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Summary. This article considers the problem of approximating a general
asymptotically smooth function in two variables, typically arising in inte-
gral formulations of boundary value problems, by a sum of products of two
functions in one variable. From these results an iterative algorithm for the
low-rank approximation of blocks of large unstructured matrices generated
by asymptotically smooth functions is developed. This algorithm uses only
few entries from the original block and since it has a natural stopping crite-
rion the approximative rank is not needed in advance.
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1. Introduction

The approximative applicatiod f of an operatotd coming from integral
formulations on a functiorf has been investigated in many publications.
Typically, the kernel function of the integral operatdris approximated

by a degenerate kernel, i.e. a finite sum of separable functions (functional
skeletons). In the case of multipole methods [17], [9], [10], [13], [14] these
functions have to be known explicitly for each kernel. In contrast, algebraic
methods approximate blocks of the discrete operator by low-rank matrices.
Both approaches are designed to save operations and memory and both have
basically the same idea behind them which can easily be explained in the
case of low-rank approximants. Assume we have a mdtrix C™*" of a
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small rankr. Because of the representation of low-rank matrices

T
T:Zuivf, ’LLiE(Cm, v; € C"
i=1
onlyr(n+m) units of memory are needed to store them and a matrix-vector

multiplicationT x (which is the basis for iterative solution techniques) takes
O(r(n + m)) operations:

Tr = Z Sil;.

i=1
Blocks of matrices arising in integral equations are usually dense and un-
structured. Though possibly having full rank they may be well approximated
by low-rank matrices. Thus for the approximation not the usual butthe
rank is important.

Definition 1 (e-rank). Thee-rank of a matrixA € C™*"™ with respect to
the matrix norm| - || is defined as

rank. A = min{rankT : ||[A — T|| < e}.

The problem of finding the best approximant of a prescribed rank was solved
by L. Mirsky [15] (see also [3]).

Theorem 1. LetA € C™*™,m > nand||- || be a unitarily invariant matrix
norm. The best approximation of at most ranto A is

|A — Agl| = min{||[A — T : rank T < &},

where 4, = Zle oiuvf and (o, ui, v;), @ = 1,..., k are thek largest
singular triplets. Especially

n
min{||[A — T|% : rank T < k} = ) o7,
i=k+1
min{||A —T||z: rankT < k} = 011

where||-| -||2 denote the Frobenius and the spectral norm respectively.

Fs

Thus the optimal approximant to a prescribed accuracy is easy to find if the
singular value decomposition (SVD) is accessible. But the SVD is compu-
tationally very expensive. Furthermore every entry of the original matrix

has to be calculated first. This is also the case if we apply the less expensive
partial SVD, cf. [7]. Consequently, approximations based on the SVD cannot
lead to fast algorithms. Our aim, however, is to find an approximant using
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less computational effort and especially only few entries from the original
matrix.

Let X = {z1,...,zn} andY = {y1,...,y,} be two sets of pairwise
distinct points inR? and Dy, Dy the convex hulls of X and Y respectively.
If we use a quadrature formula to approximate the integrals, the approxi-
mant’s properties with respect to availability of low-rank approximants come
from the kernel. Thus we concentrate on the investigation of matrices

generated by functions: Dx x Dy — R of the type

1) ng y) + Rp(z,y)

where|R,(z,y)| < ¢, ande, — 0 for p — oc.
It is evident that these matrices can be approximated by a matrix of rank
N, to an accuracy of ordet,. In terms ofz-ranks this reads

rank., A = O(Np).

Multipole methods use these decompositions directly. For this, however,
the functionsy, andh; have to be known for each functigh The method
described in this article will only use the information about the existence of
these decompositions. However, we confine ourselves to matrices generated
by asymptotically smooth functions, cf. [1].

Definition 2. A functionf : Dx x Dy — R is called asymptotically
smooth if there are constants, c; > 0 andg < 0 so that for any multi-
indexa € N¢

05 f(z,y)| < erplch |z —yl?7P, p=lal.

This class of functions is a subset of type (1) functions if we impose the
condition

(2) diam Dy < ndist(Dx, Dy), 0<n< (cod)™!

since by using the Taylor expansion at the pginte Dy we have

-1
Flaaw) = 3 5 (= w)ay) Flaw) + 5 (= w)d, ' f(a.5)
=0

for some pointy € Dy..
Setting

Ry () = ;, (v — 1), (z.7)
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we observe that far € Dx,y € Dy
|y y0|> ~
Ry(x d — ciplch|x—7yl?
Rl < s (220 apdie-g)
< ¢ dist?(Dx, Dy) (cadn)? =: ¢p.

With respect toy the sumy>0_ ' & ((y — 0)dy,)" f(x,0) is in I19_, the
space of polynomials of the degree at mpst 1. The number of linearly
independent monomialg’, |a| = 1, isr = ("*471). Thus thes,-rank of

the matrixA is bounded by the dimension, of IT¢

p—1
rank., A<n,= eri < cdpd.
1=0
RemarkThe geometrical parametgiarising in equation (2) will be used to
control the approximation error. The setsandY will be generated from
the original set of points by recursive subdivision so that condition (2) holds.
This will be explained in Sect. 3.1.

In analogy to the definition of a matrix skeleton (dyade) (cf. [8]) we define
a functional skeleton.

Definition 3. Let f : R? — R andg : R* — R. The producti(z,y) =
f(x)g(y) is called afunctional skeleton

Instead of approximating a function in two variables by a sum of functional
skeletons using some functiogsandh, explicitly given for each function

as multipole methods do, we suggest using the values of the function itself
to generate an approximation of type (1). For convenience let

f(xvyjl) f(-Til,y)
f(xv yjk) f(x’bkvy)
Then we are looking for decompositions
3) f(a,y) = fa, [yl) TG f([2]k: y) + Ri(,y)

with G € R*** and somer;, € X andy;, € Y,l=1,...,k.

In terms of matrices this means that we try to find a pseudo-skeleton com-
ponent (cf. [8]), i.e. a matrixC’GR whereC € R™** arek columns and
R € RF¥*™ k rows of the matrixA. The matrixG € R*** delivers some
appropriate coefficients that are calculated from the submatrik iofthe
intersection of the chosen rowsand columng’.

In [8] we can find a result on the existence of these pseudo-skeleton
approximants.
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Theorem 2. Assume that for some > 0 the matrix A € R™*" fulfils
rank. A < r with respect to the spectral norm, then we can find a pseudo-
skeleton componedtGR, G € R™*" such that

| A= CGRlz < (1 + 2V/F(vn + Vim)).

The proof uses a condition on the singular vectors of the low-rank approxi-
mant of A which is difficult to fulfil in practice. Furthermore, the approxi-
mation rank has to be known in advance to specify the number of columns
and rows needed. In multipole methods the same problem occurs, whereby
it is the number of functional skeletons which has to be known in advance.
One way to solve this is to determine the number of functional skeletons
needed from an upper bound of the remainder, but this certainly produces a
number that is too high.

In the following we will present an iterative method to generate a de-
composition of type (3). From this we will develop an iterative and incom-
plete algorithm for the low-rank approximation of matrices generated by
asymptotically smooth functions without knowing the approximative rank
in advance.

Let us first concentrate on the analytic problem of approximating a gen-
eral asymptotically smooth function in two variables by a sum over func-
tional skeletons.

2. Analytic problem
We construct the sequencgs; }, {rr} by the following rule

To(fl,‘,y) :f($7y)7 SO(SL’,y) =0

and fork =0,1,...
T'].H_l(l', y) =Tk (.T, y) —Yk+1Tk ($7 yijrl) Tk ('rikJrl 5 y)

Ser1(2,y) = sk, y) + Vw1 7o (T, Vi) T (T Y)

whereyey1 = (re(zig,,, ¥50,,))  andez;,,, andy;, ., are chosenin every
step so thaty (v, ., yj,.,) # 0.

We realize that the functions, accumulate zeros. Thug gradually inter-
polatesf.

Lemmal. For1 <[ < kandallz € Dx we haver(z,y;,) = 0.
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Proof. The lemma holds fol = k since

(2, Y5,.) = The—1(2, ¥j,) — VeTh—1(2, Y )Tk—1(T4y,, Y5, ) = 0.

We will prove the rest by induction frorh — 1 to k. We saw above that the
lemma is true folk = 1. Assume it holds fok — 1 then we have

Tk((l?, yjl) - Tk—l(xa y]z) - /Vkrk—l(xv yjk)rk—1<xik7 y]l)

Forallz € Dy and alll <[ < k it holds thatry,_(x,y;) = 0 and the
claim follows from this. a

The same statement holds if we interchange the rolesaoidy.
We define the matriM,gl) () by

—f(xilayjl) f(:Eipyjk)_

M (x) = f(l‘,-yjl) f(x,.yjk) :

-f(xikvyjl) s f(l‘lk;’y]k)—

where in thdth row we have the vectof(x, [y]). Furthermore we set
Mk = Mél)((L‘ZJ

For the determinant dw,gl) the following lemma can be shown.

Lemma?2. Forl1 <[ <k

det M} (z) = ri_1(wi,., yj,) det My (x) — r_1 (2, y5,) det MY | (a,)

holds and

det Ml(l)(m)
det MP ()

’I“()($, yjl)a
rk_l(x,yjk)det Mp_1, k>1.

Especially
det Mk = TO(inyji) T Tk—l(xiwyjk)'

Proof. Itis easy to see that there are coefficiemZY?U, i=1,....k—1,
so that for allr € Dx

e

-1

Tk’—l(xa yjk) = f(xv yjk) - aEk_l)f(x7y]z)
1

-.
Il
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Thus it is possible to replace each enfff,y;,) in the last column of
M,gl)(:c) by ri—1(-,y;,) and obtainﬁ,ﬁl) (x) without changing the determi-
nant.

Since from the last lemma, 1 (z;;,y;,) =0, 1 < j <k — 1, only the
Ith and thekth entry ofﬁé” (z) do not vanish. Using Laplace’s theorem
ends the proof. O

The last lemma guarantees thd}, is nonsingular and we are now able
to show that the decomposition ¢finto s andr;. is of type (3).

Lemma 3. For the generated sequencesandry, k > 0

Sk(wvy) + rk(w,y) = f(:r,y)

holds, where fok > 1

sk(z,y) = f(z, [yle) "M f([2]k, y).

Proof. In the casek = 1 the lemma is obviously true. We proceed by
induction fromk — 1 to k. From the definition of;, ands; we see that

Sk(l’,y> + Tk(m7y) = Sk—l(l‘a y) + Tk—l(wa y)

which by the assumption is equal foz, y).
It is easy to see that witky,_; alsos; has the form

si(z,y) = f (@, [Yle) Grf (2], )

with someG), € R**%. Applying lemma 1 gives

F@ie i) = f@i [ylk) " Guf ([2lk, y5.) <= My = My, G My
From this it finally follows thatGy, = M, "

In the following we will relate the remainder,, of the approximation
to the remainder of polynomial interpolation. It can already be seen from
the existence result using the Taylor expansion that in multidimensional
space more than one additional functional skeleton in the approximation is
necessary to increase the order of approximation by one. This is why in
our theoretical result, which is based on polynomial interpolation, we only
expect an increase of the order of accuracy frommifth to then,, ;1 th step.
There may, however, be functiorigor which the step size from one order
of accuracy to the next is smaller.

In multidimensional space polynomial interpolation is generally not
unique. The existence of interpolation polynomials is always guaranteed
but the uniqueness depends on the configuration of the points. They must
not lie on a hypersurface of degrgeor equivalently there is no polynomial
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in H;f that vanishes on all of the points. However, the set of points for which
Lagrange interpolation is not unique has measure zero. From the condition
ri(zi, ,Yj,_,) # 0 on the choice of the points we guarantee the unique-
ness, which is important for the remainder of polynomial interpolation.

Lemma 4. Assume thatlet M,,, # 0 then the Lagrange interpolation in
the pointsyy, . .., yn, iS unique.

Proof. Assume we have a polynomi&l € H;j_l fulfilling
P(y;) =0, 1=1,...,n,.
We have to show tha® vanishes identically.
Define polynomialgy, € II7_, by
pe(¥i) = [(@i,y5), kl=1,....,np.

Take an identically vanishing linear combination

Zakpk =0 forally e Dy.

Especially

0= Zakpk(yjl) = Zakf(mik,yjl) for1 <1 <m,.

But sincelM,,, is nonsingular we have, = 0for 1 < k < n,. {py}isa
linearly independent system and thus a basi§]§‘>_f1.
Consequently we can fink, € R so thatP = ZZil Axpi. But from

y]l Z )‘kpk yjl

we obtain again\; = 0,1 < k£ < n,. ThusP vanishes identically.

For a fixedx € Dy denote byf, the functionf,(y) = f(x,y) and by
L,_1(fz) the interpolation polynomial t¢, of degreep — 1. We are now
in a position to relate the remainder terr), of the approximation to the
remainder of the Lagrange interpolatidp( f2) (v) = fo(y)—Lp—1(fz)(y).

Lemma 5. For the functions~np it holds that

27 det MY (2)

T'ny ((L‘, y) = Ep(fw)(y) - -

det M, Ep(fmil )(y)-
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Proof. Let L;. be thekth Lagrange polynomial ilﬂg_l, i.e. Li(y;,) = Ok,
and

an. ()
the vector of the Lagrange polynomials to the poiats . . , ¥y,
Using Lemma 3 gives
rny (2,9) = f(2,y) = (2, [Yn,) My, f (2], 9)
= f(z.y) = f(@, [yl,) " Ly) —

— (@, [yln,) My, (f([@]ny y) — M, L(y))

—1

np
Tp
= By(fo)0) = X (£ ly),) "M ) Ep(F) ).
=1
SinceM;pr(a:ij, [y]n,) = e; the jth canonical vector, it is easy to check
that

det M) ()
det M,

We are able to control the approximation error by making assumptions on
the choice of the points;,, .. . Assume that our choice of points
Tip,- .-, T, leadstoa submatrlM whose determinant cannot be in-
creased by interchanging one row by any vegt@r, [y],), = € Dx, i.e.

= det MO() M) = (£, lle,) "M - O

(4) | det My, | > |det M{D(2)], 1<1<n,, o€ Dx.

In interpolation theory these maximum volume matrices play an important
role (cf. [4], [8]). From the previous lemma we obtain

(5) 7, (2, 9)] < (14 1np) Sup |Ep(fe) ()]

Instead of choosing the points, , . . . s i, from the complicated condition

(4) we may choose;, in each step so thaf,_,(z;, ,v;, ) is the maximum
element in modulus. From lemma 2 we see that this is the best possible
choice with respect to maximum determinants if we keep all other previously
chosen elements fixed.

Lemma 6. Assume in each step we choaggso that
ITk—1(Tip, i )| > |re—1(2,y;,)| forallz € Dx.
Then forl <[ < kit holds that
o LAMI @]y
a:E[?X | det Mk‘
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Proof. Using Lemma 2 gives for <1 < k

! 1
det Mlgl)(x) _ det Mélﬂl‘) B rk,_l(x,yjk) det M/EL@%)
det M, det My, Th—1(Tiy, s, ) det My_q

and k
det M, () =1 (® Y5)

det M;, rk_l(xiwyjk) ’
Thus we obtain fol <[ < k

0 det M
wp 120 @) et M, )

veDyx |det M| T “.epy | det My_q|
from what the claim follows.

Consequently instead of (5) we find

(6) [rn, (2, )| < (1+277) sup [Ep(fa)(y)]-

z€Dx
The following theorem is due to Sauer and Xu. It gives an upper bound
for the error of multivariate polynomial interpolation. We will use the same
notations as in [18].

Theorem 3. Let the Lagrange interpolation in the points’, ..., x" be
unique. Forf € C"*1(R%) andx € R? it holds that

1
[n] n
BN € 3 gy PRm @D, g P e
12 n

where it suffices to take the supremum over the convex hyk:®df. . .
x" x}.
Using this expression for the error of Lagrange interpolation we are

now able to state our main result. It relies on the fact that the expression
P/B”} (x)m,(x*) from the previous theorem does not dependfaand will

n

be formulated for the choice of the pointg according to the maximum
element strategy, which is much easier to use than the maximum volume
strategy.

Theorem 4. Letz;, be chosen so that
I7k—1 (i, Yji )| > |mk—1(2,y5,)| forallz € Dx.

Then for an asymptotically smooth functighthe sequences; and sy,
generated at the beginning of Sect. 2 fulfil

f(l',y) = Snp(l.?y) + rnp(wvy)y
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where forx € Dx andy € Dy

Snp(xa y) = f(.’L’, [y]np)Mn_pl ([x]npvy)
and
|7¢np (CC, y)‘ < deiStg(DXv DY) 77p7
wherec, does not depend apbut only on the pointgi, ..., ¥y,

Proof. We apply the Sauer-Xu formula tf,(y). Forz € Dx,y € Dy
holds

D, DB fa(y)| < diam?(Dy)dPey p! hdist? P (Dx, Dy)
< c1p! (eodn)Pdist?(Dx, Dy ).
Thus
|Ep(f2) ()] < c1(cadn)Pdist?(Dx, Dy) Y |[PP=H(y)m.(y").
MEAp_1

According to Lemma 5 we have

[7ny (2, )| < (1+2") sup [Ep(f2)(y)],
z€Dx

which finally leads to
(7) 7, (2, y)| < epdist?(Dx, Dy) 0",
where we set

®) o =ci(cd)’(1+2) sup > [P U(y)m(y")]. O
yeDy HEA 1

3. Numerical aspects

In the previous section we showed how to approximate a general asymptot-
ically smooth function in two variables by a sum over functional skeletons,
i.e. products of functions of one variable.

The aim of this section is to develop an efficient but simple algorithm for
the approximation of matrices generated by asymptotically smooth functions
based on the previous interpolation arguments.

Matrices containing blocks of this type usually appear in the solution
phase of integral formulations of boundary value problems. Since they are
large we have to think about reducing the storage and the number of opera-
tions needed when multiplying them with a vector. Though there are cases
where a block partitioning of these matrices shows some structure (cf. [16])
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which can be exploited with respectto the previous issues, in general they are
unstructured and we have to approximate them by easily handled matrices.
In our case these are the blockwise low-rank matrices.

Let us reformulate the construction of the functiepsands, in matrix
form. In the following algorithme; denotes thgth canonical vector.

Algorithm 1. Set
<R0>”LJ:f(xlay])7 i:17--'7m7.j:17"'7n
So=0
and fork =0,1,...

T —1
Ve+1 = (eikHRkeij)
T
Ry1 = R — Y1 Riejy 64, R
T
Sk+1 =SL+ Yk+1 Rkejk+1eik+1 Ry,

Since we are now looking for the approximation pfin only the points
(xi,y;) it suffices to determing, from the maximum element in modulus

in the columny,, which has to be chosen so that it contains non-zero ele-
ments.

Without loss of generality we may assume for the moment that

g=1L1=1,...,k+1,otherwise interchange the rows and columns of the
original matrix R.
Then

Ryi1 = (I — vep1 Rierrrepyr) R = L1 Ry,
whereL; € R™*" is the matrix

1

0

T
_ €k+1Rk—1€k

Ly =

T
e Rr—1€ek

T
_emBRr_1ek 1
e;ng_lek

Ly, differs from a Gaussian matrix only in the positigh ).

In some sense the algorithm produces a column-pivbtédlecomposition

for the approximation of a matrix. As we know, itis possible that the elements
grow in the LU decomposition algorithm, cf. [6]. Thus the te@¥p in (6)

is not a result of overestimation.
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Since ford > 1 at least the tern2™» in (8) grows faster tham? in
(7) decreases, the only way to control the error is by using the geometrical
parameter, and keeping the number of approximation stepdounded.

However, we must bear in mind that any growth of elements inlttie
decomposition is difficult to observe. In our case this means that the term
2™ from (8) is not visible in real calculations.

Let us reformulate the algorithm so that it becomes efficient, i.e. uses
only a small part of the original matrix. For this purpose define

Hk = kalejk, Vi — R;‘E,leik.
Now the algorithm reads
Algorithm 2. Fork=1,2,...

k-1
(u)i = f xz,y]k Zvl I ()i, 1=1,...,m
=1

up = (Ulc)ikl U,
k-1
(v); = f(2ip, y5) — Z(ul)ik(vl)j, j=1,...,n.

=1

For the approximan$}, it holds that

k
Sk = g upt.
=1

Thus for the whole approximation we need only the evaluatiof{of, y;, ),
i=1,...,m,andf(x;,,y;), 7 = 1,...,n. The rest is algebraic transfor-
mations, which are easy to implement, whereby it should be remembered
that the entries ofi;, at the positiong; and the entries afy, at the positions

i, I < k, are zero.

To obtainS;, we needm + n)k units of storage and

(m+n)k evaluations off,
(m+n)(k— 1)k additions and multiplications,
mk divisions.

Thus we need)((m + n)k?) operations to generate the approxim&pt

Although we will use a bounded number of iteration steps it is useful
to stop the algorithm if a prescribed accuracy is reached. Since we do not
want to calculate the whole original matrix we cannot compute the error
exactly. Thus a good approximation for the error is the only way to control
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the algorithm.
Since

and|| Ry, , || r is of one order smaller thafi?,, || - the value

Tip+1

1> wofle

l=np+1

may be used as a good approximation1¢), || .
When computing| 3=, %, wvy || it should be noted that

1> wolllz= > (Z(uz)i(uk)z) > (w);(v);

I=np+1 Lk=ny+1 \i=1 j=1

The evaluation of the last expression can be ma@einn) (r¢)? operations.

The last lemma in this section shows whether the algorithm is capable
of finding the rank of a matrix. Assume that radk= r. Thenr steps of our
algorithm are sufficient to take over the whole matrix. Thus this algorithm
is always finite.

Lemma 7. Let A € C™*" be of rankr. ThenS, = A.

Proof. If » = 1 thenitis obvious thaRk; = 0 and thusS; = A. Let us look
at the general casec N and apply one step of our algorithm #b Without
loss of generality leti;; # 0. We realize that

i all ------ aln
__a21
A all — 0
N A
_Qm1 1 0

ail

Thus rank4 = rankA — 1. On the other hand we see that

. 0---0
A=A— —AejefA=|: }
ail
0
This means that rank = rankA = rankA — 1. O

From the previous proof we see that our algorithm successively reduces
the rank.
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3.1. Matrix partitioning

Our aim in this subsection is to show how the previous arguments can be
applied if the domains where the points come from are not well separated,
i.e. do not fulfil condition (2).

Assume we approximate the surfafeon which the boundary data is
given by I}, using the set of triangles (panelB) Our aim is to partition
the matrixA € RN*N, N = 4P into submatrices so that for two sets of
panels (so called clusters), 7 corresponding to a submatrix

diam 7o < ndist(m,72) forsome) <n <1

holds (cf. (2)) or one of them has just one element. In analogy to [13] we
call a cluster pair admissible if it fulfils the previous geometrical condition.
In this case and if{, 75 ¢ P the corresponding block will be approximated
as described previously. All other blocks, i.e. blocks wittor 75 € P will

be computed exactly.

In[13] a set of clusterg that possesses a tree structure is used to suitably
subdivide the seP with respect to a fixed point. We will use a set of cluster
pairs having a tree structure for the partitioningffx P the Cartesian
product of the set of panels with itself. This §&tis constructed from the
setT" by applying the following recursion tQ@'y,, I'},).

Algorithm 3. Take a cluster pai(r;, 12), 71,72 € T. If 71 and » both
have childrenr 1, 715 and »1, 709 in T respectively, then assign the pairs
(T11,721), (111, T22), (T12, 721) @nd (112, T22) as children to the cluster pair
(11, 2) and add them t@”. Now repeat the previous steps with each child.

It is easy to see that in each level in the tree structurg’afll pairs of
clusters(r, 72) appear, based on, 7 from the corresponding level in the
tree structure of .

In the following we will show how many blocks are needed in order to
decompose the matrix while each cluster pair corresponding to a block is
admissible or one of the clusters is a panel. First we have to impose some
conditions on the set of panets We assume that there are constaptand
¢q SO that

9 cydiam w > h forallw € P,

whereh = maxdiam 7 and
TeP

(10) area (B.(z) N I},) < cq(2r)* % forallr > 0andz € RY,

whereB,.(z) = {z € R, ||z — 2| < r}.
From this follows

(11) R > N1
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with ¢, = area (I'},)/cq, because

area (I'}) = Z area m < N maxarea (1) < ¢gNh™ L.

TeP
TeP

Without loss of generality we look &? as being normed bl - || .
In [13] it was proven that for ald < » < R anda € R? there exists a set
C C T of clusters with

FhﬂBR UT
TeC

diam T <r forallreC\P

d—1
#C < cp <f) .

Furthermore we realize that there are constaat®lc such that for a cluster
7in T of level! it holds that

and

(12) diam% ' 7 < c¢27larea I, and area 7 > c¢2 larea I},

From these properties of the set of clustérg/e obtain the following ana-
logue for the sef”.

Lemma 8. Forall 0 < » < R anda, b € R there exists a sef’ C T’ of
cluster pairs fulfilling

(I x In) N (Br(a) x BR(b) € | 7 xm,
(Tl,‘l‘g)ecl

max{diam 7, diam n} <r forall (r,7) €C’, 71, 2 & P

2(d—1)
40" < & (R) .

Proof. We already know that for all < » < R and alla, b € R? there are
two sets of clusteré’y, Cs fulfilling

and

(13&) FhﬁBR UT FhﬂBR UT
TeCy T€Cy

(13b) diam 7 <r forallT € (CiUCy)\ P
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and

B 2(d—1) _
(13c) #0O < & <R> ., C=Cx 0y

r

where the clusters i, andCs are chosen to have lowest possible level.
To obtain a set of cluster pai¥ C T’ we have to guarantee that the levels
of the clusters in each pair are the same.

Now let (r1,7) € C andl; < I, be the levels of andr, in T
respectively. Ifl; < I then we first consider the casge P.

Let TQf be an ancestor of, of level l; in T. Remove fromC all pairs

(11, 7), wherer is any descendant ogf and add(Tl,TQf) to it. Then (13)
remains valid if we replace (13b) by

max{diam 71, diam o} <r forall (71, 72) € 5, T1, T & P.

Now let; ¢ P. Divide r; according tdl’ into clusters of level at mogs.
If this division cannot be continued foriathenr € P and we go back to
the previous case.

Sincec2 area I, < area 7 < cadiamd_1 71 < card1 we obtain

L > log, (Carea%—w—n) .
C

a

And because the level @ is minimal, i.e. for the fatherzf of » in T itholds
thatdiam 7'2f > r, we haverd™! < diam?~! TQf < ¢2- " Darea I,
Thus

Iy < log, <2garea Fhr_(d_1)>

and hence
loa — 11 <logy (2¢cqc/C) .

We see that; is subdivided into at mosic,¢/c clusters.
Generate the sét’ by assembling these new cluster pairs. This guaran-
tees that?” C 7" and (13c) changes to

2(d—1)
4C' < dp (Jf) ,

wherecy, = 2¢4¢/cc%. O

Itis obvious that the covering df;, x I';, with the smallest number of cluster
pairs can be computed by the following algorithm.
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Algorithm 4. SetD = ) and call Divide((I},, I},), D) where Divide is
the following recursive procedure.

procedure Divide((11,T2), D)
if (71, 72) isadmissibleorr; € Porm € PthenD := DU{(11,72)}
elseapply the procedure to each of the children(ef, 72) in 7".

Let NV (a) denote the number of cluster pairs needed to produce a covering
of

U{WGP:WﬂBl#@}XU{WEP:WQBQ#@},

whereB;, B, are any cubes of side lengthwhile this covering should only
contain admissible cluster pairs or pairs with one of the two clusters being
a panel. Furthermore, I1é;(a) be the amount of storage when blockwise
approximating the part of the original matrix that corresponds to the two
cubesB; and B,. Blocks that correspond to cluster pairs with one of the
two clusters being a panel will be stored without approximation. On all
other blocks, i.e. admissible blocks that correspond to clusters ¢ P,
we perform a ranks approximation.

If we enclosel’}, in a cube of side lengthy then N (ag) and Ny (ao)
will be the values for the whole matrix.
Let 5 > 0 be arbitrarily small. We will show that

N(ao) _ O(N1+’677_2(d_1))
and
Nat(ag) = O(kNHPy=2d=1)),

Recently Hackbusch and Khoromskij [11], [12] have proven that the storage
requirement for such matricesi¥ N log V). However, they did notinvesti-
gate the dependency on the parametehich is essential for our algorithm
since the approximation error will be controlled by this parameter.

We first investigate the case whéh and B, are two neighbouring or
identical cubes.

Lemma 9. Assume thaB; and B are two neighbouring or identical cubes
of side lengthu. Letq € N, then for the number&/(a) and N (a) it holds
that

) 26D
N(a) <1 <77> + c2q? W (a/q)

and

7 2(d—1) N .
Nsi(a) < esk <7]> 1+ (qh> + caq 71./\/'5,5(a/q).
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Proof. We subdivide each of the cub&s andB; into ¢¢ subcubes of side
length? = 7. There are at most¢?~! subcubes that contain parts of the

boundaryI},. From these at mosioq?—')? pairs take out a pair of non-
adjacent subcubeBr(z1), Br(z2). According to the previous property of
the setl” for R andr = {nR we can find a set of cluster paits C 7" so
that

(I x ITh) N (Br(z1) x Br(z2)) € |J 7 xm,
(7’1,7’2)60/

max{diam 7, diam 7} <r forall (r,2) € C', 7, 2 & P,

R 2(d-1)
#C' < c’P (r) < C’P42(d—1)77—2(d—1) —. Epn_Q(d_l).

|f7],ﬁg¢‘P

1 .
dist (71, 72) ZR—2T:R<1—g) > 59, sincen < 1
q

anddiam m < gg < ndist(71, 72). Thus this cluster pair is admissible.

Since among the at moétyq?~')? pairs of subcube® with B N I}, # ()
there are at mosticoq?~! pairs of adjacent subcubes we see that

N(a) < (cog? )2 Epn~ 217D 1 3c4q? TN (a/q).

In a clusterr of diameter at most not more thar,c/¢ (c,r/h)4! panels
fit, because according to (9) and (12)

car® 1 > ¢ diam® 7 > area T > #T mein area m > #7¢/c (h/cu)d_l.
weT

If one of the clusters;, 7 is a panel, let this be;, the corresponding block

is stored without approximation. Sineg andr, are from the same levél

inT

d— d—1

diam% 'y < ¢27larea I, < c/carea 1 < c/ccqah

Thus in this case we can find a constaht> 1 which serves as an upper
bound for the memory usage for this block.

If none of the clusters is a panel then the storage requirement is less than
2kcqc/e (cur/h)?1, because it takelg(n + m) units of memory to store a
rank-% matrix inR™*™. Thus we need at most

d—1 d—1
max (C, 2kcqc/c <cufq72) > < C + 2keqc/c <Cuq(2> =M

units of memory to store one block. Consequently,f@r(a) follows

Nat(a) < (cog®1)2Epn 2@V M + 3%cq? ' Ny (a/q).



584 M. Bebendorf

Using the previous case we are able to find an estimateViar,) and
Nst(ao).

Lemma 10. Let3 > 0. For the numbersV (ay) and N (ap) it holds that
N(CLO) < C/N1+Bn—2(d—1)

and
Nt(ag) < kN =201,

wherec’ and¢” depend o3 but not on; or N.
Proof. From the previous lemma it can be seen that(g? 1)
Nisi(ag) < eskn™ 2(d—1) 52 z_:cq _ll<@)dil
st\40) >~ €3 s 2 h

+(c29) Nst(ao/q )s

with L the smallest integer so that> log,(ao/h), whereg € N is chosen
so thatj® > ¢,. This guarantees that (a,o/h)d_1 >1forl<L—1and
leads to

d—1 L—-1
Narlao) < 2eak =03 (Z2)7 37 + (o) “Nar(ao/a").
1=0
We may assume thag > 2. Sinceg” > (ao/h)ﬂH and with (11)

we obtain

d—1
Natao) < (teak 40 (S)7 P74 eatVoatan/ah) ) (e

< (4eghkn™ 24D 1 c9gNGi(ao/q D)

A cubeB of side lengtth can be covered by aset= {m € P : BNw # (}.
Thendiam 7 < 3h and from the proof of the last lemma we see that
contains at most,c/¢ (3¢, )% ! panels and henc¥;(ag/q") < ¢, where
¢ = (cac/T (3¢, )4 1)2. The proof for the second bound is similar.
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3.2. Computational complexity

In the following we will show how many operations and units of memory are
necessary to generate an approximant of the discrete operator to a prescribed
accuracy= and how many operations are needed to perform one matrix-
vector multiplication using this approximant.

The complexity of the whole algorithm is mainly determined by the num-
ber of cluster pairsV'(ap). Let us denote the set of blocks that correspond
to an admissible cluster pairy, 2), 71, 2 € P, by S,.

To approximate a blocR/ € S, of sizem x n with a corresponding
cluster pair(7;, 72) we neech,, skeletons to obtain an accuracy (cf. Theorem
4) -

||M — MHF < \/T%deistg(Tl,Tg) 77p.

The constant, only depends on the pointg, . . ., y,, which may change
with IV so thatc, is unbounded even for a boundedrhis situation occurs,
for example, if the points are located in the intersections of two families
of parallel lines and the angle between them vanishes with growincf.
[5]. However, these cases are pathological and we assume a sequence of
boundary meshes that guarantees thas bounded for boundega
Since for an admissible cluster péit;, 72)

diam 7o < ndist(7y, 72)
and according to (Qjiam 7 > h/c, holds for anyr € P, we see that
dist(1,72) > n" h/cy > h/cy
and since we assumed< 0 then
dist?(71,m2) < (h/cy)? < cgg(ch—l)ﬁ.

While the blocks inS, are approximated, all other blocks are computed
exactly. Thus for the approximation error it holds that
1A= AllF= > 1M - M|
MeS,
< Z nm c?, dist?9 (7, 7)) n?P = O((Nl_ﬁnp)Q).
MESH.
Leta > 0and0 < 8 < «, # from Lemma 10, and set

1
n= (gNﬁ_l> /p
wherep is the smallest integer so that

d—1-—g

>2
pi Oé—ﬁ
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For reasonable and N we may assume that< n < 1.
With this choice ofi) for the approximation error it holds that

1A= Allr = O(e).
Since
N(ag) = O(N'*2e™%)
the number of steps needed to obtain the set of cluster pairs is bounded by
1
§(4J\/(a0) —1) = O(N'Toe™®),
For the amount of storage needed

Nst(ag) = O(N'FToe=®)

holds. Thus the number of operations needed for one matrix-vector multipli-
cation and the number of operations for the generation of the approximant
do not exceed)(N1+2z~%), because on each block these numbers differ
from the amount of storage only by a constant factor.

Thus the overall complexity of this method @(N'*2=%), a > 0
arbitrarily small.

4. Numerical experiments

We will test our algorithm on the following surface

R(z) cos(27t)
I'=qz= | R(z)sin(2nt) (2— 3sin(27t)) | ,0<2<1,0<t <1
z

R(z) = v/2(1 —2)

and on the boundary integral equation which appears for the inner Dirichlet
problem

Au=f
where A is the single layer operator
Au(x) = =S u(y) ds

dm Jple—yl "

In the following table we show for different problem siz&sande = 10~
the memory and time consumption of the algorithm proposed in this paper.
The integral equation is discretized by the collocation method.
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Storage (MB) CPU time (sec)

N used standard % approx. solution per step
16128 244 1985 12.3 141 428 33
39600 728 11964 6.1 378 1824 140
65024 1316 32258 4.1 663 3713 248
89400 1905 60976 3.1 945 5319 355

1149202595 100758 2.6 1277 8128 478
1361603166 141446 2.3 1598 10395 578
1592003852 193364 2.0 1921 13355 703
1755604290 235148 1.8 2142 14415 801
2016005008 310078 1.6 2435 17089 899

Since we did not employ a preconditioner the number of iteration steps
in BiCGStab increases withVv, so that we merely need to compare the
time we needed per iteration. All calculations were performed on an SGI
Indigo?-10k.

The memory usage of our algorithm and of the standard solution strategy
is shown in the second and third column. The time we needed to generate
the approximant, the time for the solution of the linear system and the time
per iteration step of BICGStab is placed in columns five, six and seven.
The time per multiplication step and for the generation of the approximant
grows almost linearly. The same behaviour is observable with respect to
storage. The amount of storage and the CPU time for the approximation and
the CPU time per step of BiCGStab are depicted in the following figures.
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