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Summary. This article considers the problem of approximating a general
asymptotically smooth function in two variables, typically arising in inte-
gral formulations of boundary value problems, by a sum of products of two
functions in one variable. From these results an iterative algorithm for the
low-rank approximation of blocks of large unstructured matrices generated
by asymptotically smooth functions is developed. This algorithm uses only
few entries from the original block and since it has a natural stopping crite-
rion the approximative rank is not needed in advance.
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1. Introduction

The approximative applicationAf of an operatorA coming from integral
formulations on a functionf has been investigated in many publications.
Typically, the kernel function of the integral operatorA is approximated
by a degenerate kernel, i.e. a finite sum of separable functions (functional
skeletons). In the case of multipole methods [17], [9], [10], [13], [14] these
functions have to be known explicitly for each kernel. In contrast, algebraic
methods approximate blocks of the discrete operator by low-rank matrices.
Both approaches are designed to save operations andmemory and both have
basically the same idea behind them which can easily be explained in the
case of low-rank approximants. Assume we have a matrixT ∈ C

m×n of a
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small rankr. Because of the representation of low-rank matrices

T =
r∑

i=1

uiv
∗
i , ui ∈ C

m, vi ∈ C
n

onlyr(n+m) units of memory are needed to store themand amatrix-vector
multiplicationTx (which is the basis for iterative solution techniques) takes
O(r(n+m)) operations:

si = v∗
i x, i = 1, . . . , r

Tx =
r∑

i=1

siui.

Blocks of matrices arising in integral equations are usually dense and un-
structured. Though possibly having full rank theymay bewell approximated
by low-rank matrices. Thus for the approximation not the usual but theε-
rank is important.

Definition 1 (ε-rank). Theε-rank of a matrixA ∈ C
m×n with respect to

the matrix norm‖ · ‖ is defined as
rankεA = min{rankT : ‖A− T‖ < ε}.

The problemof finding the best approximant of a prescribed rankwas solved
by L. Mirsky [15] (see also [3]).

Theorem 1. LetA ∈ C
m×n,m ≥ n and‖·‖ be a unitarily invariantmatrix

norm. The best approximation of at most rankk toA is

‖A−Ak‖ = min{‖A− T‖ : rankT ≤ k},
whereAk =

∑k
i=1 σiuiv

∗
i and (σi, ui, vi), i = 1, . . . , k are thek largest

singular triplets. Especially

min{‖A− T‖2
F : rankT ≤ k} =

n∑
i=k+1

σ2
i ,

min{‖A− T‖2 : rankT ≤ k} = σk+1

where‖·‖F , ‖·‖2 denote the Frobenius and the spectral norm respectively.

Thus the optimal approximant to a prescribed accuracy is easy to find if the
singular value decomposition (SVD) is accessible. But the SVD is compu-
tationally very expensive. Furthermore every entry of the original matrixA
has to be calculated first. This is also the case if we apply the less expensive
partial SVD, cf. [7].Consequently, approximationsbasedon theSVDcannot
lead to fast algorithms. Our aim, however, is to find an approximant using
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less computational effort and especially only few entries from the original
matrix.

LetX = {x1, . . . , xm} andY = {y1, . . . , yn} be two sets of pairwise
distinct points inRd andDX ,DY the convex hulls of X and Y respectively.
If we use a quadrature formula to approximate the integrals, the approxi-
mant’s propertieswith respect toavailability of low-rankapproximants come
from the kernel. Thus we concentrate on the investigation of matrices

A ∈ R
m×n, aij = f(xi, yj), 1 ≤ i ≤ m, 1 ≤ j ≤ n

generated by functionsf : DX ×DY → R of the type

f(x, y) =
Np∑
k=0

gk(x)hk(y) +Rp(x, y)(1)

where|Rp(x, y)| ≤ εp andεp → 0 for p → ∞.
It is evident that these matrices can be approximated by a matrix of rank

Np to an accuracy of orderεp. In terms ofε-ranks this reads

rankεp A = O(Np).

Multipole methods use these decompositions directly. For this, however,
the functionsgk andhk have to be known for each functionf . The method
described in this article will only use the information about the existence of
these decompositions. However, we confine ourselves tomatrices generated
by asymptotically smooth functions, cf. [1].

Definition 2. A functionf : DX × DY → R is called asymptotically
smooth if there are constantsc1, c2 > 0 andg ≤ 0 so that for any multi-
indexα ∈ N

d
0

|∂αy f(x, y)| ≤ c1 p! c
p
2 |x− y|g−p, p = |α|.

This class of functions is a subset of type (1) functions if we impose the
condition

diam DY ≤ η dist(DX , DY ), 0 < η < (c2d)−1(2)

since by using the Taylor expansion at the pointy0 ∈ DY we have

f(x, y) =
p−1∑
l=0

1
l!
((y − y0)∂y)

l f(x, y0) +
1
p!

((y − y0)∂y)
p f(x, ỹ)

for some point̃y ∈ DY .
Setting

Rp(x, y) =
1
p!

((y − y0)∂y)
p f(x, ỹ)
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we observe that forx ∈ DX , y ∈ DY

|Rp(x, y)| ≤ 1
p!
dp
( |y − y0|

|x− ỹ|
)p

c1 p! c
p
2 |x− ỹ|g

≤ c1 distg(DX , DY ) (c2dη)p =: εp.

With respect toy the sum
∑p−1

l=0
1
l! ((y − y0)∂y)

l f(x, y0) is in Πd
p−1 the

space of polynomials of the degree at mostp − 1. The number of linearly
independent monomialsyα, |α| = l, is rdl =

(
l+d−1

l

)
. Thus theεp-rank of

the matrixA is bounded by the dimensionnp ofΠd
p−1.

rankεp A ≤ np =
p−1∑
l=0

rdl ≤ cd p
d.

Remark.The geometrical parameterη arising in equation (2) will be used to
control the approximation error. The setsX andY will be generated from
the original set of points by recursive subdivision so that condition (2) holds.
This will be explained in Sect. 3.1.

In analogy to the definition of a matrix skeleton (dyade) (cf. [8]) we define
a functional skeleton.

Definition 3. Let f : R
d → R and g : R

d → R. The producth(x, y) =
f(x)g(y) is called afunctional skeleton.

Instead of approximating a function in two variables by a sum of functional
skeletons using some functionsgk andhk explicitly given for each function
as multipole methods do, we suggest using the values of the function itself
to generate an approximation of type (1). For convenience let

f(x, [y]k) =

 f(x, yj1)...
f(x, yjk)

 ∈ R
k, f([x]k, y) =

 f(xi1 , y)...
f(xik , y)

 ∈ R
k.

Then we are looking for decompositions

f(x, y) = f(x, [y]k)TGf([x]k, y) +Rk(x, y)(3)

with G ∈ R
k×k and somexil ∈ X andyjl ∈ Y , l = 1, . . . , k.

In terms of matrices this means that we try to find a pseudo-skeleton com-
ponent (cf. [8]), i.e. a matrixCGR whereC ∈ R

m×k arek columns and
R ∈ R

k×n k rows of the matrixA. The matrixG ∈ R
k×k delivers some

appropriate coefficients that are calculated from the submatrix ofA in the
intersection of the chosen rowsR and columnsC.

In [8] we can find a result on the existence of these pseudo-skeleton
approximants.
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Theorem 2. Assume that for someε > 0 the matrixA ∈ R
m×n fulfils

rankεA ≤ r with respect to the spectral norm, then we can find a pseudo-
skeleton componentCGR,G ∈ R

r×r such that

‖A− CGR‖2 ≤ ε(1 + 2
√
r(

√
n+

√
m)).

The proof uses a condition on the singular vectors of the low-rank approxi-
mant ofA which is difficult to fulfil in practice. Furthermore, the approxi-
mation rank has to be known in advance to specify the number of columns
and rows needed. In multipole methods the same problem occurs, whereby
it is the number of functional skeletons which has to be known in advance.
One way to solve this is to determine the number of functional skeletons
needed from an upper bound of the remainder, but this certainly produces a
number that is too high.

In the following we will present an iterative method to generate a de-
composition of type (3). From this we will develop an iterative and incom-
plete algorithm for the low-rank approximation of matrices generated by
asymptotically smooth functions without knowing the approximative rank
in advance.

Let us first concentrate on the analytic problem of approximating a gen-
eral asymptotically smooth function in two variables by a sum over func-
tional skeletons.

2. Analytic problem

We construct the sequences{sk}, {rk} by the following rule

r0(x, y) = f(x, y), s0(x, y) = 0

and fork = 0, 1, . . .

rk+1(x, y) = rk(x, y) − γk+1 rk(x, yjk+1) rk(xik+1 , y)

sk+1(x, y) = sk(x, y) + γk+1 rk(x, yjk+1) rk(xik+1 , y)

whereγk+1 =
(
rk(xik+1 , yjk+1)

)−1
andxik+1 andyjk+1 are chosen in every

step so thatrk(xik+1 , yjk+1) �= 0.

We realize that the functionsrk accumulate zeros. Thussk gradually inter-
polatesf .

Lemma 1. For 1 ≤ l ≤ k and allx ∈ DX we haverk(x, yjl) = 0.
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Proof. The lemma holds forl = k since

rk(x, yjk) = rk−1(x, yjk) − γkrk−1(x, yjk)rk−1(xik , yjk) = 0.

We will prove the rest by induction fromk − 1 to k. We saw above that the
lemma is true fork = 1. Assume it holds fork − 1 then we have

rk(x, yjl) = rk−1(x, yjl) − γkrk−1(x, yjk)rk−1(xik , yjl).

For all x ∈ DX and all1 ≤ l < k it holds thatrk−1(x, yjl) = 0 and the
claim follows from this. ��
The same statement holds if we interchange the roles ofx andy.

We define the matrixM (l)
k (x) by

M
(l)
k (x) =


f(xi1 , yj1) . . . f(xi1 , yjk)

...
...

f(x, yj1) . . . f(x, yjk)
...

...
f(xik , yj1) . . . f(xik , yjk)

 ,

where in thelth row we have the vectorf(x, [y]k). Furthermore we set

Mk = M
(l)
k (xil).

For the determinant ofM (l)
k the following lemma can be shown.

Lemma 2. For 1 ≤ l < k

detM (l)
k (x) = rk−1(xik , yjk) detM

(l)
k−1(x) − rk−1(x, yjk) detM

(l)
k−1(xik)

holds and

detM (1)
1 (x) = r0(x, yj1),

detM (k)
k (x) = rk−1(x, yjk) detMk−1, k > 1.

Especially
detMk = r0(xi1 , yj1) · · · · · rk−1(xik , yjk).

Proof. It is easy to see that there are coefficientsα
(k−1)
i , i = 1, . . . , k − 1,

so that for allx ∈ DX

rk−1(x, yjk) = f(x, yjk) −
k−1∑
i=1

α
(k−1)
i f(x, yji).
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Thus it is possible to replace each entryf(·, yjk) in the last column of

M
(l)
k (x) by rk−1(·, yjk) and obtainM̃ (l)

k (x) without changing the determi-
nant.

Since from the last lemmark−1(xij , yjk) = 0, 1 ≤ j ≤ k − 1, only the

lth and thekth entry ofM̃ (l)
k (x) do not vanish. Using Laplace’s theorem

ends the proof. ��
The last lemma guarantees thatMk is nonsingular and we are now able

to show that the decomposition off into sk andrk is of type (3).

Lemma 3. For the generated sequencessk andrk, k ≥ 0

sk(x, y) + rk(x, y) = f(x, y)

holds, where fork ≥ 1

sk(x, y) = f(x, [y]k)TM−1
k f([x]k, y).

Proof. In the casek = 1 the lemma is obviously true. We proceed by
induction fromk − 1 to k. From the definition ofrk andsk we see that

sk(x, y) + rk(x, y) = sk−1(x, y) + rk−1(x, y)

which by the assumption is equal tof(x, y).
It is easy to see that withsk−1 alsosk has the form

sk(x, y) = f(x, [y]k)TGkf([x]k, y)

with someGk ∈ R
k×k. Applying lemma 1 gives

f(xit , yjs) = f(xit , [y]k)
TGkf([x]k, yjs) ⇐⇒ Mk = MkGkMk.

From this it finally follows thatGk = M−1
k .

In the following we will relate the remainderrnp of the approximation
to the remainder of polynomial interpolation. It can already be seen from
the existence result using the Taylor expansion that in multidimensional
space more than one additional functional skeleton in the approximation is
necessary to increase the order of approximation by one. This is why in
our theoretical result, which is based on polynomial interpolation, we only
expect an increase of the order of accuracy from thenpth to thenp+1th step.
There may, however, be functionsf for which the step size from one order
of accuracy to the next is smaller.

In multidimensional space polynomial interpolation is generally not
unique. The existence of interpolation polynomials is always guaranteed
but the uniqueness depends on the configuration of the points. They must
not lie on a hypersurface of degreep, or equivalently there is no polynomial
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inΠd
p that vanishes on all of the points. However, the set of points for which

Lagrange interpolation is not unique has measure zero. From the condition
rk(xik−1 , yjk−1) �= 0 on the choice of the points we guarantee the unique-
ness, which is important for the remainder of polynomial interpolation.

Lemma 4. Assume thatdetMnp �= 0 then the Lagrange interpolation in
the pointsy1, . . . , ynp is unique.

Proof. Assume we have a polynomialP ∈ Πd
p−1 fulfilling

P (yjl) = 0, l = 1, . . . , np.

We have to show thatP vanishes identically.
Define polynomialspk ∈ Πd

p−1 by

pk(yjl) = f(xik , yjl), k, l = 1, . . . , np.

Take an identically vanishing linear combination

np∑
k=1

αkpk(y) = 0 for all y ∈ DY .

Especially

0 =
np∑
k=1

αkpk(yjl) =
np∑
k=1

αkf(xik , yjl) for 1 ≤ l ≤ np.

But sinceMnp is nonsingular we haveαk = 0 for 1 ≤ k ≤ np. {pk} is a
linearly independent system and thus a basis ofΠd

p−1.
Consequently we can findλk ∈ R so thatP =

∑np

k=1 λkpk. But from

0 = P (yjl) =
np∑
k=1

λkpk(yjl)

we obtain againλk = 0, 1 ≤ k ≤ np. ThusP vanishes identically.

For a fixedx ∈ DX denote byfx the functionfx(y) = f(x, y) and by
Lp−1(fx) the interpolation polynomial tofx of degreep − 1. We are now
in a position to relate the remainder termrnp of the approximation to the
remainder of theLagrange interpolationEp(fx)(y) = fx(y)−Lp−1(fx)(y).

Lemma 5. For the functionsrnp it holds that

rnp(x, y) = Ep(fx)(y) −
np∑
l=1

detM (l)
np (x)

detMnp

Ep(fxil
)(y).
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Proof. LetLk be thekth Lagrange polynomial inΠd
p−1, i.e.Lk(yjl) = δkl,

and

L(y) =

 L1(y)
...

Lnp(y)


the vector of the Lagrange polynomials to the pointsy1, . . . , ynp .
Using Lemma 3 gives

rnp(x, y) = f(x, y) − f(x, [y]np)
TM−1

np
f([x]np , y)

= f(x, y) − f(x, [y]np)
TL(y) −

− f(x, [y]np)
TM−1

np

(
f([x]np , y) −MnpL(y)

)
= Ep(fx)(y) −

np∑
l=1

(
f(x, [y]np)

TM−1
np

)
l
Ep(fxil

)(y).

SinceM−T
np

f(xij , [y]np) = ej thejth canonical vector, it is easy to check
that

detM (l)
np (x)

detMnp

= detM (l)
np

(x)M−1
np

=
(
f(x, [y]np)

TM−1
np

)
l
. ��

We are able to control the approximation error by making assumptions on
the choice of the pointsxi1 , . . . , xinp

. Assume that our choice of points
xi1 , . . . , xinp

leads to a submatrixMnp whose determinant cannot be in-
creased by interchanging one row by any vectorf(x, [y]np), x ∈ DX , i.e.

|detMnp | ≥ |detM (l)
np

(x)|, 1 ≤ l ≤ np, x ∈ DX .(4)

In interpolation theory these maximum volume matrices play an important
role (cf. [4], [8]). From the previous lemma we obtain

|rnp(x, y)| ≤ (1 + np) sup
x∈DX

|Ep(fx)(y)|.(5)

Instead of choosing the pointsxi1 , . . . , xinp
from the complicated condition

(4) we may choosexik in each step so thatrk−1(xik , yik) is the maximum
element in modulus. From lemma 2 we see that this is the best possible
choicewith respect tomaximumdeterminants if we keepall other previously
chosen elements fixed.

Lemma 6. Assume in each step we choosexik so that

|rk−1(xik , yjk)| ≥ |rk−1(x, yjk)| for all x ∈ DX .

Then for1 ≤ l ≤ k it holds that

sup
x∈DX

|detM (l)
k (x)|

|detMk| ≤ 2k−l.
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Proof. Using Lemma 2 gives for1 ≤ l < k

detM (l)
k (x)

detMk
=

detM (l)
k−1(x)

detMk−1
− rk−1(x, yjk)
rk−1(xik , yjk)

detM (l)
k−1(xik)

detMk−1

and
detM (k)

k (x)
detMk

=
rk−1(x, yjk)
rk−1(xik , yjk)

.

Thus we obtain for1 ≤ l < k

sup
x∈DX

|detM (l)
k (x)|

|detMk| ≤ 2 sup
x∈DX

|detM (l)
k−1(x)|

|detMk−1|
from what the claim follows.

Consequently instead of (5) we find

|rnp(x, y)| ≤ (1 + 2np) sup
x∈DX

|Ep(fx)(y)|.(6)

The following theorem is due to Sauer and Xu. It gives an upper bound
for the error of multivariate polynomial interpolation. We will use the same
notations as in [18].

Theorem 3. Let the Lagrange interpolation in the pointsx0, . . . ,xn be
unique. Forf ∈ Cn+1(Rd) andx ∈ R

d it holds that

|En+1(f)(x)| ≤
∑
µ∈Λn

1
(n+ 1)!

|P [n]
µn

(x)πµ(xµ)|‖D
x−x

(n)
µn
Dn

xµf‖∞,

where it suffices to take the supremum over the convex hull of{x0, . . . ,
xn, x}.

Using this expression for the error of Lagrange interpolation we are
now able to state our main result. It relies on the fact that the expression
P

[n]
µn (x)πµ(xµ) from the previous theorem does not depend onf and will

be formulated for the choice of the pointsxik according to the maximum
element strategy, which is much easier to use than the maximum volume
strategy.

Theorem 4. Letxik be chosen so that

|rk−1(xik , yjk)| ≥ |rk−1(x, yjk)| for all x ∈ DX .

Then for an asymptotically smooth functionf the sequencesrk and sk
generated at the beginning of Sect. 2 fulfil

f(x, y) = snp(x, y) + rnp(x, y),
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where forx ∈ DX andy ∈ DY

snp(x, y) = f(x, [y]np)M
−1
np
f([x]np , y)

and
|rnp(x, y)| ≤ cpdistg(DX , DY ) ηp,

wherecp does not depend onη but only on the pointsy1, . . . , ynp .

Proof. We apply the Sauer-Xu formula tofx(y). For x ∈ DX , y ∈ DY

holds

|D
y−y

(p−1)
µp−1

Dp−1
yµ fx(y)| ≤ diamp(DY )dpc1 p! c

p
2dist

g−p(DX , DY )

≤ c1p! (c2dη)pdistg(DX , DY ).

Thus

|Ep(fx)(y)| ≤ c1(c2dη)pdistg(DX , DY )
∑

µ∈Λp−1

|P [p−1]
µp−1

(y)πµ(yµ)|.

According to Lemma 5 we have

|rnp(x, y)| ≤ (1 + 2np) sup
x∈DX

|Ep(fx)(y)|,

which finally leads to

|rnp(x, y)| ≤ cpdistg(DX , DY ) ηp,(7)

where we set

cp = c1(c2d)p(1 + 2np) sup
y∈DY

∑
µ∈Λp−1

|P [p−1]
µp−1

(y)πµ(yµ)|. ��(8)

3. Numerical aspects

In the previous section we showed how to approximate a general asymptot-
ically smooth function in two variables by a sum over functional skeletons,
i.e. products of functions of one variable.

The aim of this section is to develop an efficient but simple algorithm for
theapproximationofmatricesgeneratedbyasymptotically smooth functions
based on the previous interpolation arguments.

Matrices containing blocks of this type usually appear in the solution
phase of integral formulations of boundary value problems. Since they are
large we have to think about reducing the storage and the number of opera-
tions needed when multiplying them with a vector. Though there are cases
where a block partitioning of these matrices shows some structure (cf. [16])
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which canbeexploitedwith respect to theprevious issues, in general they are
unstructured and we have to approximate them by easily handled matrices.
In our case these are the blockwise low-rank matrices.

Let us reformulate the construction of the functionsrk andsk in matrix
form. In the following algorithmej denotes thejth canonical vector.

Algorithm 1. Set

(R0)ij = f(xi, yj), i = 1, . . . ,m, j = 1, . . . , n
S0 = 0

and fork = 0, 1, . . .

γk+1 =
(
eTik+1

Rkejk+1

)−1

Rk+1 = Rk − γk+1Rkejk+1e
T
ik+1

Rk

Sk+1 = Sk + γk+1Rkejk+1e
T
ik+1

Rk

Since we are now looking for the approximation off in only the points
(xi, yj) it suffices to determineik from the maximum element in modulus
in the columnjk, which has to be chosen so that it contains non-zero ele-
ments.

Without loss of generality we may assume for the moment thatil =
jl = l, l = 1, . . . , k+1, otherwise interchange the rows and columns of the
original matrixR0.
Then

Rk+1 = (I − γk+1Rkek+1e
T
k+1)Rk = Lk+1Rk,

whereLk ∈ R
m×n is the matrix

Lk =



1
...

1
0

− eTk+1Rk−1ek

eTk Rk−1ek
1

...
...

− eTmRk−1ek

eTk Rk−1ek
1


.

Lk differs from a Gaussian matrix only in the position(k, k).
In some sense the algorithm produces a column-pivotedLU decomposition
for theapproximationof amatrix.Asweknow, it is possible that theelements
grow in theLU decomposition algorithm, cf. [6]. Thus the term2np in (6)
is not a result of overestimation.
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Since ford > 1 at least the term2np in (8) grows faster thanηp in
(7) decreases, the only way to control the error is by using the geometrical
parameterη and keeping the number of approximation stepsnp bounded.

However, we must bear in mind that any growth of elements in theLU
decomposition is difficult to observe. In our case this means that the term
2np from (8) is not visible in real calculations.

Let us reformulate the algorithm so that it becomes efficient, i.e. uses
only a small part of the original matrix. For this purpose define

ũk = Rk−1ejk , vk = RT
k−1eik .

Now the algorithm reads

Algorithm 2. For k = 1, 2, . . .

(ũk)i = f(xi, yjk) −
k−1∑
l=1

(vl)jk(ul)i, i = 1, . . . ,m

uk = (ũk)−1
ik
ũk

(vk)j = f(xik , yj) −
k−1∑
l=1

(ul)ik(vl)j , j = 1, . . . , n.

For the approximantSk it holds that

Sk =
k∑

l=1

ulv
T
l .

Thus for thewhole approximationwe need only the evaluation off(xi, yjk),
i = 1, . . . ,m, andf(xik , yj), j = 1, . . . , n. The rest is algebraic transfor-
mations, which are easy to implement, whereby it should be remembered
that the entries ofuk at the positionsil and the entries ofvk at the positions
jl, l < k, are zero.

To obtainSk we need(m+ n)k units of storage and

(m+ n)k evaluations off ,
(m+ n)(k − 1)k additions and multiplications,
mk divisions.

Thus we needO((m+ n)k2) operations to generate the approximantSk.

Although we will use a bounded number of iteration steps it is useful
to stop the algorithm if a prescribed accuracy is reached. Since we do not
want to calculate the whole original matrix we cannot compute the error
exactly. Thus a good approximation for the error is the only way to control
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the algorithm.
Since

Rnp+1 = Rnp −
np+1∑

l=np+1

ulv
T
l

and‖Rnp+1‖F is of one order smaller than‖Rnp‖F the value

‖
np+1∑

l=np+1

ulv
T
l ‖F

may be used as a good approximation to‖Rnp‖F .
When computing‖∑np+1

l=np+1 ulv
T
l ‖F it should be noted that

‖
np+1∑

l=np+1

ulv
T
l ‖2

F =
np+1∑

l,k=np+1

(
m∑
i=1

(ul)i(uk)i

) n∑
j=1

(vl)j(vk)j

 .

Theevaluationof the last expressioncanbemade in(m+n)(rdp)
2 operations.

The last lemma in this section shows whether the algorithm is capable
of finding the rank of a matrix. Assume that rankA = r. Thenr steps of our
algorithm are sufficient to take over the whole matrix. Thus this algorithm
is always finite.

Lemma 7. LetA ∈ C
m×n be of rankr. ThenSr = A.

Proof. If r = 1 then it is obvious thatR1 = 0 and thusS1 = A. Let us look
at the general caser ∈ N and apply one step of our algorithm toA. Without
loss of generality leta11 �= 0. We realize that

A


1

−a21
a11

1
...

...
−am1

a11
1

 =


a11 · · · · · · a1n
0
... Â
0


Thus rankÂ = rankA− 1. On the other hand we see that

Ã = A− 1
a11

Ae1e
T
1A =

0 · · · 0
... Â
0


This means that rank̃A = rankÂ = rankA− 1. ��

From the previous proof we see that our algorithm successively reduces
the rank.
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3.1. Matrix partitioning

Our aim in this subsection is to show how the previous arguments can be
applied if the domains where the points come from are not well separated,
i.e. do not fulfil condition (2).

Assume we approximate the surfaceΓ on which the boundary data is
given byΓh using the set of triangles (panels)P . Our aim is to partition
the matrixA ∈ RN×N , N = #P into submatrices so that for two sets of
panels (so called clusters)τ1, τ2 corresponding to a submatrix

diam τ2 ≤ η dist(τ1, τ2) for some0 < η < 1

holds (cf. (2)) or one of them has just one element. In analogy to [13] we
call a cluster pair admissible if it fulfils the previous geometrical condition.
In this case and ifτ1, τ2 �∈ P the corresponding block will be approximated
as described previously. All other blocks, i.e. blocks withτ1 or τ2 ∈ P will
be computed exactly.

In [13] a set of clustersT that possesses a tree structure is used to suitably
subdivide the setP with respect to a fixed point. We will use a set of cluster
pairs having a tree structure for the partitioning ofP × P the Cartesian
product of the set of panels with itself. This setT ′ is constructed from the
setT by applying the following recursion to(Γh, Γh).

Algorithm 3. Take a cluster pair(τ1, τ2), τ1, τ2 ∈ T . If τ1 and τ2 both
have childrenτ11, τ12 andτ21, τ22 in T respectively, then assign the pairs
(τ11, τ21), (τ11, τ22), (τ12, τ21) and(τ12, τ22) as children to the cluster pair
(τ1, τ2) and add them toT ′. Now repeat the previous steps with each child.

It is easy to see that in each level in the tree structure ofT ′ all pairs of
clusters(τ1, τ2) appear, based onτ1, τ2 from the corresponding level in the
tree structure ofT .

In the following we will show how many blocks are needed in order to
decompose the matrix while each cluster pair corresponding to a block is
admissible or one of the clusters is a panel. First we have to impose some
conditions on the set of panelsP . We assume that there are constantscu and
ca so that

cudiam π > h for all π ∈ P,(9)

whereh = max
π∈P

diam π and

area (Br(z) ∩ Γh) ≤ ca(2r)d−1 for all r > 0 andz ∈ R
d,(10)

whereBr(z) = {x ∈ R
d, ‖x− z‖ < r}.

From this follows

hd−1 ≥ cbN
−1(11)
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with cb = area (Γh)/ca, because

area (Γh) =
∑
π∈P

area π ≤ N max
π∈P

area (π) ≤ caNh
d−1.

Without loss of generality we look atRd as being normed by‖ · ‖∞.
In [13] it was proven that for all0 < r ≤ R anda ∈ R

d there exists a set
C ⊆ T of clusters with

Γh ∩BR(a) ⊆
⋃
τ∈C

τ,

diam τ ≤ r for all τ ∈ C \ P
and

#C ≤ cP

(
R

r

)d−1

.

Furthermore we realize that there are constantsc andc such that for a cluster
τ in T of level l it holds that

diamd−1 τ ≤ c 2−larea Γh and area τ ≥ c 2−larea Γh.(12)

From these properties of the set of clustersT we obtain the following ana-
logue for the setT ′.

Lemma 8. For all 0 < r ≤ R anda, b ∈ R
d there exists a setC ′ ⊆ T ′ of

cluster pairs fulfilling

(Γh × Γh) ∩ (BR(a) ×BR(b)) ⊆
⋃

(τ1,τ2)∈C′
τ1 × τ2,

max{diam τ1,diam τ2} ≤ r for all (τ1, τ2) ∈ C ′, τ1, τ2 �∈ P

and

#C ′ ≤ c′P

(
R

r

)2(d−1)

.

Proof. We already know that for all0 < r ≤ R and alla, b ∈ R
d there are

two sets of clustersC1, C2 fulfilling

Γh ∩BR(a) ⊆
⋃

τ∈C1

τ, Γh ∩BR(b) ⊆
⋃

τ∈C2

τ,(13a)

diam τ ≤ r for all τ ∈ (C1 ∪ C2) \ P(13b)
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and

#C̃ ≤ c2P

(
R

r

)2(d−1)

, C̃ = C1 × C2(13c)

where the clusters inC1 andC2 are chosen to have lowest possible level.
To obtain a set of cluster pairsC ′ ⊆ T ′ we have to guarantee that the levels
of the clusters in each pair are the same.

Now let (τ1, τ2) ∈ C̃ and l1 ≤ l2 be the levels ofτ1 and τ2 in T
respectively. Ifl1 < l2 then we first consider the caseτ1 ∈ P .

Let τ f2 be an ancestor ofτ2 of level l1 in T . Remove fromC̃ all pairs
(τ1, τ), whereτ is any descendant ofτ

f
2 and add(τ1, τ

f
2 ) to it. Then (13)

remains valid if we replace (13b) by

max{diam τ1,diam τ2} ≤ r for all (τ1, τ2) ∈ C̃, τ1, τ2 �∈ P.

Now let τ1 �∈ P . Divide τ1 according toT into clusters of level at mostl2.
If this division cannot be continued for aτ thenτ ∈ P and we go back to
the previous case.

Sincec 2−l1area Γh ≤ area τ1 ≤ cadiamd−1 τ1 ≤ car
d−1 we obtain

l1 ≥ log2

(
c
area Γh

ca
r−(d−1)

)
.

Andbecause the level ofτ2 isminimal, i.e. for the fatherτ
f
2 of τ2 inT it holds

thatdiam τ f2 > r, we haverd−1 < diamd−1 τ f2 ≤ c 2−(l2−1)area Γh.
Thus

l2 ≤ log2

(
2c area Γhr

−(d−1)
)

and hence

l2 − l1 ≤ log2 (2cac/c) .

We see thatτ1 is subdivided into at most2cac/c clusters.
Generate the setC ′ by assembling these new cluster pairs. This guaran-

tees thatC ′ ⊆ T ′ and (13c) changes to

#C ′ ≤ c′P

(
R

r

)2(d−1)

,

wherec′P = 2cac/c c2P . ��
It is obvious that the covering ofΓh×Γh with the smallest number of cluster
pairs can be computed by the following algorithm.
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Algorithm 4. SetD = ∅ and callDivide((Γh, Γh), D) where Divide is
the following recursive procedure.

procedureDivide((τ1, τ2), D)
if (τ1, τ2) is admissible orτ1 ∈ P or τ2 ∈ P thenD := D∪{(τ1, τ2)}
elseapply the procedure to each of the children of(τ1, τ2) in T ′.

LetN (a) denote the number of cluster pairs needed to produce a covering
of ⋃

{π ∈ P : π ∩B1 �= ∅} ×
⋃

{π ∈ P : π ∩B2 �= ∅},
whereB1, B2 are any cubes of side lengtha, while this covering should only
contain admissible cluster pairs or pairs with one of the two clusters being
a panel. Furthermore, letNst(a) be the amount of storage when blockwise
approximating the part of the original matrix that corresponds to the two
cubesB1 andB2. Blocks that correspond to cluster pairs with one of the
two clusters being a panel will be stored without approximation. On all
other blocks, i.e. admissible blocks that correspond to clustersτ1, τ2 �∈ P ,
we perform a rank-k approximation.

If we encloseΓh in a cube of side lengtha0 thenN (a0) andNst(a0)
will be the values for the whole matrix.
Let β > 0 be arbitrarily small. We will show that

N (a0) = O(N1+βη−2(d−1))

and
Nst(a0) = O(kN1+βη−2(d−1)).

Recently Hackbusch and Khoromskij [11], [12] have proven that the storage
requirement for suchmatrices isO(N logN). However, they did not investi-
gate the dependency on the parameterη which is essential for our algorithm
since the approximation error will be controlled by this parameter.

We first investigate the case whenB1 andB2 are two neighbouring or
identical cubes.

Lemma 9. Assume thatB1 andB2 are two neighbouring or identical cubes
of side lengtha. Letq ∈ N, then for the numbersN (a) andNst(a) it holds
that

N (a) ≤ c1

(
q

η

)2(d−1)

+ c2q
d−1N (a/q)

and

Nst(a) ≤ c3k

(
q

η

)2(d−1)
(
1 +

(
a

qh

)d−1
)

+ c2q
d−1Nst(a/q).
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Proof. We subdivide each of the cubesB1 andB2 into qd subcubes of side
lengthR = a

q . There are at mostc0q
d−1 subcubes that contain parts of the

boundaryΓh. From these at most(c0qd−1)2 pairs take out a pair of non-
adjacent subcubesBR(z1), BR(z2). According to the previous property of
the setT ′ for R andr = 1

4ηR we can find a set of cluster pairsC ′ ⊆ T ′ so
that

(Γh × Γh) ∩ (BR(z1) ×BR(z2)) ⊆
⋃

(τ1,τ2)∈C′
τ1 × τ2,

max{diam τ1,diam τ2} ≤ r for all (τ1, τ2) ∈ C ′, τ1, τ2 �∈ P,

#C ′ ≤ c′P

(
R

r

)2(d−1)

≤ c′P 42(d−1)η−2(d−1) =: c̃P η−2(d−1).

If τ1, τ2 �∈ P

dist(τ1, τ2) ≥ R− 2r = R
(
1 − η

2

)
≥ 1

2
a

q
, sinceη < 1

anddiam τ2 ≤ η
4
a
q < η dist(τ1, τ2). Thus this cluster pair is admissible.

Since among the at most(c0qd−1)2 pairs of subcubesB with B ∩ Γh �= ∅
there are at most3dc0qd−1 pairs of adjacent subcubes we see that

N (a) ≤ (c0qd−1)2 c̃P η−2(d−1) + 3dc0qd−1N (a/q).

In a clusterτ of diameter at mostr not more thancac/c (cur/h)d−1 panels
fit, because according to (9) and (12)

car
d−1 ≥ cadiamd−1 τ ≥ area τ ≥ #τ min

π∈τ
area π ≥ #τc/c (h/cu)d−1.

If one of the clustersτ1, τ2 is a panel, let this beτ1, the corresponding block
is stored without approximation. Sinceτ1 andτ2 are from the same levell
in T

diamd−1 τ2 ≤ c 2−larea Γh ≤ c/c area τ1 ≤ c/c cah
d−1.

Thus in this case we can find a constantC ≥ 1 which serves as an upper
bound for the memory usage for this block.

If none of the clusters is a panel then the storage requirement is less than
2kcac/c (cur/h)d−1, because it takesk(n+m) units of memory to store a
rank-k matrix inR

m×n. Thus we need at most

max

(
C, 2kcac/c

(
cu

aη

4qh

)d−1
)

≤ C + 2kcac/c
(
cu

a

qh

)d−1

=: M

units of memory to store one block. Consequently, forNst(a) follows

Nst(a) ≤ (c0qd−1)2 c̃P η−2(d−1)M + 3dc0qd−1Nst(a/q).
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Using the previous case we are able to find an estimate forN (a0) and
Nst(a0).

Lemma 10. Letβ > 0. For the numbersN (a0) andNst(a0) it holds that

N (a0) ≤ c′N1+βη−2(d−1)

and

Nst(a0) ≤ c′′kN1+βη−2(d−1),

wherec′ andc′′ depend onβ but not onη or N .

Proof. From the previous lemma it can be seen that (q̃ = qd−1)

Nst(a0) ≤ c3kη
−2(d−1)q̃2

L−1∑
l=0

(c2q̃)l
(
1 + q̃−l−1

(a0

h

)d−1
)

+(c2q̃)LNst(a0/q
L),

with L the smallest integer so thatL ≥ logq(a0/h), whereq ∈ N is chosen

so that̃qβ ≥ c2. This guarantees that̃q−l (a0/h)
d−1 ≥ 1 for l ≤ L− 1 and

leads to

Nst(a0) ≤ 2c3kη−2(d−1)q̃2
(a0

h

)d−1 L−1∑
l=0

cl2 + (c2q̃)LNst(a0/q
L).

We may assume thatc2 ≥ 2. Sinceq̃L ≥ (a0/h)d−1 and with (11)

q̃L−1 ≤ ad−1
0 /hd−1 ≤ ad−1

0 N/cb

we obtain

Nst(a0) ≤
(
4c3kη−2(d−1)

(a0

h

)d−1
q̃3q̃−L + c2q̃Nst(a0/q

L)
)

(c2q̃)L−1

≤ (4c3kη−2(d−1)q̃3 + c2q̃Nst(a0/q
L))(ad−1

0 N/cb)1+β.

AcubeB of side lengthh can be covered by a setτ = {π ∈ P : B∩π �= ∅}.
Thendiam τ ≤ 3h and from the proof of the last lemma we see thatτ
contains at mostcac/c (3cu)d−1 panels and henceNst(a0/q

L) ≤ c, where
c = (cac/c (3cu)d−1)2. The proof for the second bound is similar.
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3.2. Computational complexity

In the followingwewill show howmany operations and units ofmemory are
necessary to generate an approximant of the discrete operator to a prescribed
accuracyε and how many operations are needed to perform one matrix-
vector multiplication using this approximant.

The complexity of thewhole algorithm ismainly determinedby the num-
ber of cluster pairsN (a0). Let us denote the set of blocks that correspond
to an admissible cluster pair(τ1, τ2), τ1, τ2 �∈ P , bySa.

To approximate a blockM ∈ Sa of sizem × n with a corresponding
cluster pair(τ1, τ2)weneednp skeletons to obtain an accuracy (cf. Theorem
4)

‖M − M̃‖F ≤ √
nmcp distg(τ1, τ2) ηp.

The constantcp only depends on the pointsy1, . . . , ynp which may change
withN so thatcp is unbounded even for a boundedp. This situation occurs,
for example, if the points are located in the intersections of two families
of parallel lines and the angle between them vanishes with growingN , cf.
[5]. However, these cases are pathological and we assume a sequence of
boundary meshes that guarantees thatcp is bounded for boundedp.
Since for an admissible cluster pair(τ1, τ2)

diam τ2 ≤ η dist(τ1, τ2)

and according to (9)diam π ≥ h/cu holds for anyπ ∈ P , we see that

dist(τ1, τ2) ≥ η−1h/cu > h/cu

and since we assumedg ≤ 0 then

distg(τ1, τ2) ≤ (h/cu)g ≤ c−g
u (cbN−1)

g
d−1 .

While the blocks inSa are approximated, all other blocks are computed
exactly. Thus for the approximation error it holds that

‖A− Ã‖2
F =

∑
M∈Sa

‖M − M̃‖2
F

≤
∑

M∈Sa

nmc2p dist
2g(τ1, τ2) η2p = O((N1− g

d−1 ηp)2).

Let α > 0 and0 < β < α, β from Lemma 10, and set

η =
(
εN

g
d−1−1

)1/p

wherep is the smallest integer so that

p ≥ 2
d− 1 − g

α− β
.
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For reasonableε andN we may assume that0 < η < 1.
With this choice ofη for the approximation error it holds that

‖A− Ã‖F = O(ε).

Since
N (a0) = O(N1+αε−α)

the number of steps needed to obtain the set of cluster pairs is bounded by

1
3
(4N (a0) − 1) = O(N1+αε−α).

For the amount of storage needed

Nst(a0) = O(N1+αε−α)

holds. Thus the number of operations needed for onematrix-vectormultipli-
cation and the number of operations for the generation of the approximant
do not exceedO(N1+αε−α), because on each block these numbers differ
from the amount of storage only by a constant factor.

Thus the overall complexity of this method isO(N1+αε−α), α > 0
arbitrarily small.

4. Numerical experiments

We will test our algorithm on the following surface

Γ =

x =

 R(z) cos(2πt)
R(z) sin(2πt) (2 − 3

2 sin(2πt))
z

 , 0 ≤ z ≤ 1, 0 ≤ t < 1


where

R(z) =
√
z(1 − z)

and on the boundary integral equation which appears for the inner Dirichlet
problem

Au = f

whereA is the single layer operator

Au(x) =
1
4π

∫
Γ

u(y)
|x− y| dsy.

In the following table we show for different problem sizesN andε = 10−4

the memory and time consumption of the algorithm proposed in this paper.
The integral equation is discretized by the collocation method.
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Storage (MB) CPU time (sec)
N used standard % approx. solution per step

16128 244 1985 12.3 141 428 33
39600 728 11964 6.1 378 1824 140
65024 1316 32258 4.1 663 3713 248
89400 1905 60976 3.1 945 5319 355
114920 2595 100758 2.6 1277 8128 478
136160 3166 141446 2.3 1598 10395 578
159200 3852 193364 2.0 1921 13355 703
175560 4290 235148 1.8 2142 14415 801
201600 5008 310078 1.6 2435 17089 899

Since we did not employ a preconditioner the number of iteration steps
in BiCGStab increases withN , so that we merely need to compare the
time we needed per iteration. All calculations were performed on an SGI
Indigo2-10k.

Thememory usage of our algorithm and of the standard solution strategy
is shown in the second and third column. The time we needed to generate
the approximant, the time for the solution of the linear system and the time
per iteration step of BiCGStab is placed in columns five, six and seven.
The time per multiplication step and for the generation of the approximant
grows almost linearly. The same behaviour is observable with respect to
storage. The amount of storage and the CPU time for the approximation and
the CPU time per step of BiCGStab are depicted in the following figures.
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