Approximation of convex bodies and a momentum lemma for power diagrams

Károly Böröczky, Jr. and Monika Ludwig

The research was partially supported by Österreichisches Ost-West Programm. The first named author was also supported by OTKA.

Abstract

The volume of the symmetric difference of a smooth convex body in \mathbb{E}^{3} and its bestapproximating polytope with n vertices is asymptotically a constant multiple of $\frac{1}{n}$. We determine this constant and the similarly defined constant for approximation with a given number of facets by solving two isoperimetric problems for planar tilings.

1991 AMS subject classification: 52C20, 52A27
Keywords: asymptotic approximation, power diagram, Laguerre tiling, momentum lemma

1 Introduction and statement of results

Let C be a convex body in Euclidean d-space \mathbb{E}^{d}, i.e., a compact convex set with non-empty interior, and denote by \mathcal{P}_{n}^{i} and $\mathcal{P}_{(n)}^{c}$ the set of polytopes with at most n vertices inscribed to C and the set of polytopes with at most n facets circumscribed to C, respectively. Denote by $\delta(.,$.$) the symmetric$ difference metric. Beginning with the work of L. Fejes Tóth [2], there are many investigations (cf. the survey [5]) on the asymptotic behavior as $n \rightarrow \infty$ of the distance of C to its best approximating polytopes with at most n vertices or facets, i.e., of

$$
\delta\left(C, \mathcal{P}_{n}^{i}\right)=\inf \left\{\delta(C, P): P \in \mathcal{P}_{n}^{i}\right\}
$$

and

$$
\delta\left(C, \mathcal{P}_{(n)}^{c}\right)=\inf \left\{\delta(C, P): P \in \mathcal{P}_{(n)}^{c}\right\} .
$$

For $C \subset \mathbb{E}^{3}$ with boundary of differentiability class \mathcal{C}^{2} and positive Gaussian curvature κ_{C}, L. Fejes Tóth [2], p. 152, indicated that

$$
\begin{equation*}
\delta\left(C, \mathcal{P}_{n}^{i}\right) \sim \frac{1}{4 \sqrt{3}}\left(\int_{\mathrm{bd} C} \kappa_{C}(x)^{\frac{1}{4}} d \sigma(x)\right)^{2} \frac{1}{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(C, \mathcal{P}_{(n)}^{c}\right) \sim \frac{5}{36 \sqrt{3}}\left(\int_{\mathrm{bd} C} \kappa_{C}(x)^{\frac{1}{4}} d \sigma(x)\right)^{2} \frac{1}{n} \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$, where σ is the surface area measure in \mathbb{E}^{d}. These formulae were proved by P.M. Gruber in [3] and [4], for the planar case see [8] and for $d>3$ [6].

We are interested in the analogues of (1) and (2) for the problem of approximation by general polytopes, i.e., polytopes that are not necessarily inscribed or circumscribed to C. Let \mathcal{P}_{n} and $\mathcal{P}_{(n)}$ denote the sets of polytopes with at most n vertices and n facets, respectively, and define $\delta\left(C, \mathcal{P}_{n}\right)$ and $\delta\left(C, \mathcal{P}_{(n)}\right)$ as above. It is shown in [7] that there are positive constants ldel ${ }_{d-1}$ and $\operatorname{ldiv}_{d-1}$ (depending only on d) such that for a convex body $C \subset \mathbb{E}^{d}$ of class \mathcal{C}^{2} and with positive Gaussian curvature,

$$
\begin{equation*}
\delta\left(C, \mathcal{P}_{n}\right) \sim \frac{1}{2} \operatorname{ldel}_{d-1}\left(\int_{\mathrm{bd} C} \kappa_{C}(x)^{\frac{1}{d+1}} d \sigma(x)\right)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(C, \mathcal{P}_{(n)}\right) \sim \frac{1}{2} \operatorname{ldiv}_{d-1}\left(\int_{\mathrm{bd} C} \kappa_{C}(x)^{\frac{1}{d+1}} d \sigma(x)\right)^{\frac{d+1}{d-1}} \frac{1}{n^{\frac{2}{d-1}}} \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$. These constants are defined by means of Laguerre tilings, which are also known as power diagrams (cf. [1]). The values of these constants are known only for $d=2\left(\operatorname{ldel}_{1}=\operatorname{ldiv}_{1}=1 / 16\right.$, cf. [7]), for $d>3$ it seems to be difficult to determine the exact value of these constants, cf. [6].

We will determine the values of ldel_{2} and ldiv_{2}. These constants are defined in [7] in the following way. Let $L=\left\{\left(a_{1}, r_{1}\right), \ldots,\left(a_{m}, r_{m}\right)\right\}$ with $a_{1}, \ldots, a_{m} \in \mathbb{E}^{2}$ and $r_{1}, \ldots, r_{m} \geq 0$, and define the sets V_{1}, \ldots, V_{m} by

$$
V_{i}=\left\{x \in[0,1]^{2}:\left(x-a_{i}\right)^{2}-r_{i}^{2} \leq\left(x-a_{j}\right)^{2}-r_{j}^{2}, j=1, \ldots, m\right\} .
$$

Then L is called a Laguerre tiling of $[0,1]^{2}$ with the tiles V_{1}, \ldots, V_{m}. Set

$$
v(L)=\sum_{i=1}^{m} \int_{V_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x
$$

and define

$$
\operatorname{ldiv}_{2}=\lim _{n \rightarrow \infty} n \inf \{v(L): L \text { has at most } n \text { tiles }\}
$$

cf. [7].
Denote by P_{k} the regular k-gon centered at the origin o and of area $\left|P_{k}\right|=1$. For a convex domain C, set

$$
I(C, r)=\int_{C}\left|x^{2}-r^{2}\right| d x
$$

and choose ρ_{k} such that $I\left(P_{k}, \rho_{k}\right) \leq I(P, r)$ for all $r \geq 0$.
THEOREM 1 Let $\left\{Q_{1}, \ldots, Q_{n}\right\}$ be a tiling of $[0,1]^{2}$ with convex tiles, $a_{i} \in$ \mathbb{E}^{2} and $r_{i} \geq 0, i=1, \ldots, n$. Then

$$
\sum_{i=1}^{n} \int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x \geq \frac{I\left(P_{6}, \rho_{6}\right)}{n} .
$$

This theorem provides a lower bound for ldiv_{2} and taking tilings with regular hexagons then shows that this bound is asymptotically optimal. Thus, calculating $I\left(P_{6}, \rho_{6}\right)$ gives

Corollary 1

$$
\operatorname{ldiv}_{2}=\frac{5}{18 \sqrt{3}}-\frac{1}{4 \pi}
$$

In the definition of ldel_{2}, we have to count the number of vertices in the tiling of $[0,1]^{2}$ and set

$$
\operatorname{ldel}_{2}=\lim _{n \rightarrow \infty} n \inf \{v(L): L \text { has at most } n \text { vertices }\}
$$

cf. [7].

THEOREM 2 Let $\left\{Q_{1}, \ldots, Q_{m}\right\}$ be a tiling of $[0,1]^{2}$ with convex tiles, $a_{i} \in$ \mathbb{E}^{2} and $r_{i} \geq 0, i=1, \ldots, m$, with no more than n vertices. Then

$$
\sum_{i=1}^{m} \int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x \geq \frac{I\left(P_{3}, \rho_{3}\right)}{2(n-2)} .
$$

This provides a lower bound for ldel_{2} and considering tilings with regular triangles then gives

Corollary 2

$$
\operatorname{ldel}_{2}=\frac{1}{6 \sqrt{3}}-\frac{1}{8 \pi} .
$$

That this is the correct value, was conjectured in [3].
The classical momentum lemma of L. Fejes Tóth (cf. [2], p. 198) states that for a non-negative monotonous function g, the extremum of the integral

$$
\int_{P} g(|x|) d x
$$

over k-gons P with given area is attained for the regular k-gon. A simple consequence is that $I(P, 0) \geq I\left(P_{k}, 0\right)|P|^{2}$, which can be used to prove (2), cf. [4]. In the proof of Theorems 1 and 2, we need the following analogue of the momentum lemma:

THEOREM 3 If P is a convex k-gon, $k \geq 3$, then $I(P, r) \geq I\left(P_{k}, \rho_{k}\right)|P|^{2}$.
Note that similar arguments with simpler calculations than for general approximation would yield (1).

2 Some general observations

Let $B(\rho)$ be the circle centered at the origin and with radius ρ. Letting r vary and calculating the critical point of $I(C, r)$ shows

LEMMA 1 Let C be a convex domain and let ρ be chosen such that $I(C, \rho) \leq$ $I(C, r)$ for all $r \geq 0$. Then $|C \cap B(\rho)|=|C \backslash B(\rho)|$.

Using this, we see that $B\left(\rho_{k}\right) \subset P_{k}$ for $k=3, \ldots$ Thus, elementary calculations give

$$
\begin{equation*}
I\left(P_{k}, \rho_{k}\right)=\frac{1}{2 k \tan \frac{\pi}{k}}+\frac{\tan \frac{\pi}{k}}{6 k}-\frac{1}{4 \pi} . \tag{5}
\end{equation*}
$$

LEMMA 2 Let C be a convex domain and $r \geq 0$. If $o \notin \operatorname{int} C$, then $I(C, r) \geq 1.1 \cdot I\left(P_{3}, \rho_{3}\right) \cdot|C|^{2}$.

Proof: Since C is convex and $o \notin \operatorname{int} C$, we can choose a (closed) half-plane H containing o on its boundary such that $C \subseteq H$. Choose r_{0} and r_{1} satisfying

$$
\left|B\left(r_{1}\right) \backslash B(r)\right|=\left|B(r) \backslash B\left(r_{0}\right)\right|=|C|
$$

and define $G(r,|C|)=\left(B\left(r_{1}\right) \backslash\right.$ int $\left.B\left(r_{0}\right)\right) \cap H$. If $x \in C \backslash B(r)$ is not in $B\left(r_{1}\right) \backslash B(r)$, then

$$
x^{2}-r^{2} \geq \max \left\{u^{2}-r^{2}: u \in B\left(r_{1}\right) \backslash B(r)\right\}
$$

and if $x \in C \cap B(r)$ is not in $B(r) \backslash B\left(r_{0}\right)$, then

$$
r^{2}-x^{2} \geq \max \left\{r^{2}-u^{2}: u \in B(r) \backslash B\left(r_{0}\right)\right\}
$$

Thus

$$
\int_{C \backslash B(r)}\left(x^{2}-r^{2}\right) d x \geq \int_{G(r,|C|) \backslash B(r)}\left(x^{2}-r^{2}\right) d x
$$

and

$$
\int_{C \cap B(r)}\left(r^{2}-x^{2}\right) d x \geq \int_{G(r,|C|) \cap B(r)}\left(r^{2}-x^{2}\right) d x .
$$

Therefore

$$
I(C, r) \geq I(G(r,|C|))
$$

Combining this with

$$
I(G(r,|C|))=\frac{|C|^{2}}{2 \pi} \geq 1.1 \cdot\left(\frac{1}{3 \sqrt{3}}-\frac{1}{4 \pi}\right)|C|^{2}=1.1 \cdot I\left(P_{3}, \rho_{3}\right)|C|^{2}
$$

where (5) was used, proves the lemma.

3 An auxiliary function

Let $T=T(t)$ be a triangle with a right angle, $|T|=1$ and an angle t at o. There always exists an optimal $\rho=\rho(t)$, such that

$$
I(T(t), \rho(t)) \leq I(T(t), r)
$$

for all $r \geq 0$. Define

$$
c(t)=I(T(t), \rho(t))
$$

for $0<t<\pi / 2$.
With the help of $c(t)$ we can give a sharp lower bound for $I(T, r)$ for general triangles T.

LEMMA 3 Let T be a triangle with an angle $2 t$ at o. Then

$$
I(T, r) \geq \frac{1}{2} c(t)|T|^{2}
$$

Proof: First, we show that among all such triangles T and $r \geq 0$, there is a triangle S and a $\rho \geq 0$ such that

$$
\begin{equation*}
\frac{I(T, r)}{|T|^{2}} \geq \frac{I(S, \rho)}{|S|^{2}} \tag{6}
\end{equation*}
$$

i.e., that the infimum of $I(T, r) /|T|^{2}$ is attained for S and ρ. By Lemma 1, we may always assume that

$$
\begin{equation*}
|T \cap B(r)|=|T \backslash B(r)| . \tag{7}
\end{equation*}
$$

Consider a sequence $\left\{T_{i}, r_{i}\right\}$ such that $\left|T_{i}\right|$ is a given value and $I\left(T_{i}, r_{i}\right)$ approaches the infimum. If $\left\{T_{i}\right\}$ is unbounded then $\left\{r_{i}\right\}$ approaches infinity by (7). For large $r_{i},(7)$ yields that the area of the part of T_{i} outside of $B\left(r_{i}+1\right)$ is at least $\frac{1}{4}|T|$. If x is chosen from that part, then $x^{2}-r_{i}^{2}>2 r_{i}+1$, and hence $I\left(T_{i}, r_{i}\right)$ tends to infinity. We conclude that $\left\{T_{i}\right\}$ and $\left\{r_{i}\right\}$ are bounded, and hence the infimum of $I(T, r) /|T|^{2}$ is attained.

Second, let S and ρ be chosen such that (6) holds. Denote by H the side of S not containing o and let m be the midpoint of H. Then

$$
\begin{equation*}
S \text { is symmetric } \tag{8}
\end{equation*}
$$

with respect to the line connecting o and m. To show this, keep ρ fixed and rotate the side H around m by an angle φ. Let S_{φ} be the triangle obtained in this way. Then

$$
\left|S_{\varphi}\right|=|S|+O\left(\varphi^{2}\right)
$$

and

$$
I\left(S_{\varphi}, \rho\right)=I(S, \rho)+\left.\frac{\partial I\left(S_{\varphi}, \rho\right)}{\partial \varphi}\right|_{\varphi=0} \cdot \varphi+O\left(\varphi^{2}\right)
$$

Consequently, the minimality property of S yields

$$
\begin{equation*}
\left.\frac{\partial I\left(S_{\varphi}, \rho\right)}{\partial \varphi}\right|_{\varphi=0}=0 \tag{9}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\int_{0}^{l}\left|(\tau+a)^{2}-s^{2}\right| \tau d \tau-\int_{0}^{l}\left|(\tau-a)^{2}-s^{2}\right| \tau d \tau=0 \tag{10}
\end{equation*}
$$

where $2 l$ the length of H, a is the distance of m and the orthogonal projection of o to the affine hull aff H, and $2 s$ is the length of aff $H \cap B(\rho)$. It follows from Lemma 1 that

$$
\begin{equation*}
|\operatorname{aff} H \cap B(\rho)|<l . \tag{11}
\end{equation*}
$$

We have to distinguish three cases.
(i) H does not intersect $B(\rho)$. Then, evaluating (10) gives $4 a l^{3} / 3=0$ and $a=0$.
(ii) H intersects $B(\rho)$ exactly once. If $a \geq s$, then

$$
(\tau+a)^{2}-s^{2}>\left|(\tau-a)^{2}-s^{2}\right|
$$

holds for $\tau>0$. Thus (10) does not hold in this case. Therefore $a<s$ or equivalently $m \in \operatorname{int} B(\rho)$. But this implies $|H \cap B(\rho)|>l$ which contradicts (11). So this case cannot occur.
(iii) H intersects $B(\rho)$ twice, and hence $|H \cap B(\rho)|=2 s$. Then evaluating (10) gives $a\left(l^{3}-2 s^{3}\right)=0$. By (11), we know that $l^{3}-2 s^{3} \neq 0$. Therefore $a=0$.

Thus in each case, $a=0$ holds, which is in turn equivalent to (8).
Finally, it follows from (8) that

$$
I(S, \rho)=\frac{1}{2} c(t)|S|^{2} .
$$

Combined with (6) this proves the lemma.
Let t_{1} be the unique $t, 0<t<\pi / 2$, satisfying $\tan t=2 t$. Then for $t<t_{1}$ the third side of T does not intersect $B(\rho)$ and

$$
c(t)=\frac{1}{\tan t}+\frac{\tan t}{3}-\frac{1}{2 t} .
$$

$c(t)$ attains a unique minimum at $t_{0}, \pi / 4<t_{0}<\pi / 3$. We use the following properties of $1 / c(t)$.

LEMMA $41 / c(t)$ is concave for $t \leq t_{1}$, increasing for $0<t \leq t_{0}$ and decreasing for $t_{0} \leq t \leq t_{1}$.

Proof: Derivating $c(t)$ yields

$$
\begin{aligned}
c^{\prime}(t) & =-\frac{1}{\tan ^{2} t}+\frac{\tan ^{2} t}{3}+\frac{1}{2 t^{2}}-\frac{2}{3} \\
c^{\prime \prime}(t) & =\frac{2}{\tan ^{3} t}+\frac{2}{\tan t}+\frac{2}{3} \tan t+\frac{2}{3} \tan ^{3} t-\frac{1}{t^{3}}
\end{aligned}
$$

To show that $1 / c(t)$ is concave, is equivalent to prove that $c(t) c^{\prime \prime}(t)-2 c^{\prime}(t)^{2}>$ 0 . We have

$$
\begin{aligned}
c(t) c^{\prime \prime}(t)-2 c^{\prime}(t)^{2}= & \frac{(\tan t-t)\left(3 t-3 \tan t+3 t \tan ^{2} t-\tan ^{3} t\right)}{3 t^{3} \tan ^{3} t} \\
& +\frac{16}{9}\left(1+\tan ^{2} t\right)-\frac{\tan t}{3 t^{2}}\left(t+2 \tan t+t \tan ^{2} t\right)
\end{aligned}
$$

It is not difficult to see that

$$
3 t-3 \tan t+3 t \tan ^{2} t-\tan ^{3} t \geq 0
$$

for $0 \leq t \leq t_{1}$. Thus, using $\tan t \leq 2 t$, gives

$$
\begin{aligned}
c(t) c^{\prime \prime}(t)-2 c^{\prime}(t)^{2} & \geq \frac{16}{9}\left(1+\tan ^{2} t\right)-\frac{\tan t}{3 t}\left(5+\tan ^{2} t\right) \\
& =\frac{1}{9 t}\left(16 t+16 t \tan ^{2} t-15 \tan t-3 t \tan ^{2} t\right)>0
\end{aligned}
$$

LEMMA 5 Let $f(t ; \pi / k)$ be the linear function representing the tangent to $1 / c(t)$ at π / k. Then

$$
\frac{1}{c(t)} \leq f\left(t ; \frac{\pi}{k}\right)
$$

for $0<t<\pi / 2$ and $k=3,4, \ldots$.
Proof: By Lemma 4, this holds for $t \leq t_{1}$ and it remains to be shown that

$$
\begin{equation*}
c(t) \geq \frac{1}{f\left(t ; \frac{\pi}{3}\right)} \tag{12}
\end{equation*}
$$

for $t_{1} \leq t<\pi / 2$. Let $o,(h, 0)=(h(t), 0)$, and $(h, l)=(h(t), l(t))$ be the vertices of $T=T(t)$ and denote by s the length of the intersection of $B(\rho)$ and the side of T not containing o. Then Lemma 1 yields that

$$
\begin{equation*}
\frac{s}{l} \leq 1-\frac{1}{\sqrt{2}} \tag{13}
\end{equation*}
$$

For small $\varepsilon>0$, we have

$$
\begin{equation*}
I(T, \rho)-I(T(t-\varepsilon), \rho(t-\varepsilon)) \geq I(T, \rho)-I(T(t-\varepsilon), \rho) . \tag{14}
\end{equation*}
$$

Note that as $\varepsilon \rightarrow 0$,

$$
\int_{T \backslash T(t-\varepsilon)}\left|x^{2}-\rho^{2}\right| d x=\int_{0}^{\sqrt{h^{2}+l^{2}}}\left|\tau^{2}-\rho^{2}\right| \tau d \tau \cdot \varepsilon+o(\varepsilon)
$$

and

$$
\begin{aligned}
\int_{T(t-\varepsilon) \backslash T}\left|x^{2}-\rho^{2}\right| d x & =\int_{0}^{l}\left|h^{2}+u^{2}-\rho^{2}\right| d u \cdot(h(t-\varepsilon)-h)+o(\varepsilon) \\
& =\int_{0}^{l}\left|h^{2}+u^{2}-\rho^{2}\right| d u\left(\frac{h^{2}+l^{2}}{2 l}\right) \cdot \varepsilon+o(\varepsilon)
\end{aligned}
$$

Thus the coefficient of ε in the left hand side of (14) is

$$
\begin{aligned}
& \int_{0}^{\sqrt{h^{2}+l^{2}}}\left|\tau^{2}-\rho^{2}\right| \tau d \tau-\int_{0}^{l}\left|h^{2}+u^{2}-\rho^{2}\right| d u\left(\frac{h^{2}+l^{2}}{2 l}\right)= \\
= & -\frac{2}{3}+\frac{4}{l^{4}}+\underbrace{\left(\frac{4 s^{2}}{l^{2}}-\frac{8 s^{3}}{3 l^{3}}\right)}_{\geq 0}+l^{4} \underbrace{\left(\frac{1}{12}-\frac{2}{3}\left(\frac{s}{l}\right)^{3}+\frac{1}{2}\left(\frac{s}{l}\right)^{4}\right)}_{\geq 13 / 24-\sqrt{2} / 3} \\
\geq & -\frac{2}{3}+\frac{4}{l^{4}}+\left(\frac{13}{24}-\frac{\sqrt{2}}{3}\right) l^{4} \geq 1
\end{aligned}
$$

where we used (13) and $l^{2}(t)=2 \tan t \geq 2 \tan t_{1}=4 t_{1}$. We deduce by (14) that

$$
I(T, \rho)-I(T(t-\varepsilon), \rho(t-\varepsilon)) \geq \varepsilon+o(\varepsilon)
$$

and hence

$$
c(t) \geq c\left(t_{1}\right)+\left(t-t_{1}\right) .
$$

Finally, some simple calculations yield (12).

LEMMA $6 t c(t)$ is monotonously increasing for $t \leq \pi / 3$.
Proof: We have

$$
(t c(t))^{\prime}=\frac{3 \tan t+\tan ^{3} t-2 t \tan ^{2} t+t \tan ^{4} t-3 t}{3 \tan ^{2} t} .
$$

Since $\tan t \geq t$ and the enumerator $E(t)$ satisfies $E(0)=0$ and

$$
E^{\prime}(t)=4 \tan ^{2} t-4 t \tan t+4 \tan ^{4} t+4 t \tan ^{5} t
$$

we deduce that $E(t)>0$ for $0<t<\pi / 3$.

4 Proof of Theorem 3

Since, by the definition of $c(t)$ and (5), $I\left(P_{k}, \rho_{k}\right)=c(\pi / k) /(2 k)$, it follows from Lemma 6 that

$$
\begin{equation*}
I\left(P_{3}, \rho_{3}\right)>I\left(P_{4}, \rho_{4}\right)>I\left(P_{5}, \rho_{5}\right)>\ldots \tag{15}
\end{equation*}
$$

Therefore, if $o \notin \operatorname{int} P$, we have by Lemma 2

$$
I(P, r)>1.1 \cdot I\left(P_{3}, \rho_{3}\right)|P|^{2}>I\left(P_{k}, \rho_{k}\right)|P|^{2},
$$

i.e., the theorem holds in this case. So, let $o \in \operatorname{int} P$ and dissect P into triangles T_{1}, \ldots, T_{k} with a common vertex o, and let $2 t_{j}$ be the angle of T_{j} at o. By Lemma 3, we have

$$
I(P, r)=\sum_{i=1}^{k} I\left(T_{i}, r\right) \geq \frac{1}{2} \sum_{i=1}^{k} c\left(t_{i}\right)\left|T_{i}\right|^{2} .
$$

The Cauchy-Schwarz inequality yields

$$
\begin{equation*}
\sum_{i=1}^{k} c\left(t_{i}\right)\left|T_{i}\right|^{2} \geq\left(\sum_{i=1}^{k} \frac{1}{c\left(t_{i}\right)}\right)^{-1}\left(\sum_{i=1}^{k}\left|T_{i}\right|\right)^{2} \tag{16}
\end{equation*}
$$

By Lemma 5,

$$
\sum_{k=1}^{k} \frac{1}{c\left(t_{i}\right)} \leq \sum_{k=1}^{k} f\left(t_{i} ; \frac{\pi}{k}\right)=\frac{k}{c\left(\frac{\pi}{k}\right)}
$$

Therefore,

$$
I(P, r) \geq \frac{1}{2}\left(\sum_{i=1}^{k} \frac{1}{c\left(t_{i}\right)}\right)^{-1}|P|^{2} \geq \frac{1}{2 k} c\left(\frac{\pi}{k}\right)|P|^{2}=I\left(P_{k}, \rho_{k}\right)|P|^{2},
$$

which proves the theorem.

5 Proof of Theorem 2

We can dissect every tile Q_{i} into triangles such that we obtain a simplicial tiling with tiles T_{1}, \ldots, T_{k} and at most n vertices. If we double each tile, we
may think of this as a polytope with $f_{2}=2 k$ facets, f_{1} edges and $f_{0}<2 n$ vertices. By Euler's formula $f_{2}-f_{1}+f_{0}=2$ and $f_{2} \leq 2 f_{0}-4$ which implies

$$
\begin{equation*}
k \leq 2(n-2) \tag{17}
\end{equation*}
$$

Therefore, by Theorem 3, the inequality of quadratic and arithmetic means, and (17) we obtain

$$
\begin{aligned}
\sum_{i=1}^{m} \int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x & \geq I\left(P_{3}, \rho_{3}\right) \sum_{i=1}^{k}\left|T_{i}\right|^{2} \\
& \geq I\left(P_{3}, \rho_{3}\right)\left(\sum_{i=1}^{k}\left|T_{i}\right|\right)^{2} \frac{1}{k} \geq \frac{I\left(P_{3}, \rho_{3}\right)}{2(n-2)}
\end{aligned}
$$

which proves the theorem.
To obtain the corollary, cover $[0,1]^{2}$ with k non-overlapping regular triangles of equal area $|T|$. Then, we obtain a Laguerre-tiling L with, say, n vertices by setting $r^{2}=|T| /(2 \pi)$ for each tile. We have

$$
v(L) \leq k I\left(P_{3}, \rho_{3}\right)|T|^{2}
$$

Since we may choose the triangles such that $k|T| \rightarrow 1$ and $k / n \rightarrow 2$ as $k \rightarrow \infty$,

$$
\limsup _{n \rightarrow \infty} n v\left(L_{k}\right) \leq \frac{I\left(P_{3}, \rho_{3}\right)}{2}
$$

and by Theorem 2, we have $\operatorname{ldel}_{2}=I\left(P_{3}, \rho_{3}\right) / 2$.

6 Proof of Theorem 1

To every tile Q_{i} with l_{i} sides we assign $2 l_{i}$ rectangular triangles of area $\left|Q_{i}\right| /\left(2 l_{i}\right)$ and with angle π / l_{i} at the vertex o. Let $k=2 \sum_{i=1}^{n} l_{i}$, let T_{1}, \ldots, T_{k} be these triangles, and let t_{j} denote the angle of T_{j} at o. Then $\sum_{j=1}^{k} t_{j}=2 \pi n$. By Theorem 3,

$$
\int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x \geq I\left(P_{l_{i}}, \rho_{l_{i}}\right)\left|Q_{i}\right|^{2}
$$

and

$$
\sum_{i=1}^{n} \int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x \geq \sum_{j=1}^{k} c\left(t_{j}\right)\left|T_{j}\right|^{2}
$$

By (16), we obtain from this

$$
\sum_{i=1}^{n} \int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x \geq \sum_{j=1}^{k} c\left(t_{j}\right)\left|T_{j}\right|^{2} \geq\left(\sum_{j=1}^{k} \frac{1}{c\left(t_{j}\right)}\right)^{-1}\left(\sum_{j=1}^{k}\left|T_{j}\right|\right)^{2}
$$

We have

$$
\begin{equation*}
k \leq 12(n-1) \tag{18}
\end{equation*}
$$

This can be seen in the following way. If we double each tile Q_{i}, we may think of this as a polytope with f_{0} vertices, $f_{1}=1 / 2 k$ edges and $f_{2}=2 n$ facets. By Euler's formula $f_{2}-f_{1}+f_{0}=2$ and $f_{1} \leq 3 f_{2}-6$, which implies (18).

So, we obtain by Lemma 4, Jensen's inequality, Lemma 6 and (18)

$$
\sum_{j=1}^{k} \frac{1}{c\left(t_{j}\right)} \leq \frac{k}{c\left(\frac{1}{k} \sum_{j=1}^{k} t_{j}\right)}=\frac{2 \pi n}{\frac{2 \pi n}{k} c\left(\frac{2 \pi n}{k}\right)} \leq \frac{12 n}{c\left(\frac{\pi}{6}\right)}
$$

Thus

$$
\sum_{i=1}^{n} \int_{Q_{i}}\left|\left(x-a_{i}\right)^{2}-r_{i}^{2}\right| d x \geq \frac{c\left(\frac{\pi}{6}\right)}{12 n}=\frac{I\left(P_{6}, \rho_{6}\right)}{n}
$$

which proves the theorem.
Corollary 1 follows as Corollary 2, except that the triangular tiling is replaced by the hexagonal tiling.

References

[1] Aurenhammer,F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16 (1987), 78 - 96
[2] Fejes Tóth,L.: Lagerungen in der Ebene, auf der Kugel und im Raum. 2nd ed. Springer-Verlag, Berlin 1972
[3] Gruber,P.M.: Volume approximation of convex bodies by inscribed polytopes. Math. Ann. 281 (1988), 229 - 245
[4] Gruber,P.M.: Volume approximation of convex bodies by circumscribed polytopes. The "Victor Klee Festschrift", 309 - 317. DIMACS Ser. 4, Amer. Math. Soc. 1991
[5] Gruber,P.M.: Aspects of approximation of convex bodies. In: Handbook of convex geometry A, 319-345, North-Holland, Amsterdam 1993
[6] Gruber,P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5 (1993), 521 - 538
[7] Ludwig,M.: Asymptotic approximation of smooth convex bodies by general polytopes. Manuscript
[8] McClure,D.E., Vitale,R.A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51 (1975), 326 - 358

Károly Böröczky, Jr.
Mathematical Institute of the
Hungarian Academy of Sciences
P.O. Box 127

H-1364 Budapest

Monika Ludwig

Technische Universität Wien Abteilung für Analysis Wiedner Hauptstr. 8-10/1142 A-1040 Wien

