APPROXIMATION OF ATTAINABLE LANDING AREA OF A MOON LANDER BY REACHABILITY ANALYSIS

DLR – German Aerospace Centre Institute of Space Systems Guidance, Navigation and Control Dept. Robert-Hooke-Str. 7 28359, Bremen, Germany

Yunus Emre Arslantas Yunus. Arslantas@dlr.de Thimo Oehlschlägel

Marco Sagliano Thimo.Oehlschlaegel@dlr.de Marco.Sagliano@dlr.de

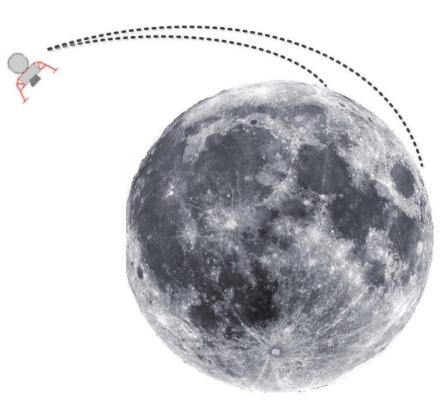
Stephan Theil Stephan.Theil@dlr.de Claus.Braxmaier@dlr.de

Claus Braxmaier

17th International Conference on Hybrid Systems: Computation and Control (HSCC 2014) 15th-17th April 2014, Berlin, Germany

Introduction

- > Developments in space technology have paved the way for more challenging missions which require advanced guidance and control algorithms for safely and autonomously landing on celestial bodies.
- > Instant determination of hazards, automatic guidance during landing maneuvers and likelihood maximization of a safe landing are of paramount importance.
- > Reachability analysis is used to obtain attainable landing areas for the final phase of interplanetary space missions given initial conditions, admissible control inputs and landing constraints.



Determination of Attainable Landing Area by Forward Reachability

Problem Statement

Equations of motion of the moon lander are taken from [1]. The vector of states and control inputs are defined as follows:

$$\mathbf{x}(t) = (\dot{d}, \dot{h}, \dot{c}, d, h, c, \beta, \chi, m)^{T} \qquad \mathbf{u}(t) = (T_{u}, T_{s}, T_{q}, \omega_{\beta}, \omega_{\chi})^{T}$$

$$\mathbf{u}(t) = (T_u, T_s, T_q, \omega_{\beta}, \omega_{\chi})^T$$

\dot{d} : Downrange Rate	d: Downrange	β: Pitch
\dot{h} : Altitude Rate	h: Altitude	χ: Yaw
\dot{c} : Crossrange Rate	c: Crossrange	m: Mass

T_u, T_s, T_q : RCS Thrusters	
$ω_{\beta}$: Pitch Rate	
$ω_χ$: Yaw Rate	

Initial condition and terminal conditions:

$$\mathbf{x}(0) = (\dot{d}_0, \dot{h}_0, \dot{c}_0, 0, h_0, 0, \beta_0, \chi_0, m_0)^T$$

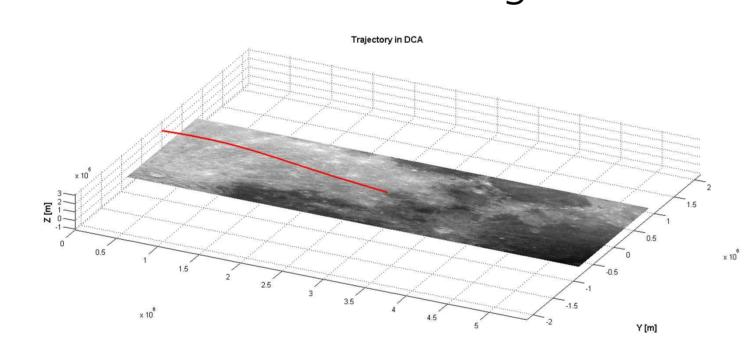
$$\mathbf{x}(t_f) = (0,0,0,free, 0,free, -\frac{\pi}{2}, 0,free)^T$$

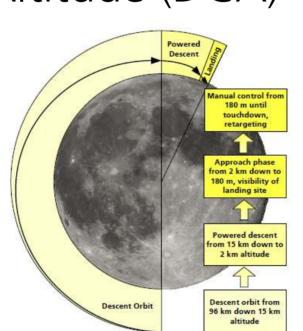
Condition for successful landing:

$$\left|\Delta x(t_f)\right| \leq \Delta x_{max}$$

$$\Delta x_{max} = (1\,m/s\,1\,m/s\,,1\,m/s\,,free,1m,free,10^\circ,180^\circ,free)^T$$

Reference Frame: Downrange-Crossrange-Altitude (DCA)



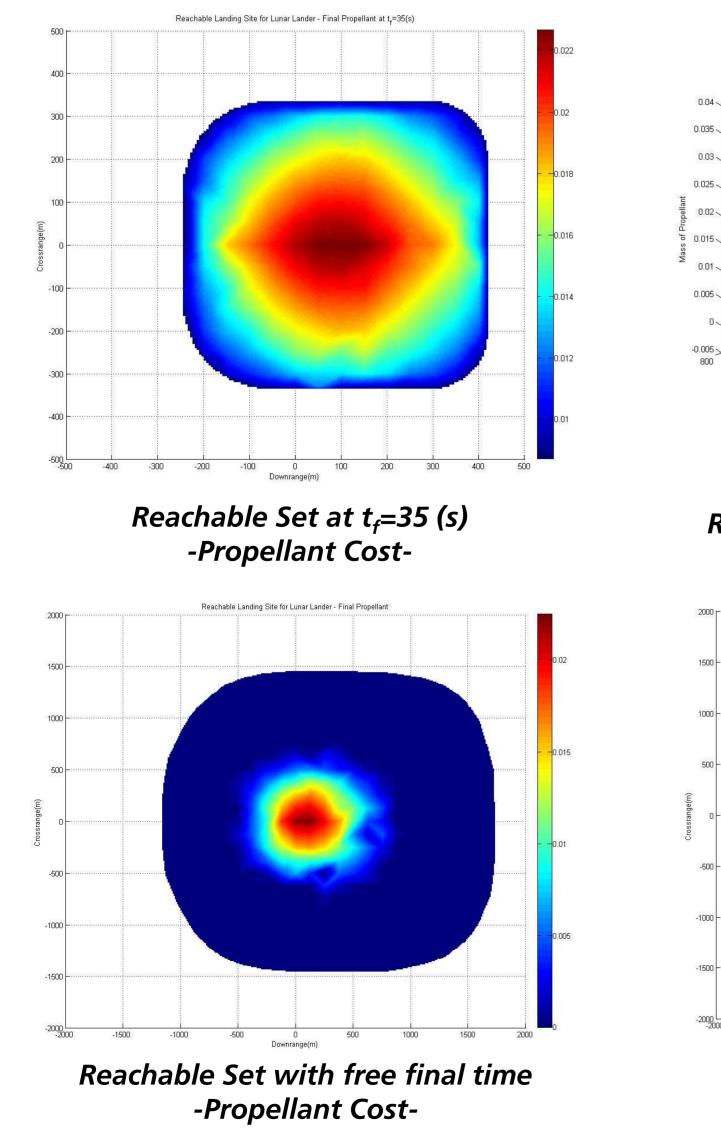


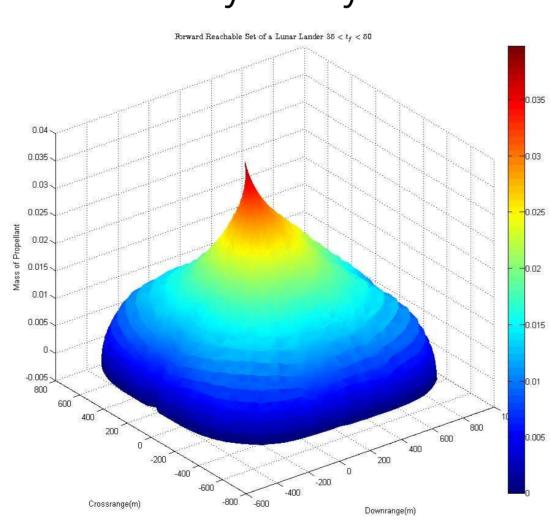
DCA Representation

Generic Mission Profile for Lunar Lander

Results

> Attainable landing area and propellant&time cost map of associated region is computed using reachability analysis





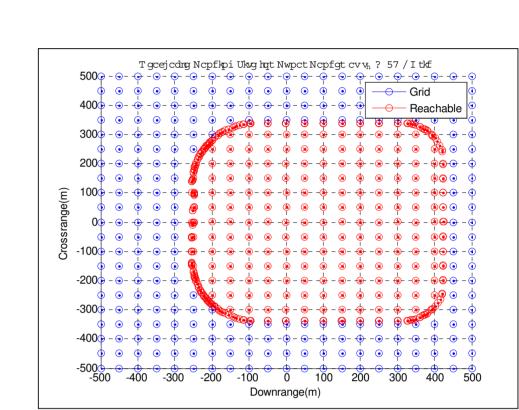
Reachable Landing Tunnel $t_f < 35$ (s) -Propellant Cost-Reachable Set with free final time

-Time Cost-

Method

In this study, we apply an **optimal-control**based algorithm for approximating nonconvex reachable sets of nonlinear systems [2].

- Discretize region of interest
- > Find optimal control law that steers the system from the initial condition to the target state



Discretization of State Space

> Approximate the reachable set with an error of discretization step by solving following optimal control problem (OCP) for each grid points

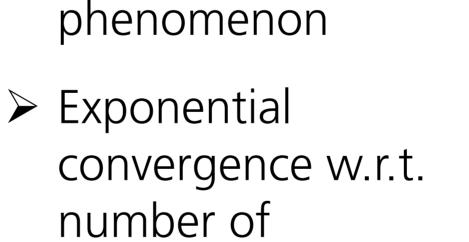
Min
$$\frac{1}{2} \| x(t_f) - g_h \|_2^2$$

s.t. $\dot{x}(t) = f(x(t), u(t))$ a.e. in $[t_0, t_f]$
 $x(t_0) = x_0$
 $u(t) \in U_0$ a.e. in $[t_0, t_f]$

Discretization of Optimal Control Problem

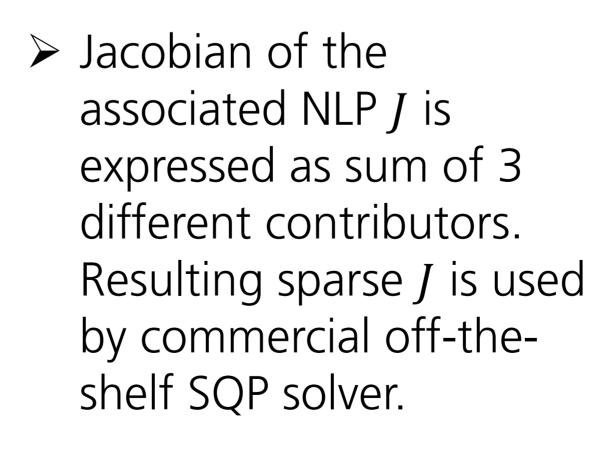
OCP is transcribed into NLP by SPARTAN (SHEFEX-3 Pseudospectral Algorithm for Reentry Trajectory ANalysis) [3].

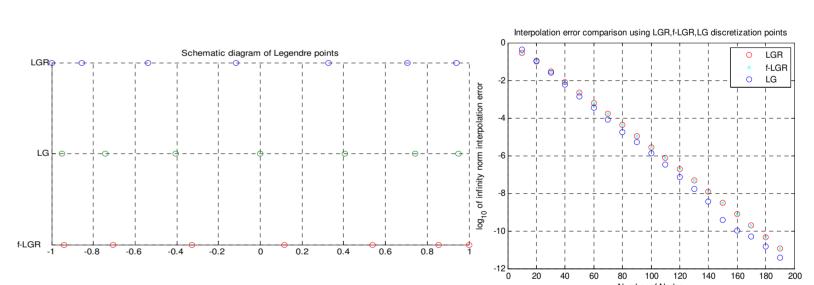
Non-uniform collocation points to avoid the Runge



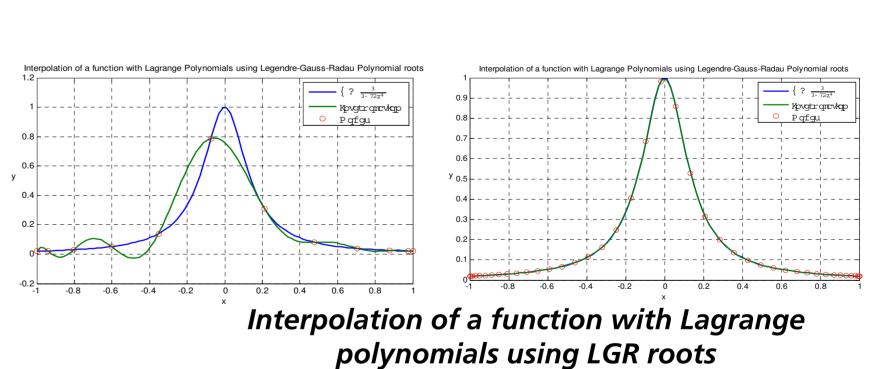
collocation points

Lagrange polynomials for interpolation of states, control inputs

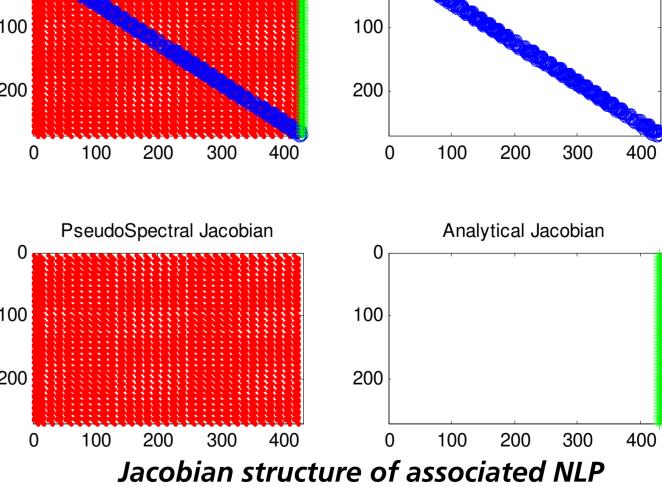




Schematic diagram of Legendre points and Interpolation Error



100 200 300



 $\dim(J) = [n(n_s + n_g) + 1] \times [(n+1)n_s + nn_c + 1]$

n: Number of discretization points $|n_c|$: Number of control Inputs n_a : Number of constraints n_s : Number of states

References:

[1] T. Oehlschlägel, S. Theil, H. Krüger, M. Knauer, J. Tietjen, C. Büskens, Optimal Guidance and Control of Lunar Landers with Non-throttable Main Engine, Advances in Aerospace Guidance, Navigation and Control, pp. 451-463, 2011

[2] R.Baier, M. Gerdts, I. Xausa, Approximation of Reachable Sets Using Optimal Control Algorithms, Numerical Algebra; Control and Optimization, Vol. 3, 2013

[3] M. Sagliano, S. Theil, Hybrid Jacobian Computation for Fast Optimal Trajectories Generation, AIAA Guidance, Navigation and Control(GNC) Conference, Boston, August 19-22,2013

Acknowledgements:

This research is supported by DLR (German Aerospace Center) and DAAD (German Academic Exchange Service) Research Fellowship Programme.