P (0)

( x)(1 ) p   e  + (1- )
(n-1)!

( x)=(1 )   e  + (1- )
(n-1)!

=(1 )   e dx 

q q

q
n

W t T t

n W

dx

dx

μ

μ

μ ρ

μ μρ ρ

μ μρ ρ μ ρ

ρ ρ μ

∞

=

∞

∞
−

−

= ≤

= ≤ ⋅ +

= −

−

−

∑

∑ ∫

∑∫

∫
x(1- )t

+ (1- )

=1- e                  (t>0)        μ ρ

ρ

ρ −

 

 

So the distribution of waiting time in queue is  

⎩
⎨
⎧

>−

=−
=

−− 0)(t                      1
0)(t                                  1

)( )1( tq e
tW

ρμρ

ρ
          

With the probability distribution of  qT   , we can calculate the expected waiting time, which is 

denoted by qW . 
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0

( )

0

( )

0

[ ] ( )           (Riemann-Stieltjes)

=0(1- ) ( )e

( )e

( )

q q q

t

t

W E T tdW t

t dt

t dt

μ λ

μ λ

λ λ μ λ
μ μ

λ μ λ
μ

λ
μ μ λ

∞

∞
− −

∞
− −
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+ −
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−
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∫

∫
 

In order to calculate 2
qσ  , we use definition 2 2 2[ ] ( [ ])q q qE T E Tσ = −  

 So we first need to know ][ 2
qTE . 

2 2

0

2 ( )

0

2 ( )

0

[ ] ( )

  ( )e    

= ( )e    

q q

t

t

E T t dW t

t dt

t dt

μ λ

μ λ

λ μ λ
μ

λ μ λ
μ

∞

∞
− −

∞
− −

=

= −

−

∫

∫

∫

 

In order to calculate above integration, we first look at integration 2

0

e   tt dtλλ
∞

−∫ . 

Using integration by parts:   u(x)dx=u(x)v(x)- v(x)du(x)∫ ∫  

 

We can obtain: 

2 2

0 0

2 2

0
0

2

e  = ( e ) 

=-t e   

2

t t

t t

t dt t d

e dt

λ λ

λ λ

λ

λ

∞ ∞
−

∞
∞− −

−

⋅ +

=

∫ ∫

∫  
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22

0
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λμμ
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λμμ
λ
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λ λμ

−
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⋅=
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∞

−− dtetTE t

 

Therefore, 
2 2 2[ ] ( [ ])q q qE T E Tσ = −  

=
)()(

2
2

2

2 λμμ
λ

λμμ
λ

−
−

−
⋅  

= 22 )1(
)2(

ρμ
ρρ

−
−

 

We obtain: 

2 2
(2 )
(1 ) (1 )

q
q

q

c
t
σ ρ ρ ρ

μ ρ ρ μ
−

= =
− −

 

=
ρ

ρ−2
 

In the previous section, we defined qW ( )t the probability of a customer waiting a time less than 

or equal to t for service. { }tTPtW qq ≤=)( . 

⎩
⎨
⎧

>−

=−
=

−− 0)(t                      1
0)(t                                  1

)( )1( tq e
tW

ρμρ

ρ
 

 

We know }{1}{ tTPtTP qq ≤−=> . So }{ tTP q > is the probability of a customer waiting a 

time greater than t for service. 

Hence,  

{ }
⎩
⎨
⎧

>

=
=−=>

−− 0)(t                      
0)(t                                  

)(1 )1( tqq e
tWtTP

ρμρ

ρ
 

The probability of a customer waiting ρ=> )0( qTP  

Therefore, we have 
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Exact coefficient of variation of the waiting time for sMM // queue 

 

We now derive the exact coefficient of variation qc  of waiting time for sMM // queue.  

 

For sMM // , we first still parallel Gross and Harris (1985). From the general birth-death model, 

we have, 

1
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For the multi-server model, since the input is Poisson and the service exponential, we have a 

birth-death process. Hence, λλ =n for all n and 
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To determine 0P    , use the boundary condition, 1
0

=∑
∞

=n
nP . 

This gives, 
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This reduces to / /1M M when s=1. 

 

We consider measures of effectiveness for sMM // utilizing the steady-state probabilities in a 

manner similar to that used for / /1M M  model. 

By definition, 
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Using Little’s rule, we can also obtain, 

02 ]
)()!1(

)/([ P
ss

L
W

s
q

q λμ
μμλ

λ −−
== , 

02 ]
)()!1(

)/([1 P
ss

W
s

λμ
μμλ

μ −−
+= , 

02 ]
)()!1(

)/([ P
ss

WL
s

λμ
λμμλ

μ
λλ

−−
+== . 

When s=1, they all reduce to / /1M M . 

 

For our interest, we want to know   )()0( tWandW qq  .We proceed in a manner similar to that 

of / /1M M . 

Let   qT  represent the random variable “time spent waiting in queue”. 

)(tWq : The distribution of waiting time in queue. 

Hence, 

)(!
1

n!
r

n!
r

P

system} in the lessor  1Pr{)0(

0

1-s

0n

n

1-s

0n

n

0

1-s

0n
n

rss
sr

P

P

sW

s

q

−
−=

=

=

−=

∑

∑

∑

=

=

=

∵

 

0
0

0

q

q

n

1(0) [ ]
!( )

( / )1
!( / )

For T 0,   FIFO   is assumed,  hence,

( ) Pr{T }

[Pr{ n-s 1 completions in t arrival found n in system } P ] (0).    (t 0)

s

q

s

q

q
n s

srW P
P s s r

s P
s s

W t t

W

λ μ
λ μ

∞

=

⇒ = −
−

= −
−

>

= ≤

= + ≤ ⋅ + >∑

 



 27

When   sn ≥ , the system service rate is Poisson with mean  μs  , so that the time between 

successive completions is exponential with mean  )(1 μs     and 
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Hence the distribution of waiting time in queue is then 

 

 

 

When s=1, it reduces to M/M/1. 

 

Now we can derive 2
qσ .By definition, 2 2 2[ ] ( [ ]) .q q qE T E Tσ = −  

By using Little’s rule we already obtained, 
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This is the same as derived by using Little’s rule. 
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Both )( qTE  and )( 2
qTE  reduces to the / /1M M  when s=1 and ρ−= 10P . 

 

Now we can calculate 2
qσ by definition:  
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We can verify this as follows, when s=1, ρ−= 10P  it reduces to M/M/1. 
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Which is the same as 1// MM when s=1. 

 

Similar to the 1// MM , we know }{1}{ tTPtTP qq ≤−=>   

Since   }{ tTP q >  is the probability of a customer waiting a time greater than t for service, 

we have, 
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The probability that a customer has to wait is, 
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So we obtain, 
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(2). Exact coefficient of variation of waiting time for 1// MG  and sMG // queues 

 

In this section, we investigate some important queuing models that cannot be studied in the 

framework of the birth-death process. They are imbedded Markov chain queuing models: 

1// MG  and sMG // . 

 

In the previous analysis, we concentrated mainly on queues with Poisson input and exponential 

service times. These assumptions imply that the future evolution of the system from some time t  

depends only on the state of the system at time t , and is independent of the history of the system 

prior to time t . In these models, the state of the system could always be specified in terms of the 

number of customers present. 

 

Now we analyze queues for which knowledge of the number of customers present at any time t is 

not sufficient information to permit complete analysis of the model. For example, consider the 

case in which the service times are assumed exponential, but the customers’ arrival epochs are 

separated by a constant time interval. Then the future evolution of the system from time t would 

dependent not only on the number of customers present at time t , but also on the elapsed time 

since the last customer arrival epoch (because the arrival epoch of the next customer is strictly 

determined by the arrival epoch of the last customer). 

 

Clearly, we need a new method of analysis. A powerful method for the analysis of certain 

queuing models, such as the method in the above example, is that of the imbedded Markov chain, 

introduced by Kendall (1951). This is a brilliant expository research, in which for the first time 

Kendall hinted at his concept of the Imbedded Markov chain, subsequently developed by him and 

other researchers. 

 

As with the birth-and-death process, there is a vast theory of Markov chains. We will aim at as 

direct an approach to the analysis of our queuing models as possible, without extended excursions 

into the surrounding theory structure. Thus, we introduce the main ideas behind the theory of the 

imbedded Markov chain, and show how these ideas facilitate the analysis of certain important 

queuing models. 
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That is, we will study queuing models in which the input process and service time distribution 

function are such that the imbedded Markov chain analysis is applicable.  

 

Consider the following input process:  customers arrives at epoch 1 2, ,... ,...kT T T .The inter-arrival 

times 1 0( 0,1,...; 0)k kT T k T+ − = =  are identically distributed, mutually independent, positive 

random variables with distribution function 

1( ) { }k kG x P T T x+= − ≤ . 

Independent of the index k , the input process is then said to be recurrent. Queues with recurrent 

input can sometimes be studied by the imbedded Markov chain analysis. 

 

In short, for the 1// MG , sMG // queuing models studied in this section, a Chapman-

Kolmogorov analysis is not possible, since we no longer have a Markov process because of the 

relaxation of the exponential assumption on the inter-arrival times and/or service times. However, 

for many of the models considered here, while we no longer have a Markov process, there is 

nevertheless, imbedded within this non-Markov stochastic process a Markov chain (i.e. imbedded 

Markov chain). For these types of models, we can employ some of the theory of Markov chains. 

 

We assume that service times are exponential and no assumption is made concerning the arrival 

pattern other than that successive inter-arrival times are independent and identical distributed. For 

these cases, results can be obtained for s parallel servers using an analysis similar to that for the 

1=s case with a slight increase in complexity in certain probability calculations. So we first 

consider 1=s  and then generalize to s  servers.  

 

We use the Imbedded Markov Chain approach. 

 

1// MG Queue 

 

For 1// MG , by using Laplace transforms (Kleinrock 1975), we have 

)0(1)( )1( ≥−= −− tretW tr
q

μ .     

By definition (Kleinrock 1975), 

r =E [number of times state  1kE +  is reached between two successive visits to state kE ] 
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The conditional PDF for 1// MG  queue waiting time is the exponential distribution. (Kleinrock 

1975, Gross & Harris 2002). 

 

Compared with 1// MM , they have exactly the same form (replace ρ with r ). 

By straight forward calculation, we also have that the mean waiting time in 1// MG  is 

)1( r
rWq −

=
μ

  .     

Here we need to know r   (0< r <1). 

 

For 1// MM , r  reduces to ρ , which the probability of a customer is waiting )0( >qTP .  

From   )0(1)( )1( ≥−= −− tretW tr
q

μ ,  

we have rrTP q =−−=> )1(1)0( , which has the same form as ρρ =−−=> )1(1)0( qTP  

for 1// MM . 

Hence similar to 1// MM , for 1// MG , we have  
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sMG // Queue 

For sMG // , )0(
1

1)( )1( ≥
−

−= −− te
r

CrtW trs
s

q
μ   where C is a constant   (Gross & Harris 1985) 
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In order to calculate variation: 2 2 2[ ] ( [ ])q q qE T E Tσ = − . 
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Hence by definition, 
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For sMG // we want to verify that  
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The above relationship does not depend at all on the interarrival time distribution or the number 

of servers s . This implies that for sMG //  queues, all of the needed information about the 

interarrival time distribution and the number of servers is contained in the probability of 

waiting )0( >qTP .  
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(3) Exact coefficient of variation of waiting time for 1// GM queue 

 

For 1// GM , we can also use the imbedded Markov chain approach. The imbedded process is 

Markovian. This allows the utilization of Markov chain theory in the analysis of the 1// GM  

model (Gross & Harris 2002, Kleinrock 1975). 

For the expected number of customers in system, we have Pollaczek-Klintchine formula 
2 2 2

.
2(1 )

sL ρ λ σρ
ρ

+
= +

−
 

By Little’s rule, we can obtain ,q qL W and W  easily. 

For waiting time PDF, we have (Gross &Harris 1985) 
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The above formula can be used if there are ways of estimating )0( >qTP and the second and 

third moment of the distribution of the service times ][],[ 32 sEsE  or the third moment can be 

computed when the first and second moments are known. 
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When MG =  it reduces to 1// MM , where the service time is exponentially distributed, 
xexf μμμ −=),(  

We know that 0
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)0(][ === tn
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n
n

x
n

dt
tMd

MxE , so we use Moment Generating Function 
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. 

It has the same expression as sMG // . So this formula is a generalization of the formula for 

sMG //  and we have a more general form that applies to sMG //  and / /1M G . 

 

sGM //  Queue 

 

sGM //  queue does not possess the imbedded Markov chain property (Gross and Harris 

1985).But sMM // and sDM // queues are Markovian (Saaty 1961). Whitt (1993) 

conjectured that we can use the exact formula for an 1// GM  approximation for the sGM //  

model.  The idea is that the conditional delay should depend more on the service time distribution 

than the interarrival time distribution. Seelan and Tijms (1984) provided additional support for 

this approximation. This supports our conjectures that for sGM //  our results still provide a 

good approximation for the coefficient of variance. 
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In summary, for Markov queues sMM // and imbedded Markov queues sMG // , 1// GM  the 

exact formula for the coefficient of variation of waiting is  

qc =
3

2 2

4 ( 0)[ ]1 .
3 ( [ ])

qP TE s
E sλ

=
+                  (4.2) 

The above formula can be used if there are ways of estimating )0( >qTP and the third moment 

of the distribution of the service times. The later can be accomplished if we make an assumption 

that the service time distribution can be approximated if we could have assumed any distribution 

for which the third moment can be computed as a function of the first and second. We conjecture 

that the same assumption is justified in an approximation method for general sGG //  queues.  

 

4.2 Exact Formulas for the probability of waiting for sMM // , / /G M s , 1// GM  and 

1// MEk queues 

 

In order to estimate the variance of waiting time, we know from formula (4.2) that the key point 

is to calculate the probability of waiting if ][ 2sE and ][ 3sE are known. In this section, we 

derive the exact formula for sMM // , 1// GM  and  1// MEk  queues. 

 

(1) sMM // Queue 

 

From the previous discussion, we know the probability of waiting for sMM // is  

                                                     qq WsTP )()0( λμ −=>  .                                         (4.1) 

However, this relation holds only for the sMM // queue. We disprove it for different queues as 

follows. 

For the 1// MG queue,  

we know from Kleinrock )0(1)( )1( >−= −− tretW tr
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μ . 
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 except for k=1, which is M/M/1 queue. 

We can also see qq WsTP )()0( λμ −≠> .  Therefore, we have to explore the formula of the 

probability of waiting for sGG //  queues. 

 

(2) 1// GM  Queue 

 

For the 1// GM queue, we already see from the above 

that ∑
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−=−=
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q PtRtW ρρρρ . 
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So we have μλρ ==> )0( qTP . 

 

(3) 1// MEk  Queue 

 

For 1// MEk , we can also calculate the exact result for the probability of waiting. 

We assume that the interarrival times are Erlang type k distributed, with a mean of λ/1 . We can 

look therefore at an arrival having passed through k phases, each with a mean time of )/(1 λk , 

prior to actually entering the system.  

For the Erlang distribution, 
1
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k k xx ef x k for x
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Mean λkxE =)(  and variance 22 λσ k= , so
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σ
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Therefore, we can compute  21/ ak c=  to get Erlang (actually gamma) distribution parameter k. 

The probability of no wait for service upon arrival is given by krq −= 10  (Gross and Harris 

(2002)), so the probability of waiting is krq =− 01 . r is the root of the characteristic equation         

)0(0])([ 1 ≥=++−+ npDD n
K λμλμ  

There is one and only one root in (0, 1) and ( )10,0)1( <<≥−= rnrrp n
n . 

To obtain r , repeating the above characteristic equation with λ replaced by λk , we have  

0)(1 =++−+ λμλμ krkr k . 

Given k,,μλ , we can use Newton’s method with initial value of k
1

)( μλ to obtain a unique 

)10( << rr so that we can calculate the probability of waiting k
q rTP => )0( . 
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Chapter 5 

Heuristic Approximation Methods for the / /G G s queue 
 

5.1 Basic assumptions for the sGG // queue 

 

There is no question that in principle, both from a scientific and an aesthetic viewpoint the most 

desirable way of resolving problems arising from any queue process is to formulate a precise 

math model and derive solutions by mathematical analysis. 

 

However, such an ideal approach---the traditional analytical procedure is not usually possible. 

Without the memory-less property of the exponential to facilitate analysis, we can not compute 

exact performance measures for the sGG // queue. When it comes to exact solutions of multi-

server queuing systems, the more one departs from the assumption of exponential, the thornier the 

problem becomes, especially if this happens for the service time. Due to its inherent complexity, 

analysis of the sGG // queue in general is difficult.  

 

In this research, we consider the standard steady state sGG // queuing system with  

homogeneous servers in parallel, unlimited waiting room, the first come first served discipline 

and independent sequence of independent and identically distributed ( i.i.d)  interarrival times and 

service times. We assume that the general interarrival time and service time distributions are each 

partially specified by their first two moments. Equivalently, we assume that the arrival process is 

partially specified by the arrival rate λ  (the mean interarrival time is 1/ λ ). Similarly, we assume 

that the service-time distribution is partially specified by its process rate μ  (the mean process 

time is 1/ μ ). All descriptions of these models thus depend only on the basic 5 

parameter , , , ,a ss c and cλ μ . To apply the approximations, the above 5 queue specifications are 

assumed to be known.  

 

Each customer arrives according to an arrival process and is served once at each queue, with the 

order of the queues being the same for all customers. Each queue has unlimited waiting space, the 

FIFO discipline, and i.i.d service times that are independent of the other random quantities in the 

model. The problem is to determine, for a given fixed external arrival process, the standard 



 42

deviation of waiting time in system per customer. More generally, the object is to determine if 

variability, utilization, and server numbers actually matters.  

 

Given that the external arrival process (i.e., the interarrival times are i.i.d.), which we also 

assumes here, the model is specified by the distribution of the service times at each queue and the 

distribution of external inter-arrival times. This problem is difficult for general distributions 

because exact expressions for the expected steady-state waiting time typically are unavailable; 

primarily because the arrival processes to all queues after the first typically are not renewal 

processes. 

 

With this approximation procedure, each distribution is partially characterized by its first two 

moments, or equivalently, by its mean and squared coefficient of variation. The closed-form 

formulas give an approximate squared coefficient for the arrival process to each queue and an 

approximate expected steady-state waiting time. The expressed steady-state waiting time for 

queues in series actually depends on the distributions beyond their first two moments, but 

experience indicates that a fairly good approximation can often be obtained given this partial 

information (Kimura 1986). 

 

A list of assumptions for the sGG // queue is as follows: 

 

1. Identical s homogeneous servers. Infinite steady state queue. 

2. Interarrival and service times are independent and identically distributed with general                    

distributions.  

3. One piece flow. No delays due to batching. 

4. Utilization ρ = ( μλ s/ ) <1 so that the system is stable. 

5. First come first served queue discipline   

 

For the sGG // queue, qWandW are not directly accessible. Except for the / /G M s queue, 

where L is given by the well known Pollaczek-Khintchine formula, measures possess explicit 

general formulas in terms of known inputs to the queue. However, numerous highly accurate 

approximations for either the mean queue length or the mean waiting time (the latter two being 

related via Little’s rule) have been developed for the sGG // queue, and intensively explored. 
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Since the accuracy of these approximations is commonly very high, we use these approximations 

of qWandW  in our models. 

 

5.2 Average waiting time of the sGG // queue 

 

As we commented previously, without the memory-less property of the exponential distribution 

to facilitate analysis, we can not compute exact performance measures for the sGG // queue.  

This does not mean that we should give up researching on the sGG // queue, only that we need 

to be concerned with finding good approximations. We can estimate the average waiting time of 

sGG // queue by means of “a two moment” approximation, which makes use of only the mean 

and standard deviation of the inter-arrival and process time distributions. Because it works well, 

this approximation is the basis of several commercially available queuing analysis packages 

(Hopp and Spearman 2001). 

 

Much of the following development parallels Hopp and Spearman (2001). We proceed by 

introducing an expression for the waiting time in queue qW  and then computing the other 

performance measures. The approximation for qW , which was first investigated by Kingman, is 

given by 
2 2 1( / /1)

2 1
a s

q
c cW G G ρ

ρ μ
⎛ ⎞+ ⎛ ⎞

= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 

This approximation has several nice properties. First, it is exact for the 1// MM queue. It also 

happens to be exact for the 1// GG queue, although this is not evident from our discussion here. 

Finally, it neatly separates into three terms: a dimensionless variability term V, a utilization term 

U and a time term T, as VUTGGWq =)1//( . We refer to this as Kingman’s equation or as the 

VUT equation. From it, we see that if the V factor is less than one, then the waiting time, and 

hence other congestion measures, for the 1// GG queue will be smaller than those for the 

1// MM queue. Thus, the VUT equation shows that the 1// MM case represents an 

intermediate case for a single server analogous to that represented by the worst case for waiting. 

 

The VUT equation gives us a tool for analyzing a queue consisting of single server. However, in 

real-world systems, queuing systems often consists of multiple servers. The reason is that often 



 44

more than a single server is required to achieve the desired workstation capacity. To analyze and 

understand the behavior of multi-server queues, we need a more general model. 

 

To develop an approximation for this situation, note that for 1// GG , the approximation can be 

rewritten as 

                  
2 2

( / /1) ( / /1)
2

a s
q q

c cW G G W M M
⎛ ⎞+

= ⋅⎜ ⎟
⎝ ⎠

.                           (5.1) 

Where 
μρ

ρ 1
1

⋅
−

=qW  is the waiting time in queue for the / /1M M queue. This suggests the 

following approximation for the sGG // queue. 

 
2 2

( / / ) ( / / )
2

a s
q q

c cW G G s W M M s
⎛ ⎞+

= ⋅⎜ ⎟
⎝ ⎠

.                  (5.2)                       

Sakasegawa (1977) presented the following closed-form expression for the mean waiting time in 

the sGG // queue: 

2( 1) 12 2 1( / / )
2 (1 )

s
a s

q
c cW G G s

s
ρ

ρ μ

+ −⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 .                             (5.3) 

Expression (5.3) is the multi-server version of the VUT equation. The V and T terms are identical 

to the single server version given in expression (5.1), but the U term is different.  

 

Whitt (1983) discussed this formula in more detail. Although it may appear complicated, it does 

not require any type of iterative algorithm to solve and is therefore easily implemented in a 

spreadsheet program. This also makes it possible to couple the single-station approximation with 

the multiple-server to create a spreadsheet tool for analyzing the performance of a series of 

queues. This formula is used in our research when calculating mean waiting time for the 

sGG // queue.   
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5.3 Coefficient of variation of the deviation of waiting time for the sGG // queue 

 

For the standard deviation of a general multi-server queue with infinite waiting capacity 

( sGG // ), we conjecture it has the properties of sMG // and 1// GM queues as follows.  

 

                           qc = 22

3

])[(
)0(

3
][41

sE
TPsE q =

+
λ

                      (5.4) 

We conjecture that formula (5.4) can be used as an approximation for the sGG // queue since it 

applies to sMG // and / /1M G , and can be used as an approximation for sGM // queue. To 

estimate qc using formula (1), it is necessary to estimate )0( =qTP  and ][ 3sE . Since we do not 

assume that ][ 3sE  is specified, we must estimate it by assuming some known distribution for the 

service times, e.g. gamma, for which the third moment can be computed as a function of the 

average and standard deviation. We also have to estimate )0( =qTP . Therefore, we need to do 

error sensitivity analysis to show that formula (5.4) is relatively insensitive to errors in estimating 

these inputs. 

 

(1) Sensitivity to Errors in Estimating of the Input Parameters 

 

We first examine the sensitivity of the formula (5.4) to errors in estimating ][ 3sE , given that the 

other parameters )0( >qTP and ][ 2sE are known. We find that the formula is relatively 

insensitive to the errors in estimating ][ 3sE . 

 

Theorem1: Suppose a small change in ][ 3sE , expressed as a proportion P , is ][][ 33 sEPsE ⋅=Δ , 

the resulting change in qc , also expressed as a proportion is at most 2/P , P
c
c

q

q 5.0≤
Δ

.   

Proof: The partial derivative of qc with respective to ][ 3sE  is: 

q

qq

csE
TP

sE
c

2
1

])[(3
)0(4

][ 223 λ
=

=
∂

∂
. 

Note that the derivative approaches 0 as )0( =qTP approaches 0.  
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Also, we observe that 1≥qc , since 0
])[(

)0(
3

][4
22

3

≥
=

sE
TPsE q

λ
. 

When ][ 3sE  changes by a small amount ][][ 33 sEPsE Δ⋅=Δ , the corresponding change in qc is 

3
3

3
2 2

2

[ ]
[ ]

4 ( 0) 1[ ]
3 ( [ ]) 2
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.

2

q
q

q

q

q

q

c
c P E s
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c
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∂
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∂
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Expressing qcΔ as a proportion gives  

2
2

2

2

1

c

c
P

c
c q

q

q −
⋅=

Δ
. 

Since 1≥qc , it can be observed that
2

0 P
c
c

q

q ≤
Δ

≤ . 

So the formula of qc is not sensitive to ][ 3sE  .We also observe that the above expression 

approaches 0 when 1→qc .  

 

We can do the same sensitivity analysis on )0( =qTP and draw the same conclusion that qc is 

not sensitive to errors of )0( =qTP . 

 

Theorem 2:  Suppose a small change in )0( =qTP , expressed as a proportion P , 

is )0()0( =⋅==Δ qq TPPTP , the resulting change in qc , also expressed as a proportion is at 

most 2/P , that is P
c
c

q

q 5.0≤
Δ

. 

 

Proof: similar to the proof of theorem (1), we can do the similar sensitivity analysis on 

)0( =qTP and draw the same conclusion that qc is not sensitive to errors of )0( =qTP . 
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Heuristically, we can analyze the sensitivity of the method to errors in estimating )0( >qTP . 

 

Figure 5.1 below shows the coefficient of variation as a function )0( >qTP . To illustrate the 

effect of the service time distribution, we show curves for exponential, Erlang (with k =4) and 

deterministic service time distributions.  

 

Figure 5.1 shows that for 4.0)0( ≥>qTP  and 10 ≤≤ sc , the curve is relatively flat, with the 

value of qc ranging between 1 and 2. Over this same region the curve is relatively insensitive to 

changes in the distribution of the service times or to small changes in )0( >qTP .  

(When )0( >qTP  is small the estimate becomes very sensitive to errors in estimating these 

parameters. However, when )0( >qTP  is small, qW   is also small, as is qqq Wc ⋅=σ . In this 
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Figure 5.1Coefficient of variation of waiting time as a function of the probability of waiting. 
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case errors in estimating qc  would not have much impact on the estimated distribution of the total 

time in the system.) 

 

The curve becomes steeper if 1>sc . In our simulations we find the method does not necessarily 

give a good approximation in these cases. 

 

In general, it can be shown that a given percentage error in estimating the probability of waiting 

will give a smaller percentage error in estimating the coefficient of variation of waiting time. For 

example, if the true probability of waiting is 0.8, the coefficient of variation is 1.22. If the 

estimate obtained for the probability of waiting is anywhere in the + 10% range (0.72, 0.88), the 

resulting estimate of the coefficient of variation will be in range (1.13, 1.33) an error range of (-

7.8%, 8.8%).  

 

Hence, from equation (5.4) we can show that qc  has a fairly small range of variation (and should 

therefore be easy to estimate) when the probability of waiting is not small1 (see footnote) and α  

is greater than 1.  

 

(2)  Implementation in spreadsheet for practical use 

 

In order to implement the approximations in spreadsheet for practitioners, we analyze the specific 

case of 1// αEM queue, where αE is gamma distribution and α  is the shape parameter in the 

gamma service time distribution.  The resulting expression is 

                               
)1)(0(3

)2)(0(1(4
1

+>

+>−
+=

α
α

q

q
q TP

TP
c                                      (5.5) 

When α = 1, formula (5.5) reduces to 1// MM queue. We show that the formula can provide a 

good approximation for sGG //  queues using a gamma distribution approximation to the 

service time distribution with 2](/)([ timeservicetimeserviceE σα = . 

                                                 
1 When )0( >qTP  is small, qW  the average waiting time is also small as is q q qc Wσ = ⋅ . In this case errors in  

Estimating qc  would not have much impact on the estimated distribution of the total time in the system. 
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When the service time distribution is gamma distribution, we know μα /)( =sE , 

and 22 / μασ =s , so 
1

( )
s

sc
E s
σ α α

λ λ α
= = =  and 2))(( ssE σα = .  

 

Proof: We know that 0
)( )(

)0(][ === tn
x

n
n

x
n

dt
tMd

MxE , so we use the Moment Generating 

Function )(tM x to calculate ][],[ 32 sEsE . For the gamma distribution, we know the 

mean1/ μ αβ= , hence 1/β αμ= , ( ) (1 )xM t t αβ −= −     for 1/t β< . 
 

'
0[ ] ( )s tE s M t αβ== = . 

2 '' 2
0[ ] ( ) ( 1)s tE s M t α α β== = + . 

3 ''' 3
0[ ] ( ) ( 1)( 2)s tE s M t α α α β== = + + . 

 
Hence,  
 

)1)(0(3
)2)(1(41

])[(3
)1(4][1 22

3

+>
+−
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−
+=

α
αρ

λ
ρ

q

q

TP

sE
sEc

 

 
For 1// GM queue, we know )0( >qTP = ρ . 
 

Hence, 
)1)(0(3

)2)(0(1(4
1

+>

+>−
+=

α
α

q

q
q TP

TP
c . 

 

The sensitivity of the method to α  

 

Numerical analysis shows that, when 1≥α  and )0( >qTP  is not small, qc  is not sensitive toα . 

In other words, α  has little impact on qc when )0( >qTP  is large. So we conjecture that the 

formula can provide a good approximation for sGG //  queues using a gamma distribution 

approximation to the service time distribution with 2](/)([ timeservicetimeserviceE σα =  

under the assumption that the coefficient of variation of the service times is less than 1, given α  

values greater than 1.  
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Therefore, we conjecture that formula (5.5) works well for the sGG // queue. We don’t know 

the accuracy of the approximations for sGG // queue. Since no closed-form analytical results 

are available for sGG // models, to evaluate the accuracy of the sGG // approximations, we 

resort to Monte Carlo simulation experiments using the Extend simulation program. We conduct 

simulation experiments to gain insight into the analog methods for calculating approximate 

steady-state performance measures of sGG // queuing system. We compare our results to 

simulation experiments and a few numerical results.  

 

5.4 Interpolation methods to estimate the probability of waiting in the sGG // queue 

 

In this section we analyze the probability of waiting for the sGG // queue. From 4.2, we know 

the probability of waiting formula qq WsTP )()0( λμ −=> holds only for the sMM // queue. 

So we need to consider other methods to estimate the probability of waiting for the / /1G G  and 

sGG // queues. Since we already know exact results of the probability of waiting for some 

queues ( ,1//,1// MDDD 1// GM , / /1kE M , / /1M D , / /1M M ), we use an interpolation 

method to approximate the probability of waiting for / /1G G queue. 

Before using the  interpolation method, we first approximate the sMM // queue with an 

1// MM  queue having the same arrival rate and same probability of waiting )0( >qTP .The 

reason is that when we use the interpolation method, we only know exact results for single server 

queues ( 1// DD , 1// GM , / /1kE M ). 

Step1. We first approximate via sMM // : use the formula for sMM // queue to get initial 

estimate Pw = Pwm/m/s = qq WsTP )()0( λμ −=>  using only μλ, , and s. 

Step2. Find an approximating / /1M M queue. Find the service rate 'μ  of the 1// MM queue 

that has arrival rate λ  and has Pwm/m/1 equal to Pwm/m/s:   

qWs )(
'

λμ
λμ

−
= . 
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So in this way we can approximate the performance of multiple server queues as a single server 

queue. 

Interpolation approximation methods were studied by Boxma (1979), and Reiman and Simon 

(1984). They consider a queuing system with a Poisson arrival process and evaluate the light 

traffic derivatives and the heavy traffic limit. But the selection of the function is quite arbitrary 

and there is no systematic way of selecting the correct function to be used, except for some 

special cases. Another interpolation approximation was proposed for the average workload in the 

1// GG queue. This approximation works well, but the evaluation of the approximation 

parameters is not straightforward.  

 

Our approach considers queues with general independent arrivals and service distributions and we 

give a very easy procedure to calculate the probability of waiting. We use a point based 

interpolation method to approximate the probability of waiting for the 1// GG queue. The result 

is easily implemented in the spreadsheet. 

Point based interpolation 

                                                            A: ( ,1) a
af c r=  

                                                                                                    

 

 

                                          ( 0) ( , )q a sP T f c c> =  

                                                                                                                    B: (1, )sf c λ μ=  

                                      I ( / /1G G )                              

sc  

 

 

 

 

O: (0,0) 0f =                                      ac  



 52

We then approximate )0( >qTP  for the resulting 1// GG  queue. Given λ and μ′, we wish to 

estimate )0( >qTP  as a function of the coefficient of variation of the arrival time ac and the 

coefficient of variation of the service time sc : ),()0( saq ccfTP =>   

We compute )0( >qTP  for three points surrounding ),( sa cc . 

(0,0) 0f =  

'),1( μλ=scf  

k
a rcf =)1,( , where 2/1 sck =  and r  is the root of the equation: 

0)(1 =+′+−′ + λμλμ krkr k  

In the above equation we are assuming that the interarrival time distribution can be approximated 

using an Erlang distribution and apply the formula for 1// MEk  queues (Gross and Harris 2002). 

Then we estimate ),( sa ccf  from the plane passing through the three points )0,0,0( , 

( ,1, ( ,1))a ac f c and )),1(,,1( ss cfc .  

To estimate ( 0) ( , )q a sP T f c c> = for 0 1, 0 1s ac c< < < < , we use point based interpolation 

method: given a number of points whose locations and values are known, determine the values of 

other points at predetermined locations. f value at any point ( ,a sc c ) on the surface is given by 

an equation in terms of sc  and ac . Output data structure is a polynomial function which can be 

used to estimate values on the surface. A linear equation can describe a tilted plane surface 

function 

cybxaz ++= .                                                (5.6) 

For our research, let ( 0), ,q s az P T x c y c= > = = . 

For function cybxaz ++= , by plugging in the value of three known points, we have equations: 
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0 0 0
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= + + ⋅
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Solving the equations, we have: 
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1
)(,

1
)(,0 μλμλ

. 

Hence substituting a, b, and c into function (5.6), we have: 

cybxcybxaz +=++= .    
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Therefore, for sGG // queue, we have the probability of waiting: 

as

asas
q cc

ccccr
TP

−
−+−

=>
1

)1)('()1(
)0(

μλα

.                         (5.7) 

This approximation is consistent with the probability of waiting for the / /1D D , / /1M G  

and / /1kE M . For the 1// MM , the plane shrinks to a line, so we no longer have the plane 

defined. Therefore, this formula doesn’t apply to the / /1M M queue, for which we have an exact 

formula. 

To estimate the interpolation method, we use 4=λ , and 5=μ  as an example to calculate the 

probabilities of waiting for different ac and sc . We conclude that the method provides good 
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approximations for the probability of waiting for the 1// GG queue. In our queuing performance 

prediction model, we implement the approximation method. This point based interpolation is 

more direct and logical than other interpolation method since it uses all known information to 

calculate the probability of waiting. Numerical results show that it gives a good approximation. 

In this interpolation research, our method is actually designed to work for the coefficients of 

variation less than or equal to 1. We restrict our discussion to the cases that 1ac ≤  and 1sc ≤ . In 

other words, the interpolation approximation methods are used in these queuing systems only 

when 1ac ≤  and 1sc ≤ .When 1ac ≥  or 1sc ≥ , we still use the formula of probability of waiting 

for sMM // rather than the interpolation value to approximate that of / /G G s , which is 

qq WsTP )()0( λμ −=> . 

In summary, our modeling assumptions are that the first and second moments of the inter-arrival 

and service time distributions are known. Equation (5.4) is exact for the sMG //  and 

1// GM queues. Thus, the method for computing the coefficient of variation of waiting time in 

the queue is exact for any subset of these queues for which the exact probability of waiting and 

the second and third moments of the service time distribution is known.  

 

We conjecture that for the sGG // queue, these relationships still hold and all queuing systems 

follow these rules. In other words, we use the relationship among the properties of sMG //  and 

1// GM queues to estimate the variance of the waiting time for sGG // . Based on the error 

sensitivity analysis, we know the formula is relatively insensitive to the errors in estimating 

)0( =qTP  and ][ 3sE . 

 

In our implementation, we assumed the service time distribution was gamma. Under these 

assumptions, the method gives the exact coefficient of variation of waiting times for nMM // , 

1// MEα  and 1// αEM  queues. In computational tests with 10 ≤≤ ac  and 10 ≤≤ sc  (Zhao 

2007), we have found the method to give approximations of the standard deviation of the time in 

system to within (+ 10%).  
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Chapter 6 

Priority queue and queuing networks 
 

6.1 Priority queue 

 

Up to this point, all the models considered have the property of a first come first served discipline. 

This is obviously not the only manner of service, and there are many alternatives, such as last 

come, first served, selection in random order, and selection by priority. A very considerable 

portion of real life queuing situations contain priority considerations. 

 

In priority schemes customers with the highest priorities are selected for services ahead of those 

with lower priorities, independent of their time of arrival into the system. Priority queues are 

generally more difficult to model than non-priority situations. The determination of stationary 

probabilities in a non-preemptive Markov system is an extremely difficult matter, well near 

impossible when the number of priorities exceeds two. Nevertheless, the priority models should 

not be oversimplified merely to permit solution. Full consideration of priorities is absolutely 

essential when considering the costs of queuing systems and optimal design.  

 

There are two further refinements possible in priority situations, namely, preemption and non-

preemption. In preemptive cases, a customer with the highest priority is allowed to enter service 

immediately even if another with lower priority is already present in service when the higher 

customer arrives. That is the lower priority customer in service is preempted, his service stopped, 

to be resumed again after the higher priority customer is served. In addition, a decision has to be 

made whether to continue the preempted customer’s service from the point of preemption when 

resumed or to start anew. On the other hand, a priority discipline is defined to be non-preemptive 

if there is no interruption and the highest-priority customer just goes to the head of the queue to 

wait its turn. He can’t get into service until the customer presently in services is completed, even 

though this customer has a lower priority. 

 

The number of priority classes can be any number greater than one, and if there can be more than 

a single customer in any given priority class in the system simultaneously, then the discipline of 

selecting customers within the same priority class must also be specified. 
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In this research, we focus on the non-preemptive sGG // system with many priorities. Within 

each priority class the FIFO discipline holds. The determination of stationary priorities of 

sGG // is well near impossible when the number of priorities exceeds two. In light of this and 

the difficulty of handling multi-index generating functions when there are more than two priority 

classes, we use the similar approximation method analogous to the sMM // priority queue. 

 

For non-preemptive Markovian systems with many priorities, we use the result of Gross and 

Harris (2002) to derive the formula we used in our spreadsheet. 

 

Suppose that items of the kth  priority (the smaller the number, the higher the priority) arrive 

before a single channel according to a Poisson distribution with parameter ),...2,1( rkk =λ and 

that these customers wait on a FIFO basis within their respective priorities. Let the service 

distribution for the kth  priority be exponential with mean kμ/1 .Whatever the priority of a unit 

in service, it completes its service before another item is admitted. 

 

We begin by defining 
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The analysis for the multiple-channel case is very similar to that of the proceeding model except 

that it must now be assumed that service is governed by identical exponential distributions for 

each priority at each of s channels. For multiple channels we must assume no service time 

distinction between priorities or else the mathematics becomes quite intractable.  
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Again the system is completely stationary for .1
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and the expected waiting time taken over all priorities is thus 
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Hillier and Lieberman (1986) derived similar formulas as follows: 
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The derivation follows. 

From Hillier and Lieberman (1986), we have  
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Little’s formula still applies to individual priority class, so 
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Similarly, we can derive 3qL  and 4qL  etc. 
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02 ]
)()!1(

)/([ P
ss

L
s

q λμ
λμμλ
−−

=  

11

0
0 )(!

)/(
!

)/(
−−

=
⎥
⎦

⎤
⎢
⎣

⎡
−

+= ∑
s

n

sn

s
s

sn
P

λμ
μμλμλ

 



 60

1
1

0 1

1
0

1

1

1

( / )!( ) 1 1
( / ) 1!

(1 )

(1 )

1 (1 )
.

(1 1 )

q

s

q

q

L
A B B

ss s
s

L
s

s

L Fract
s

Fract
s

λ

λ
λμ λ λ μ μ

λ μ μ
λ λ
μ μ

λ λ
λ μ

λ
μ

λ
μ

=
⋅ ⋅

=
⎡ ⎤ ⎡ ⎤−

⋅ + ⋅ ⋅ −⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

⋅ −
=

−

⋅ ⋅ −
=

− ⋅

 

Similarly, we can have derive  2qL  , 3qL , 4qL  etc. By Little’s rule, we can have 

1 2, 3, 4, .q q q qW W W and W etc   

 

For the sGG // priority queue, we use the similar approximate method analogous to the 

sMM //  priority queue. We conjecture that the mean waiting time for each priority class has 

the same relations of those of the sMM // priority queue. In other words, we assume for the 

sGG // queue, the above formulas also hold for each priority class. 

 

The above formulas are used in our spreadsheet to calculate average flow times in non-

preemptive priority queues. For each priority class, we have the following relation to calculate 

and standard deviation of waiting time. 
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We conjecture the interpolation models hold as well. So, we can estimate the standard deviation 

of waiting time for each priority class. 
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6.2 Queuing networks 

 

For queuing networks, our model is an open network of single queues in series. Each customer 

arrives according to an arrival process and is served once at each queue, with the order of the 

queues being the same for all customers. Each queue has unlimited waiting space, the FIFO 

discipline, and i.i.d service times that are independent of the other random quantities in the model. 

The problem is to determine, for a given fixed external arrival process, the standard deviation of 

flow time in the system per customer. More generally, the object is to determine whether 

variability, utilization and server numbers actually matter.  

 

The approach of queuing networks approximation is parametric-decomposition: the queues in the 

network are treated as independent sGG // models, each partially specified by the basic 5 

parameters at that queue. The goal is to use the two arrival parameters at each queue to capture 

the main effects of the dependence among the queues and the actual properties of the arrival 

process at each queue. 

 

The basic assumptions for queuing networks: 

(1) Arrival process of a queue is approximated as the output of its previous queue  

( 1) ( )a dc i c i+ =

 
(2) Each queue in the network is treated as independent sGG // models, so the standard 

deviation of total flow time is calculated by formula 22
2

2
1 ... nt σσσσ +++= . 

(3) In complex queues when the arrival at a queue is the output of several other queues or a 

random selection of departures from one or more queues (see the graphs below), we assume 

Poison arrivals. 

 

 

 

 

cd (i) = ca (i+1)
i i+1 

 
ca (i) 
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Since each queue is regarded as a sGG // queue specified by the basic parameters, the 

approximation here can be applied directly. More ever, because inter-arrival times at a queue in a 

network of queues are rarely independent (unless the arrival process is nearly Poisson) and 

because extra information about the arrival process at each queue is usually unavailable, the 

partially characterized sGG //  is appropriate.  

 

Interarrival at each queue is not typically independent, but the two parameter characterization is 

an approximation by a renewal process (having independent interarrival times). The idea is not to 

ignore the dependence among successive interarrival times, but to try to capture its essential 

properties with the variability parameters.  

 

Specifically, our models estimate all queuing network situations by using entering departure dc . 

So, we can estimate all kinds of sGG // network queues. When sGG // models appear as sub-

models, simple closed form analytic formulas are useful. For multi-class jobs, we use the law of 

total variance to calculate the pooled average and pooled variance of flow time. 

 

For the sMM // queuing series, the departure time distribution from sMM // queue is 

identical to the inter-arrival time distribution, namely, exponential. Hence, all stations are 

sMM // models.  

 

For the sGG // queues, our model can estimate all situations by using the proceeding departure 

dc as entering ac (Hopp and Spearman 2002).It doesn’t require any type of iterative algorithm to 

solve and is therefore easily implement-able in a spreadsheet program. This makes it possible to 

couple the single-station approximation with the multiple linking equations to create a 

spreadsheet tool for analyzing the performance of a series of queues. 

 

The next step is to characterize the departures from a workstation. We can use measures 

analogous to those used to describe arrivals, namely, the mean time between departure dt , the 

departure rate dd tr /1= , and the departure dc . In a serial queue, where all the output from queue 

i becomes input to queue 1+i , the departure rate from i  must equal the arrival rate to 1+i , so  
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)()1( itit da =+  in a serial line where departures from i  becomes arrival to 1+i , the departure c  

of workstation i  is the same as the inter-arrival c  of queue 1+i , ( 1) ( )a dc i c i+ =  

 

The one remaining issue to resolve concerning flow variability is how to characterize the 

variability of departures from a station in terms of information about the variability of arrivals 

and process times. Variability from a departure is the result of both variability in arrivals to the 

station and variability in the process times. The relative contribution of these two factors depends 

on the utilization of the workstation. 

 

Notice ρ  increases with both the arrival rate and the mean effective process time. An obvious 

upper limit on the utilization is one (that is 100 percent), which implies that the effective process 

times must satisfy 1)( ≤= sμλρ .If ρ  is close to one, then the station is almost always busy 

(heavy traffic). Therefore, under these conditions, the inter-departure from the queue will be 

essentially identical to the service times. Thus, we could expect the departure coefficient of 

variation to be the same as that of the service time (that is d sc c= ). 

 

At the other extreme, when ρ  is close to zero, the station is very lightly loaded. Virtually every 

time a job is finished, the queue has to wait a long time for another arrival. Because process time 

is a small fraction of the time between departures, interdependent times will be almost identical to 

inter-arrival times. Thus, under these conditions, we could expect the arrival and departure c  to 

be the same (that is d ac c= ) ．A good, simple method for interpreting between these two 

extremes is to use the square of the utilization as follows: 
2 2 2 2 2(1 )d s ac c cρ ρ= + − . 

 

If the server is always busy, so that, ρ =1, then 2 2
d sc c= . Similarly, if the machine is almost 

always idle, so that, ρ =0 then 2 2
d ac c= . For intermediate utilization levels,  

10 << ρ  , the departure dc  is a combination of the inter-arrival ac   and the service time sc . 

 

When there is more than one server at a queue (that is s>1), the following is a reasonable way to 

estimate dc  (Hopp and Spearman 2002).  
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2
2 2 2 21 (1 )( 1) ( 1)d a sc c c

s
ρρ= + − − + − . 

 

Note, this reduces to the above equation when s=1. This formula is used in our spreadsheet. The 

above results for flow time variability are building blocks for characterizing the effects of 

variability in the overall queuing networks. 

 

With our approximation procedure, we know each distribution is partially characterized by its 

first two moments, or equivalently, by its mean and squared coefficient of variation. The closed-

form formulas give an approximate squared coefficient for the arrival process to each queue and 

an approximate expected steady-state waiting time. The expressed steady-state waiting time for 

queues in series actually depends on the distributions beyond their first two moments, but 

experience indicates that fairly good approximation can often be obtained given this partial 

information. 

 

Given the 5 basic parameters, assuming ρ <1, we have a proper steady state queue. Our results 

show that the models yield a satisfactory approximation (in the order of 10 percent relative error), 

providing that the variability parameters ac  and sc  are either equal or less than 1. The violation 

of any of these conditions should be a clear warning. If one needs more accuracy, additional 

information about the distributions is needed.  
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Chapter 7  

Simulation 
 

7.1. Test the accuracy of the approximation by simulation  

 

We have discussed the analytical approach, i.e., when it is possible to describe a queuing situation 

analytically and obtain also by analytical methods and useful expressions, such as sMM //  , 

the average and standard deviation of waiting time and the average length of the queue, from 

which many useful measures are available.  

 

Due to the characteristics of the input or service mechanism and the nature of the queuing 

discipline, or combinations of the above, for sGG // queue, it is impossible to model 

analytically. The alternative methods are to simulate the system. The experiment must be 

repeated sufficiently often to obtain large samples and a variety of answers, which are then taken 

together in some manners to obtain a value for what is desired. This is a very useful method in 

practice whenever complicated problems require immediate answers.  

 

While simulation may offer a “way out” for many analytical intractable models, it is not in itself a 

panacea. There are considerable numbers of pitfalls one may encounter in using simulation. Great 

care is required to obtain correct simulation with enough samples and to properly combine the 

results to obtain an answer. 

 

Since simulation is comparable to analysis by experimentation, one has all the usual problems 

associated with running experiments in order to make inferences concerning the real world, and 

must be concerned with such things as run length, number of replications, and statistical 

significance. 

 

To achieve meaningful results, a great deal of care and thought must go into planning and running 

the simulators, especially in the areas run-length determination and the interpretation of the 

output. Another drawback to simulation analysis occurs if one is interested in optimal design of 

queuing systems. How close one gets to optimality in a simulation study often depends on how 

clever the analysis is in considering the alternatives to be investigated.  
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Because of this, simulation has often been referred to as art. Nevertheless, simulation can be an 

extremely important tool and is often the only procedure that can be used in analyzing many of 

the complex queuing systems encountered in practice. The success or failure of a simulation 

study often lies in how it is used and how the output is interpreted. 

 

The purpose of conducting simulation in our research is to test the accuracy of the 

approximations. Since no closed-form analytical results are available for sGG // models, to 

evaluate the accuracy of our approximations, we conduct simulation experiments using the 

Extend simulation program. The testing of our approximations has been based on extensive 

simulation experiments. These simulation experiments are indispensable parts of our research on 

the sGG // queue. 

 

To verify the quality of the approximations, it is necessary to resort to analyses by simulation. It 

should be emphasized , however, that if analytical models are achievable, they should be used and 

that simulation should be relied upon only in cases where analytical models are either not 

achievable and approximations not acceptable or they are so complex that solution is prohibitive. 

 

 A simulation model can be considered as consisting of three basic phases: data generation, 

bookkeeping, and output analysis. Data generation involves the production of representative 

inter-arrival times and service times where needed throughout the queuing system. Generally, this 

involves producing representative observations from pre-specified probability distributions, and it 

is this aspect to which the term Monte Carlo has been applied. Thus, a Monte Carlo simulation is 

one in which it is necessary to generate at least one stream of random observations from some 

specified probability distribution (either a theoretical or empirical distribution).Most queuing 

simulations are of the Monte Carlo type. For the sGG // queue, we conduct a Monte Carlo 

simulation due to its inherent random nature. 

 

7.2 Approach for using simulation  

 

Simulation is indeed a process. We basically follow the following steps suggested by the Extend 

program in our simulation process. 
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1. Identify the problem, set objectives of the model, and plan the project. 

The purpose is to understand important cause/effect relationships so that this outcome can be 

improved, also evaluate proposed changes or decision alternative, or to forecast system behavior 

under different input conditions.  

 

2. Define the system 

Identify factors such as system components, descriptive variables, and interactions (logic) that 

constitute the system. Agree on a level of details and boundaries of the system. A good way to 

develop this understanding is through the use of a Cause-Effective analysis, where the effect is 

the critical process metric.  

 

3. Create conceptual models by identifying factors and determining functional relationships. 

Identify factors to model, with a mind toward simplification.  

 

4. Plan the experiments. Tie the model to the system and select what is to be varied. 

Tie the model to the system by defining output messages of the system, which should be 

generated by the model for purposes of comparison and decision-making. This sets up some pre-

work necessary for establishing the credibility of a model so that predictions under conditions 

untried in the current system can be corroborated.  

 

 A critical metric system measures performance relative to a critical system requirement. It is in 

terms of this metric that the gap between current performance and target should be stated to 

justify the simulation effort. A critical metric is used to validate the model and to judge the effect 

of system changes. (Our research uses this measurement). 

 

5. Prepare the input data. 

Identify and collect data to model the descriptive input variables. Create a statistical model to 

characterize the variables, two situations we meet are: 

(1) No Existing data, where we must use our best conjecture and some knowledge of the typical 

distributions that associated with different kinds of processes. (For priority and two workstations) 

(2) Existing data, where a fit a distribution to the available data. Using knowledge of the 

distributions associated with different kinds of process to help us.  
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6. Formulate the simulation model. 

We have to determine the appropriate kind of simulation model to build. Some choices (discussed 

in more details later on in this chapter) are discrete event, continuous, or mixed. 

 

7. Verify and validate the model. 

Confirm that the model works the way we intend it to. Then confirm that the model is 

representative of the actual system. Validation is done by comparing symptom and critical metric 

output data from the model with the same output from the actual system. This is most effective if 

system and model outputs are generated under a wide range of input conditions. The model may 

have to be refined at this point if the difference between model and system results does not meet 

the criteria set in step 4. 

 

8. Design the experiments to run. 

Determine the final experimental design. Issues beyond the factors/levels to run are warm-up 

period, length of run, number of runs of each alternative, etc. 

 

9. Run experiments, analyze data, and interpret results. 

Run the experiments, and draw inferences from the data generated. 

 

10. Implement the decisions. Make use of the findings. 

 

11. Document and maintain the model. 
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An executive view of the approach is shown below (Extend software manual).    

 

  

 

 

Process Modeling Method 
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7.3 Analysis of the results 

 

We compare the approximations with the simulation values of the standard deviations of waiting 

time (See appendices).  These numerical comparisons show that our approximation performs 

remarkably well.  

 

In this simulation research, we concentrate on a single queue with and without priority, and the 

special case of only two queues. We use Manzana case study to discuss queuing networks. 

 

To estimate the mean and standard deviation of steady-state waiting times, we conduct 4 

experiments using the Extend simulation program. In each case, we performed independent 

replications using 54000 minutes of simulation time and estimated 95 % confidence intervals.  

 

The four experiments are: 

(1) single queue without priority 

(2) single queue with 4 priority classes 

(3) two tandem queues to test Central Limit Theory( covariance) 

(4) Manzana case study to test queuing networks 

 

For each experiment, we first use Excel spreadsheet model to formulate our approximation results. 

Then we use Extend software to simulate corresponding spreadsheets so that we can compare the 

two results. 

  

We characterize the queuing models by the parameters , ,a sc c and sρ . Here ac is the coefficient 

of variation of an inter-arrival time; sc  is the coefficient of variation of the service time; ρ is the 

utilization and s is the number of servers. We specify the distributions to go with the first two 

moments. We considered various parameters for all combinations of the utilization ρ =0.8 and 

ρ =0.9. 

 

For each queue, we consider 4 values of ac  and sc : 0, 0.5, 1, and 1.5. Thus, with two utilizations 

ρ =0.8 and ρ =0.9, we have 32 cases. 
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(4 values of ac ) ×  (4 values of sc ) ×  2 =32 

 

The number of servers could be 1, 2 or 3. So we have 32 ×  3= 96 scenarios. For the first 3 

experiments, we totally have 96 ×  3=288 scenarios. The last experiment is the combination of 

first 3 experiments to test queuing networks by using the Manzana case. 

 

When coefficient of variation c=0, we use a deterministic distribution; c=0.5 and 1.5 Gamma 

distribution; and c=1 exponential distribution. For a deterministic distribution, we can calculate 

constant inter-arrival rate and constant service rate. For an exponential distribution, we calculate 

interarrival rate λ and process rate μ . For the Gamma distribution, we first calculate scale and 

shape parameters. We then key in the parameters in the Extend simulation blocks to obtain 

different queuing models. 

 

Weibull, Erlang, lognormal or Pareto were used as the sGG // queue in simulation literature 

(Whitt 2004). In our research, Gamma distribution is used as general distribution. When shape 

parameter k  is positive integer, Gamma is called Erlang. When k =1, it is exponential. 

When ∞→k , it is deterministic. 

 

PDF of Gamma distribution: 
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We calculate shape and scale parameters and input the simulation blocks. (See appendices). 

 

Extend is a widely used simulation software.With Extend, we create a block diagram of a process 

where each block describes one part of the process. In Extend, we lay out our process in a two-



 72

dimensional drawing environment. Extend provides the equivalent of a moving picture. We use 

Extend's iterative technique to create models of real-world processes that are too complex to be 

easily represented in a spreadsheet. 

 

In Extend, the Generator block from the Generators submenu of the Discrete Event library is used 

to provide items at exponential inter-arrival times (and many other inter-arrival times as well). 

The Queue FIFO block holds the items, releases them first-in, first-out, and can have a maximum 

queue length specified in the dialog. The Activity Delay (from the Activities submenu of the 

Discrete Event library), Machine, and Station blocks (from the Activities submenu of the 

Manufacturing library) represent servers: you specify an exponential service time by connecting 

an Input Random Number block (Inputs/Outputs submenu of the Generic library) to the D (delay) 

connector on those blocks. 

 

The Discrete Event and Manufacturing libraries allow us to select the type of queue (FIFO, LIFO, 

priority, or queuing by matching attribute names and/or values) required for our models. 

 

For a single queue without priority, we use 7 Extend blocks: generator, timer, queue (FIFO), 

mean & variance, input (random number), activity (multiple). 

 

For the single queue with priority, we consider 4 priority classes with workload fraction 0.25 for 

each class. We use the queue (attribute) block to measure priority classes. All other blocks are the 

same as without priority queue blocks. We collect data of different priority classes and use Excel 

to calculate the mean and standard deviation of each class. 

 

To test Central Limit Theory (covariance), we consider two tandem queues. Two queues have 

same service rate and number of servers, as well as same c . Just as before, we use deterministic, 

exponential and Gamma distributions when c =0, c =1 and c =0.5 and 1.5 respectively. 

 

Finally, we demonstrate the use of these results by applying the approximations to an analysis of 

the Harvard Business Case Manzana Insurance and compare the results of the analysis to those 

obtained via a Monte Carlo simulation. 

We use data from Manzana Insurance to develop spreadsheet models. We develop three models: 

(1) the current system with and without priority queue. (2) Combined UT with and without 
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priority queue. (3) Moving one policy writer to distribution.  Then, we conduct the corresponding 

simulations using Extend, exploiting same data from Manzana so as to compare the results of 

spreadsheets with those from simulations. Last, we estimate the quality of the approximations by 

comparing total flow times, standard deviations and “worst cases” of different scenarios. 

Extensive simulations show that our approximation methods are simple yet fairly good in their 

performance.  

 

For multi-classes of jobs (in Manzana Case), we use the law of total variance to calculate pooled 

average and pooled variance.  

 

Coefficient of variation calculation for multi-products (see appendices) 

 

Conditional Variance (Law of Total Covariance) 
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The above formula is used in the Manzana case study to calculate total variance of different types 

of arrivals so that we can calculate total coefficient of variation of service time. 
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Numerical comparison 

 

We present a representative set of tables comparing the approximations with exact (simulation) 

values. Before discussing these tables in detail, we comment how we evaluate the quality of the 

approximations. 

 

There are two standard ways to measure the quality of queuing approximations: absolute 

difference and relative percentage error (Whitt 1993). We contend that neither procedure alone is 

usually suitable over the entire range of values. We can obtain satisfactory results if either the 

absolute difference is below a critical threshold or the relative percentage error is below another 

critical threshold. Thus, a final adjusted measure of error (AME) might be:  

 

{ }./).(100,.min exactapproxexactapproxeaxctAError −−= . 

 

A is a constant chosen in each instance to reflect the relative importance of absolute difference 

and the relative percentage of error. 

 

In our comparisons, we choose A=1 for simplicity. Although we don’t display the calculations of 

any specific measures of errors, our discussion explains the goals. Either the relative percentage 

error or the absolute difference should be small. 

 

Here we have 4 simulation results corresponding to 4 different experiments. 

Table 1 contains the simulation for queue without priority. Table 2 contains the simulation results 

with priority. Table 3 contains results for testing CLT. Table 4 contains queuing networks with 

the Manzana case study. 

 

These tables display expected mean and standard deviation of flow time in specific queuing 

systems. The difference and relative error analysis are displayed in a separate spreadsheet.  

 

We compare the approximations for the standard deviation of waiting time with simulation values 

generated by Extend simulators. The cases considered are sGG // queue with 8.0=ρ  

and 9.0=ρ  respectively. For these cases, in which both 1 1a sc and c≤ ≤ ， the approximations 
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appear to be remarkably accurate. (The calculation is exact for sMM // queue and imbedded 

Markov queues ( 1// MEk  and 1// αEM ). 

 

Consistent with remarks by Hopp and Spearman (2002) and Whitt (2002), but deserving more 

emphasis, we conclude that the key factor is variability. The results indicate that if the coefficient 

of variation (either interarrival or service time) is 1.5, our approximations are not precise. 

However, when the coefficient of variation is small, we can see simulation results match with 

spreadsheet results well regardless of utilization and server number. 

 

In general, the accuracy improves as coefficient of variation decreases. The weak part of 

approximation scheme seems to be priority queues with lowest priority class when the utilization 

is high. Overall, the approximations seem to be sufficiently accurate for practical operations 

purposes. 
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Chapter 8 

Summary  
 

8.1 Contributions to knowledge  

 

In this research, we have developed mathematically tractable expressions for the standard 

deviation of waiting time for sMG // and / /1M G queues. We provide an approximation for 

the standard deviation of flow time in system for a general multi-server queue with infinite 

waiting capacity ( sGG // ). The approximation requires only the mean and standard deviation or 

the coefficient of variation of the inter-arrival and service time distributions, and the number of 

servers. We also extend the approximations to the sGG //  priority queues and queuing 

networks. The quality of the approximations is not the same for all cases, but  in comparisons to 

Monte Carlo simulations has proven to give good approximations (within + 10%) for cases in 

which the coefficients of variation for the inter-arrival and service times are between 0 and 1. A 

significant feature of the approximation methods is that it is mathematically intractable and can 

be implemented in a spreadsheet format.  The following are the outlines of the contributions:  

 

1. We derive the standard deviation of waiting time in system for 1// MM and 

sMM // queues, as well as imbedded Markov chain queues ( 1// MG , sMG // ). We found 

that for all these queue models, the following relation holds regardless of 

distribution q
q

q
q W

TP
TP

⋅
>

>−
=

)0(
)0(2

σ .  qσ  is just a function of )0( >qTP and qW , i.e.  Standard 

deviation of waiting time is just a function of probability of waiting and average waiting time. 

 

2.  We present a general expression for the coefficient of variation of waiting time ( qc ), which is 

applicable to the sMG // and / /1M G  queues. We conjecture that this expression provides a 

good approximation for sGG //  queues and have validated this conjecture via computer 

simulations. For sMG //  and / /1M G  queues: 

qc =
3

2 2

(1 ( 0))4 [ ]1
3 ( [ ])

qP TE s
E sλ

− >
+                           (8.1) 
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Where )0( >qTP is the probability of waiting, ][ 2sE and ][ 3sE  are the second and third 

moments of the service time distribution.  

 

3. We examine the sensitivity of the formula (1) to errors in estimating ][ 3sE , given that the other 

parameters )0( >qTP and ][ 2sE are known. We find that the formula is relatively insensitive to 

the errors in estimating ][ 3sE .Suppose a small change in ][ 3sE , expressed as a proportion P , 

is ][][ 33 sEPsE ⋅=Δ , the resulting change in qc  is at most 2/P , P
c
c

q

q 5.0≤
Δ

. 

 

Similarly, we examine the sensitivity of the formula (8.1) to errors in estimating )0( =qTP . 

Suppose a small change in )0( =qTP , expressed as a proportion P , 

is )0()0( =⋅==Δ qq TPPTP , the resulting change in qc is at most 2/P , that is P
c
c

q

q 5.0≤
Δ

. 

 

4. For sMM // , we derived qq WsTP )()0( λμ −=> .  

For sGG // , we develop point based interpolation model to estimate the probability of waiting in 

sGG // queue: 
as

asas
k

q cc
ccccr

TP
−

−+−
=>

1
)1)('()1(

)0(
μλ

 

 

5. We develop a queuing system performance predictor based upon the above results. The 

prediction generalizes the approximations proposed in our research.  For these models, we only 

need the basic 5 parameter , , , ,a ss c and cλ μ to measure the performances of all kinds of 

steady-state unlimited capacity queues. We believe that our two moment approximation will be 

beneficial to those practitioners who like simple and quick answers to their queuing systems. 
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8.2   Limitations and future directions  

 

(1) For priority queues, we have testes 4 priority classes and our approximation methods indicate 

that the performance for the lowest class in the sGG // queue is not accurate and 

satisfactory. We need to test more classes, such two and three classes to see if we can obtain 

the same conclusion. 

 

(2) For coefficient of variations of interarrival time or service time greater than 1, the 

approximations are less reliable. Its performance tends to deteriorate as the sc and ac  get 

further away from 1, especially in the case of light traffic. Currently, we know of no general 

models for the standard deviation of waiting time with the coefficients of variation outside 

this range 1, ≤sa cc .Also no computer package is commonly available that would enable us 

to compute exact performances numerically.  For these cases, they have not yet been studied 

sufficiently and such descriptions evidently depend more critically on the missing 

information (the discussions beyond the first two moments). More sophisticated numerical 

procedures are needed for those cases.  

 

(3) For simulation testing we have considered different combinations of four values of ac  and 

sc respectively: 0, 0.5, 1, 1.5 with two utilizations 8.0=ρ  and 9.0=ρ . The other 

combination values of ac  and sc , such as 0.25, 0.75 needs to be tested to make sure our 

approximations can be used in a wide range of applications. In the literature, we have seen 

Seelan and TIJM (1984) and Whitt (1989) used Erlang and H (hyperexponential) distribution 

to represent general distribution. In our simulation experiments, we have used gamma 

distribution to represent general distribution. We can test other distributions, such as 

hyperexponential, Weibull and normal distributions. 

 

 

(4) The research results can be extended to estimate the performances of batch, balking, optimal 

design and other queuing system applications.  
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(5) The approximation models presented in this research could be used in scheduling, inventory, 

insurance management, reliability and maintenance, and many other operations and supply 

chain systems. 
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Appendix 1 Simulation experiment for a single queue without priority 
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Appendix 2 Simulation experiment for a single queue with 4 priority classes 
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Appendix 3 Simulation experiment for a two queues in a series 

1 2 3

Rand

3V 1 2

1 2 3

Rand

count

ev ent

MD

sensor

CD L W

F U
F

L W

Exit
#

44959
CD L W

F U
F

L W

Clear

m

v

M

V

SD

MD

sensor

Clear

m

v

M

V

SD

D Mean

D StdDev

 
 



 90

 Errors Analysis and Main Effects (nonpriority queue)
Note: all errors are relative error=(approx.-simu.)/simu.

Errors of average flow time % (Utilization 0.8)
including 1，2，and 3 servers 
CV Min. Ave. Max.
(0,0) 0 0 0
(0,0.5) 4.55 8.12 11.11
(0,1) 6.19 8.9 11.76
(0,1.5) 8.37 13.7 17.31
(0.5,0) 4.55 6.8 8.7
(0.5,0.5) 5.45 6.56 8.11
(0.5,1) 4.48 7.09 8.86
(0.5,1.5) 6.67 8.58 11.63
(1,0) -2.44 -1.34 0
(1,0.5) -3.45 -0.51 2.38
(1,1) -4.31 -1.04 1.2
(1,1.5) 0 1.32 2.6
(1.5,0) -22.81 -21.55 -20.78
(1.5,0.5) -8.05 -7.1 -6.47
(1.5,1) -5.06 0.88 10.17
(1.5,1.5) 1.01 2.77 3.7

Errors of average flow time %(Utilization 0.9)
including 1，2，and 3 servers 
CV Min. Ave. Max.
(0,0) 0 0 0
(0,0.5) 3.33 5.35 8.86
(0,1) 0 1.27 2.44
(0,1.5) 0 11.83 23.16
(0.5,0) 3.85 4.6 5.08
(0.5,0.5) 0 2.87 6.25
(0.5,1) 0 1.41 2.86
(0.5,1.5) 7.46 15.29 20.27
(1,0) -7.17 -3.86 -2.08
(1,0.5) -3.57 -2.27 -0.67
(1,1) -9.4 -2.4 4.17
(1,1.5) 0.63 9.27 14.23
(1.5,0) -5.31 -1.01 3.14
(1.5,0.5) -2.31 -1.11 0.2
(1.5,1) 0.32 2.53 4.81
(1.5,1.5) -6.59 3.27 11.2

Errors of standard deviation % (Utilization 0.8)
including 1，2，and 3 servers 
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Errors of average flow time %(utilization 0.9)
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Different number of servers
average flow time % (Utilization 0.8)
1 server 2 servers 3 servers

0 0 0
11.11 8.7 4.55
6.19 11.76 8.77
8.37 17.31 15.38
7.14 8.7 4.55
8.11 5.45 6.12
4.48 8.86 7.94
6.67 7.44 11.63

-2.44 0 -1.59
-3.45 2.38 0
-4.31 0 1.2
1.35 2.6 0

-22.81 -20.78 -21.05
-8.05 -6.47 -6.8
-5.06 -2.47 10.17
1.01 3.59 3.7

average flow time %(Utilization 0.9)
1 server 2 servers 3 servers

0 0 0
8.86 3.33 3.85
1.38 2.44 0

0 23.16 12.33
4.88 5.08 3.85
2.36 0 6.25

0 1.37 2.86
7.46 18.14 20.27

-7.17 -2.23 -2.08
-2.56 -0.67 -3.57
-1.96 -9.4 4.17
14.23 0.63 12.95
-5.21 -0.85 3.14

0.2 -2.31 -1.11
2.45 0.32 4.81

-6.59 5.19 11.2

Error of average flwo time %(utilization 0.8)
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Errors of standard deviation % (Utilization 0.8)
CV 1 server 2 servers 3 servers
(0,0) 0 0 0
(0,0.5) 3.23 0 0
(0,1) -5.36 -1.59 -1.96
(0,1.5) -1.3 5.98 3.37
(0.5,0) 4.35 20 15.94
(0.5,0.5) 1.96 3.23 0
(0.5,1) -4.48 -2.7 0
(0.5,1.5) -1.95 -2.9 3.16
(1,0) -2.97 6.67 6.67
(1,0.5) -3.13 1.59 0
(1,1) 0 0 1.37
(1,1.5) 0.93 1.82 -3.28
(1.5,0) -17.91 -25 -32.69
(1.5,0.5) 6.03 0.83 1.23
(1.5,1) -4.76 3.85 0.92
(1.5,1.5) 5.46 3.23 7.69

Errors of standard deviation % (Utilization 0.9)
CV 1 server 2 servers 3 servers
(0,0) 0 0 0
(0,0.5) 1.89 -5.88 -3.7
(0,1) -1.44 -3.64 -8.43
(0,1.5) -6.03 22.34 10.34
(0.5,0) -3.85 -4 6.67
(0.5,0.5) -1.92 5.26 0
(0.5,1) 0.8 -1.52 1.1
(0.5,1.5) 3.51 8.55 21.68
(1,0) -3.41 4.26 1.54
(1,0.5) -0.79 5.88 -1.18
(1,1) -1.72 -6.48 9.52
(1,1.5) 26.95 -2.67 12.69
(1.5,0) 4.43 5.71 20.33
(1.5,0.5) 10.42 7.83 12.93
(1.5,1) 12.31 5.19 19.13
(1.5,1.5) 0 7.91 17.05

Error of standard deviation %(utilization 0.8)
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Test Covariance of Two queu(including 1,2,and 3 servers)

Note:all errors are relative error=(approx-simu.)/simu.

Case1 CVa=0 CVs=0 arrival mean service mean
utilization=0.8 Total 0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 0.2 0.2 0.4 0.4 0.4

lamda=4 std 0 0 0 0 0 0.25
mu=5

2 mean 0.2 0.2 0.4 0.4 0.4
lamda=8 std 0 0 0 0 0 0.125
mu=5

3 mean 0.2 0.2 0.4 0.4 0.4
lamda=12 std 0 0 0 0 0 0.08333
mu=5

Case2 CVa=0 CVs=0.5 arrival mean service
utilization=0.8 scale=0.05

server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=4
1 mean 0.3 0.36 0.66 0.58 0.58

lamda=4 std 0.16 0.22 0.27 0.23 0.22 0.25
mu=5

2 mean 0.25 0.3 0.55 0.49 0.48
lamda=8 std 0.12 0.17 0.21 0.17 0.17 0.125
mu=5

3 mean 0.23 0.27 0.50 0.45 0.45
lamda=12 std 0.11 0.14 0.18 0.15 0.15 0.08333
mu=5

Case3 CVa=0 CVs=1 arrival mean service
utilization=0.8 mean=0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 0.6 0.86 1.46 1.28 1.29

lamda=4 std 0.53 0.83 0.99 0.87 0.87 0.25
mu=5

2 mean 0.38 0.5 0.88 0.79 0.76
lamda=8 std 0.31 0.44 0.54 0.47 0.5 0.125
mu=5

3 mean 0.31 0.38 0.69 0.62 0.61
lamda=12 std 0.25 0.33 0.41 0.36 0.36 0.08333
mu=5

Case4 CVa=0 CVs=1.5 arrival mean service
utilization=0.8 scale=0.45

server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=0.44
1 mean 1.1 1.68 2.78 2.44 2.43

lamda=4 std 1.14 1.83 2.16 1.75 1.63 0.25
mu=5

2 mean 0.61 0.83 1.44 1.18 1.27
lamda=8 std 0.62 0.88 1.08 0.87 0.92 0.125
mu=5

3 mean 0.45 0.57 1.02 0.9 0.9
lamda=12 std 0.46 0.61 0.76 0.67 0.67 0.08333
mu=5
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Case5 CVa=0.5 CVs=0 arrival service mean
utilization=0.8 0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 0.3 0.24 0.54 0.48 0.47 scale=0.0625

lamda=4 std 0.12 0.04 0.13 0.11 0.1 shape=4
mu=5

2 mean 0.25 0.25 0.5 0.43 0.43 scale=0.03125
lamda=8 std 0.06 0.07 0.09 0.05 0.06 shape=4
mu=5

3 mean 0.23 0.24 0.47 0.42 0.42 scale=0.0208

lamda=12 std 0.04 0.06 0.07 0.03 0.03 shape=4
mu=5

Case6 CVa=0.5 CVs=0.5 arrival service

utilization=0.8 scale=0.05
server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=4

1 mean 0.4 0.4 0.8 0.72 0.75 scale=0.0625
lamda=4 std 0.26 0.26 0.37 0.34 0.37 shape=4

mu=5
2 mean 0.29 0.32 0.61 0.55 0.55 scale=0.03125

lamda=8 std 0.16 0.18 0.24 0.21 0.22 shape=4
mu=5

3 mean 0.26 0.28 0.54 0.5 0.5 scale=0.0208
lamda=12 std 0.13 0.15 0.2 0.18 0.16 shape=4
mu=5

Case7 CVa=0.5 CVs=1 arrival service
utilization=0.8 mean=0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 0.7 0.89 1.59 1.47 1.51 scale=0.0625

lamda=4 std 0.64 0.87 1.08 0.97 1.04 shape=4
mu=5

2 mean 0.43 0.51 0.94 0.84 0.82 scale=0.03125
lamda=8 std 0.36 0.46 0.59 0.52 0.5 shape=4

mu=5
3 mean 0.34 0.39 0.73 0.67 0.68 scale=0.0208

lamda=12 std 0.28 0.34 0.44 0.39 0.42 shape=4
mu=5

Case8 CVa=0.5 CVs=1.5 arrival service
utilization=0.8 scale=0.45

server No. queue1 queue2 spreadsheet simulatsimu.2 shape=0.44

1 mean 1.2 1.71 2.91 2.7 2.82 scale=0.0625
lamda=4 std 1.26 1.88 2.26 2 2.2 shape=4
mu=5

2 mean 0.65 0.84 1.49 1.25 1.26 scale=0.03125

lamda=8 std 0.67 0.9 1.12 0.91 0.9 shape=4
mu=5

3 mean 0.48 0.58 1.06 0.93 0.96 scale=0.0208

lamda=12 std 0.49 0.62 0.79 0.68 0.69 shape=4
mu=5
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Case9 CVa=1 CVs=0 arrival mean service mean
utilization=0.8 0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 0.6 0.34 0.94 0.8 0.8

lamda=4 std 0.49 0.18 0.52 0.49 0.47 0.25
mu=5

2 mean 0.38 0.3 0.68 0.58 0.58
lamda=8 std 0.24 0.13 0.27 0.24 0.23 0.125
mu=5

3 mean 0.31 0.27 0.58 0.51 0.51
lamda=12 std 0.16 0.1 0.19 0.15 0.15 0.08333
mu=5

Case10 CVa=1 CVs=0.5 arrival mean service
utilization=0.8 scale=0.05

server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=4
1 mean 0.7 0.51 1.21 1.16 1.17

lamda=4 std 0.62 0.39 0.73 0.72 0.7 0.25
mu=5

2 mean 0.43 0.36 0.79 0.77 0.75
lamda=8 std 0.32 0.24 0.4 0.4 0.38 0.125
mu=5

3 mean 0.34 0.31 0.65 0.64 0.62
lamda=12 std 0.22 0.18 0.28 0.29 0.28 0.08333
mu=5

Case11 CVa=1 CVs=1 arrival mean service
utilization=0.8 mean=0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 1 1 2 2.2 2

lamda=4 std 1 1 1.41 1.55 1.31 0.25
mu=5

2 mean 0.56 0.56 1.12 1.1 1.07
lamda=8 std 0.52 0.52 0.74 0.72 0.69 0.125
mu=5

3 mean 0.42 0.42 0.84 0.8 0.81
lamda=12 std 0.37 0.37 0.52 0.5 0.51 0.08333
mu=5

Case12 CVa=1 CVs=1.5 arrival mean service
utilization=0.8 scale=0.45

server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=0.44
1 mean 1.5 1.82 3.32 3.09 3.03

lamda=4 std 1.62 2.01 2.58 2.2 2.22 0.25
mu=5

2 mean 0.79 0.89 1.68 1.57 1.54
lamda=8 std 0.84 0.96 1.28 1.18 1.12 0.125
mu=5

3 mean 0.56 0.61 1.17 1.08 1.14
lamda=12 std 0.59 0.66 0.89 0.82 0.86 0.08333
mu=5
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Case13 CVa=1.5 CVs=0 arrival service mean
utilization=0.8 0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 1.1 0.52 1.62 1.38 1.4 scale=0.563

lamda=4 std 1.1 0.4 1.17 1.04 1.08 shape=0.444
mu=5

2 mean 0.61 0.38 0.99 0.83 0.9 scale=0.282
lamda=8 std 0.51 0.24 0.56 0.49 0.58 shape=0.444
mu=5

3 mean 0.45 0.32 0.77 0.67 0.69 scale=0.188
lamda=12 std 0.35 0.17 0.39 0.32 0.34 shape=0.444
mu=5

Case14 CVa=1.5 CVs=0.5 arrival service

utilization=0.8 scale=0.05
server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=4

1 mean 1.2 0.69 1.89 2.03 1.83 scale=0.563
lamda=4 std 1.23 0.61 1.37 1.56 1.38 shape=0.444
mu=5

2 mean 0.65 0.45 1.1 1.06 1.05 scale=0.282
lamda=8 std 0.61 0.34 0.69 0.68 0.64 shape=0.444
mu=5

3 mean 0.48 0.36 0.84 0.84 0.82 scale=0.188
lamda=12 std 0.41 0.24 0.48 0.47 0.45 shape=0.444
mu=5

Case15 CVa=1.5 CVs=1 arrival service
utilization=0.8 mean=0.2

server No. queue1 queue2 spreadsheet simu.1 simu.2
1 mean 1.5 1.18 2.68 2.95 2.75 scale=0.563

lamda=4 std 1.6 1.22 2.01 2.52 2 shape=0.444
mu=5

2 mean 0.79 0.64 1.43 1.38 1.41 scale=0.282
lamda=8 std 0.81 0.62 1.02 0.98 0.94 shape=0.444
mu=5

3 mean 0.56 0.47 1.03 1.06 1.12 scale=0.188
lamda=12 std 0.55 0.43 0.7 0.7 0.77 shape=0.444

mu=5

Case16 CVa=1.5 CVs=1.5 arrival service
utilization=0.8 scale=0.45

server No. queue1 queue2 spreadsheet simu.1 simu.2 shape=0.44
1 mean 2 2 4 4.6 4.5 scale=0.563

lamda=4 std 2.22 2.22 3.14 3.56 3.79 shape=0.444
mu=5

2 mean 1.01 0.97 1.98 2.08 1.85 scale=0.282
lamda=8 std 1.12 1.07 1.55 1.68 1.39 shape=0.444
mu=5

3 mean 0.7 0.66 1.36 1.36 1.34 scale=0.188
lamda=12 std 0.77 0.72 1.05 1.01 1.03 shape=0.444
mu=5  
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Single queue without priority

Note:all errors are relative error=(approx.-simu.)/simu.

Case1 CVa=0 CVs=0 arrival mean service mean
utilization=0.8 0.2

server No. spreadsheet simulation1 simulation2
1 mean 0.2 0.2 0.2

lamda=4 std 0 0 0 0.25
mu=5

2 mean 0.2 0.2 0.2
lamda=8 std 0 0 0 0.125
mu=5

3 mean 0.2 0.2 0.2
lamda=12 std 0 0 0 0.08333
mu=5

Case2 CVa=0 CVs=0.5 arrival mean service
utilization=0.8 scale=0.05

server No. spreadsheet simulation1 simulation2 shape=4
1 mean 0.3 0.27 0.27

lamda=4 std 0.16 0.16 0.15 0.25
mu=5

2 mean 0.25 0.23 0.23
lamda=8 std 0.12 0.12 0.12 0.125
mu=5

3 mean 0.23 0.22 0.22
lamda=12 std 0.11 0.11 0.11 0.08333
mu=5

Case3 CVa=0 CVs=1 arrival mean service
utilization=0.8 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 0.6 0.56 0.57

lamda=4 std 0.53 0.56 0.56 0.25
mu=5

2 mean 0.38 0.33 0.35
lamda=8 std 0.31 0.3 0.33 0.125
mu=5

3 mean 0.31 0.29 0.28
lamda=12 std 0.25 0.26 0.25 0.08333
mu=5

Case4 CVa=0 CVs=1.5 arrival mean service
utilization=0.8 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 1.1 0.99 1.04

lamda=4 std 1.14 1.11 1.2 0.25
mu=5

2 mean 0.61 0.52 0.52
lamda=8 std 0.62 0.59 0.58 0.125
mu=5

3 mean 0.45 0.4 0.38
lamda=12 std 0.46 0.45 0.44 0.08333
mu=5
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Case5 CVa=0.5 CVs=0 arrival service mean

utilization=0.8 0.2
server No. spreadsheet simulation1 simulation2

1 mean 0.3 0.28 0.28 scale=0.0625
lamda=4 std 0.12 0.11 0.12 shape=4
mu=5

2 mean 0.25 0.23 0.23 scale=0.03125
lamda=8 std 0.06 0.05 0.05 shape=4
mu=5

3 mean 0.23 0.22 0.22 scale=0.0208
lamda=12 std 0.04 0.035 0.034 shape=4
mu=5

Case6 CVa=0.5 CVs=0.5 arrival service
utilization=0.8 scale=0.05

server No. spreadsheet simulation1 simulation2 shape=4
1 mean 0.4 0.37 0.37 scale=0.0625

lamda=4 std 0.26 0.26 0.25 shape=4
mu=5

2 mean 0.29 0.28 0.27 scale=0.03125
lamda=8 std 0.16 0.16 0.15 shape=4
mu=5

3 mean 0.26 0.24 0.25 scale=0.0208
lamda=12 std 0.13 0.13 0.13 shape=4
mu=5

Case7 CVa=0.5 CVs=1 arrival service
utilization=0.8 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 0.7 0.68 0.66 scale=0.0625

lamda=4 std 0.64 0.68 0.66 shape=4
mu=5

2 mean 0.43 0.41 0.38 scale=0.03125
lamda=8 std 0.36 0.38 0.36 shape=4
mu=5

3 mean 0.34 0.32 0.31 scale=0.0208
lamda=12 std 0.28 0.29 0.27 shape=4

mu=5

Case8 CVa=0.5 CVs=1.5 arrival service
utilization=0.8 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 1.2 1.17 1.08 scale=0.0625

lamda=4 std 1.26 1.3 1.27 shape=4
mu=5

2 mean 0.65 0.61 0.6 scale=0.03125
lamda=8 std 0.67 0.69 0.69 shape=4
mu=5

3 mean 0.48 0.42 0.44 scale=0.0208
lamda=12 std 0.49 0.46 0.49 shape=4
mu=5  
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Case9 CVa=1 CVs=0 arrival mean service mean
utilization=0.8 0.2

server No. spreadsheet simulation1 simulation2

1 mean 0.6 0.62 0.61
lamda=4 std 0.49 0.5 0.51 0.25
mu=5

2 mean 0.38 0.38 0.38
lamda=8 std 0.24 0.22 0.23 0.125
mu=5

3 mean 0.31 0.32 0.31
lamda=12 std 0.16 0.15 0.15 0.08333
mu=5

Case10 CVa=1 CVs=0.5 arrival mean service
utilization=0.8 scale=0.05

server No. spreadsheet simulation1 simulation2 shape=4
1 mean 0.7 0.72 0.73

lamda=4 std 0.62 0.63 0.65 0.25
mu=5

2 mean 0.43 0.42 0.42
lamda=8 std 0.32 0.32 0.31 0.125

mu=5
3 mean 0.34 0.34 0.34

lamda=12 std 0.22 0.22 0.22 0.08333
mu=5

Case11 CVa=1 CVs=1 arrival mean service
utilization=0.8 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 1 1.08 1.01

lamda=4 std 1 1.03 0.97 0.25
mu=5

2 mean 0.56 0.54 0.58
lamda=8 std 0.52 0.5 0.54 0.125
mu=5

3 mean 0.42 0.41 0.42
lamda=12 std 0.37 0.35 0.38 0.08333
mu=5

Case12 CVa=1 CVs=1.5 arrival mean service

utilization=0.8 scale=0.45
server No. spreadsheet simulation1 simulation2 shape=0.44

1 mean 1.5 1.45 1.51
lamda=4 std 1.62 1.7 1.51 0.25
mu=5

2 mean 0.79 0.79 0.75
lamda=8 std 0.84 0.84 0.81 0.125
mu=5

3 mean 0.56 0.54 0.58

lamda=12 std 0.59 0.58 0.64 0.08333  
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Case13 CVa=1.5 CVs=0 arrival service mean
utilization=0.8 0.2

server No. spreadsheet simulation1 simulation2
1 mean 1.1 1.4 1.45 scale=0.563

lamda=4 std 1.1 1.31 1.37 shape=0.444
mu=5

2 mean 0.61 0.78 0.76 scale=0.282
lamda=8 std 0.54 0.72 0.72 shape=0.444
mu=5

3 mean 0.45 0.59 0.55 scale=0.188
lamda=12 std 0.35 0.54 0.5 shape=0.444
mu=5

Case14 CVa=1.5 CVs=0.5 arrival service
utilization=0.8 scale=0.05

server No. spreadsheet simulation1 simulation2 shape=4
1 mean 1.2 1.28 1.33 scale=0.563

lamda=4 std 1.23 1.13 1.19 shape=0.444
mu=5

2 mean 0.65 0.69 0.7 scale=0.282
lamda=8 std 0.61 0.6 0.61 shape=0.444
mu=5

3 mean 0.48 0.52 0.51 scale=0.188
lamda=12 std 0.41 0.41 0.4 shape=0.444
mu=5

Case15 CVa=1.5 CVs=1 arrival service
utilization=0.8 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 1.5 1.62 1.54 scale=0.563

lamda=4 std 1.6 1.66 1.7 shape=0.444
mu=5

2 mean 0.79 0.81 0.81 scale=0.282
lamda=8 std 0.81 0.76 0.8 shape=0.444
mu=5

3 mean 0.65 0.6 0.58 scale=0.188
lamda=12 std 0.55 0.55 0.54 shape=0.444
mu=5

Case16 CVa=1.5 CVs=1.5 arrival service
utilization=0.8 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 2 1.93 2.03 scale=0.563

lamda=4 std 2.22 2.04 2.17 shape=0.444
mu=5

2 mean 1.01 0.96 0.99 scale=0.282
lamda=8 std 1.12 1.08 1.09 shape=0.444
mu=5

3 mean 0.7 0.7 0.65 scale=0.188
lamda=12 std 0.77 0.76 0.67 shape=0.444  
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Case17 CVa=0 CVs=0 arrival mean service mean
utilization=0.9 0.2

server No. spreadsheet simulation1 simulation2
1 mean 0.2 0.2 0.2

lamda=4.5 std 0 0 0 0.22
mu=5

2 mean 0.2 0.2 0.2
lamda=9 std 0 0 0 0.11
mu=5

3 mean 0.2 0.2 0.2
lamda=13.5 std 0 0 0 0.07
mu=5

Case18 Cva=0 CVs=0.5 arrival mean service

utilization=0.9 scale=0.05
server No. spreadsheet simulation1 simulation2 shape=4

1 mean 0.43 0.4 0.39
lamda=4.5 std 0.27 0.27 0.26 0.22
mu=5

2 mean 0.31 0.3 0.3
lamda=9 std 0.16 0.17 0.17 0.11
mu=5

3 mean 0.27 0.26 0.26
lamda=13.5 std 0.13 0.13 0.14 0.07
mu=5

Case19 CVa=0 CVs=1 arrival mean service
utilization=0.9 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 1.1 1.08 1.09

lamda=4.5 std 1.01 1.02 1.03 0.22
mu=5

2 mean 0.63 0.63 0.6
lamda=9 std 0.53 0.57 0.53 0.11
mu=5

3 mean 0.47 0.45 0.49
lamda=13.5 std 0.38 0.39 0.44 0.07

mu=5

Case20 CVa=0 CVs=1.5 arrival mean service
utilization=0.9 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 2.23 2.13 2.33

lamda=4.5 std 2.26 2.29 2.52 0.22
mu=5

2 mean 1.17 0.94 0.96
lamda=9 std 1.15 0.93 0.95 0.11
mu=5

3 mean 0.82 0.72 0.74
lamda=13.5 std 0.8 0.72 0.73 0.07
mu=5
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Case21 CVa=0.5 CVs=0 arrival service mean

utilization=0.9 0.2
server No. spreadsheet simulation1 simulation2

1 mean 0.43 0.4 0.42 scale=0.0555
lamda=4.5 std 0.25 0.24 0.28 shape=4
mu=5

2 mean 0.31 0.3 0.29 scale=0.02775
lamda=9 std 0.12 0.13 0.12 shape=4
mu=5

3 mean 0.27 0.26 0.26 scale=0.01853
lamda=13.5 std 0.08 0.07 0.08 shape=4
mu=5

Case22 CVa=0.5 CVs=0.5 arrival service
utilization=0.9 scale=0.05

server No. spreadsheet simulation1 simulation2 shape=4
1 mean 0.65 0.65 0.62 scale=0.0555

lamda=4.5 std 0.51 0.54 0.5 shape=4
mu=5

2 mean 0.41 0.4 0.42 scale=0.02775
lamda=9 std 0.27 0.28 0.29 shape=4
mu=5

3 mean 0.34 0.33 0.31 scale=0.01853
lamda=13.5 std 0.19 0.2 0.18 shape=4
mu=5

Case23 CVa=0.5 CVs=1 arrival service
utilization=0.9 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 1.33 1.36 1.3 scale=0.0555

lamda=4.5 std 1.26 1.28 1.22 shape=4
mu=5

2 mean 0.74 0.74 0.72 scale=0.02775
lamda=9 std 0.65 0.68 0.64 shape=4
mu=5

3 mean 0.54 0.53 0.52 scale=0.01853
lamda=13.5 std 0.46 0.45 0.46 shape=4

mu=5

Case24 CVa=0.5 CVs=1.5 arrival service
utilization=0.9 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 2.45 2.34 2.22 scale=0.0555

lamda=4.5 std 2.51 2.6 2.25 shape=4
mu=5

2 mean 1.27 1.05 1.1 scale=0.02775
lamda=9 std 1.27 1.12 1.22 shape=4
mu=5

3 mean 0.89 0.7 0.78 scale=0.01853
lamda=13.5 std 0.87 0.68 0.75 shape=4
mu=5  
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Case25 CVa=1 CVs=0 arrival mean service mean
utilization=0.9 0.2

server No. spreadsheet simulation1 simulation2
1 mean 1.1 1.14 1.23

lamda=4.5 std 0.99 0.95 1.1 0.2222
mu=5

2 mean 0.63 0.66 0.63
lamda=9 std 0.49 0.49 0.45 0.1111
mu=5

3 mean 0.47 0.48 0.48
lamda=13.5 std 0.33 0.31 0.34 0.0741
mu=5

Case26 CVa=1 CVs=0.5 arrival mean service

utilization=0.9 scale=0.05
server No. spreadsheet simulation1 simulation2 shape=4

1 mean 1.33 1.35 1.38
lamda=4.5 std 1.25 1.25 1.27 0.2222
mu=5

2 mean 0.74 0.77 0.72
lamda=9 std 0.63 0.6 0.59 0.1111
mu=5

3 mean 0.54 0.57 0.55
lamda=13.5 std 0.42 0.43 0.42 0.0741
mu=5

Case27 CVa=1 CVs=1 arrival mean service
utilization=0.9 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 2 1.95 2.13

lamda=4.5 std 2 1.78 2.29 0.2222
mu=5

2 mean 1.06 1.16 1.18
lamda=9 std 1.01 1.14 1.02 0.1111
mu=5

3 mean 0.75 0.73 0.71
lamda=13.5 std 0.69 0.63 0.63 0.0741

mu=5

Case28 CVa=1 CVs=1.5 arrival mean service
utilization=0.9 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 3.13 2.65 2.83

lamda=4.5 std 3.25 2.38 2.74 0.2222
mu=5

2 mean 1.59 1.62 1.54
lamda=9 std 1.64 1.79 1.58 0.1111
mu=5

3 mean 1.09 0.99 0.94
lamda=13.5 std 1.11 1.05 0.92 0.0741
mu=5
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Case29 CVa=1.5 CVs=0 arrival service mean
utilization=0.9 0.2

server No. spreadsheet simulation1 simulation2
1 mean 2.23 2.21 2.5 scale=0.5

lamda=4.5 std 2.24 1.87 2.42 shape=0.444
mu=5

2 mean 1.17 1.25 1.11 scale=0.25
lamda=9 std 1.11 1.18 0.92 shape=0.444
mu=5

3 mean 0.82 0.8 0.79 scale=0.167
lamda=13.5 std 0.74 0.63 0.6 shape=0.444
mu=5

Case30 CVa=1.5 CVs=0.5 arrival service
utilization=0.9 scale=0.05

server No. spreadsheet simulation1 simulation2 shape=4
1 mean 2.45 2.32 2.57 scale=0.5

lamda=4.5 std 2.49 2.2 2.31 shape=0.444
mu=5

2 mean 1.27 1.32 1.28 scale=0.25

lamda=9 std 1.24 1.18 1.12 shape=0.444
mu=5

3 mean 0.89 0.89 0.91 scale=0.167
lamda=13.5 std 0.83 0.71 0.76 shape=0.444
mu=5

Case31 CVa=1.5 CVs=1 arrival service
utilization=0.9 mean=0.2

server No. spreadsheet simulation1 simulation2
1 mean 3.13 3.38 2.73 scale=0.5

lamda=4.5 std 3.24 3.24 2.53 shape=0.444
mu=5

2 mean 1.59 1.56 1.61 scale=0.25
lamda=9 std 1.62 1.53 1.55 shape=0.444
mu=5

3 mean 1.09 0.96 1.12 scale=0.167
lamda=13.5 std 1.09 0.88 0.95 shape=0.444
mu=5

Case32 CVa=1.5 CVs=1.5 arrival service
utilization=0.9 scale=0.45

server No. spreadsheet simulation1 simulation2 shape=0.44
1 mean 4.25 4.62 4.48 scale=0.5

lamda=4.5 std 4.49 4.18 4.8 shape=0.444
mu=5

2 mean 2.13 2.08 1.97 scale=0.25
lamda=9 std 2.25 2.03 2.14 shape=0.444
mu=5

3 mean 1.44 1.31 1.28 scale=0.167
lamda=13.5 std 1.51 1.28 1.3 shape=0.444

mu=5
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Single queue with priority (4 classes)

Note:all errors are relative error=(approx.-simu.)/simu.

Case1 CVa=0 CVs=0 1 server
Spreadsheet P1 P2 P3 P4
mean 0.2 0.2 0.2 0.2
std 0 0 0 0

Simulation P1 P2 P3 P4
mean 0.211872 0.421872 0.6118716 0.59957
std 0.063454 0.063454 0.0634539 0.430448

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.2 0.2 0.2 0.2
std 0 0 0 0

Simulation P1 P2 P3 P4
mean 0.2 0.2 0.4 0.405506
std 0 0 0 0.044525

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.2 0.2 0.2 0.2
std 0 0 0 0

Simulation P1 P2 P3 P4
mean 0.2 0.2 0.2667 0.4
std 0 0 6.569E-09 0.020206

Case2 CVa=0 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.225 0.241667 0.2833333 0.45
std 0.104583 0.112268 0.1428869 0.322102

Simulation P1 P2 P3 P4
mean 0.219033 0.409336 0.6442162 0.846505
std 0.10866 0.152104 0.242687 0.309154

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.211307 0.218845 0.2376902 0.313071
std 0.101121 0.103084 0.1118269 0.180409

Simulation P1 P2 P3 P4
mean 0.198656 0.236541 0.3592864 0.480883
std 0.090296 0.119992 0.1166144 0.164845

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.206927 0.211545 0.2230895 0.269269
std 0.10048 0.101329 0.1052153 0.140115

Simulation P1 P2 P3 P4  



 106

Case3 CVa=0 CVs=1 1 server
Spreadsheet P1 P2 P3 P4
mean 0.3 0.366667 0.5333333 1.2
std 0.234521 0.285774 0.4546061 1.240967

Simulation P1 P2 P3 P4
mean 0.286009 0.488804 0.7596804 1.164371
std 0.249155 0.328093 0.4564877 0.810955

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.245228 0.27538 0.3507609 0.652283
std 0.208824 0.223654 0.2829913 0.633053

Simulation P1 P2 P3 P4
mean 0.241539 0.295359 0.4763156 0.867042
std 0.256341 0.233028 0.3785754 0.948618

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.227707 0.246179 0.292358 0.477074
std 0.203817 0.210431 0.2390066 0.440587

Simulation P1 P2 P3 P4
mean 0.20004 0.265297 0.3249968 0.435377
std 0.185152 0.221045 0.2544316 0.314877

Case4 CVa=0 CVs=1.5 1 servers
Spreadsheet P1 P2 P3 P4
mean 0.425 0.575 0.95 2.45
std 0.407354 0.548578 0.9663074 2.771958

Simulation P1 P2 P3 P4
mean 0.417973 0.749632 1.3659989 3.772663
std 0.475782 0.810152 1.5372437 4.10759

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.301764 0.369606 0.539212 1.217636
std 0.329034 0.375142 0.5412259 1.384316

Simulation P1 P2 P3 P4
mean 0.246474 0.348504 0.5398057 0.91892
std 0.263432 0.377178 0.5522902 0.931734

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.262342 0.303903 0.4078055 0.823417
std 0.312733 0.334175 0.4203463 0.932855

Simulation P1 P2 P3 P4
mean 0.241959 0.285798 0.3610528 0.5361
std 0.316848 0.318982 0.4030489 0.549791  
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Case5 CVa=0.5 CVs=0 1 server
Spreadsheet P1 P2 P3 P4
mean 0.225 0.241667 0.2833333 0.45
std 0.030619 0.051031 0.1020621 0.306186

Simulation P1 P2 P3 P4
mean 0.239293 0.293085 0.3016703 0.481443

std 0.035945 0.083793 0.1695819 0.355393

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.211307 0.218845 0.2376902 0.313071
std 0.015016 0.025026 0.0500525 0.150158

Simulation P1 P2 P3 P4
mean 0.231336 0.238988 0.2453326 0.299448
std 0.021602 0.030083 0.067163 0.148197

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.206927 0.211545 0.2230895 0.269269
std 0.009814 0.016357 0.0327148 0.098144

Simulation P1 P2 P3 P4
mean 0.217197 0.227464 0.2284022 0.250035
std 0.027098 0.041592 0.0465466 0.101548

Case6 CVa=0.5 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.25 0.283333 0.3666667 0.7
std 0.11726 0.142887 0.227303 0.620484

Simulation P1 P2 P3 P4
mean 0.289248 0.320128 0.3901203 0.730306
std 0.136082 0.178239 0.2553792 0.819445

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.222614 0.23769 0.2753804 0.426141
std 0.104412 0.111827 0.1414956 0.316527

Simulation P1 P2 P3 P4
mean 0.224465 0.248468 0.2997347 0.420767

std 0.120823 0.134206 0.1675979 0.387812

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.213854 0.22309 0.246179 0.338537
std 0.101908 0.105215 0.1195033 0.220294

Simulation P1 P2 P3 P4
mean 0.215772 0.221832 0.2435648 0.279026
std 0.106739 0.106885 0.1164263 0.185597  
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Case7 CVa=0.5 CVs=1 1 server
Spreadsheet P1 P2 P3 P4
mean 0.325 0.408333 0.6166667 1.45
std 0.251868 0.324198 0.5481028 1.54394

Simulation P1 P2 P3 P4
mean 0.310922 0.395537 0.5729503 0.959754
std 0.257831 0.312836 0.6087902 1.25052

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.256535 0.294226 0.3884511 0.765353
std 0.213628 0.235919 0.3203612 0.77697

Simulation P1 P2 P3 P4
mean 0.247308 0.294943 0.3732238 0.559284
std 0.196765 0.243761 0.3813483 0.608672

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.234634 0.257724 0.3154475 0.546343
std 0.205932 0.216077 0.2583727 0.529913

Simulation P1 P2 P3 P4
mean 0.233475 0.248313 0.3114381 0.411018
std 0.206281 0.198719 0.2492543 0.431667

Case8 CVa=0.5 CVs=1.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.45 0.616667 1.0333333 2.7
std 0.428661 0.59196 1.0637982 3.076524

Simulation P1 P2 P3 P4
mean 0.463191 0.576829 1.1315395 1.096745
std 0.487139 0.718707 1.9962061 1.361113

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.313071 0.388451 0.5769022 1.330707
std 0.335481 0.390681 0.5835455 1.53125

Simulation P1 P2 P3 P4
mean 0.32084 0.406615 0.5772726 1.170426
std 0.332583 0.425013 0.6907666 1.605913

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.269269 0.315448 0.430895 0.892685
std 0.315646 0.341696 0.443876 1.026271

Simulation P1 P2 P3 P4
mean 0.291163 0.350127 0.4111786 0.884789
std 0.335609 0.439516 0.4367234 1.29503  
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Case9 CVa=1 CVs=0 1 server

Spreadsheet P1 P2 P3 P4
mean 0.3 0.366667 0.5333333 1.2

std 0.122474 0.204124 0.4082483 1.224745

Simulation P1 P2 P3 P4
mean 0.299088 0.370729 0.496491 0.818307

std 0.096435 0.202558 0.3627338 0.772839

2 servers

Spreadsheet P1 P2 P3 P4
mean 0.245228 0.27538 0.3507609 0.652283

std 0.060063 0.100105 0.20021 0.60063

Simulation P1 P2 P3 P4
mean 0.249426 0.265631 0.3396764 0.541722

std 0.05786 0.089649 0.1721694 0.44539

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.227707 0.246179 0.292358 0.477074

std 0.039258 0.06543 0.1308592 0.392578

Simulation P1 P2 P3 P4
mean 0.237636 0.247519 0.2911296 0.434771

std 0.04396 0.060049 0.1246644 0.38905

Case10 CVa=1 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4

mean 0.325 0.408333 0.6166667 1.45
std 0.182859 0.274051 0.520016 1.534194

Simulation P1 P2 P3 P4

mean 0.339033 0.383827 0.5866874 1.530921

std 0.189318 0.253608 0.5339369 1.519861

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.256535 0.294226 0.3884511 0.765353
std 0.125047 0.160181 0.269502 0.757418

Simulation P1 P2 P3 P4

mean 0.254833 0.284686 0.376308 0.90907
std 0.118098 0.158247 0.2770266 0.936797

3 servers

Spreadsheet P1 P2 P3 P4

mean 0.234634 0.257724 0.3154475 0.546343
std 0.111392 0.129186 0.1917198 0.500808

Simulation P1 P2 P3 P4

mean 0.252154 0.252563 0.2990125 0.467583
std 0.113152 0.133986 0.1817725 0.427106  
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Case11 CVa=1 CVs=1 1 server

Spreadsheet P1 P2 P3 P4
mean 0.4 0.533333 0.8666667 2.2
std 0.316228 0.454606 0.8406347 2.457641

Simulation P1 P2 P3 P4
mean 0.405728 0.5425 0.873978 1.928142
std 0.308001 0.456907 0.8581763 1.956361

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.290457 0.350761 0.5015218 1.104565

std 0.233303 0.282991 0.4475893 1.217795

Simulation P1 P2 P3 P4
mean 0.287123 0.346092 0.4775061 0.976939

std 0.231844 0.284629 0.46555 1.151725

3 servers

Spreadsheet P1 P2 P3 P4
mean 0.255415 0.292358 0.384716 0.754148
std 0.21486 0.239007 0.3293882 0.810228

Simulation P1 P2 P3 P4
mean 0.254416 0.308859 0.3753421 0.829999
std 0.199321 0.241677 0.321248 0.827653

Case12 CVa=1 CVs=1.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.525 0.741667 1.2833333 3.45

std 0.498435 0.728083 1.3603002 3.99171

Simulation P1 P2 P3 P4
mean 0.483105 0.555762 0.8998337 3.250077

std 0.44566 0.562208 1.1395663 3.78665

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.346992 0.444986 0.6899729 1.669919
std 0.357917 0.442546 0.7165108 1.974966

Simulation P1 P2 P3 P4
mean 0.353543 0.495611 0.7798234 2.242156
std 0.346427 0.536793 0.8528775 2.208839

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.290049 0.350082 0.5001636 1.100491
std 0.326004 0.367721 0.5204553 1.310673

Simulation P1 P2 P3 P4
mean 0.281916 0.295953 0.5934931 1.216568

std 0.330241 0.351605 0.5356382 1.523726  
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Case13 CVa=1.5 CVs=0 1 server

Spreadsheet P1 P2 P3 P4
mean 0.425 0.575 0.95 2.45

std 0.275568 0.459279 0.9185587 2.755676

Simulation P1 P2 P3 P4
mean 0.392597 0.372905 0.5831058 2.161167

std 0.222596 0.359526 0.8689836 3.071262

2 servers

Spreadsheet P1 P2 P3 P4
mean 0.301764 0.369606 0.539212 1.217636

std 0.135142 0.225236 0.4504725 1.351418

Simulation P1 P2 P3 P4
mean 0.381581 0.38141 0.6493988 1.919903

std 0.165856 0.186664 0.5790002 2.708002

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.262342 0.303903 0.4078055 0.823417

std 0.08833 0.147217 0.2944333 0.8833

Simulation P1 P2 P3 P4
mean 0.242339 0.26292 0.3135201 0.917638

std 0.051781 0.067798 0.1265887 0.858194

Case14 CVa=1.5 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4

mean 0.45 0.616667 1.0333333 2.7
std 0.322102 0.520016 1.025508 3.063495

Simulation P1 P2 P3 P4

mean 0.367929 0.40494 0.6406149 1.172886

std 0.204763 0.201673 0.646746 1.16096

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.313071 0.388451 0.5769022 1.330707
std 0.180409 0.269502 0.5104168 1.504901

Simulation P1 P2 P3 P4

mean 0.322817 0.315642 0.3829598 0.633224
std 0.197428 0.181283 0.2957532 0.712546

3 servers

Spreadsheet P1 P2 P3 P4

mean 0.269269 0.315448 0.430895 0.892685
std 0.140115 0.19172 0.3420905 0.986526

Simulation P1 P2 P3 P4

mean 0.25401 0.262426 0.3180955 0.587175
std 0.119447 0.129798 0.1966103 0.60165  
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Case15 CVa=1.5 CVs=1 1 server
Spreadsheet P1 P2 P3 P4
mean 0.525 0.741667 1.2833333 3.45
std 0.445463 0.692895 1.3417961 3.985442

Simulation P1 P2 P3 P4
mean 0.434747 0.507944 0.6797057 2.268456
std 0.388574 0.40074 0.5787079 2.802311

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.346992 0.444986 0.6899729 1.669919
std 0.279473 0.381899 0.6807259 1.962267

Simulation P1 P2 P3 P4
mean 0.34778 0.394706 0.5731842 1.154074
std 0.24687 0.268367 0.5273045 1.341609

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.290049 0.350082 0.5001636 1.100491
std 0.237231 0.291922 0.4699721 1.291458

Simulation P1 P2 P3 P4
mean 0.25255 0.339212 0.3858216 0.997509
std 0.194693 0.269565 0.3765349 1.156249

Case16 CVa=1.5 CVs=1.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.65 0.95 1.7 4.7
std 0.627495 0.966307 1.861451 5.519511

Simulation P1 P2 P3 P4
mean 0.553842 0.59179 1.1448214 2.809364
std 0.410002 0.556641 1.3484565 3.720443

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.403527 0.539212 0.878424 2.235272
std 0.403798 0.541226 0.9495799 2.719433

Simulation P1 P2 P3 P4
mean 0.406669 0.326128 0.5855596 1.066846
std 0.385279 0.314208 0.5913283 1.238229

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.324683 0.407806 0.6156111 1.446833
std 0.34815 0.420346 0.6608811 1.791891

Simulation P1 P2 P3 P4
mean 0.26502 0.245567 0.4562427 0.729457
std 0.278797 0.29022 0.5871684 1.077554  
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Case17 CVa=0 CVs=0 1 server
Spreadsheet P1 P2 P3 P4
mean 0.2 0.2 0.2 0.2
std 0 0 0 0

Simulation P1 P2 P3 P4
mean 0.25433 0.45433 0.6543298 0.718706
std 0.062265 0.062 0.0685697 0.458565

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.2 0.2 0.2 0.2
std 0 0 0 0

Simulation P1 P2 P3 P4
mean 0.220837 0.273466 0.4209183 0.428662
std 0.041301 0.071089 0.0593475 0.279991

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.2 0.2 0.2 0.2
std 0 0 0 0

Simulation P1 P2 P3 P4
mean 0.201862 0.215721 0.2200975 0.245627
std 0.009623 0.035972 0.0460026 0.082579

Case18 CVa=0 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.229032 0.252786 0.3258741 0.892308
std 0.105025 0.115782 0.1713629 0.77188

Simulation P1 P2 P3 P4
mean 0.270622 0.467019 0.677974 1.081169
std 0.133439 0.168429 0.2013339 0.900428

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.213845 0.225172 0.2600259 0.530143
std 0.101267 0.104128 0.1216217 0.393641

Simulation P1 P2 P3 P4
mean 0.223477 0.234519 0.4051202 0.64364
std 0.107882 0.114054 0.137443 0.564057

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.208869 0.216125 0.2384511 0.411481
std 0.100559 0.101835 0.11003 0.271522

Simulation P1 P2 P3 P4
mean 0.210789 0.214162 0.2350976 0.229409
std 0.10701 0.114281 0.1120375 0.111011  
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Case19 CVa=0 CVs=1 1 server
Spreadsheet P1 P2 P3 P4

mean 0.316129 0.411144 0.7034965 2.969231
std 0.237661 0.30739 0.5914761 3.068026

Simulation P1 P2 P3 P4
mean 0.308818 0.521276 0.7846929 1.301564
std 0.265183 0.347632 0.5144313 1.305793

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.255379 0.300689 0.4401037 1.520571
std 0.209949 0.231264 0.341569 1.535985

Simulation P1 P2 P3 P4
mean 0.245847 0.321209 0.5240144 1.242406
std 0.20494 0.240305 0.4901503 1.338926

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.235474 0.264499 0.3538043 1.045924
std 0.204433 0.214307 0.2714875 1.029364

Simulation P1 P2 P3 P4
mean 0.258398 0.258496 0.3729887 0.613405
std 0.223054 0.210031 0.2529857 0.550072

Case20 CVa=0 CVs=1.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.46129 0.675073 1.3328671 6.430769

std 0.416466 0.604855 1.2878607 6.894904

Simulation P1 P2 P3 P4

mean 0.413688 0.681846 1.2211994 2.605109
std 0.410953 0.612936 1.2951927 2.738728

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.324602 0.42655 0.7402334 3.171284

std 0.332638 0.397816 0.6914759 3.439651

Simulation P1 P2 P3 P4

mean 0.328345 0.428728 0.7540351 2.384726
std 0.395839 0.385142 0.6189385 1.734248

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.279817 0.345122 0.5460597 2.103328

std 0.314765 0.346421 0.5105231 2.291653

Simulation P1 P2 P3 P4

mean 0.263779 0.395711 0.607777 2.315865
std 0.306918 0.410444 0.6589621 2.279692  
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Case21 CVa=0.5 CVs=0 1 server
Spreadsheet P1 P2 P3 P4
mean 0.229032 0.252786 0.3258741 0.892308
std 0.032096 0.058357 0.1391591 0.765375

Simulation P1 P2 P3 P4
mean 0.285024 0.338645 0.3840257 0.757988
std 0.067628 0.129396 0.185811 0.557798

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.213845 0.225172 0.2600259 0.530143
std 0.015966 0.029029 0.0692231 0.380727

Simulation P1 P2 P3 P4
mean 0.247041 0.262827 0.2947916 0.45997
std 0.045249 0.063431 0.1041193 0.373317

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.208869 0.216125 0.2384511 0.411481
std 0.010586 0.019247 0.0458976 0.252437

Simulation P1 P2 P3 P4
mean 0.230223 0.232824 0.2489209 0.353592
std 0.039142 0.041644 0.0567059 0.248268

Case22 CVa=0.5 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.258065 0.305572 0.4517483 1.584615
std 0.118831 0.153695 0.2957381 1.534013

Simulation P1 P2 P3 P4
mean 0.303319 0.337835 0.4514875 0.900149
std 0.130515 0.172811 0.3549941 1.160268

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.227689 0.250344 0.3200519 0.860285
std 0.104975 0.115632 0.1707845 0.767992

Simulation P1 P2 P3 P4
mean 0.227443 0.265152 0.3302868 0.67707
std 0.104211 0.130697 0.1768526 0.526552

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.217737 0.232249 0.2769021 0.622962
std 0.102217 0.107153 0.1357437 0.514682

Simulation P1 P2 P3 P4
mean 0.219739 0.244827 0.2841976 0.468018
std 0.100186 0.115414 0.1850602 0.498596  
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Case23 CVa=0.5 CVs=1 1 server

Spreadsheet P1 P2 P3 P4

mean 0.345161 0.46393 0.8293706 3.661538
std 0.256426 0.353749 0.7239691 3.832097

Simulation P1 P2 P3 P4

mean 0.347263 0.418196 0.7337323 1.228244

std 0.247432 0.363178 0.5446971 1.272978

2 servers

Spreadsheet P1 P2 P3 P4
mean 0.269223 0.325861 0.5001297 1.850713

std 0.215343 0.247118 0.3997449 1.914113

Simulation P1 P2 P3 P4

mean 0.274028 0.324598 0.5439006 1.289341
std 0.211772 0.264654 0.3693441 1.175023

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.244343 0.280623 0.3922554 1.257405
std 0.206886 0.221949 0.3044089 1.277931

Simulation P1 P2 P3 P4
mean 0.235355 0.333746 0.3971582 1.200525

std 0.186616 0.241444 0.2741108 1.213498

Case24 CVa=0.5 CVs=1.5 1 server

Spreadsheet P1 P2 P3 P4
mean 0.490323 0.727859 1.4587413 7.123077

std 0.439338 0.656166 1.4235607 7.659627

Simulation P1 P2 P3 P4

mean 0.467051 0.665967 1.1827305 3.202776
std 0.427144 0.597776 1.4459406 3.015529

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.338447 0.451722 0.8002594 3.501427
std 0.33984 0.417455 0.7544427 3.819072

Simulation P1 P2 P3 P4
mean 0.335625 0.45148 0.7134679 2.252362

std 0.335377 0.46993 0.7966012 2.328145

3 servers

Spreadsheet P1 P2 P3 P4
mean 0.288686 0.361246 0.5845107 2.314809

std 0.31813 0.356435 0.5483238 2.542132

Simulation P1 P2 P3 P4

mean 0.282286 0.346959 0.5300306 0.99033

std 0.323125 0.3626 0.4772232 1.591662  
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Case25 CVa=1 CVs=0 1 server
Spreadsheet P1 P2 P3 P4

mean 0.316129 0.411144 0.7034965 2.969231
std 0.128385 0.233428 0.5566363 3.0615

Simulation P1 P2 P3 P4
mean 0.323103 0.416838 0.7379082 1.894836

std 0.111545 0.232913 0.6135549 1.892755

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.255379 0.300689 0.4401037 1.520571
std 0.063864 0.116116 0.2768924 1.522908

Simulation P1 P2 P3 P4
mean 0.257254 0.293951 0.4343899 1.156408

std 0.049812 0.090999 0.2956724 1.316063

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.235474 0.264499 0.3538043 1.045924

std 0.042344 0.07699 0.1835904 1.009747

Simulation P1 P2 P3 P4
mean 0.240641 0.265142 0.3589679 0.944023

std 0.043011 0.076505 0.1910533 0.902559

Case26 CVa=1 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.345161 0.46393 0.8293706 3.661538

std 0.189088 0.308445 0.7029447 3.828181

Simulation P1 P2 P3 P4
mean 0.343659 0.47049 0.8514605 3.070389

std 0.179172 0.308333 0.7761197 2.965379

2 servers

Spreadsheet P1 P2 P3 P4
mean 0.269223 0.325861 0.5001297 1.850713

std 0.127956 0.176259 0.3602721 1.90626

Simulation P1 P2 P3 P4
mean 0.273648 0.334368 0.4593579 1.284029
std 0.128141 0.195642 0.3524453 2.619181

3 servers

Spreadsheet P1 P2 P3 P4
mean 0.244343 0.280623 0.3922554 1.257405

std 0.113144 0.138786 0.2503293 1.266139

Simulation P1 P2 P3 P4

mean 0.249226 0.287267 0.3870632 0.736719
std 0.11119 0.131296 0.2711628 0.687984  
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Case27 CVa=1 CVs=1 1 server

Spreadsheet P1 P2 P3 P4
mean 0.432258 0.622287 1.206993 5.738462
std 0.325471 0.507892 1.131095 6.126265

Simulation P1 P2 P3 P4

mean 0.446893 0.582404 1.1982967 3.318919
std 0.33954 0.532146 1.1434043 3.835289

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.310758 0.401377 0.6802075 2.841141

std 0.237307 0.306483 0.5887934 3.052376

Simulation P1 P2 P3 P4
mean 0.313908 0.382824 0.7393206 4.476637
std 0.240098 0.306314 0.6276351 6.370704

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.270948 0.328997 0.5076086 1.891847
std 0.217191 0.252408 0.4181169 2.029374

Simulation P1 P2 P3 P4
mean 0.267456 0.331865 0.5195698 1.290027

std 0.20923 0.307042 0.5120135 1.476577

Case28 CVa=1 CVs=1.5 1 server

Spreadsheet P1 P2 P3 P4
mean 0.577419 0.886217 1.8363636 9.2

std 0.513907 0.815804 1.8337741 9.954396

Simulation P1 P2 P3 P4

mean 0.532272 0.641735 1.5844902 6.909173
std 0.449391 0.612869 1.4835444 6.121674

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.379981 0.527238 0.9803372 4.491855
std 0.364802 0.482093 0.9485888 4.958536

Simulation P1 P2 P3 P4
mean 0.391368 0.57758 1.1049117 6.275922
std 0.360506 0.52413 0.9457178 4.491439

3 servers

Spreadsheet P1 P2 P3 P4
mean 0.315291 0.40962 0.699864 2.949252
std 0.330059 0.390651 0.6678426 3.295363

Simulation P1 P2 P3 P4
mean 0.249904 0.333698 0.5106505 0.803872

std 0.268931 0.304034 0.4953043 0.909161  
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Case29 CVa=1.5 CVs=0 1 server

Spreadsheet P1 P2 P3 P4
mean 0.46129 0.675073 1.3328671 6.430769
std 0.288867 0.525213 1.2524317 6.888375

Simulation P1 P2 P3 P4
mean 0.39482 0.569819 1.2704824 3.664624
std 0.20248 0.432212 1.1104888 3.591971

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.324602 0.42655 0.7402334 3.171284

std 0.143694 0.261261 0.6230079 3.426544

Simulation P1 P2 P3 P4
mean 0.291399 0.340556 0.5112078 1.25736

std 0.079775 0.16025 0.380075 1.154735

3 servers

Spreadsheet P1 P2 P3 P4
mean 0.279817 0.345122 0.5460597 2.103328
std 0.095275 0.173226 0.4130785 2.271931

Simulation P1 P2 P3 P4
mean 0.267787 0.366794 0.5522461 1.84875
std 0.068488 0.218546 0.5744588 1.728643

Case30 CVa=1.5 CVs=0.5 1 server
Spreadsheet P1 P2 P3 P4
mean 0.490323 0.727859 1.4587413 7.123077

std 0.336181 0.592076 1.3951792 7.654403

Simulation P1 P2 P3 P4
mean 0.449145 0.841609 1.7935929 6.039941

std 0.236845 1.06751 2.4722492 3.600938

2 servers
Spreadsheet P1 P2 P3 P4

mean 0.338447 0.451722 0.8002594 3.501427
std 0.188391 0.307032 0.6994168 3.808584

Simulation P1 P2 P3 P4
mean 0.300851 0.39846 0.7322282 2.308465
std 0.145233 0.249365 0.6998263 2.157829

3 servers
Spreadsheet P1 P2 P3 P4
mean 0.288686 0.361246 0.5845107 2.314809
std 0.145624 0.216901 0.4697436 2.526348

Simulation P1 P2 P3 P4
mean 0.297572 0.384809 0.618187 8.606267

std 0.130211 0.221251 0.495376 5.728924  
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Case31 CVa=1.5 CVs=1 1 server

Spreadsheet P1 P2 P3 P4
mean 0.577419 0.886217 1.8363636 9.2
std 0.462709 0.784562 1.8200899 9.951884

Simulation P1 P2 P3 P4

mean 0.453781 0.883394 1.4540904 4.006175
std 0.30105 0.791046 1.7635438 3.404116

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.379981 0.527238 0.9803372 4.491855

std 0.288236 0.427099 0.9218572 4.953491

Simulation P1 P2 P3 P4
mean 0.355551 0.475798 0.8198105 3.146254
std 0.232597 0.360433 0.7233071 2.764739

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.315291 0.40962 0.699864 2.949252
std 0.242773 0.320325 0.6292962 3.287768

Simulation P1 P2 P3 P4
mean 0.245809 0.328977 0.4063662 1.19801

std 0.190089 0.261264 0.3480926 1.228484

Case32 CVa=1.5 CVs=1.5 1 server

Spreadsheet P1 P2 P3 P4
mean 0.722581 1.150147 2.4657343 12.66154
std 0.650982 1.092427 2.5227646 13.78002

Simulation P1 P2 P3 P4

mean 0.608159 1.016241 1.9284807 5.069782
std 0.488982 0.921477 2.4370266 6.174875

2 servers
Spreadsheet P1 P2 P3 P4
mean 0.449204 0.653099 1.2804669 6.142568

std 0.415441 0.60252 1.2816223 6.859651

Simulation P1 P2 P3 P4
mean 0.476303 0.675032 0.9417284 3.169708
std 0.444397 0.641957 0.9290555 2.730521

3 servers
Spreadsheet P1 P2 P3 P4

mean 0.359634 0.490244 0.8921193 4.006656
std 0.3554 0.45829 0.8789398 4.553756

Simulation P1 P2 P3 P4
mean 0.337356 0.571744 1.4653689 4.661931

std 0.303772 0.527435 1.3723056 4.512371  
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Approximate Formula for Steady-State, Infinite Capacity Queues

Basic Inputs: Number of Servers, S = 1
Arrival Rate, λ = 4.00

Service Rate Capacity of each server, μ = 5.00
Inputs

Coefficient of Variation of Inter-arrival time, COV(a) = 0.5
Coefficient of Variation of Service time, COV(s) = 0.5

The Waiting Line: Average Number Waiting in Queue (Lq) = 0.80 3.20
Average Waiting Time (Wq) = 0.20 0.800

                                     Probability of customer waiting P(t)  = 0.30 0.80 this is the pro
                      Probability of customer waiting no time P(0) = 0.70

              Standard deviation of waiting time  σ = 0.48

Service: Average Utilization of Servers (rho) = 0.80
Average Number of Customers Receiving Service = 0.80

The Total System (waiting line plus customers being served):
Average Number in the System (L) = 1.60

Average Time in System (W) = 0.40
Standard deviation of time in system σs  = 0.49

               "Worst Case" Flow time = Average time in system + 3 σs   = 1.86

An Option: Multiple Classes of Customers

priority priority priority priority
Class 1 2 3 4

Workload fraction 0.25 0.25 0.25 0.25
Ignore,for computation only 0.8 0.6 0.4 0.2

Average number in Queue Lq (k) 0.05 0.08 0.17 0.50
Average Time in Queue Wq (k) 0.05 0.08 0.17 0.50

Average Number in System L(k) 0.25 0.28 0.37 0.70
Average Time in System W(k) 0.25 0.28 0.37 0.70
Standard Deviation of Time in System 0.16 0.22 0.41 1.20

Average + 3*Standard Deviations 0.72 0.95 1.60 4.29

 
 

 

 

 

 



 122

UNDERWRITING 1
Team 1

FLOW Available Minutes= 450
Arrivals/Day ServiceTime= Load

1.4 43.60 61.04 14.01%
6.3 38.00 239.40 54.94%
1.6 22.60 36.16 8.30%
5.3 18.70 99.11 22.75%

14.6  435.71 1
Utilization 0.97

CV of Serv.Time 0.829093
Avg. Serv. time 29.84315
Arrival rate 14.6
Service rate 15.07884

DISTRIBUTION UNDERWRITING 2
Number of Clerks= 4.00 Team 1

FLOW Available Minutes= 1800.00 FLOW Available Minutes= 450
Arrivals/Day Avg. ServiceTime Load Arrivals/Day ServiceTime= Load

2.9 68.5 198.65 12.43% 0.8 43.60 34.88 9.85%
15 50 750 46.92% 4.3 38.00 163.40 46.15%

3.8 43.5 165.3 10.34% 1.1 22.60 24.86 7.02%
17.3 28 484.4 30.31% 7 18.70 130.90 36.97%

39  1598.35 1 13.2  354.04 1
Utilization 0.89 Utilization 0.79

CV of Serv.Time 0.891027
 Number of Servers 4.00 Avg. Serv. time 26.82121
CV of Serv.Time 0.54386081 Arrival Rate (jobs/day) 39.00  Arrival rate 13.2
Avg. Serv. time 40.9833333 Service rate (jobs/day) 10.98 Service rate 16.77777

  
UNDERWRITING 3

  Team 1
FLOW Available Minutes= 450
Arrivals/Day ServiceTime= Load

0.7 43.60 30.52 9.66%
 4.4 38.00 167.20 52.90%

1.1 22.60 24.86 7.87%
5 18.70 93.50 29.58%

11.2  316.08 1
Utilization 0.70

CV of Serv.Time 0.856447
Avg. Serv. time 28.22143
Arrival rate 11.2
Service rate 15.94533  

RATING POLICY WRITING
Number of Clerks= 8 Number of Clerks= 5

FLOW Available Minutes= 3600 FLOW FLOW Available Minutes 2250
Arrivals/Day ServiceTime= Load Arrivals/Day Arrivals/Day ServiceTime Load

2.9 75.5 218.95 7.98% 2.9 2.9 71 205.9 14.29%
15 64.7 970.5 35.36% 15 2.3 71 163.3 11.33%

3.8 65.5 248.9 9.07% 3.8 3.8 54 205.2 14.24%
17.3 75.5 1306.15 47.59% 17.3 17.3 50.1 866.73 60.14%

39  2744.5 1 39 26.3  1441.13 1
Utilization 0.76 Utilization 0.64

12.7
 Number of Servers 8.00  Number of Servers 5.00
CV of Serv.Time 0.199483 Arrival Rate (jobs/day) 39.00 CV of Serv.Time 0.22906 Arrival Rate (jobs/day) 26.30
Avg. Serv. time 70.37179 Service rate (jobs/day) 6.39 Avg. Serv. time 54.79582 Service rate (jobs/day) 8.21
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DISTRIBUTION
Number of Clerks= 4.00

FLOW Available Minutes= 1800.00 FLOW
Arrivals/Day ServiceTime Load Arrivals/Day

From Agent RUNS 2.9 68.5 198.65 12.43% 2.9
RAPS 15 50 750 46.92% 15
RAINS 3.8 43.5 165.3 10.34% 3.8

From Computer RERUNS 17.3 28 484.4 30.31% 17.3
Total 39  1598.35 1 39

Utilization 0.89

 Number of Servers 4.00  
Arrival Rate (jobs/day) 39.00  

Avg. Serv. time 40.98333 Service rate (jobs/day) 10.98 Avg. Serv. time 28.35462
CV of Arriv.Time 1 CV of Arriv.Time 0.849921
CV of Serv.Time 0.543861 CV of Serv.Time 0.858019

DISTRIBUTION priority 1 priority 2 priority 3 priority 4
  WIP 0.50 2.16 0.62 4.23

Avg. Flow Time (days) 0.10 0.12 0.15 0.36
STD. Flow Time 0.05 0.06 0.09 0.34

 
                    Combined UTs with Priority 

 Total Flow Standard Worst Case =
Priority Class  Time (Days) Deviation Average + 3 std. dev

1 0.47 0.09 0.73
2 0.49 0.10 0.79
3 0.56 0.14 0.98
4 0.88 0.40 2.08

 

Combined UT's RATING
No. of Teams 3 Number of Clerks= 8
Available Minutes= 1350 FLOW Available Minutes= 3600 FLOW FLOW
ServiceTime= Load Arrivals/Day ServiceTime= Load Arrivals/Day Arrivals/Day

43.60 126.44 11.43% 2.9 75.5 218.95 7.98% 2.9 2.9
38.00 570.00 51.54% 15 64.7 970.5 35.36% 15 2.3
22.60 85.88 7.77% 3.8 65.5 248.9 9.07% 3.8 3.8
18.70 323.51 29.25% 17.3 75.5 1306.15 47.59% 17.3 17.3

 1105.83 1 39  2744.5 1 39 26.3
Utilization 0.82 Utilization 0.76

12.7
Number of Servers 3.00  Number of Servers 8.00  
Arrival Rate (jobs/day) 39.00  Arrival Rate (jobs/day) 39.00
Service rate (jobs/day) 15.87 Avg. Serv. time 70.37179 Service rate (jobs/day) 6.39 Avg. Serv. time

CV of Arriv.Time 0.89758 CV of Arriv.Time
CV of Serv.Time 0.199483 CV of Serv.Time

Combined UT's priority 1 priority 2 priority 3 priority 4 RATING priority 1 priority 2 priority 3 priority 4
WIP 0.33 1.75 0.35 2.31 WIP 0.50 2.23 0.58 3.35   
Avg. Flow Time (days) 0.07 0.09 0.12 0.20 Avg. Flow Time (days) 0.16 0.16 0.16 0.18   
STD. Flow Time 0.06 0.06 0.09 0.20 STD. Flow Time 0.03 0.03 0.04 0.06
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DISTRIBUTION
Number of Clerks= 5.00

FLOW Available Minutes= 2250.00 FLOW
Arrivals/Day ServiceTime Load Arrivals/Day

From Agent RUNS 2.9 68.5 198.65 12.43% 2.9
RAPS 15 50 750 46.92% 15
RAINS 3.8 43.5 165.3 10.34% 3.8

From Computer RERUNS 17.3 28 484.4 30.31% 17.3
Total 39  1598.35 1 39

Utilization 0.71

 Number of Servers 5.00  
Arrival Rate (jobs/day) 39.00  

Avg. Serv. time 40.98333 Service rate (jobs/day) 10.98 Avg. Serv. time 28.35462
CV of Arriv.Time 1 CV of Arriv.Time 0.849921
CV of Serv.Time 0.543861 CV of Serv.Time 0.858019

DISTRIBUTION priority 1 priority 2 priority 3 priority 4
  WIP 0.47 1.84 0.44 1.49

Avg. Flow Time (days) 0.10 0.10 0.11 0.13
STD. Flow Time 0.05 0.05 0.06 0.08

 
               Moving 1 Policy Writer to Distribution

Total Flow Standard Worst Case =
Priority Class  Time  (days) Deviation Average + 3 std. dev

1 0.46 0.09 0.73
2 0.49 0.10 0.77
3 0.53 0.12 0.89
4 0.70 0.25 1.45

Combined UT's RATING
No. of Teams 3 Number of Clerks= 8
Available Minutes= 1350 FLOW Available Minutes= 3600 FLOW FLOW
ServiceTime= Load Arrivals/Day ServiceTime= Load Arrivals/Day Arrivals/Day

43.60 126.44 11.43% 2.9 75.5 218.95 7.98% 2.9 2.9
38.00 570.00 51.54% 15 64.7 970.5 35.36% 15 2.3
22.60 85.88 7.77% 3.8 65.5 248.9 9.07% 3.8 3.8
18.70 323.51 29.25% 17.3 75.5 1306.15 47.59% 17.3 17.3

 1105.83 1 39  2744.5 1 39 26.3
Utilization 0.82 Utilization 0.76

12.7
Number of Servers 3.00  Number of Servers 8.00  
Arrival Rate (jobs/day) 39.00  Arrival Rate (jobs/day) 39.00
Service rate (jobs/day) 15.87 Avg. Serv. time 70.37179 Service rate (jobs/day) 6.39 Avg. Serv. time

CV of Arriv.Time 0.89758 CV of Arriv.Time
CV of Serv.Time 0.199483 CV of Serv.Time

Combined UT's priority 1 priority 2 priority 3 priority 4 RATING priority 1 priority 2 priority 3 priority 4
WIP 0.33 1.75 0.35 2.31 WIP 0.50 2.23 0.58 3.35   
Avg. Flow Time (days) 0.07 0.09 0.12 0.20 Avg. Flow Time (days) 0.16 0.16 0.16 0.18   
STD. Flow Time 0.06 0.06 0.09 0.20 STD. Flow Time 0.03 0.03 0.04 0.06
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