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Abstract

In this paper the approximation of circular arcs by parametric

polynomial curves is studied. If the angular length of the circular arc

is h, a parametric polynomial curve of arbitrary degree n ∈ N, which

interpolates given arc at a particular point, can be constructed with

radial distance bounded by h
2n. This is a generalisation of the result

obtained by Lyche and Mørken for odd n.

1 Introduction

The approximation of circular arcs is an important task in Computer Aided
Geometric Design (CAGD), Computer Aided Design (CAD) and Computer
Aided Manufacturing (CAM). Though a circle arc can be exactly represented
by a rational quadratic Bézier curve (or, generally, by rational parametric
curve of low degree, see [1], e.g.), some CAD/CAM systems require a poly-
nomial representation of circular segments. Also, some important algorithms,
such as lofting and blending can not be directly applied to rational curves.
On the other hand, circular arcs can not be represented by polynomials ex-
actly, thus interpolation or approximation has to be used to represent them
accurately.

Among others, Lyche and Mørken have studied the problem of approxi-
mation of circular segments by polynomial parametric curves (see [3]). They
have found an excellent explicit approximation by odd degree parametric
polynomial curves, but conjectured that the same problem with even degree
could be a tough task. Their method is based on Taylor-type approximation
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and explicitly provides parametric polynomials of odd degree n with high
asymptotic approximation order, i.e., 2n.

In this paper the general case for any n ∈ N is solved. First, the approx-
imation problem will be stated. Let

fffffffff(ϕ) :=

(

sinϕ
cosϕ

)

, 0 ≤ ϕ ≤ α < 2 π, (1)

be a particular parameterization of a circular arc of angular length α. It is
enough to consider arcs of the unit circle only, since any other arc of the
same angular length can be obtained by affine transformations. Our goal is
to find a parametric polynomial curve

pppppppppn := ppppppppp :=

(

xn
yn

)

(2)

of degree ≤ n with nonconstant scalar polynomials xn, yn ∈ R[t],

xn(t) :=

n
∑

j=0

aj t
j , yn(t) :=

n
∑

j=0

bj t
j , (3)

which provides “the best approximation” of (1). The only prescribed inter-
polation point is fffffffff(0) := (xn(0), yn(0))T := (0, 1)T , thus a0 := 0 and b0 := 1
in (3).
In CAGD, we are interested mainly in geometric properties of objects. A
particular parameterization is just a representation of an object in a desired
form. Therefore the approximation error will be considered as a distance
between set of points on given curves, i.e., a circular arc and a parametric
polynomial in this case. It seems natural to choose a “radial distance” here
(see Figure 1), i.e.,

d(fffffffff, ppppppppp) := max
t∈I

{
∣

∣

∣

√

x2
n(t) + y2

n(t) − 1
∣

∣

∣

}

, (4)

where I is some interval of observation. If ppppppppp is a good approximation of fffffffff on
I then (4) is small and

√

x2
n(t) + y2

n(t) ≈ 1, thus

∣

∣

∣

√

x2
n(t) + y2

n(t) − 1
∣

∣

∣
=

|x2
n(t) + y2

n(t) − 1|
√

x2
n(t) + y2

n(t) + 1
≈ 1

2

∣

∣x2
n(t) + y2

n(t) − 1
∣

∣ ,

and, for computational purposes, it is enough to consider only the “error”

e(t) :=
∣

∣x2
n(t) + y2

n(t) − 1
∣

∣ . (5)
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Figure 1: Radial distance between circular arc (solid) and a parametric curve
approximation (dashed).

Ideally, e would be zero if a polynomial parameterization of circular arc would
exist. But if at least one of xn or yn is of degree n, then (3) implies

x2
n(t) + y2

n(t) = (a2
n + b2n) t

2n + · · · 6= 1. (6)

Now it follows from (5) that e will be small (at least for small t), if coefficients
at the lower degree terms in (6) will vanish. This implies that e will be as
small as possible if

x2
n(t) + y2

n(t) = 1 + const · t2n. (7)

A proper reparameterization

t→ t
2 n

√

a2
n + b2n

transforms (7) to
x2
n(t) + y2

n(t) = 1 + t2n, (8)

which gives 2n nonlinear equations for 2n unknown coefficients (aj)
n
j=1 and

(bj)
n
j=1.
The paper is organised as follows. In Section 2 the system of nonlinear

equations will be studied and a general closed form solution will be derived.
In Section 3 the optimal asymptotic approximation order will be confirmed
and in the last section some concluding remarks regarding the optimal ap-
proximation of circular arcs will be given.
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2 Solution of the problem

Although the solutions of the system of nonlinear equations given by (8)
can be obtained numerically for a particular values of n, finding a closed
form solution is a much more complicated problem. In [3], authors proposed
a very nice approach to solve this problem. They have used a particular
rational parameterization of the unit circle to obtain the coefficients of the
polynomials xn and yn. Indeed, if

x0(t) :=
2 t

1 + t2
, y0(t) :=

1 − t2

1 + t2
, t ∈ (−∞,∞), (9)

is a parameterization of a unit circle, then the functions

xn(t) := x0(t) − (−1)(n−1)/2 tn y0(t),

yn(t) := y0(t) + (−1)(n−1)/2 tn x0(t),

are actually polynomials of degree ≤ n for which (8) holds. It is also easy
to find their explicit form, but unfortunately if n is even, their coefficients
are no more real numbers. However, this idea can be applied for even n too,
but slightly different rational parameterization of the unit circle has to be
considered. Namely, let

n = 2k (2 r − 1), k ∈ N0, r ∈ N, (10)

and let x0, y0 be redefined as

x0(t) :=
2
√

1 − c2 t (1 − c t)

1 − 2 c t+ t2
, y0(t) :=

1 − 2 c t+ (2 c2 − 1) t2

1 − 2 c t+ t2
, (11)

where c ∈ [0, 1). It is straightforward to see that x2
0(t) + y2

0(t) = 1. Note
that (9) is a particular case of (11) where c = 0. The following theorem,
which has already been considered in [2] in a different context, gives one of
the solutions of the nonlinear system (8) for any n in a closed form.

Theorem 1 Suppose that n, k, and r satisfy (10), and let the constants
ck, sk be given as ck := cosψk and sk := sinψk, where ψk := π/2k+1. Further,
suppose that x0 and y0 are defined by (11) with c := ck. Then the functions
xn and yn, defined by

(

xn(t)
yn(t)

)

:=

(

1 (−1)r tn

(−1)r+1 tn 1

)(

x0(t)
y0(t)

)

, (12)
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are polynomials of degree ≤ n that satisfy (8). Furthermore, their coefficients
are given as

aj =2 sk cos((j − 1)ψk) = 2 sk Tj−1(ck), j = 1, 2, . . . , n− 1, (13)

an =2 sk cos((n− 1)ψk) + (−1)r = 2 sk Tn−1(ck) + (−1)r, (14)

and

b0 = 1, b1 = 0, (15)

bj = −2 sk sin((j − 1)ψk) = −2 s2
k Uj−2(ck), j = 2, 3, . . . , n, (16)

where Tj and Uj are Chebyshev polynomials of the first and the second kind.

Proof: The proof given here is a extended version of the proof in [2].
The equation (12) yields

xn(t) =
2
√

1 − c2k t (1 − ck t) + (−1)r tn (1 − 2 ck t+ (2 c2k − 1) t2)

1 − 2 ck t+ t2
,

yn(t) =
(−1)r+1 tn

(

2
√

1 − c2k t (1 − ck t)
)

+ 1 − 2 ck t+ (2 c2k − 1) t2

1 − 2 ck t+ t2
.

To verify that the function xn is a polynomial of the form (3), it is enough
to see that

(1 − 2 ck t+ t2)

n
∑

j=0

aj t
j = a1 t+ (a2 − 2 ck a1) t

2

+
n

∑

j=3

(aj − 2 ck aj−1 + aj−2) t
j + (−2 ck an + an−1) t

n+1 + an t
n+2

= 2
√

1 − c2k t (1 − ck t) + (−1)r tn (1 − 2 ck t+ (2 c2k − 1) t2.

A comparison of the coefficients implies the linear recurrence

a1 = 2 sk, a2 = ck a1, aj − 2 ck aj−1 + aj−2 = 0, j = 3, 4, . . . , n− 1, (17)

with additional conditions

an − 2 ck an−1 + an−2 =(−1)r,

2 ck an − an−1 =(−1)r 2 ck, (18)

an =(−1)r (2 c2k − 1).
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Similarly, for yn it is enough to see that

(1 − 2 ck t+ t2)
n

∑

j=0

bj t
j = b0 + (b1 − 2ckb0) t+

n
∑

j=2

(bj − 2 ck bj−1 + bj−2) t
j

+ (−2 ck bn + bn−1) t
n+1 + bn t

n+2

= (−1)r+1 tn
(

2
√

1 − c2k t (1 − ck t)

)

+ 1 − 2 ck t+ (2 c2k − 1) t2.

Here, the conditions on bj are

b1 = 0, b2 = −2 s2
k, bj − 2 ck bj−1 + bj−2 = 0, j = 3, 4, . . . , n, (19)

and

−2 ck bn + bn−1 =(−1)r+1 2 sk, (20)

bn =(−1)r 2 skck.

The theory of linear recurrence equations gives the general form of the solu-
tion of (17), namely

aj = Aei ψk j +Be−i ψk j,

where i2 := −1. From the initial conditions

a1 = 2 sk = Aei ψk +B e−i ψk ,

a2 = 2 cksk = Ae2 i ψk +B e−2 i ψk ,

and the relation eiψk = ck + isk, it is easy to obtain A = ske
−i ψk and B =

ske
i ψk . Therefore,

aj = 2 sk cos ((j − 1)ψk) = 2 sk Tj−1(ck), j = 1, 2, . . . , n− 1.

Additional conditions (18) imply

an = 2
√

1 − c2k cos ((n− 1)ψk) + (−1)r = 2 sk Tn−1(ck) + (−1)r.

Since the general recurrence relation (19) is the same as in (17), its solu-
tion reads

bj = Cei ψkj +De−i ψkj .

The initial conditions

b1 = 0 = C ei ψk +D e−i ψk ,

b2 = −2s2
k = C e2 i ψk +D e−2 i ψk ,
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imply C = i ske
−iψk , D = −i skeiψk . Hence

bj = isk
(

eiψk(j−1) − e−iψk(j−1)
)

= −2 sk sin ((j − 1)ψk) = −2 s2
k Uj−2(ck),

for j = 1, 2, . . . , n. Additional conditions (20) are satisfied and the proof is
complete.

3 Approximation order

The study of the approximation order in parametric case is not a trivial
task. The main problem is how the distance between parametric objects is
measured. Since objects are usually considered as sets of points, the distance
between sets is naturally involved. This leads to a very well known Hausdorff
distance dH , which is difficult to compute in practice. As its upper bound the
so called parametric distance dP has been proposed by Lyche and Mørken in
[3].

Definition 1 Let fffffffff 1 and fffffffff 2 be two parametric curves defined on the intervals
I1 and I2. The parametric distance between fffffffff 1 and fffffffff 2 is defined by

dP (fffffffff1, fffffffff2) = inf
φ

max
t∈I2

‖fffffffff1(φ(t)) − fffffffff 2(t)‖,

where φ : I2 → I1 is a regular reparameterization, i.e., φ′ 6= 0 on I2.

Their result will be used here to prove the following lemma.

Lemma 1 Let a circular arc fffffffff be defined by (1) and its parametric approx-
imation ppppppppp by (2). Let the coefficients of xn and yn be given by (13)–(16). If
ppppppppp : [0, h] → R

2, where h is sufficiently small, then

dH(fffffffff, ppppppppp) ≤ dP (fffffffff, ppppppppp) ≤ d(fffffffff, ppppppppp) ≤ h2n,

where d is defined by (4).

Proof: By [3], dP is a metric on a set of parametric curves on [0, h]. Ob-
viously, for a particular φ, which is a regular reparameterization of fffffffff on
[0, h],

dP (fffffffff, ppppppppp) ≤ max
t∈[0,h]

||fffffffff(φ(t)) − ppppppppp(t)||2.

Thus, it is enough to find a regular reparameterization φ of fffffffff for which

max
t∈[0,h]

||fffffffff(φ(t)) − ppppppppp(t)||2 ≤ h2n.
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Let φ : [0, h] → I be defined as

φ(t) := arctan

(

xn(t)

yn(t)

)

. (21)

Since xn(0) = 0, yn(0) = 1 and by (13) x′n(0) = 2 sk,

φ′(0) =
x′n(0) yn(0) − xn(0) y′n(0)

x2
n(0) + y2

n(0)
= 2 sk > 0,

and there exists h0 > 0, such that φ is a regular reparameterization on [0, h]
for 0 < h < h0. But a point (fffffffff ◦ φ)(t) lies on the circular arc defined by fffffffff
and on the ray from the origin to ppppppppp(t). This implies

||(fffffffff ◦ φ)(t) − ppppppppp(t)||2 = |
√

x2
n(t) + y2

n(t) − 1| ≤ |x2
n(t) + y2

n(t) − 1| = t2n,

where the last equality follows from (8). Finally,

max
t∈[0,h]

||(fffffffff ◦ φ)(t) − ppppppppp(t)||2 ≤ h2n

and the proof of the lemma is complete.

An interesting question is, how large can be the angular length of the
circular arc, which can be approximated by the previous method. First of
all, the regularity of φ has to be assured, i.e., h has to be small enough. Then
the angular length of the reparameterized circular arc fffffffff ◦ φ can be derived
at least asymptotically.

Lemma 2 If φ is a regular reparameterization on [0, h] defined by (21), then
the length of the circular arc fffffffff ◦ φ : [0, h] → R

2 is 2 sk h+ O(h2).

Proof: The proof is straightforward. The regularity of φ, (8), (13)–(16) and
the fact that (1 + t2n)−1 = 1 + O(t2n), simplify the arc-length to

s =

∫ h

0

‖(fffffffff ◦ φ)′(t)‖2 dt =

∫ h

0

|x′n(t) yn(t) − xn(t) y
′

n(t)|
x2
n(t) + y2

n(t)
dt =

∫ h

0

x′n(t) yn(t) − xn(t) y
′

n(t)

1 + t2n
dt =

∫ h

0

(x′n(t) yn(t) − xn(t) y
′

n(t))(1 + O(t2n)) dt = 2 sk h+ O(h2).
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4 Conclusions

Since we know that the best local approximation at a particular point in the
functional case is the Taylor expansion, the natural question arises how good
the approximation can be, if xn and yn are taken as Taylor polynomials for
sine and cosine at t = 0. The result is summarised in the following lemma.

Lemma 3 Let xn and yn be the degree n Taylor polynomials of sine and
cosine, respectively. Then

x2
n(t) + y2

n(t) = 1 +
1

wn
tm + O(tm+1),

where

m :=

{

n + 1, n is odd,
n + 2, n is even,

and

wn =

{

m
2
n! if nmod4 = 1, 2,

−m
2
n! otherwise.

Proof: Let

Rs(t) = sin t− xn(t),

Rc(t) = cos t− yn(t)

be Lagrange remainders in Taylor expansions. Since

x2
n(t) + y2

n(t) = 1 − 2(Rs(t) sin t+Rc(t) cos t) +R2
s(t) +R2

c(t) (22)

and Rs, Rc are of O(tn+1), it is enough to consider S(t) := −2(Rs(t) sin t+
Rc(t) cos t) only.
First, suppose that n is odd, i.e., n = 2 ℓ− 1. In this case the expansions of
Rs and Rc are

Rs(t) =
(−1)ℓ

(n + 2)!
tn+2 + O(tn+4), Rc(t) =

(−1)ℓ

(n+ 1)!
tn+1 + O(tn+3),

therefore

S(t) = −2
(−1)ℓ

(n+ 1)!
tn+1 + O(tn+3).

By (22), m = n + 1 and

wn =
(−1)ℓ+1 (n+ 1)!

2
.
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If n is even, n = 2 ℓ,

Rs(t) =
(−1)ℓ

(n + 1)!
tn+1 + O(tn+3), Rc(t) =

(−1)ℓ+1

(n+ 2)!
tn+2 + O(tn+4),

thus

S(t) = −2

(

(−1)ℓ

(n + 1)!
tn+2 +

(−1)ℓ+1

(n+ 2)!
tn+2

)

+ O(tn+4).

Again by (22), m = n + 2 and

wn =
(−1)ℓ+1 (n+ 2)n!

2
.

The last lemma confirms that the Taylor polynomials are not an optimal
choice if the radial distance is used as a measure of the approximation order.

The construction proposed by Theorem 1 has a very small local approxi-
mation error, but only interpolates one point on a circular arc. More general
results concerning the Lagrange interpolation of 2n points on a circle-like
curve by a parametric polynomial curve of degree n and the same approxi-
mation error, i.e., 2n, are in [2].
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