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Approximation Metrics for Discrete and
Continuous Systems

Antoine Girard and George J. Pappas, Senior Member, IEEE

Abstract—Established system relationships for discrete systems,
such as language inclusion, simulation, and bisimulation, require
system observations to be identical. When interacting with the
physical world, modeled by continuous or hybrid systems, exact
relationships are restrictive and not robust. In this paper, we
develop the first framework of system approximation that applies
to both discrete and continuous systems by developing notions
of approximate language inclusion, approximate simulation, and
approximate bisimulation relations. We define a hierarchy of
approximation pseudo-metrics between two systems that quantify
the quality of the approximation, and capture the established exact
relationships as zero sections. Our approximation framework is
compositional for a synchronous composition operator. Algo-
rithms are developed for computing the proposed pseudo-metrics,
both exactly and approximately. The exact algorithms require the
generalization of the fixed point algorithms for computing simula-
tion and bisimulation relations, or dually, the solution of a static
game whose cost is the so-called branching distance between the
systems. Approximations for the pseudo-metrics can be obtained
by considering Lyapunov-like functions called simulation and
bisimulation functions. We illustrate our approximation frame-
work in reducing the complexity of safety verification problems
for both deterministic and nondeterministic continuous systems.

Index Terms—Abstraction, approximation, bisimulation, met-
rics, transition systems.

I. INTRODUCTION

C
OMPOSITIONAL modeling in concurrency theory [1],

and complexity reduction in the formal verification of

discrete systems [2] have resulted in a wealth of system relation-

ships, including the established notions of language inclusion,

simulations and bisimulations [2]. These notions have had great

impact in not only reducing the complexity of discrete systems

[3], but also in reducing problems for continuous and hybrid

systems to purely discrete problems [4]. Much more recently,

the notions of simulation and bisimulation have resulted in new

equivalence notions for nondeterministic continuous [5]–[7]

and hybrid systems [8]–[10].

The notions of language inclusion, simulation, and bisimu-

lation for both discrete and continuous systems are all exact,

requiring external behavior of two systems to be identical. As

Manuscript received May 17, 2005; revised April 10. 2006 and August 1,
2006. Recommended by Associate Editor A. Giua. This research was supported
in part by the Région Rhône-Alpes (Projet CalCel) and the National Science
Foundation Presidential Early CAREER (PECASE) under Grant 0132716.

The authors are with the Department of Electrical and Systems Engineering,
the University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: agirard@
seas.upenn.edu; pappasg@seas.upenn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2007.895849

exact relationships between systems might require the intro-

duction of additional variables or states to account for errors,

there are clear limitations in the amount of system compres-

sion that can be achieved. Approximate relationships which ex-

plicitly include errors, will certainly allow for more dramatic

system compression. Even though this has been the tradition

for deterministic continuous systems [11], it has been recently

argued convincingly [12]–[14], that even for more quantitative

classes of finite transition systems, such as probabilistic au-

tomata [14], labeled Markov processes [15], and quantitative

transition systems [16], notions of system approximation are not

only better candidates for complexity reduction but also provide

more robust relationships between systems. The challenge in de-

veloping approximate system relationships is the quantification

of the quality of the approximation.

The goal of this paper is to provide a theory of system approx-

imation that applies to both finite (discrete) and infinite (contin-

uous) transition systems by providing approximate generaliza-

tions of language inclusion, simulation, and bisimulation. By

generalizing the exact notions we ensure that our framework

captures the traditional exact notions for finite systems as a spe-

cial case, while developing more robust notions of system ap-

proximation for infinite transition systems.

To technically achieve our goal, we consider metric tran-

sition systems, which are transition systems equipped with

metrics on the state space and the observation space. Based

on the observation metric, we develop a hierarchy of ap-

proximation pseudo-metrics between two metric transition

systems measuring the distance from reachable set inclusion

and equivalence, language inclusion and equivalence, sim-

ulation and bisimulation relations. For a large subclass of

systems, the notions of exact language inclusion, simulation,

and bisimulation are naturally captured as the zero sections of

the pseudo-metrics. Furthermore, the relationship among the

various approximation metrics is analogous to the relationship

among the exact notions. For a synchronous composition op-

erator, we show that the language, simulation and bisimulation

metrics are compositional.

We then propose algorithms for computing the proposed

pseudo-metrics, both exactly and approximately. Algorithms

for exact computation require the generalization of the fixed

point algorithms for computing simulation and bisimulation

relations [17], or dually, the solution of a static game whose cost

is the so-called branching distance between the systems [16].

Algorithmic relaxations for computing approximations of the

pseudo-metrics can be obtained by considering Lyapunov-like

functions called simulation and bisimulation functions, which

are also shown to be compositional.

0018-9286/$25.00 © 2007 IEEE
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This line of research has been motivated by the algorithmic

verification of hybrid systems. The significant progress in

the formal verification of discrete systems [3], has inspired

a plethora of sophisticated methods for safety verification of

continuous and hybrid systems. The approaches range from

discrete and predicate abstraction methods [4], [18], [19], to

reachability computations [20]–[25], to Lyapunov-like bar-

riers [26]. However, progress on continuous (and thus hybrid)

systems has been limited to systems of small continuous di-

mension, motivating research on model reduction [27], and

projection based methods [28] for safety verification.

Since the results of this paper could be of great use in the

above methods, we conclude this paper with two continuous

examples that illustrate how our framework can be used in

computing an over-approximation of the distance between two

systems, and in reducing the complexity of safety verification

for both deterministic and nondeterministic continuous sys-

tems. These examples, even though they illustrate the power

of our approximation framework, are simple cases of a more

systematic computational framework that is currently under

development for linear systems [29], nonlinear systems [30]

and hybrid systems [31].

II. EXACT RELATIONSHIPS FOR TRANSITION SYSTEMS

A. Transition Systems

In this paper, we will consider the framework of transition

systems which enables us to model in a unified way both dis-

crete and continuous systems with either deterministic or non-

deterministic dynamics (see, e.g., [5]). The results in this section

can be reviewed in much greater detail in [2].

Definition 1 (Transition System): A (labeled) transition

system with observations is a tuple

that consists of

• a (possibly infinite) set of states;

• a (possibly infinite) set of labels;

• a transition relation ;

• a (possibly infinite) set of initial states;

• a (possibly infinite) set of observations;

• an observation map .

The set of labeled transition systems associated to a set of labels

and a set of observations is denoted . A transition

will be denoted . For simplicity, we assume

that the systems we consider are nonblocking so that for all

, there exists at least one transition of . If for any

state and any label , there exists at most a unique

transition of and, in addition, the set of initial states

contains a single element, then is called deterministic.

Transition system is called finite if and are finite sets,

and infinite otherwise. For all labels , the -successor is

defined as the set valued map given by

We denote with the support of the -successor

which is the subset of elements such that is

not empty. A state trajectory of is an infinite sequence of

transitions

where

An external trajectory is a sequence of elements of

of the form

The set of all external trajectories associated to a set of labels

and a set of observations is denoted . An external

trajectory is accepted by transition system if there exists a

state trajectory of , such that for all , . The set

of external trajectories accepted by transition system is called

the language of , and is denoted by . The reachable set

of is the subset of defined by

Reach

One of the most important problems for transition systems is

the safety verification problem which asks whether the inter-

section of Reach with a set of unsafe observations

is empty or not. The verification of finite transition systems of

very high cardinality has motivated the development of various

notion of system equivalence and system refinement that poten-

tially reduce the complexity of safety verification [2].

B. Exact Transition System Relationships

For complexity reduction as well as for enabling composi-

tional modeling and analysis, various notions of exact system

equivalence and refinement have been established in the formal

methods community [2]. In this section, we quickly review the

established exact relationships in order to develop approximate

versions in the subsequent sections.

Let and

be two labeled transition sys-

tems with the same set of labels and the

same set of observations (i.e. and are

elements of ).

If , then it is clear from the definition of the

reachable set that Reach Reach . Thus, given an

unsafe set , if is safe then is safe, since if the inter-

section of Reach and is empty then it follows that the

intersection of Reach and is also empty. Similarly, we

obtain that if then Reach Reach .

However, given two transition systems and , checking lan-

guage inclusion and language equivalence

is computationally demanding for finite tran-

sition systems, and infeasible for most infinite transition sys-

tems. This has motivated the development of stronger notions

of system refinement and equivalence, namely simulation and

bisimulation.

Definition 2 (Simulation): A relation is called

a simulation relation of by if for all :

1) ;

2) , such that .
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For transition systems with a finite number of states and a finite

number of labels, checking whether a relation is a simulation

relation is much easier (polynomial) than checking language

inclusion [2].

Definition 3: simulates (denoted ) if there

exists , a simulation relation of by , such that for all

, there exists such that .

Note that the relation is a preorder on the set of

transition systems. An interesting case is when a relation is a

simulation of by as well as a simulation of by . Such

a relation is called a bisimulation.

Definition 4 (Bisimulation): A relation is called

a bisimulation relation between and if for all

1) ;

2) , such that ;

3) , such that .

If any initial state of can be related to an initial state of

and conversely, then and simulate each other. We say that

and are bisimilar.

Definition 5: and are bisimilar (denoted ) if

there exists , a bisimulation relation between and such

that, for all , there exists such that

and conversely.

The relation is an equivalence relation on the set of tran-

sition systems . Bisimulations have been vital in col-

lapsing infinite transition systems to bisimilar finite transition

systems, especially in the context of timed and hybrid systems

[4]. The different relationships between transition systems are

summarized in the following classical result:

Theorem 1 (Hierarchy of Relationships): For all transition

systems ,

Reach Reach

Reach Reach

Let us remark that if and are bisimilar then solving the

reachability problem for is equivalent to solving the reach-

ability problem for . Even though from a verification per-

spective we would like to relate the reachable sets of transi-

tion systems, complexity considerations force us to consider

stronger relationships between transition systems. However, it

is well known that the notions of simulation and bisimulation

are different than language inclusion or language equality only

for nondeterministic transition systems [1]. For deterministic la-

beled transition systems, the notions become equivalent.

Theorem 2: If and are deterministic, then the following

equivalences hold

The fact that, in the presence of nondeterminism, simulation and

bisimulation are stronger than language (or trajectory) equiv-

alence has resulted in novel notions of exact system equiva-

lence for nondeterministic dynamical, control, and hybrid sys-

tems [5]–[10].

III. METRIC TRANSITION SYSTEMS

As exact relationships between transition systems do not

permit any error, there are clear limitations in the amount

of system compression that can be achieved. Approximate

relationships which do allow for the possibility of error, will

certainly allow for more dramatic system compression. Even

though this has been the tradition for deterministic continuous

systems [11], it has been recently argued convincingly that

even for more quantitative classes of finite transition systems,

such as probabilistic automata [14], labeled Markov processes

[15], and quantitative transition systems [16], notions of system

approximation are not only better candidates for complexity

reduction but also provide more robust relationships between

systems. The challenge of approximate system relationships is

the quantification of the quality of the approximation.

The goal of this paper is to provide a theory of system approx-

imation that applies to both finite (discrete) and infinite (contin-

uous) transition systems, by providing approximate generaliza-

tions of the exact relationships of Section II-B. By generalizing

the exact notions we ensure that our framework captures the tra-

ditional exact notions for finite systems as a special case, while

developing more robust notions of system approximation for in-

finite transition systems. To technically achieve our goal, we

must equip the transition systems we consider with some topo-

logical structure that is induced by metrics on the state space

and the observation space.

Definition 6 (Metric Transition Systems): A transition system

is called a metric transition system

if and are metric spaces. The set of metric tran-

sition systems associated to a set of labels and a set of obser-

vations is denoted .

Note that, in this paper, we do not equip the set of labels

with any metric (equivalently we consider with the trivial dis-

crete metric). In this paper, we also need to distinguish a special

class of metric transition systems that enjoy some additional reg-

ularity assumptions.

Definition 7 (Regular Metric Transition Systems): A metric

transition system is called regular if

1) its set of initial values is compact;

2) its observation map is continuous;

3) its transition relation satisfies the following properties:

a) for all , the set valued map is contin-

uous;1

b) for all , is an open subset of ;

c) for all , for all , is

a compact subset of ;

d) for all , for all , has

a compact neighborhood.

The set of regular metric transition systems is denoted

.

Remark 1: For usual metric spaces such as finite dimensional

vector spaces, Property (3.d) is a direct consequence of the prop-

erty (3.c). However, as noted in [32], it is not necessarily the case

when we consider some infinite dimensional metric spaces such

as the functional space . Such metric spaces arise if the tran-

sition system is derived from partial differential equations.

1Set-valued continuity concepts are stated in Appendix.
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Let us present some broad classes of regular metric transition

systems that are of great interest in this paper. In particular, we

are interested in finite transition systems as models of discrete

systems, and infinite transition systems as models of continuous

systems.

A. Finite Transition Systems

If is a finite set, then for any metrics defined on and ,

it is easy to check that the properties of Definition 7 hold. This

example, although trivial, ensures that the framework developed

in this paper will apply and capture the existing exact relation-

ships for purely discrete systems.

B. Continuous Dynamical Systems

Let us consider the following differential inclusion:

where is a set valued map. This framework includes ordinary

differential equations as well as control systems [33]. Following

[5], we can derive a nondeterministic labeled transition system

from this differential inclusion by

the following procedure:

• the set of states is ;

• the labels stand for the time, i.e. ;

• the transition relation is given by if and only if there

exists a function such that , and

for almost all , ;

• the set of initial values is ;

• the set of observations is ;

• the observation map is given by .

Let us assume that is compact and is continuous. If in ad-

dition the set valued map is continuous, has compact convex

images and Lipschitz, that is

where denotes the Hausdorff distance (see Appendix for a

quick review) then we can show [33] that the defined transition

system satisfies the conditions of Definition 7.

IV. APPROXIMATION METRICS FOR METRIC

TRANSITION SYSTEMS

Metric transition systems have enough structure to develop a

hierarchy of system approximation metrics, eventually resulting

in an approximate version of Theorem 1. We begin with no-

tions of approximate reachability and approximate language in-

clusion, and continue with the stronger notions of approximate

simulation and bisimulation.

A. Reachability and Language Metrics

Since the set of observations is now a metric space ,

we can denote by and respectively the directed and

undirected Hausdorff distances associated to the metric . The

reachability metric between and is naturally defined as the

Hausdorff distance between Reach and Reach .

Definition 8 (Reachability Metrics): The directed and undi-

rected reachability metrics are defined respectively as

Reach Reach

Reach Reach

Since the reachability metrics are Hausdorff distances, the fol-

lowing result is a direct consequence of the well-known proper-

ties of Hausdorff distances.

Theorem 3: The reachability metrics are pseudo-metrics on

the set of metric transition systems and

Reach Reach

Reach Reach

where denotes the closure of a set.

For safety verification, the reachability metric is of great in-

terest. Indeed, if we could compute we would have

that

Reach Reach (1)

where denotes the neighborhood of . Hence,

if the distance separating Reach and the unsafe set

is strictly greater than , then the intersection of

Reach and is empty and therefore is safe.

Unfortunately the reachability metric is impossible to com-

pute exactly for most infinite metric transition systems, and

extremely difficult for most finite transition systems. We will

therefore develop a hierarchy of stronger metrics, starting with

two metrics that measure the distance between the languages

of two systems. In order to define a distance between two

languages, we first have to consider a metric in the space of

external trajectories. Let and be two elements of

Since we are interested in safety verification problems, it makes

sense to define the distance between and as

if

otherwise.

Proposition 1: is a metric on the set of external trajectories

.

The proof is quite straightforward and can be found in [34].

Let and denote respectively the directed and undi-

rected Hausdorff distance associated to the metric . Since

and are subsets of , the language metric

between and can then be defined as the Hausdorff dis-

tance between the languages and .

Definition 9 (Language Metrics): The directed and undi-

rected language metrics are defined, respectively, as

The intuitive meaning of the directed language metric is the fol-

lowing. For any external trajectory of the system , we can find

an external trajectory of the system , with the same sequence
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of labels, such that the distance between the observations of the

two systems remains bounded by .

Similar to the reachability metrics, the following result fol-

lows as a consequence of the properties of Hausdorff distances.

Theorem 4: The language metrics are pseudo-metrics on the

set of metric labeled transition systems and

The following inequalities hold between the reachability and

language metrics.

Lemma 1: For all ,

and .

Proof: Let . Let be an element of Reach .

There exists an external trajectory of

such that for some . There also exists an external

trajectory of ,

such that . Particularly, this means

that . Since is an element of

Reach , we have . This holds

for all , hence . The inequality

for the undirected metric is straightforward.

The computation of and is also

extremely difficult (but feasible in the case of quantitative,

finite transition systems [16]). We will therefore consider

approximate versions of the stronger notions of simulation and

bisimulation.

B. Approximate Simulation and Simulation Metric

1) Approximate Simulation: We introduce a notion of ap-

proximate simulation that is obtained by relaxing the exact ob-

servational equivalence required by exact simulation relations.

Instead of requiring that the observations of two systems start

and remain identical, we require that they start and remain close.

Definition 10 (Approximate Simulation): Let

. A relation is called a -approximate

simulation relation of by if for all

1) ;

2) , such that .

Since is a metric, for we recover the established

definition of exact simulation relation. Parameter can serve as

a measure of simulation precision.

Definition 11: Transition system approximately simulates

with precision (noted ), if there exists , a

-approximate simulation relation of by such that for all

, there exists such that .

The following result ensures that the set of -approximate

simulation relations has a maximal element.

Lemma 2: Let be a (possibly uncountable) family of

-approximate simulation relations of by . Then,

is a -approximate simulation relation of by .

Proof: Let , there exists such that

. Then, . Moreover, for

all , there exists such that

.

Given a precision parameter , Lemma 2 allows us to define

the largest simulation relation between two systems.

Definition 12: Let be the set of -approximate sim-

ulation relations of by . The maximal -approximate sim-

ulation relation of by is defined by

It is clear that approximately simulates with precision

if and only if for all , there exists such

that . Approximate simulation relations define

a parameterized family of relations on the set of metric tran-

sition systems . These relations satisfy the following

properties:

Proposition 2: Let , and

1) For all , ;

2) For all , if , then for all , ;

3) For all , , if and , then

.

Proof: The first property is obvious. Let us remark that a

-approximate simulation relation of by is also a -ap-

proximate simulation relation of by (for ); the

second property is straightforward. , let be

the maximal -approximate simulation relation of by .

, let be the maximal -approximate simula-

tion relation of by . Let us define the following relation

:

and

Let , let be the corresponding element of

For all , there exists such that

, there also exists such that .

Hence, . Therefore, is a -approxi-

mate simulation relation of by . Moreover, for all ,

there exists such that , there also exists

such that . Therefore, .

Let us remark that contrary to the relation , the relation

(for ) is not a preorder2 on the set of metric transition sys-

tems . Indeed, the third property of Proposition 2 is

not a transitivity property. However, it can be interpreted as a

2However, the relation T T defined as 9� : T � T is a preorder in

T (�;�).
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triangular inequality and, therefore, the precision of the approx-

imate simulation of by appears to be a good criterion to

define a distance between the two systems.

2) Simulation Metric: The simulation metric is defined as the

tightest precision with which approximately simulates .

Definition 13 (Simulation Metric): The simulation metric is

defined by

Theorem 5: The simulation metric is a directed pseudo metric

on the set of metric labeled transition systems and

Proof: Let , and be elements of . Let us

remark that from Proposition 2, we have the following inclusion:

and

Hence

Therefore, the triangular inequality holds. The second part of

the proposition is obvious.

A counter-example showing that the converse direction of

Theorem 5 does not hold for the general class of metric tran-

sition systems can be found in [34]. The converse di-

rection of Theorem requires the development of some topolog-

ical results about simulation relations that needs the additional

structure of regular metric transitions systems .

Lemma 3: Let , let be a

closed subset then

is a closed subset as well.

Proof: Let , there exists a sequence

of elements of converging to . First,

let us remark that since is closed, . Let

(i.e. ), since the support of the

-successor is open, there exists , such that for all ,

. The set valued map is lower semi-

continuous, hence there exists a sequence such that

for all , and which converges to . Since

is in , then for all , there exists

such that . By assumption, the set has a

compact neighborhood . Since is upper semicontinuous

and since converges to , there exists such

that for all , . is a compact, hence

there exists a subsequence of the sequence which we

will also note and which converges to a limit .

Now, for all neighborhood of , there

exists such that for all , .

Hence . Since this holds for all neighborhood of

we have because

is compact. Hence, we have . is the

limit of a sequence of elements of the closed subset , therefore

. Hence, which is consequently

closed.

A consequence of Lemma 3 is the following.

Proposition 3: Let , and let be a -ap-

proximate simulation relation of by . Then is also

a -approximate simulation relation of by .

Proof: It is easy to see that we have

Then, from Lemma 3, it follows that

(2)

Let , there exists a sequence

of elements of converging to . Since the observation

maps and are continuous

Together with (2), this allows to conclude that is also a

-approximate simulation relation of by .

Corollary 1: Let , and let be the

maximal -approximate simulation relation of by . Then

is a closed subset of .

Proof: is a -approximate simulation relation of

by , so is . Hence, since is the maximal -ap-

proximate simulation relation of by , we have

.

Before we can state the main result about the simulation

metric, we will require the following lemma.

Lemma 4: Let be a family of closed subsets of

indexed over the strictly positive real numbers and such that

for all , . Let and let be a

compact subset of :

such that

such that

Proof: Let be a decreasing sequence of real num-

bers converging to 0. Then, for all , there exists

such that . Since is compact, there exists a

subsequence of which we will also note and

which converges to a limit . Let , there exists

such that for all , and hence .

Therefore, for all , which is closed. Hence,

.

The main result about simulation metrics states that for reg-

ular metric labeled transition systems, the zero section of the

simulation metric coincides with the exact simulation relation

of Section II-B.
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Theorem 6: For all

Proof: Let , such that .

This implies that for all , . Equivalently, for

all , for all , there exists such that

. From Corollary 1, for all , is

closed. Moreover, since is compact, it follows from Lemma

4 that for all , there exists such that for all

, . Let us define the relation ,

we have

such that (3)

Let us prove that is an exact simulation relation. Let

,

Let . For all , there exists such that

. Since is compact, it follows from

Lemma 4 that there exists such that for all ,

. Equivalently,

such that

Hence, is an exact simulation relation. Equation (3) allows to

conclude that .

The relationship between the simulation metric and the lan-

guage metric is captured by the following result which holds for

all metric transition systems, not necessarily regular.

Lemma 5: For all ,

.

Proof: Let , then . Let

there exists a state trajectory of :

such that

then there exists such that is in

, the maximal -approximate simulation relation of by

. Using the second property of Definition 10 it can be shown

by induction that there exists a state trajectory of ,

such that

and

Let be the associated external trajectory

accepted by (for all , ). Then, we have for

all , . Therefore,

since the external trajectories and share the same sequence

of labels, . Hence, . This holds

for all , therefore .

For deterministic transition systems, the equivalence between

exact language inclusion and exact simulation has an approxi-

mate analogue, as the following result shows. The proof can be

found in [34].

Lemma 6: If is deterministic then

.

The fact that the simulation metric is stronger (for nondeter-

ministic systems) than the language inclusion metric will result

in algorithms for its computation, which are advantageous espe-

cially in the context of infinite metric transition systems. Before

we discuss their computation in Sections VI and VII, we present

similar results for approximate bisimulations.

C. Approximate Bisimulations and Bisimulation Metric

The development of approximate bisimulation is similar to

the development of approximate simulation. We therefore state

all results without their conceptually and technically similar

proofs.

1) Approximate Bisimulation: If a relation is a -approxi-

mate simulation relation of by as well as a -approximate

simulation relation of by , then it is called a -approximate

bisimulation relation.

Definition 14 (Approximate Bisimulation): Let

. A relation is a -approximate

bisimulation relation between and if for all

1) ;

2) , such that ;

3) , such that .

Definition 15: and are said to be approximately bisim-

ilar with the precision (denoted ), if there exists

, a -approximate bisimulation relation between and

such that for all , there exists such that

, and conversely.

Similar to approximate simulation relations, we can show that

the union of a (possibly uncountable) family of -approximate

bisimulation relations between and is a -approximate

bisimulation relation between and . It follows that there

exists a maximal -approximate bisimulation relation between

and .

Definition 16: Let be the set of -approximate

bisimulation relations between and . The maximal -ap-

proximate bisimulation relation between and is defined

by

Clearly, and are approximately bisimilar with preci-

sion if and only if for all , there exists such
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that , and conversely. Approximate bisimula-

tion relations for metric transition systems satisfy the following

properties.

Proposition 4: Let , and .

1) For all , .

2) For all , if , then for all , .

3) For all , , if and , then

.

Contrarily to , the relation (for ) is not an equiv-

alence relation3 on the set of metric labeled transition systems

. But the above properties enable us to define a bisim-

ulation metric in .

2) Bisimulation Metric:

Definition 17 (Bisimulation Metric): The bisimulation metric

is the function defined by

Theorem 7: The bisimulation metric is a pseudo metric on

the set of metric transition systems and

Lemma 7: For all ,

and .

Proof: The proof of the first inequality is similar to the

proof of Lemma 5. Let us remark that a -approximate bisimula-

tion relation is also a -approximate simulation relation. Hence,

implies that and therefore

.

If we assume that the metric transition systems we consider

are regular, then, similar to the simulation metric, we obtain that

the zero section of the bisimulation metric coincides with the

exact equivalence relation from Section II-B.

Theorem 8: For all ,

For deterministic systems, the notions of language equivalence

and exact bisimulation holds also between the approximate ver-

sions of these notions. It implies that for deterministic systems

the language and the bisimulation metrics are equal.

Lemma 8: If and are deterministic then

.

3However, the relation T � T defined as 9� : T �= T is an equivalence
relation in T (�;�).

D. Hierarchy of System Approximations

The results of Lemmas 1, 5, and 7 can be summarized in the

following theorem which is the analogue of Theorem 1 for our

approximation metrics.

Theorem 9 (Hierarchy of System Approximations): For all

metric transition system , the following re-

lationships hold (where stands for )

All the metrics defined in this section provide an over-ap-

proximation of the directed reachability metric which is useful

for reducing the complexity of the safety verification problem

(see (1)). Let us remark that for regular metric labeled transition

systems, a slightly weaker version of Theorem 1 is obtained by

considering the zero sections of the different metrics, as shown

in the equation at the bottom of the page.

For deterministic labeled transition systems, according to

Lemmas 6 and 8, some of the approximation metrics are equal.

The following theorem summarizes these results.

Theorem 10: If and are deterministic then the following

equalities hold:

V. COMPOSITIONAL APPROXIMATIONS

One of the most powerful features of simulation and bisim-

ulation is that they allow compositional reasoning. In fact,

simulation and bisimulation have their origins in concurrency

theory [1], before impacting formal verification [2]. In this

section, we show that the approximate metrics we developed

in the previous section are also compositional, in an approx-

imate sense. Because of the lack of space, the proofs of this

section are omitted but can be found in [34]. We illustrate

the compositionality of our metrics for a synchronous com-

position operator. We define the composition of two metric

transition systems and

is denoted and is

defined by where

• the set of states ;

• the set of labels ;

• the transition relation is given by

and

Reach Reach

Reach Reach
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• the set of initial states ;

• the set of observations ;

• the observation map is given by

.

Therefore, both systems are observed and synchronize

on common events.4 We assume that the composition is

non-blocking. Since and are metric

spaces, we consider the metric space where the metric

is defined by

If is an approximation of ,

and is an approximation of

, we show that is an approximation of , from

the perspective of our language metrics.

Theorem 11: For all ,

Therefore, approximate language inclusion is compositional.

The following results show that it is also the case for approxi-

mate simulation and approximate bisimulation.

Proposition 5: Let ,

, then

and

and

As a consequence, we have the following Theorem.

Theorem 12: For all ,

In this part, we showed that our approximation framework al-

lows compositional reasoning. Indeed, the composition of ap-

proximations is an approximation of the composition. Note that

even though our compositionality results hold for the language,

simulation, and bisimulation metric, they do not hold for the

reachability metric. This is further evidence that for safety veri-

fication, overapproximating the reachability metric with the lan-

guage, simulation, or bisimulation metric, can further decom-

pose safety analysis by exploiting the above compositionality

results.

VI. EXACT METRIC COMPUTATION

In the previous sections, we presented a compositional theory

of system approximation for metric transition systems. In this

section, we focus on the computation of the simulation and

bisimulation metrics since the language (and hence reachability)

metrics are either impossible to compute for infinite transition

systems, or computationally demanding for finite quantitative

transition systems [16].

4More general composition operators can and will be considered in future
work.

We propose two approaches for computing the simulation and

bisimulation metric. The first approach, described in this Sec-

tion, focuses on computing exactly the metrics using a natural

generalization of the fixed-point (or game-theoretic) interpre-

tations of simulation and bisimulation. The second approach,

described in Section VII, is a relaxation of the first approach,

offering approximate upper bounds for the metrics at a reduced

computational cost.

A. Maximal Approximate Simulations

For the established exact simulations of Section II-B, a com-

putable characterization of the maximal exact simulation rela-

tion is often given in terms of the fixed point of a decreasing se-

quence of subsets of . A similar approach can be used

for the maximal -approximate simulation relation. We assume

that the metric transition systems we consider are regular. Let

us consider the following algorithm whose goal is to search for

such relations.

Algorithm 1: Let . For a given ,

define the following sequence of subsets of :

Lemma 9: For all , for all , the subset is closed.

Proof: Since the observation maps and are

continuous, it is clear that the subset is closed. Assuming

that the subset is closed for some , then, according to

Lemma 3, is closed as well.

For metric transition systems with a finite number of states, it

is clear that Algorithm 1 reaches a fixed point in a finite number

of steps. For infinite transition systems, Algorithm 1 may not

reach a fixed point in a finite number steps. However, the se-

quence does approach a fixed point as goes to .

This fixed point is the maximal -approximate simulation rela-

tion of by .

Theorem 13: Let be the decreasing sequence of sets

defined by Algorithm 1 and be the maximal -approxi-

mate simulation relation of by . Then, the following prop-

erties hold:

Proof: It is clear that . Hence, let us assume

that , for some . Let ,

for all , there exists such that

. Hence, . By in-

duction, the first part of the theorem is proved. Now, let us

show that is a -approximate simulation relation

of by . Let , then particularly

. Hence, . Let ,

from the construction of the sequence , for all ,

there exists such that . Since

is compact, there exists a subsequence of

converging to an element in . Let ,

there exists such that for all , and, hence,
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because the sequence is decreasing. Thus,

for all , is an element of which is closed.

Hence, is in for all . It follows that

is a -approximate simulation of by . From the first part

of the theorem, it is clear that which allows

to conclude.

B. Directed Branching Distance

A dual approach to Algorithm 1 consists in characterizing the

maximal approximate simulation relations of by as the

level sets of a function. Let us consider the following algorithm.

Algorithm 2: Let . Define the following

sequence of functions from to :

For transition systems with a finite number of states, it is

shown in [16], that Algorithm 2 reaches a fixed point in a fi-

nite (polynomial) number of steps. In the more general case of

metric transition systems, the following lemma shows that the

sequence of functions converges in a pointwise sense.

Lemma 10: Let be the sequence of functions de-

fined by Algorithm 2. For all , the sequence

is increasing.

Proof: For all , it is clear that

. Let us assume that for some ,

for all , . Let

, then it is clear that

Hence, .

As a consequence of Lemma 10, for all ,

the sequence converges in . Hence,

the sequence of functions converges pointwise to a

limit introduced in [16] for transition systems with a finite set

of states as the branching distance.

Definition 18: Let be the sequence of functions de-

fined by Algorithm 2. The directed branching distance [16] be-

tween and is the function defined by

Before giving the main result on the duality between the ap-

proach using relations and the approach using functions, we will

need the following lemma.

Lemma 11: Let be a function

with closed level sets: For all ,

is a closed subset. Let , and let be a compact

subset of ,

such that

Proof: Let us remark that the family of sets

satisfies the assumptions of Lemma 4. Hence, if for all

there exists such that (i.e.,

), then from Lemma 4, there exists such that

for all , (i.e., ). Since

this holds for all , it follows that .

Theorem 14: Let be the sequence of sets defined by

Algorithm 1 and be the sequence of functions defined

by Algorithm 2. Then, for all ,

(4)

Let be the maximal -approximate simulation relation of

by and be the directed branching distance between

and . Then

Proof: Let us prove the first part of the theorem. For ,

it is clear that (4) holds. Let us assume that (4) holds, for some

. Let , let , then for all ,

there exists such that (i.e.

). Therefore, we have

In addition, since , we have

. Hence,

. Reciprocally, let be an element of , such

that . Let , then for all , there

exists , such that . From

Lemma 9, for all , is a closed subset, hence has

closed level sets. It follows from Lemma 11 that there exists

such that (i.e. ).

Now let us remark that , hence

. Therefore, . Hence, the first

part of the theorem is proved by induction. The second part of

the theorem is straightforward from the following sequence of

equivalences:

Let us remark that particularly, the zero set of the directed

branching distance between and is the maximal exact

simulation relation of by . Another interesting fact is that

the level sets of the functions and are closed sub-

sets.

For metric transition systems with an infinite set of states,

the fixed point iteration of Algorithm 2 may not be an efficient
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way to compute the directed branching distance. An alternative

method is to solve the following fixed-point equation.

Theorem 15: The directed branching distance between

and is the smallest function defined on with values

in satisfying the following functional equation:

(5)

Proof: Let , for all , we have

. Hence, for all

Therefore, for all , we have

When tends to , this inequality becomes

Since for all , the sequence

is increasing, then the sequence

is increasing as well. Let denote the

limit of this sequence. For all

Let , for all , for all , there exists ,

such that . From Lemma 11, it follows

that for all , there exists , such that

. is compact, then there exists a

subsequence of which converges to .

Let , there exists , such that for all , .

Hence for all , .

Since this holds for all , we have .

This holds for all and hence, .

We proved that for all , there exists , such

that . Therefore

Hence

Now, let us prove that is the smallest function satisfying

(5). Let be a solution of (5), then for all ,

. By induction,

it is easy to show that for all and

hence .

Let us remark that the directed branching distance is the

smallest solution of the fixed-point (5) in the sense that for all

solution of (5), for all ,

.

We now arrive to the main result of this section which states

that for regular metric transition systems, the simulation metric

can be computed by solving a static game where the cost func-

tion of the game is the directed branching distance.

Theorem 16: Let be the directed branching distance

between and . Then

(6)

Proof: Let , then . Hence, for all

, there exists , such that . From

Theorem 14, it follows that . Consequently

Since this holds for all

Conversely, let

Let , then for all , there exists such that,

. From Lemma 11, there exists

such that, . Hence, for all , there exists

, such that . Consequently,

and, therefore, .
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To summarize, in order to exactly compute the simulation

metric, one must solve (5) in order to obtain the branching dis-

tance, and then solve the much easier static game (6). In Sec-

tion VII, we will consider relaxations of (5), but we first de-

velop analogous results for exactly computing the bisimulation

metric.

C. Maximal Approximate Bisimulations

The development of this section is similar to the exact com-

putation of the simulation metric and therefore the proofs in

this section are omitted. The well known bisimulation algo-

rithm [17], can be generalized for approximate bisimulations as

follows.

Algorithm 3: Let . For , define the

following sequence of subsets of :

The previous algorithm approaches the maximal (coarsest)

approximate bisimulation relation .

Theorem 17: Let be the decreasing sequence of sets

defined by Algorithm 3 and be the maximal -approxi-

mate bisimulation relation between and . Then, the fol-

lowing properties hold:

D. Branching Distance

If we represent approximate simulation relations as levels sets

of functions, then the following dual approach based on func-

tions can be used for fixed-point computation.

Algorithm 4: Let . Define the following

sequence of functions from to

As for the case of approximate simulation, we can show that

for all , the series is in-

creasing. Hence, the sequence of functions converges

pointwise in .

Definition 19: Let be the sequence of functions de-

fined by Algorithm 4. The branching distance [16] between

and is the function defined by

The duality between the approach using relations and the ap-

proach using functions is captured by the following result.

Theorem 18: Let be the sequence of sets defined by

Algorithm 3 and be the sequence of functions defined

by Algorithm 4. Then, for all

Let be the maximal -approximate bisimulation relation

between and and be the branching distance between

and . Then

The branching distance is the smallest solution of the fixed-

point equation given by the following theorem.

Theorem 19: The branching distance between and is

the smallest function defined on with values in

satisfying the following functional equation:

Finally, similar to the simulation metric, for regular metric

transition systems, the bisimulation metric can be computed by

solving a static game where the cost function of the game is the

branching distance.

Theorem 20: Let be the branching distance between

and . Then,

In this section, we proposed a method for the exact computa-

tion of the simulation and the bisimulation metrics between reg-

ular metric transition systems. It consists in solving a static game

where the cost function is the branching distance (see Theorems

16 and 20). For systems with a finite number of states, fixed

point Algorithms 2 and 4 for the computation of the branching

distance are guaranteed to terminate within a finite number of

steps. For systems with an infinite number of states, these algo-

rithms do not necessarily reach a fixed point in a finite number

of iterations. Then, an alternative approach is to solve directly

the functional equations given by Theorems 15 and 19. How-

ever, in cases where the equations given by Theorems 15 and
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19 are difficult to solve, one can consider the relaxation that are

proposed in the following section.

VII. APPROXIMATE METRIC COMPUTATION

One of the great advantages of having metric structure on

transition systems is that metrics enable us to consider relax-

ations. If the equations given by Theorems 15 and 19 are difficult

to solve, then we can consider relaxations that will result in com-

puting an over-approximation of the simulation or the bisimu-

lation metrics. The relaxations we propose are based on classes

of functions that we call simulation and bisimulation functions.

A. Simulation Functions

Let and

be two elements of .5 A simulation

function between and is a positive function defined on

, bounding the distance between the observations as-

sociated to the couple and non increasing under the dy-

namics of the systems.

Definition 20 (Simulation Functions): A function

is called a simulation function between

and if its level sets are closed, and for all :

For regular metric labeled transition systems, simulation func-

tions are reminiscent of (robust) Lyapunov functions and can be

seen as relaxations of the directed branching distance. In fact,

the directed branching distance is a simulation function itself.

Theorem 21: Let and let be the

directed branching distance between and . Then, is

the smallest simulation function between and .

Proof: We know that has closed level sets. From The-

orem 15, it is clear that is a simulation function. Let

be a simulation function between and , let be

the sequence of functions defined by Algorithm 2. We have, for

all ,

. By induction, it is easy to show that for all

, for all , and hence

.

As in Theorem 15, the directed branching distance is

the smallest simulation function between and in the sense

that for all simulation function , for all ,

. Thus, the directed branching dis-

tance between and will be also called minimal simulation

function between and .

A simulation function between and is a convenient way

to define a family of approximate simulation relations

of by .

5Even though we do not need to assume that T and T are regular, we do
have to assume that the successor maps have compact images.

Theorem 22: Let be a simulation function between and

. Then, for all

is a -approximate simulation relation of by .

Proof: Let , then

. Let , then for all , there exists

such that . From

Lemma 11, there exists such that .

Hence is a -approximate simulation relation of by .

Let us remark that particularly the zero set of a simulation

function is an exact simulation relation. We can now state the

following result which shows that an over-approximation of the

simulation metric can be computed by solving a game where the

cost function is a simulation function.

Theorem 23: Let be any simulation function between

and . Then

Proof: Let

Let , then for all , there exists such

that, . Hence, for all , .

Therefore, .

The above theorem enables us to over-approximate the simu-

lation metric by relaxing the solution of (5) with Lyapunov-like

simulation functions. In addition to this relaxation, the following

result shows that, for the synchronous composition defined in

Section V, simulation functions are also compositional. The

proof can be found in [34].

Theorem 24: Let be a simulation function of by

and be a simulation function of by , then

is a simulation function of by .

B. Bisimulation Functions

We now consider similar relaxations for the bisimulation

metric. Bisimulation functions are defined in a similar way to

simulation functions. The proofs of the results of this part are

omitted because they are similar to the proofs for simulation

functions.

Definition 21 (Bisimulation Functions): A function

is a bisimulation function

between and if its level sets are closed and for all

:
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For regular metric labeled transition systems, we can show that

the branching distance is a bisimulation function.

Theorem 25: Let , let be the

branching distance between and . Then, is the

smallest bisimulation function between and .

Thus, the directed branching distance between and will

be also called minimal bisimulation function between and

.

Theorem 26: Let be a bisimulation function between

and , then for all ,

is a -approximate bisimulation relation of by .

Particularly the zero set of a bisimulation function is an exact

bisimulation relation.

Theorem 27: Let be a bisimulation function between

and . Then,

The following theorem states that bisimulation functions are

compositional.

Theorem 28: Let be a bisimulation function between

and and be a bisimulation function between and ,

then is a bisimulation function between

and .

In this section, we proposed Lyapunov-like relaxations for

computing over-approximations of the simulation and the

bisimulation metrics, which can further overapproximate the

language and reachability metric between two transition sys-

tems. In the final section, we illustrate how these computations

could be used for reducing the complexity of safety verification

problems for continuous systems.

VIII. VERIFICATION ILLUSTRATION

Despite significant progress in the formal verification of dis-

crete systems [3], the progress for continuous (and thus hybrid)

systems has been limited to systems of small continuous dimen-

sion. The Lyapunov-like relaxations of Section VII allow us to

use a wealth of Lyapunov techniques for approximating simula-

tion and bisimulation functions. We present two examples, one

simply illustrating the steps of our framework for nondetermin-

istic linear systems, and one showing how Lyapunov equations

can dramatically reduce the complexity of safety verification

problems for deterministic linear systems with an approxima-

tion error that is easily computable and acceptable.

A. Nondeterministic Continuous Systems

Consider the following continuous-time linear system with

bounded disturbances:

The system is observed through the variable . The

values of the disturbance is constrained in the set [ ].

The initial state lies in the polytope given by

As stated previously, we can derive a regular metric transition

system which is also nondeterministic. We

want to show that can be approximated by the regular metric

labeled transition system generated by the

following linear system:

The system is observed through the variable .

The values of the disturbance are constrained in the set

[ ]. The initial value of the state variable lies in the interval

. Let us show that

is a bisimulation function between and . First, let us remark

that from the triangular inequality, it follows that

Hence, bounds the distance between the ob-

servations of and . Moreover, we can check that

Hence, for all disturbance (respectively ) there

exists a disturbance (respectively ) such that

is negative. Therefore,

is non increasing under the dynamics of the systems which

implies that is a bisimulation function between and .

From Theorem 27, an over-approximation of the bisimulation

metric between and can be computed by solving a game.

We can check that

and that
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Fig. 1. Reachable sets of the original hundred dimensional system (left) and of its six-dimensional and ten-dimensional approximations (center and right). The
circle on the left figure and the inner circle on the others represent the unsafe set � . The outer circle on the center and right figure consists of the set of points
whose distance to � is smaller than the upper bound of the bisimulation metric.

Hence, . The systems and are approxi-

mately bisimilar with the precision 1. We now propose to use

this result to compute an over-approximation of the reachable

set of . From Theorem 9, we know that the distance between

the reachable sets of and (i.e. the reachability metric) is

bounded by and hence by 1. It is easy to compute

the reachable set of which is equal to . Then, from

Theorem 9, we obtain that Reach . The system-

atic computation of such approximations for nondeterministic

linear systems using robust Lyapunov techniques is the focus of

current research for linear [29], nonlinear [30] and hybrid sys-

tems [31].

B. Deterministic Continuous Systems

The second example we consider consists in the approxima-

tion of a high dimensional deterministic linear system of the

form

(7)

where is a bounded polytope of . The unstable subspace

of the system is of dimension 6. The dynamics on the 94 dimen-

sional stable subspace was chosen at random. We want to verify

that the system is safe, that is if the intersection of its reachable

set with an unsafe set , shown in Fig. 1, is empty. We ap-

proximated this system with two different deterministic linear

systems of smaller dimension.

The first approximation we considered is six dimensional and

consists of simply projecting the original system on its unstable

subspace. Similar to the previous example, we computed a

(quadratic) bisimulation function between the two systems by

solving a Lyapunov equation (see [29] for more details). Then,

an upper bound of the bisimulation metric between the two

systems was computed by solving the game given by Theorem

27. The second approximation is a ten dimensional approxi-

mation consisting of the projection of the original system on

the subspace spanned by the eigenvectors associated to the

eigenvalues with the largest real part.

Fig. 1 shows reachable sets of the hundred dimensional

system, its six dimensional approximation, and its ten dimen-

sional approximation and the associated approximation errors.

We can see that the six dimensional approximation does not

allow us to conclude that the system is safe, even though the

original system is actually safe. However, by adding slightly

more modeling detail, the ten dimensional approximation

allows to conclude that the original system is safe.

The reachable sets were computed using the very recent zono-

tope techniques [25]. The system (Pentium 3, 700 MHz, Scilab)

needed 51 seconds to compute the reachable set of the hundred

dimensional system. It needed less than 1 second to process the

six dimensional approximation, including the computation of

the reachable set, the computation of a bisimulation function and

the computation of an upper bound of the bisimulation metric.

It needed about 4 seconds to process the same tasks for the ten

dimensional approximation. This is strong evidence, that ap-

proximate bisimulations allow to significantly reduce the com-

putation time of the verification process. In [29]–[31], we pro-

pose systematic methods for the computation of simulation and

bisimulation functions for linear, nonlinear and hybrid systems,

that can be used for reducing the complexity of most safety ver-

ification approaches for continuous and hybrid systems. More

examples of application of our framework can be found in these

papers.

The example also illustrates the important point that robust-

ness simplifies verification. Indeed, if the distance between the

reachable set of the original system and the set of unsafe states

would have been larger then the approximation of the original

system by its unstable subsystem might have been sufficient to

check the safety. Generally, the more robustly safe a system is,

the larger the distance from the unsafe set, resulting in larger

model compression and easier safety verification.

IX. CONCLUSION

In this paper, we have developed a framework of system

approximation for metric transition systems by developing

a hierarchy of metrics for reachable set inclusion, language

inclusion and simulation and bisimulation relations. Our

framework is compositional and captures the established exact

relationships for discrete systems, and enables approximate

relationships for deterministic and nondeterministic continuous

systems. The exact computation of the metrics, which requires

the branching distance and solving a static game, can be relaxed

in a Lyapunov-like manner using simulation and bisimulations

functions.

Future research includes developing algorithmic methods

for computing such functions for linear, nonlinear, and hybrid

systems. Even though we considered synchronous composition
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in this paper, more general composition operators will also be

considered. Finally, for sophisticated verification properties

expressible in temporal logics, an exciting direction emerges in

understanding the relationship between approximation metrics

and more robust semantics of spatial and temporal logics [35].

APPENDIX

Set Valued Continuity

Following [33], the set valued map is called:
• upper semicontinuous at if for any neighborhood

of ,

• lower semicontinuous at if for any
and for any sequence of elements

converging to , there exists a sequence of
elements converging to ;

• continuous at if it is both upper semi-
continuous and lower semicontinuous at . If is con-
tinuous at all then we say that it is con-
tinuous.

Metrics, Hausdorff Distance

Definition 22 (Metric): A metric on a set is a positive func-
tion , such that the three following
properties hold:

1) for all , , ,
;

2) for all , , ;
3) for all , , .

We say that is a metric space. If the second property is
replaced by then is called a
pseudo-metric. If the third property is dropped, then is called
a directed metric.

A metric on a set induces a natural metric on the set of
subsets of known as the Hausdorff distance (see, e.g., [36]).

Definition 23 (Hausdorff Distance): Let and be two
subsets of . The directed Hausdorff distance associated to the
metric is defined by

The Hausdorff distance associated to the metric is then

We have the following classical theorem.
Theorem 29: The (directed) Hausdorff distance is a (directed)

pseudo-metric on the set of subsets of and

where denotes the closure of the set .
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