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Abstract

The volume of the symmetric difference of a smooth convex body in
IE 3 and its bestapproximating polytope with n vertices is asymptot-
ically a constant multiple of 1

n . We determine this constant and the
similarly defined constant for approximation with a given number of
facets by solving two isoperimetric problems for planar tilings.
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1 Introduction and statement of results

Let C be a convex body in Euclidean d-space IE d, i.e., a compact convex
set with non-empty interior, and denote by P i

n and Pc
(n) the set of polytopes

with at most n vertices inscribed to C and the set of polytopes with at most
n facets circumscribed to C, respectively. Denote by δ(., .) the symmetric
difference metric. Beginning with the work of L. Fejes Tóth [2], there are
many investigations (cf. the survey [5]) on the asymptotic behavior as n →∞
of the distance of C to its best approximating polytopes with at most n
vertices or facets, i.e., of

δ(C,P i
n) = inf{δ(C, P ) : P ∈ P i

n}
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and
δ(C,Pc

(n)) = inf{δ(C, P ) : P ∈ Pc
(n)}.

For C ⊂ IE 3 with boundary of differentiability class C2 and positive Gaussian
curvature κC , L. Fejes Tóth [2], p. 152, indicated that

δ(C,P i
n) ∼ 1

4
√

3

(∫
bd C

κC(x)
1
4 dσ(x)

)2 1

n
(1)

and

δ(C,Pc
(n)) ∼

5

36
√

3

(∫
bd C

κC(x)
1
4 dσ(x)

)2 1

n
(2)

as n →∞, where σ is the surface area measure in IE d. These formulae were
proved by P.M. Gruber in [3] and [4], for the planar case see [8] and for d > 3
[6].

We are interested in the analogues of (1) and (2) for the problem of
approximation by general polytopes, i.e., polytopes that are not necessarily
inscribed or circumscribed to C. Let Pn and P(n) denote the sets of polytopes
with at most n vertices and n facets, respectively, and define δ(C,Pn) and
δ(C,P(n)) as above. It is shown in [7] that there are positive constants ldeld−1

and ldivd−1 (depending only on d) such that for a convex body C ⊂ IE d of
class C2 and with positive Gaussian curvature,

δ(C,Pn) ∼ 1

2
ldeld−1

(∫
bd C

κC(x)
1

d+1 dσ(x)
) d+1

d−1 1

n
2

d−1

(3)

and

δ(C,P(n)) ∼
1

2
ldivd−1

(∫
bd C

κC(x)
1

d+1 dσ(x)
) d+1

d−1 1

n
2

d−1

(4)

as n →∞. These constants are defined by means of Laguerre tilings, which
are also known as power diagrams (cf. [1]). The values of these constants are
known only for d = 2 (ldel1 = ldiv1 = 1/16, cf. [7]), for d > 3 it seems to be
difficult to determine the exact value of these constants, cf. [6].

We will determine the values of ldel2 and ldiv2. These constants are
defined in [7] in the following way. Let L = {(a1, r1), . . . , (am, rm)} with
a1, . . . , am ∈ IE 2 and r1, . . . , rm ≥ 0, and define the sets V1, . . . , Vm by

Vi = {x ∈ [0, 1]2 : (x− ai)
2 − r2

i ≤ (x− aj)
2 − r2

j , j = 1, . . . ,m}.
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Then L is called a Laguerre tiling of [0, 1]2 with the tiles V1, . . . , Vm. Set

v(L) =
m∑

i=1

∫
Vi

|(x− ai)
2 − r2

i |dx

and define

ldiv2 = lim
n→∞

n inf{v(L) : L has at most n tiles},

cf. [7].
Denote by Pk the regular k-gon centered at the origin o and of area

|Pk| = 1. For a convex domain C, set

I(C, r) =
∫

C
|x2 − r2|dx

and choose ρk such that I(Pk, ρk) ≤ I(P, r) for all r ≥ 0.

THEOREM 1 Let {Q1, . . . , Qn} be a tiling of [0, 1]2 with convex tiles, ai ∈
IE 2 and ri ≥ 0, i = 1, . . . , n. Then

n∑
i=1

∫
Qi

|(x− ai)
2 − r2

i | dx ≥ I(P6, ρ6)

n
.

This theorem provides a lower bound for ldiv2 and taking tilings with reg-
ular hexagons then shows that this bound is asymptotically optimal. Thus,
calculating I(P6, ρ6) gives

Corollary 1

ldiv2 =
5

18
√

3
− 1

4π
.

In the definition of ldel2, we have to count the number of vertices in the
tiling of [0, 1]2 and set

ldel2 = lim
n→∞

n inf{v(L) : L has at most n vertices},

cf. [7].
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THEOREM 2 Let {Q1, . . . , Qm} be a tiling of [0, 1]2 with convex tiles, ai ∈
IE 2 and ri ≥ 0, i = 1, . . . ,m, with no more than n vertices. Then

m∑
i=1

∫
Qi

|(x− ai)
2 − r2

i | dx ≥ I(P3, ρ3)

2(n− 2)
.

This provides a lower bound for ldel2 and considering tilings with regular
triangles then gives

Corollary 2

ldel2 =
1

6
√

3
− 1

8π
.

That this is the correct value, was conjectured in [3].
The classical momentum lemma of L. Fejes Tóth (cf. [2], p. 198) states

that for a non–negative monotonous function g, the extremum of the integral∫
P

g(|x|) dx

over k–gons P with given area is attained for the regular k–gon. A simple
consequence is that I(P, 0) ≥ I(Pk, 0)|P |2, which can be used to prove (2),
cf. [4]. In the proof of Theorems 1 and 2, we need the following analogue of
the momentum lemma:

THEOREM 3 If P is a convex k-gon, k ≥ 3, then I(P, r) ≥ I(Pk, ρk)|P |2.

Note that similar arguments with simpler calculations than for general ap-
proximation would yield (1).

2 Some general observations

Let B(ρ) be the circle centered at the origin and with radius ρ. Letting r
vary and calculating the critical point of I(C, r) shows

LEMMA 1 Let C be a convex domain and let ρ be chosen such that I(C, ρ) ≤
I(C, r) for all r ≥ 0. Then |C ∩B(ρ)| = |C\B(ρ)|.
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Using this, we see that B(ρk) ⊂ Pk for k = 3, . . .. Thus, elementary
calculations give

I(Pk, ρk) =
1

2k tan π
k

+
tan π

k

6k
− 1

4π
. (5)

LEMMA 2 Let C be a convex domain and r ≥ 0. If o 6∈ int C, then
I(C, r) ≥ 1.1 · I(P3, ρ3) · |C|2.

Proof: Since C is convex and o 6∈ int C, we can choose a (closed) half-plane
H containing o on its boundary such that C ⊆ H. Choose r0 and r1 satisfying

|B(r1)\B(r)| = |B(r)\B(r0)| = |C|

and define G(r, |C|) = (B(r1)\ int B(r0)) ∩ H. If x ∈ C\B(r) is not in
B(r1)\B(r), then

x2 − r2 ≥ max{u2 − r2 : u ∈ B(r1)\B(r)}

and if x ∈ C ∩B(r) is not in B(r)\B(r0), then

r2 − x2 ≥ max{r2 − u2 : u ∈ B(r)\B(r0)}.

Thus ∫
C\B(r)

(x2 − r2) dx ≥
∫

G(r,|C|)\B(r)
(x2 − r2) dx

and ∫
C∩B(r)

(r2 − x2) dx ≥
∫

G(r,|C|)∩B(r)
(r2 − x2) dx.

Therefore
I(C, r) ≥ I(G(r, |C|)).

Combining this with

I(G(r, |C|)) =
|C|2

2π
≥ 1.1 ·

(
1

3
√

3
− 1

4π

)
|C|2 = 1.1 · I(P3, ρ3)|C|2

where (5) was used, proves the lemma. 2
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3 An auxiliary function

Let T = T (t) be a triangle with a right angle, |T | = 1 and an angle t at o.
There always exists an optimal ρ = ρ(t), such that

I(T (t), ρ(t)) ≤ I(T (t), r)

for all r ≥ 0. Define
c(t) = I(T (t), ρ(t))

for 0 < t < π/2.
With the help of c(t) we can give a sharp lower bound for I(T, r) for

general triangles T .

LEMMA 3 Let T be a triangle with an angle 2 t at o. Then

I(T, r) ≥ 1

2
c(t)|T |2.

Proof: First, we show that among all such triangles T and r ≥ 0, there is a
triangle S and a ρ ≥ 0 such that

I(T, r)

|T |2
≥ I(S, ρ)

|S|2
, (6)

i.e., that the infimum of I(T, r)/|T |2 is attained for S and ρ. By Lemma 1,
we may always assume that

|T ∩B(r)| = |T\B(r)|. (7)

Consider a sequence {Ti, ri} such that |Ti| is a given value and I(Ti, ri) ap-
proaches the infimum. If {Ti} is unbounded then {ri} approaches infinity by
(7). For large ri, (7) yields that the area of the part of Ti outside of B(ri +1)
is at least 1

4
|T |. If x is chosen from that part, then x2 − r2

i > 2ri + 1, and
hence I(Ti, ri) tends to infinity. We conclude that {Ti} and {ri} are bounded,
and hence the infimum of I(T, r)/|T |2 is attained.
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Second, let S and ρ be chosen such that (6) holds. Denote by H the side
of S not containing o and let m be the midpoint of H. Then

S is symmetric (8)

with respect to the line connecting o and m. To show this, keep ρ fixed and
rotate the side H around m by an angle ϕ. Let Sϕ be the triangle obtained
in this way. Then

|Sϕ| = |S|+ O(ϕ2)

and

I(Sϕ, ρ) = I(S, ρ) +
∂I(Sϕ, ρ)

∂ϕ

∣∣∣∣∣
ϕ=0

· ϕ + O(ϕ2).

Consequently, the minimality property of S yields

∂I(Sϕ, ρ)

∂ϕ

∣∣∣∣∣
ϕ=0

= 0. (9)

This can be written as∫ l

0
|(τ + a)2 − s2|τ dτ −

∫ l

0
|(τ − a)2 − s2|τ dτ = 0 (10)

where 2l the length of H, a is the distance of m and the orthogonal projection
of o to the affine hull aff H, and 2s is the length of aff H ∩ B(ρ). It follows
from Lemma 1 that

| aff H ∩B(ρ)| < l. (11)

We have to distinguish three cases.

(i) H does not intersect B(ρ). Then, evaluating (10) gives 4al3/3 = 0 and
a = 0.

(ii) H intersects B(ρ) exactly once. If a ≥ s, then

(τ + a)2 − s2 > |(τ − a)2 − s2|

holds for τ > 0. Thus (10) does not hold in this case. Therefore a < s
or equivalently m ∈ int B(ρ). But this implies |H ∩ B(ρ)| > l which
contradicts (11). So this case cannot occur.
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(iii) H intersects B(ρ) twice, and hence |H ∩ B(ρ)| = 2s. Then evaluating
(10) gives a(l3−2s3) = 0. By (11), we know that l3−2s3 6= 0. Therefore
a = 0.

Thus in each case, a = 0 holds, which is in turn equivalent to (8).
Finally, it follows from (8) that

I(S, ρ) =
1

2
c(t)|S|2.

Combined with (6) this proves the lemma. 2

Let t1 be the unique t, 0 < t < π/2, satisfying tan t = 2 t. Then for t < t1
the third side of T does not intersect B(ρ) and

c(t) =
1

tan t
+

tan t

3
− 1

2t
.

c(t) attains a unique minimum at t0, π/4 < t0 < π/3. We use the following
properties of 1/c(t).

LEMMA 4 1/c(t) is concave for t ≤ t1, increasing for 0 < t ≤ t0 and
decreasing for t0 ≤ t ≤ t1.

Proof: Derivating c(t) yields

c′(t) = − 1

tan2 t
+

tan2 t

3
+

1

2t2
− 2

3

c′′(t) =
2

tan3 t
+

2

tan t
+

2

3
tan t +

2

3
tan3 t− 1

t3
.

To show that 1/c(t) is concave, is equivalent to prove that c(t) c′′(t)−2c′(t)2 >
0. We have

c(t) c′′(t)− 2c′(t)2 =
(tan t− t)(3t− 3 tan t + 3t tan2 t− tan3 t)

3t3 tan3 t

+
16

9
(1 + tan2 t)− tan t

3t2
(t + 2 tan t + t tan2 t)

It is not difficult to see that

3t− 3 tan t + 3t tan2 t− tan3 t ≥ 0
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for 0 ≤ t ≤ t1. Thus, using tan t ≤ 2t, gives

c(t) c′′(t)− 2c′(t)2 ≥ 16

9
(1 + tan2 t)− tan t

3 t
(5 + tan2 t)

=
1

9 t
(16 t + 16 t tan2 t− 15 tan t− 3 t tan2 t) > 0.

2

LEMMA 5 Let f(t; π/k) be the linear function representing the tangent to
1/c(t) at π/k. Then

1

c(t)
≤ f

(
t;

π

k

)
for 0 < t < π/2 and k = 3, 4, . . ..

Proof: By Lemma 4, this holds for t ≤ t1 and it remains to be shown that

c(t) ≥ 1

f(t; π
3
)

(12)

for t1 ≤ t < π/2. Let o, (h, 0) = (h(t), 0), and (h, l) = (h(t), l(t)) be the
vertices of T = T (t) and denote by s the length of the intersection of B(ρ)
and the side of T not containing o. Then Lemma 1 yields that

s

l
≤ 1− 1√

2
. (13)

For small ε > 0, we have

I(T, ρ)− I(T (t− ε), ρ(t− ε)) ≥ I(T, ρ)− I(T (t− ε), ρ). (14)

Note that as ε → 0,∫
T\T (t−ε)

|x2 − ρ2| dx =
∫ √

h2+l2

0
|τ 2 − ρ2|τ dτ · ε + o(ε)

and ∫
T (t−ε)\T

|x2 − ρ2| dx =
∫ l

0
|h2 + u2 − ρ2| du · (h(t− ε)− h) + o(ε)

=
∫ l

0
|h2 + u2 − ρ2| du

(
h2 + l2

2l

)
· ε + o(ε).
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Thus the coefficient of ε in the left hand side of (14) is

√
h2+l2∫
0

|τ 2 − ρ2|τ dτ −
∫ l

0
|h2 + u2 − ρ2| du

(
h2 + l2

2l

)
=

= −2

3
+

4

l4
+

(
4 s2

l2
− 8 s3

3 l3

)
︸ ︷︷ ︸

≥0

+l4
(

1

12
− 2

3

(
s

l

)3

+
1

2

(
s

l

)4
)

︸ ︷︷ ︸
≥13/24−

√
2/3

≥ −2

3
+

4

l4
+

(
13

24
−
√

2

3

)
l4 ≥ 1

where we used (13) and l2(t) = 2 tan t ≥ 2 tan t1 = 4t1. We deduce by (14)
that

I(T, ρ)− I(T (t− ε), ρ(t− ε)) ≥ ε + o(ε),

and hence
c(t) ≥ c(t1) + (t− t1).

Finally, some simple calculations yield (12). 2

LEMMA 6 t c(t) is monotonously increasing for t ≤ π/3.

Proof: We have

(tc(t))′ =
3 tan t + tan3 t− 2t tan2 t + t tan4 t− 3t

3 tan2 t
.

Since tan t ≥ t and the enumerator E(t) satisfies E(0) = 0 and

E ′(t) = 4 tan2 t− 4t tan t + 4 tan4 t + 4t tan5 t,

we deduce that E(t) > 0 for 0 < t < π/3. 2
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4 Proof of Theorem 3

Since, by the definition of c(t) and (5), I(Pk, ρk) = c(π/k)/(2 k), it follows
from Lemma 6 that

I(P3, ρ3) > I(P4, ρ4) > I(P5, ρ5) > . . . . (15)

Therefore, if o 6∈ int P , we have by Lemma 2

I(P, r) > 1.1 · I(P3, ρ3) |P |2 > I(Pk, ρk) |P |2,

i.e., the theorem holds in this case. So, let o ∈ int P and dissect P into
triangles T1, . . . , Tk with a common vertex o, and let 2 tj be the angle of Tj

at o. By Lemma 3, we have

I(P, r) =
k∑

i=1

I(Ti, r) ≥
1

2

k∑
i=1

c(ti) |Ti|2.

The Cauchy-Schwarz inequality yields

k∑
i=1

c(ti)|Ti|2 ≥
(

k∑
i=1

1

c(ti)

)−1 ( k∑
i=1

|Ti|
)2

. (16)

By Lemma 5,
k∑

k=1

1

c(ti)
≤

k∑
k=1

f
(
ti;

π

k

)
=

k

c(π
k
)
.

Therefore,

I(P, r) ≥ 1

2

(
k∑

i=1

1

c(ti)

)−1

|P |2 ≥ 1

2k
c
(

π

k

)
|P |2 = I(Pk, ρk) |P |2,

which proves the theorem.

5 Proof of Theorem 2

We can dissect every tile Qi into triangles such that we obtain a simplicial
tiling with tiles T1, . . . , Tk and at most n vertices. If we double each tile, we
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may think of this as a polytope with f2 = 2k facets, f1 edges and f0 < 2n
vertices. By Euler’s formula f2 − f1 + f0 = 2 and f2 ≤ 2f0 − 4 which implies

k ≤ 2(n− 2). (17)

Therefore, by Theorem 3, the inequality of quadratic and arithmetic means,
and (17) we obtain

m∑
i=1

∫
Qi

|(x− ai)
2 − r2

i | dx ≥ I(P3, ρ3)
k∑

i=1

|Ti|2

≥ I(P3, ρ3)

(
k∑

i=1

|Ti|
)2

1

k
≥ I(P3, ρ3)

2(n− 2)
,

which proves the theorem.
To obtain the corollary, cover [0, 1]2 with k non-overlapping regular tri-

angles of equal area |T |. Then, we obtain a Laguerre-tiling L with, say, n
vertices by setting r2 = |T |/(2π) for each tile. We have

v(L) ≤ k I(P3, ρ3)|T |2.

Since we may choose the triangles such that k|T | → 1 and k/n → 2 as
k →∞,

lim sup
n→∞

n v(Lk) ≤
I(P3, ρ3)

2
,

and by Theorem 2, we have ldel2 = I(P3, ρ3)/2.

6 Proof of Theorem 1

To every tile Qi with li sides we assign 2li rectangular triangles of area
|Qi|/(2li) and with angle π/li at the vertex o. Let k = 2

∑n
i=1 li, let T1, . . . , Tk

be these triangles, and let tj denote the angle of Tj at o. Then
∑k

j=1 tj = 2πn.
By Theorem 3, ∫

Qi

|(x− ai)
2 − r2

i | dx ≥ I(Pli , ρli)|Qi|2

and
n∑

i=1

∫
Qi

|(x− ai)
2 − r2

i | dx ≥
k∑

j=1

c(tj)|Tj|2.
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By (16), we obtain from this

n∑
i=1

∫
Qi

|(x− ai)
2 − r2

i | dx ≥
k∑

j=1

c(tj)|Tj|2 ≥

 k∑
j=1

1

c(tj)

−1 k∑
j=1

|Tj|

2

.

We have
k ≤ 12(n− 1). (18)

This can be seen in the following way. If we double each tile Qi, we may
think of this as a polytope with f0 vertices, f1 = 1/2 k edges and f2 = 2n
facets. By Euler’s formula f2 − f1 + f0 = 2 and f1 ≤ 3f2 − 6, which implies
(18).

So, we obtain by Lemma 4, Jensen’s inequality, Lemma 6 and (18)

k∑
j=1

1

c(tj)
≤ k

c( 1
k

∑k
j=1 tj)

=
2πn

2πn
k

c(2πn
k

)
≤ 12 n

c(π
6
)
.

Thus
n∑

i=1

∫
Qi

|(x− ai)
2 − r2

i | dx ≥
c(π

6
)

12 n
=

I(P6, ρ6)

n
,

which proves the theorem.
Corollary 1 follows as Corollary 2, except that the triangular tiling is

replaced by the hexagonal tiling.
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