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APPROXIMATION OF BIVARIATE MARKOV CHAINS
BY ONE-DIMENSIONAL DIFFUSION PROCESSES

DAaNIELA KUKLIKOVA

(Received January 5, 1977)

1. INTRODUCTION

In this paper we deal with several cases of the diffusion approximation. The diffu-
sion approximation simplifies the description of a large number of more-dimensional
variables by approximating them in the sense of the weak convergence by processes
whose coordinates fulfil stochastic differential equations. It can be used in cases
where the knowledge of the characteristics of the limit processes can compensate
the ignorance of the approximated variables.

The paper follows up with the work [3] where it is suggested how to control
a large number (an aggregate) of quickly unfolding units. In [3] it is assumed that
every unit is a Markov chain changing at times 0, 4, 24, ... and that the aggregate
includes only units of a finite number of types. It is assumed that the change of the
state of the unit yields a reward and the total reward is a sum of the rewards gained
by the units. A stationary control, which is a function of the total reward only, is
considered. The behaviour of the total reward as 4 — 0, may be described by a diffu-
sion process satisfying a stochastic differential equation independent of the states
of the units. This fact can be used for finding the optimal control in regard of the
criterion, which is not additive with respect to the rewards of the units.

The aim of this paper is to present a general method for solving similar cases and
to show more systems where the dimension of the model can be reduced by the
suggested method. More precisely, it means to approximate two-dimensional random
variables by a one-dimensional diffusion process in the way that one coordinate is
replaced by its certain characteristic, e.g. by the stationary expectation. We show
on four types of sequences of Markov chains {("X,,,"Y,),m = 0,1, ...},n = 1,2, ..
that it is possible to do it when the tendency to the stationary state by {"Y,,,} is greater
than that by {"X,,}.

We define for t € 0, 1) processes

"X, ="X,, te{m/n (m+ )/n).
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In the first part of the work we introduce a theorem where we use general theorems
about the weak convergence to diffusion processes to deduce conditions for the
convergence of the distributions of processes {"X,} to the probability measure corres-
ponding to a stochastic differential equation. This equation depends on {"Y,,,} only
through its stationary distribution. In the second part we introduce several systems
and examine them whether they satisfy the assumptions of the convergence theorem.

2. CONVERGENCE THEOREM

Let, for n =1,2, ..., the double sequence {("X,,"Y,),m =0,1,2,...} be
a homogeneous Markov chain with the state space R' x S, where S is a Borel
subset of R°. Let the initial distribution fulfil P(("X,, "Y,) = (X0, ¥o)) = 1, where
(X0, Yo)€R' x S. We denote the j-step transition probabilities of {"X,} by
"Plx,y,4), n=1,2, .., j=1,2..,(x,y)eR xS, 4= R" a Borel subset.
it means that

P("X i ;€ AT ) = "PU"X, "V, A),

where "#,, = ga(("Xo."Yy), - - ., ("X, "Yo)). Next we set

(1 nJ.(z — x)"P'(x, y, dz) = a,(x, y),

o) (e 5 = Ot P09 = il

We shall assume

(i) Janoe, M) + [Bulx ) < K1+ )

Here and in the following text K denotes an arbitrary positive constant. In the
theorems about the convergence to a diffusion process it is assumed that (1), (2)
have limits a(x, y), b(x, ). We want to deal only with such cases where the coeffi-
cients in the limit equation do not depend on y. We cannot assume this for the limits
of a,(x, y) and b,(x, y) corresponding to one-step transition probabilities. It can be,
however, assumed for the coefficients corresponding to more-step transition proba-
bilities where the dependence on y vanishes. Let us consider an integer function
o(n) > 0, ¢(n) = o(n)as n — oo, and let us denote

wmmﬁz—wwwwﬂwa=amn,
mmmﬂb—x—wwwmeWwWtha=m@nﬁ
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We shall suppose that

(i) supl X, ¥) — a(> i + [b (x, ») b(x)] 4o
x,y 1+ |x| n=w

(b:, = \/b;.z) >

a{x) and b(x) are functions which satisfy .
(iii) ]a(x) — a(z)l + Ib(x) — b(z)| < Kix - z] ,
(iv) !a(x)‘ + |b(x)’ < K(1 + ]xl)

Further, let us define {A "W, m = 0,1, 2, }, n=12,...,by
nX(erl)w(n) = anmp(n) + ((/)(n)/ (erp(nP rmp(n)) + b, ( Xm¢(n)s qu:(n)) 4 "C‘)m .

{4"w,} are martingale differences with respect to ",
defined in the following way:

momy and {"w,} are processes

m—1
"0, ="w, =y A"; for te{mp(m)n, (m+ 1)p(n)n).
i=o

We shall introduce a further condition:

(v) The finite-dimensional distributions of the processes {"®,} converge to the
finite-dimensional distributions of the Wiener process.

Finally, let (D, @) be the Skorochod space of functions on < 0, 1 > that are right
continuous and have left-sided limits. W= {W,, te < 0,1 >} denotes the Wiener
process.

Theorem 1. Let the assumption (i) be satisfied. Let an integer function qo(n) > 0,
@(n) = o(n) as n — oo, exists such that (ii) — (v) hold. Then the probabilities
{0,,n = 1,2, ...} induced on (D, D) by the processes {"X,} converge weakly to the
* probability Q induced by the solution of the stochastic differential equation

dX, = a(X,)dt + b(X,)dW,, te0,1>, X, =x,.

Remark 1. The property (i) is required only to guarantee the relative compactness
of the sequence {Q,}. If it is satisfied, then

(3) E{ sup "X2["F,} < K(1 + "X7),
0=mz=n
4 E{ sup ("X,, — "X,["#,} < K(1 +"X2)(r = s)[n
sEm<r

(see [1], Lemma 1, § 3, Chapter 1) and therefore {Q,} is relatively compact (see [1],
Theorem 2, § 3, Chapter II).
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Remark 2. Condition (v) is satisfied for example if there exists 6 > 0 such that

n/p(n)

(5) Em;) |4 "0, |2t —— 0

(see [1], § 3, Chapter 1I).

Proof of Theorem 1. Let us construct the processes {"v,}, n=1,2,..;%, =

="Xom if te<ko(n)n, (k+ 1)¢(n)[n). The sets of probabilities on (D, Z)
induced by the processes {"v,} and {"X,}, respectively, are relatively compact. The
proof is analogous to the already mentioned proof of Lemma 1, § 3, Chapter I in [1]
The finite-dimensional distributions of the processes {"v,} converge to the finite-
dimensional distributions of the process {X,}, where {X,} is the solution of the
equation

dXt = a(Xt) dl + b(Xr) de te <05 1>’ 0 = Xo

(see [1], Theorem 13, § 3, Chapter II). If we use (4), we obtain for fixed n, arbitrary
k=0,...,n/p(n), m =0, ..., ¢(n), the inequality

E("X o tm — "Xiom)® < Ko(n)fn.

This implies that the limits of the finite-dimensional distribution of {"X,} coincide
with those of {"v,}, and hence, the finite-dimensional distributions of {"X,} con-
verge to the finite-dimensional distributions of the process {X ,}.

3. APPLICATIONS

Now we shall present examples of how to apply Theorem 1.

In the first case we assume that the coordinate "X, fulfils the It6 difference equation
where the drift coefficient changes as a Markov chain. Equations of this type appear
as models of production processes.

The Ité Difference Equation

Forn = 1,2, ... we consider a sequence of random variables {"Xm} fulfilling
"Xm+1 = nXm + (1/n)f(nXm9 " m) + (1/\/11) Em > "XO = Xo, "YO =j0 3

where {e,,} are independent, identically distributed, and Eg, = 0, Ec = 1, Ecg < 0.
Furthermore (for m = 0,1, ...)¢, are independent of "#,. The sequence {"Y,}
is for n = 1,2, ... a Markov chain with a countable state space I controlled by
{"X,,}, with the transition probability p(x, j, i), i.e.,

P("Ym+1 = l/"ﬁm) = p("Xms "Yms l) .
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Let the matrix ”p(x, i, j)“i,jsl involve only one closed class of recurrent states for
x € R'. We suppose that the system of equations for unknowns {w(x,i)iel}
and p(x)

(6) fxj)+ Zi:p(x,j, iy w(x, i) — w(x, j) — u(x) = 0,j€l,

has for every x a bounded solution. Then the functions {w(x, i)} (except for an additive
constant) and z(x) are determined uniquely. System (6) is well-known from the dyna-
mic programming in Markov chains. Our method makes use of [2]. If the stationary
distribution n(x, j) exists, then u(x) = Y f(x, j) n(x, j).

We further assume

[, )] + [w(x, )] + [u(x)] = K(L+ |x]), xeR',jel,
Iw(x,j) - w(x’, j)l + ',u(x) — y(x')l <
§K|x—-x’|, x,x’eR', jel.

Proposition 1. The probabilities {Q,} on (D, @) induced by the processes {"X,}
converge weakly to the probability Q corresponding to the stochastic differential
equation

dX, = u(X,)dt + dW,, te < 0,1 >, X, = x,.

Proof. We shall verify the assumptions of Theorem 1. Since a,(x, j) = f(x, ),
b,(x,j) =1, a(x) = u(x) and b(x) = 1, the assumptions (i), (iii), (iv) are satisfied.
Let us choose ¢(n) > 0, ¢(n) = o(n) and let us begin to verify the assumption (ii).
In the estimates that we make for fixed n we write (X, Y,,) instead of ("X, "¥,,).

om -1

ay(x, j) = (nfe(n)) Ex /("X o — "Xo) = (1/(n)) Ey; Z,O X "Y) 5

by(x, ) = (n]o(n)) Ee("X oy — "Xo)* = (e(n)/n) a;(x, j)* .
For arbitrary x € R*, j e I the following estimates hold:
, ] @(n)—1
. ) = B3] = (o] Exy 3 (K Ya) = (X =

n)—

= (o) [Ey S E06(X %) = (X Yor) + 1(X,) — WX F | =

< (o) B 3, 0 V) = 0o Yo )] + (1) B[ 3 (1) = XS
< (Ho(n) Exw(Xo, Yo) = W(X g Yom)| +
my—1

+ 0ol Bl %, w(Xan Ye) = o1 o) + (1f000) B

m=

(H(X) = u(Xo))] <
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< (1/o(n)) E,; K(1 + |X,| + ) + (1/e(n)) Exj:§1K|X,,, — Xpoq| +

(o(n)
e(m)—1

+ (1!/(/)(")) Exj Zl Kixm - XOI é

< K(1+ <) ((to(m) + (1y/n) + Vo(n)fy/n) .

To estimate the function a,(x, j) we have used the properties of the functions w(x, j)
and p(x) and the validity of (3), (4) in Remark 1.

| < (nfe(n)) Exj((l/") Z f(Xm’ Y))* +

Ef(1n) Z S ) (/) Z e))| +

+ (nfo(n)) 2

‘(n/(p(n (L n) }: &) — 1‘ + (p(n)[n) K(1 + x*)
< K(1 + %) (o(n)fn) + (Yoln)/m)

The proof of condition (V) is omitted here due to its length. An auxiliary sequence
{"X, "Y,} used there fulfils "X, ., = "X, + @,("X,."Y,) (1/n) + (1/yn) en, m =
=01,..., "X, =xq, "Yy = jo, where @, = a, — [(a, — #(n))" + (a, + =(n))7],
and x(n) > 0 is chosen so that (o(n)[\/n)x(n) =0, x(n) > 0 as n - co.
The sequences {4"®,}, n = 1,2, ... corresponding to {"X,, "Y,} fulfil (5), and
limP( sup |'@, — "o, > &) = 0 for arbitrary & > 0.

n— o te<0,1>

The System of Ité Difference Equations with Different Time-Scales

We consider, for n = 1, 2, ..., two sequences of random variables {"X,,}, {"Y,.}
defined by the recurrent relations

"Xo =Xxo, "Yo =g,

K = X + (1) F(Xo "Ea) + (1)

s = () 60K "T2) + (0
The random variables {¢,,} are identically distributed with E¢, = 0, Eek = 1, Eeg < 0.
The random variables {J,,} are identically distributed and E5, = 0, E5; = 1, E|5,|> <
< o0. The sequences {¢,,} and {9,,} are mutually independent. The function y(n) > 0

is an integer function such that y((n) = o(/n). We suppose that the functions f and g
satisfy

sgp ‘f(x, y)l S K1+ |x]), xeR!,

sup lg((, )| < K.
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Further, let us consider the equation
; o? 0
(7) (1/2)5;5 w(x, y) + g(x, y) —a—; w(x, y) + f(x,y) — u(x) = 0.

Equation (7) is analogue of (6) for the case of the continuous state space (see [4]).
We introduce G(x, y) = 2 [3 g(x,s)ds and we suppose [%, e%*Vdy < co.

Let us denote y(x, y) = ¢®*[[e*) ds. If we look for p(x) and w(x, y) among
the solutions fulfilling lim e“**(9/ay)w(x, y) = 0 for each x € RY, then such u(x)

y~>tw

px) = J.w Slx, vy o(x, y)dy .

is unique and

The function w(x, y) is also unique (except for an additive constant) and

w(x, y) = fye‘G(x‘“) Jm(f(x, s) — p(x)) 2¢% ds du .

We consider p(x) and w(x, v) so defined and assume sup (|w(x, v)] +

+ ’(62/6y2) w(x, y)[) < K(1+ [xl) for arbitrary x € R, (0*[dy?) w(x., y) is Holder
continuous (with exponent &) in y € R' uniformly in the variable x € R'.

Iw(x, y) = w(x', y)| + ]u(x) - u(x')l < K]x — x’[ , x,x,yeR'.

Proposition 2. The probabilities {Q,} induced on (D, %) by the processes {"X,}
converge weakly to the probability Q corresponding to the stochastic differential
equation

dXt :J"Y(th y)f(Xn y) dydt + th? te < 09 1 >7 XU = XO :

Proof. Assumptions (i), (iii), (iv) are satisfied because a,{x, ¥) = f(x, y), b(x, ¥) =
= 1, a(x) = p(x) = fy(x, ) f(x,y)dy, b(x) = 1. We choose ¢(n) such that ¢(n) =
= o(n), and simultaneously ¥(n)/p(n) > 0 as n — oc. We shall verify assumption
(it). For fixed n we shall write (X, Y,,) instead of ("X,,, "Y,,}.

@n)—1 o(n)—1
) = ol £ 5 1% 12 = 0l £y (3, Bf) -
0 P2 o
= #( 2) £ 00 1) = (12) £ e ) m}) .

First we shall make an auxiliary estimation. Using Taylor’s series and equation (7)

we get
pn)y—1

E. ¥(n) "Z E{w(X,. Y,i\) — w(X,, V) F,} =

=0
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e(n)—1

= B (n) 3 E{w(Xo Yo o+ (114(n) 9(X s Ya) + (1 (1)) ) =

@(n)—1

(X V)| F ) = Euy i) P {_ (X Vi) (X Vo) (1) +

012 25 0, R 019 + (12) (25 90 ) 0, T 000 -
dy dy

0 2 ) = (12) o ) e )+
ly oy?

%W(n))zm} ,

where |¥, — le < lg(X,,,, Y,)[¥(n) + 5,"/\/!//(n)l a.e. Further, we shall usc the
assumptions imposed on the function w and the preceding equation. For arbitrary
x, y € R we have

o(n)—1

E., ¥(n) §_ {(W(Xm, ) — WX Yoiy)) +
¥ (j—y WX, m) 9 1) (1) + (1] )—4 WX V,) (,,.rw(,,W,,,}
< K((1 + x]) o(n)(n) + <p<n>/w<n>“/’ + lmp(ny ).

Using the preceding inequality we shall estimate a,’,(x y).

IA

pnm—1

lan(x, ) = n(x)| = [Eo(1] (") Z ((X,n) — 1(Xo) +
+ y{n) E{w(X,., Y,) — WX, Yous1) /m})] + K((1 + [xl) (1 f(n)) +
o) —1
+ p(n)? + 1p(n)* 1) < (1e(n)) (Esy MZO |i(X,) — (Xo)| +

p(m)— 1

+ E,, l//(n) I ZO W(Xm, Y,) — W(X,,,, Ymﬂ)l) + K((l + lxl) (l/l//(n)) +
p(n)"* + 1fp(n)y ') < K(1 + le) (Ven)n + 1p(n) +
+ y(n)]o(n) + y(n)//n) + KA Pp(n)" + 1)p(n)*).
We have derived the last inequality in the same way as in System 1. In just the same
way as in System 1
sup Ib;,(x, y) — ]I/(l + |x|) — 0,
xy
and the validity of assumption (v) can be proved.
The third system involves an application which is a simplification of [3]. The

application was mentioned in the introduction.
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The Difference Equation with Noise Created by the Deviation
from the Expectation

Let sequences of random variables {"X,}, n = 1,2, ... satisfy the difference
equations
(8) "Xm+1 = "Xm + (l/n)f("Xm’ " m) + (1/\/71) (h(nva ”vaa " m+ l) -
- f("Xma nYm)) s

n —_ A n — 7
Xo =%xo, "Yo=Jo,

and let the sequences {"Y,,} be Markov chains controlled by {"X,,}, with a countable
state space I. The transition probability matrix of {"Ym}, p(x, i j)Hi“,-E, involves
only one closed class of recurrent states. The functions f and A fulfil

2., i) h(x, j, 1) = f(x.J),

sup ]h(x,j, I)i <K.

x,J,0

Let the systems of equations
Slx 0+ Zp(x, B wix, i) —wi(x,j) —pmx) =0, jel,

Soplx g i) hx, g, 0 = fx )+ Zip(x,j, Dy wy(x, i) — wy(x, j) — v(x)* =0, jel

have solutions satisfying the following assumptions:
sup (|wl(x,, 1)‘ + {wz(x, 1)[ + lu(x)‘ + lx(‘c)zl) <K,,
inf v(x)* = K, ,
!wl(‘x,j) — wylx’, j)‘ + \wz(x, J) — wz(x’,j)] + Iu(x) - ,u(x’)\ +
+ ]v(x) — \(\)] < K'x — x’l , jel, x,x' eR!,

v(x) = Jv(x)*.

Proposition 3. The probabilities {Q,} induced by {"X,} converge weakly to the
probability Q corresponding to the stochastic differential equation

dth;z(X,)dr+\'(X,)th, 1e0, 1>, Xy =xq.

Proof. Assumptions (i), (iii), (iv) are satisfied because a,(x, j) = f(x, j), b,(x, j)* =
=Y h(x, j, kY p(x, j, k) — f(x,j)%, a(x) = p(x), b(x) = v(x). Let us choose the
k

function ¢(n) = o(n). Similarly as in System 1

SUP ICI,/,(X, J) - ﬂ(x)i I > (),
X7

n—co
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Further,
@(ny—1

bi 7 = (o) Eof(1) 3 (K ) +

+ (afolm) 2B (1) 3, 7 V) ()%, 00 W Vo) = 106 ) +
900 By 3 (X Yo o) = S0 Yo = (o)) i

We have used the fact that /(X,,, Y, Y,+,) — f(X,., Y,,) is a martingale difference.
For arbitrary xe RY, jel

b 1) = v(x)*| = K((o(n)]n) + (Veo(n)\/m)) +

(o) [Eo 3. (B0 o Tois) = 0 V) — (o)) =

= K((o)}n) + (o) + (tfol|E, S, Blws(Xa Yo) —

- WZ(va Ym+1) + V(Xm)z - V(X())z/g:m}

If we use the same method of estimation as in System 1 we establish the condition
(ii). To verify condition (v) it suffices to prove the validity of (5) for & = 2. If we use
the property of martingale differences, we obtain

nle(n)—1 "
k;) E ("X s v — "Xom)® 75,7 0
which implies (v) in virtue of the existence of K,, K, such that [a,/,(x, 1)‘ <K,
[b,',(_x, ])I > K, for sufficiently large values of n.

Note. It may be supposed that the functions w(x, j) are uniformly equicontinuous
instead of being Lipschitz continuous.

An application of System 3:

We consider for n = 1,2. ... a Markov chain {"Y,,} with a finite state space /,
controlled by the chain {"X,,} where {"X,,} is the reward up to the time m. Let the
control be a continuous mapping u:xeR' > u e [[Z(i) = % where Z(i) is

iel
a bounded closed subset of R*. For fixed z e % the chain {"Y,,} has the transition
probability matrix Hp(i, Js z(i)) ;,jer» Which involves only one closed class of recurrent
states. The reward accumulated up to the time m {"X,,} is the sum of the rewards
at the times 0,1, ..., m — 1:

m—1

9) X, =X, +k;a(u,,xk(" Yo "V "Xpi ), "Xo = xg.
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Let us suppose that the functions p(i, j, z). o(z, i, j) are continuous functions on Z(i}
for each i, j e I. We set

”QI(Z’ l) = Z p(l5’a Z) "U(\Za is l) >

Jjel
"0z, 1) = 3 i . 2) "oz, )
Je

We assume I”cr(z, i, j)l < K[yn, i jel, ze Z(i), and

limn"g,(z, i) = r(z. i),

n—os

lim n"g,(z, i) = ry(z, i)

uniformly in z e Z(i), iel.

For ze 4, let a(z), {v,(z), iel} and b*(z), {v,{2), i€l} denote the solutions
of the equations

r(2(i), i) + );p(i, Jz(i)) v (z) — v, {z) — a(z) =0, iel,
ra2(i). 1) + gp(i,j, 2(i)) v2(z) = v2(z) = b(z)* = 0. iel. b(z) = /b(z)".

Let a(u,) and b(u,) be Lipschitz continuous and b(u,) = K > 0. Let us note that
the functions {v,(z), v,(2), j €I}, a(z), b(z) are continuous on a compact set and
therefore bounded. The probabilities {Q,} induced by the processes {"X,} converge
to the probability Q corresponding to the stochastic differential equation

dX, = a(uy,)dt + bluy,)dW,, €0, 1>, X,=x,.
Proof. We can express (9) in the form
Ko = "X+ (1) (K "Yo) + (U 0) (K " Yo, "Yoit) = (Ko " Vo))
with "f(x, i) = n"o,(u(i), i),

"h(x, i, j) = \'/‘rn("a(ux(i’). i,j) = "o uli). i)y + n "0, (u,(i). i) .

Difference Equation with a Renewal Process

We consider for n = 1,2, .. the sequence of random variables {"X,}, where
{"X,,} fulfil the stochastic difference equations

"Xoer = "X, — (/3/;1) "X, + (1/\/”) (f(Ym) _ /) y + (1/’\’/,7)f( Ym) €,0 .
"Xg =Xx¢, PBoAy,0.>0

277



and {Y,} is an alternating renewal process with the on-time T, and off-time T,
where ET{ + ET; < oo. The function J assumes the value 1, if the system is on,
and the value O, if the system is off. The random variables {¢,} are the same as
in System 1,

The next result is stated without a proof.

Proposition 4. Let 1 = ET,|/(ET, + ET,),
O = E((ET,) T, — (ET,) T,)*/(ET, + ET,)*.

Then the probabilities {Q,} converge weakly to the probability Q corresponding
to the stochastic differential equation

dX, = —BX, di + (7’0 + 6?A)dW,, 1e<0,1>, X, =1x,.

References

[1}1 1. L Gichman, A. V. Skorochod: Theory of Random Processes 11 (in Russian). Nauka,
Moscow 1975.

[2] P. Mandl: A connection between Controlled Markov Chains and Martingales. Kybernetika 9
(1973), 237 241.

[31 P. Mandl: On aggregating controlled Markov chains, in Jaroslav Hajek Memorial Volume
(to appear).

(4] P. Morton: On the Optimal Control of Stationary Diffusion Processes with Inaccessible
Boundaries and no Discounting. J. Appl. Probability 8 (1971), 551560,

Souhrn

APROXIMACE DVOUROZMERNYCH MARKOVOVYCH RETEZCU
JEDNOROZMERNYMI DIFUSNIMI PROCESY

DanieLA KUKLIKOVA

Clanek pojedndvéa o nékterych piipadech difusni aproximace. Navazuje na préci
[3]. kde je navrhovano, jak Fidit velké mnoZstvi rychle se ménicich jednotek. Tam se
piedpoklada, ze kazdd jednotka tvoii Markoviv fetézec, ktery se méni v Casech
0,4,24, ..., ptiCemz zména stavu jednotky prinasi zisk. Celkovy zisk je pak souctem
ziskil ziskanych jednotkami. UvaZuje se staciondrni Fizeni, které je funkei celkového
zisku. Chovani celkového zisku pfi 4 — 0 lze popsat difusnim procesem, spliiujicim
stochastickou diferencidlni rovnici, nezavisejici na stavech jednotek. Tohoto faktu
lze vyuZit pti nalezeni optimalniho Fizeni vzhledem ke kriteriu, jez neni aditivni.
Ukolem tohoto &lénku je podat obecnou metodu fe$eni podobnych pripadt a ukizat
vice systému, kde lze sniZit rozmér dlohy navrhovanou metodou. To jest specidlng
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aproximovat dvourozmérné nahodné veliiny jednorozmérnym difusnim procesem
tak, 7e se jedna ze soufadnic nahradi uritou jeji charakteristikou, napt. stacionarni
stfedni hodnotou. Na &yfech typech posloupnosti {("X,,"Y,), m = 0,1, ...},
n=1,2, ... je ukdzano, Ze je to mozno provést napiiklad tehdy, kdyZ tendence
ke staciondrnimu stavu je u {"Y,} vét8i nez u {”Xm}. V prvé &asti uvadime vétu, kde
vyvozujeme podminky pro aproximaci fetézce {"X,} stochastickou diferencialni
rovnici, kterd zdvisi na Fetézci {"Ym} pouze prostfednictvim jeho staciondrniho
rozdéleni. V druh¢ &isti uvadime jednotlivé systémy a zkoumdme, zda spliuji pred-
poklady kounvergenéni véty.
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