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APPROXIMATION OF DISCONTINUOUS CURVES AND
SURFACES BY DISCRETE SPLINES WITH TANGENT

CONDITIONS

ABDELOUAHED KOUIBIA, MIGUEL PASADAS

Abstract. This paper concerns the construction of a discontinuous paramet-
ric curve or surface from a finite set of points and tangent conditions. The
method is adapted from the theory of the discrete smoothing variational splines

to introduce a discontinuity set and some tangent conditions. Such method is
justified by a convergence result.

1. Introduction

The problem of the construction of discontinuous parametric curves and surfaces
from some Lagrangean points and a set of tangent spaces is frequently encountered
in CAGD, Geology, and other Earth Sciences.

The authors in [10] present a smoothing method for fitting parametric surfaces
from sets of data points and tangent planes. In those papers and in [6, 7, 8, 10], the
corresponding original curves or/and surfaces that are approximated do not present
any discontinuities. So for its practical interest, we introduce some discontinuity in
order to study an approximation problem of discontinuous curves and surfaces.

In this paper we present a discrete version of the previous problem in a finite
element space by minimizing a quadratic functional from a set of Lagrangean data
and another one of tangent conditions. The approximation of discontinuous func-
tions from a set of scattered data points is usually a two steps: first, a detection
algorithm is applied to localize the discontinuity sets, then the functions are recon-
structed using a fitting method. In this work we propose a method for the second
stage, based on the computation of discrete smoothing variational splines [7].

Specially, we study the following problem: given a differentiable function f in
a subset Ω′ of an open set Ω ⊂ Rp with values in Rn, 1 ≤ p < n ≤ 3, whose first
partial derivatives or she can present discontinuity in a subset F of Ω, such that
Ω′ = Ω\F , construct a function σ that approximates f in the given Lagrangean
points of Ω′ and whose tangent spaces at the points of an other given set of Ω′ are
close to the tangent spaces of f at the same points. To do this, firstly using the
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work of Arcangéli, Manzanilla and Torrens [1], we determine certain hypotheses
about the set Ω′ that allows to model the contingent discontinuities of f . Secondly,
we study a method of smoothness which results from adapting to this context the
theory of the discrete smoothing variational splines (c.f. [7]).

In Section 2, we briefly recall preliminary notation and some results. We study
the problem of discrete smoothing variational splines with tangent conditions in
Section 3. Section 4 is devoted to compute such spline and to prove a convergence
result.

2. Notation

We denote by 〈·〉Rn and 〈 · , · 〉Rn respectively, the Euclidean norm and the inner
product in Rn, with n, m and p belonging to N∗. We denote by E, δE and cardE
respectively, the adherence, the bounded and the cardinal of E for each subset E
of Rp. Let us consider RN,n the space of real matrices with N rows and n columns
equipped with the inner product

〈A,B〉N,n =
N∑

i=1

n∑
j=1

aijbij

and the corresponding norm

〈A〉N,n = 〈A,A〉1/2
N,n.

For all α = (α1, . . . , αp) ∈ Np, we write |α| =
∑p

i=1 αi and we indicate by ∂α the
operator of partial derivative

∂α =
∂|α|

∂xα1
1 . . . ∂x

αp
p

Let ω be a nonempty open bounded set of Rp and we denote by Hm(ω; Rn) the
usual Sobolev space of (classes of) functions u belonging to L2(ω; Rn), together
with all their partial derivative ∂αu –in the distribution sense– of order |α| ≤ m.
This space is equipped with the inner product of order `

( u , v )`,ω,Rn =
( ∑
|α|=`

∫
ω

〈∂αu(x), ∂αv(x)〉Rn

)1/2

, ` = 0, . . . ,m,

the corresponding semi–norms of order `

|u |`,ω,Rn = ( u , u )1/2
`,ω,Rn , ` = 0, . . . ,m,

the norm

‖u ‖m,ω,Rn =
( m∑

`=0

|u |2`,ω,Rn

)1/2

and the corresponding inner product

((u , v ))m,ω,Rn =
m∑

`=0

( u , v )`,ω,Rn .

Given a function f : ω → Rn, we denote by ImDf(x) the image of the differential
of f at the point x ∈ ω, when this exists, i. e. the linear subspace generated by
{∂αf(x) : |α| = 1}. Furthermore, if 1 ≤ p < n ≤ 3, we can consider f as the
parameterization of a curve (p = 1) or a surface (p = 2) and, if f is differentiable
at x ∈ ω, the space ImDf(x) is called the tangent space of f at x, sometimes when
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p = 2 it is written by Tx(f) = span〈D1f(x), D2f(x)〉, where D1f and D2f denote
the first partial derivatives of f .

3. Discrete variational spline over Ω′ with tangent conditions

The first step in order to develop this work is to have an adequate characteriza-
tion over a set of discontinuity. Let us introduce the following definition due to R.
Arcangéli, R. Manzanilla and J. J. Torrens [1].

Definition 3.1. Let Ω be a bounded open connected set of Rp with Lipschitz
boundary and let F be a nonempty subset of Ω such that, there exists a finite family
{R1, . . . , RI} of open connected subsets of Ω with Lipschitz boundary, verifying the
following conditions:

(i) for all i, j = 1, . . . , I, i 6= j, Ri ∩Rj = ∅;
(ii)

⋃I
i=1 Ri = Ω;

(iii) F ⊂ δR, where ∪I
i=1Ri = R;

(iv) F is contained in the interior of δΩ (equipped of the induced topology by
Rp) of F ∩ δΩ;

v) the interior in δR of F ∩ Ω is contained in F ;
vi) F ∩ δΩ is contained in F .

It is said that the family {R1, . . . , RI} represents F in Ω and we write Ω′ = Ω\F .

We denote by Ck
F (Ω′; Rn) the space of functions ϕ ∈ Ck(Ω′; Rn) such that

∀i = 1, . . . , I, ϕ|
Ri
∈ Ck(Ri; Rn).

Such space is equipped by the norm

‖ϕ‖Ck
F (Ω′;Rn) = max

1≤i≤I
‖ϕ|

Ri
‖Ck(Ri;Rn) . (3.1)

Now, we suppose that
m >

p

2
+ 1. (3.2)

Let Υ0 be a curve or surface parameterized by a function f ∈ Hm(Ω′; Rn), and A1,
A2 be two ordered finite subsets of, respectively, N1 and N2 distinct points of Ω.
For any a ∈ A1, let us consider the linear form defined on C0

F (Ω′; Rn) by

φav =

{
v(a) if a ∈ A1\F,

v|
Ri

(a) if a ∈ A1 ∩Ri ∩ F, 1 ≤ i ≤ I,
(3.3)

and, for any a ∈ A2 let Πa be the operator defined on C1
F (Ω′; Rn) by

Πav =


(
PS⊥a

( ∂v
∂xj

(a))
)
1≤j≤p

if a ∈ A2\F, 1 ≤ i ≤ I,(
PS⊥a

(∂v|
Ri

∂xj
(a)

))
1≤j≤p

if a ∈ A2 ∩Ri ∩ F, 1 ≤ i ≤ I,
(3.4)

where, for any a ∈ A2, PS⊥a
is the operator projection onto S⊥a , being S⊥a the

orthogonal complement of the linear space Sa = ImDf(a). Finally, let

Lv = (φav)a∈A1
and Πv = (Πav)a∈A2

and we suppose that
KerL ∩ P̃m−1(Ω′; Rn) = {0} (3.5)
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where P̃m−1(Ω′; Rn) designs the space of functions over Ω′ into Rn that are poly-
nomials of total degree ≤ m− 1 respect to the set of variables over each connected
component of Ω′.

Now, suppose we are given:
• a subset H of (0,+∞) with 0 is an accumulation point;
• for all h ∈ H, a partition Th of Ω made with rectangles or triangles K of

disjoint interiors and diameter hK ≤ h such that

∀K ∈ Th,
◦
K ∩ F = ∅; (3.6)

each side of K is a side of another K ′ or a part of δΩ or a part of F ; (3.7)

• for any h ∈ H, a finite element space Xh constructed on Th such that

Xh ⊂ Hm(Ω′) ∩ Ck
F (Ω′), k + 1 ≥ m; (3.8)

• for any h ∈ H, a parametric finite element space Vh constructed from Xh

by Vh = (Xh)n, and from (3.8) satisfies

Vh ⊂ Hm(Ω′; Rn) ∩ Ck
F (Ω′; Rn). (3.9)

Now, given τ ≥ 0 and ε > 0, let Jετ be the functional defined on Vh by

Jετ (v) = 〈Lv − Lf〉2N1,n + τ〈Πv〉2N2,pn + ε |v|2m,Ω′,Rn . (3.10)

Remark 3.2. We observe that the functional Jετ (v) contains different terms which
can be interpreted as follows:

• The first term, 〈Lv − Lf〉2N1,n, indicates how well v approaches f in a
discrete least squares sense.

• The second term, 〈Πv〉2N2,pn, indicates how well, for any point a ∈ A2, the
tangent spaces ImDf(a) and ImDv(a) are really close.

• The last term, |v|2m,Ω′,Rn , measures the degree of smoothness of v in order
to reduce, as much as possible, any unwanted oscillations.

We note that the parameters τ and ε control the relative weights corresponding,
respectively, to the last two terms.

Now, we consider the following minimization problem:
Find an approximating curve or surface Υ of Υ0 parameterized by a function σh

ετ

belonging to Vh from the data {f(a) : a ∈ A1} and {Sa : a ∈ A2}, such that σh
ετ

minimizes the functional Jετ on Vh, i.e. find σh
ετ such that

σh
ετ ∈ Vh, and for all v ∈ Vh, Jετ (σh

ετ ) ≤ Jετ (v). (3.11)

Theorem 3.3. The problem (3.11) has a unique solution, called discrete smoothing
variational spline with tangent conditions in Ω′ relative to A1, A2, f , τ and ε, which
is also the unique solution of the following variational problem:
Find σh

ετ such that σετ ∈ Vh and for all v ∈ Vh,

〈Lσh
ετ , Lv〉N1,n + τ〈Πσh

ετ ,Πv〉N2,pn + ε(σh
ετ , v)m,Ω′,Rn = 〈Lf, Lv〉N1,n.

Proof. Taking into account (3.2), (3.5) and that the norm

[[v]] =
(
〈Lv〉2N1,n + τ〈Πv〉2N2,pn + ε|v|2m,Ω′,Rn)1/2

is equivalent in Vh to the norm ‖ · ‖m,Ω′,Rn (cf. [1, Proposition 4.1]), one easily
checks that the symmetric bilinear form ã : Vh × Vh −→ R given by

ã(u, v) = 〈Lu,Lv〉N1,n + τ〈Πu, Πv〉N2,pn + ε(u, v)m,Ω′,Rn
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is continuous and Vh–elliptic. Likewise, the linear form

ϕ : v ∈ Vh 7−→ ϕ(v) = 〈Lf, Lv〉N1,n

is continuous. The result is then a consequence of the Lax–Milgram Lemma (see
[3]). �

4. Computation and convergence result

Let us see how to compute the discrete smoothing variational spline with tangent
conditions. To do this, for any h ∈ H, let I and {w1, . . . , wI} be the dimension
and a basis of Xh, respectively, and let us denote by {e1, e2, . . . , en} the canonical
basis of Rn. Then, the family {v1, . . . , vZ}, with Z = nI, is a basis of Vh, where for
i = 1, . . . , I and ` = 1, 2, . . . , n,

j = n(i− 1) + `, vj = wie`.

Thus, for any h ∈ H, the function σh
ετ can be expressed as

σh
ετ =

Z∑
i=1

βivi,

with the unknown βi ∈ R, for i = 1, . . . , Z.
Applying Theorem 3.3, we obtain that the vector β = (βi)1≤i≤Z ∈ RZ is the

solution of the following linear system of order Z:(
ATA+ τ PTP + εR

)
β = AT b, (4.1)

where

A =
(
vj(ai)

)
1≤i≤N1 1≤j≤Z

;

P =
(
Πaivj

)
1≤i≤N2 1≤j≤Z

;

R =
(
(vi, vj)m,Ω′,Rn

)
1≤i,j≤Z

;

b =
(
f(ai)

)
1≤i≤N1

.

We point out that ATA+ τPTP + εR of the linear system given in (4.1) is a band
matrix which is symmetric positive definite.

Now, under adequate hypotheses, we shall show that the discrete smoothing
variational spline with tangent conditions converges to f . Suppose that we are
given:

• a subset D of (0,+∞) with 0 as an accumulation point;
• for all d ∈ D, two subsets Ad

1 and Ad
2 of respectively N1 = N1(d) and

N2 = N2(d) distinct points of Ω;
• for all d ∈ D and any a ∈ Ad

1, let us consider the linear form defined on
C0

F (Ω′; Rn) by

φd
av =

{
v(a) if a ∈ Ad

1\F,

v|Ri
(a) if a ∈ Ad

1 ∩Ri ∩ F, 1 ≤ i ≤ I;

• for all d ∈ D and any a ∈ Ad
2, let Πd

a be the operator defined in C1
F (Ω′; Rn)

by

Πd
av =

{(
PS⊥a

( ∂v
∂xj

(a))
)
1≤j≤p

if a ∈ Ad
2\F, 1 ≤ i ≤ I,(

PS⊥a

(∂v|Ri

∂xj
(a)

))
1≤j≤p

if a ∈ Ad
2 ∩Ri ∩ F, 1 ≤ i ≤ I,
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where for any a ∈ Ad
2, PS⊥a

is the operator projection onto S⊥a , being S⊥a
the orthogonal complement of the linear space Sa = ImDf(a).

Finally, for any d ∈ D let

Ldv =
(
φd

av
)
a∈Ad

1
and Πdv =

(
Πd

av
)
a∈Ad

2
.

We suppose that

ker Ld ∩ P̃m−1(Ω′; Rn) = {0} (4.2)

and that

sup
x∈Ω′

min
a∈Ad

1

〈x− a〉Rp = d. (4.3)

Now, for each d ∈ D, let τ = τ(d) ≥ 0, ε = ε(d) > 0 and let Jd
ετ be the functional

defined in Vh as Jετ in (3.10) with Ld and Πd instead of L and Π respectively.
Finally, let σdh

ετ be the discrete smoothing variational spline with tangent conditions
in Ω′ relative to Ad

1, Ad
2, f , τ and ε, which is the minimum of Jd

ετ in Vh.
To prove the convergence of σdh

ετ to f , under suitable hypotheses, we need the
following results.

Proposition 4.1. Let B0 = {b01, . . . , b04} be a P̃m−1(Ω′; Rn)-unisolvent subset of
points of R. Then, there exists η > 0 such that if Bη designs the set of 4-uplet
B = {b1,...,b4} of points of Ω′ satisfying the condition:
for j = 1, . . . ,4 and 〈bj − b0j〉Rp < η, the application

[[v]]Bm,Ω′ =
( 4∑

j=1

〈v(bj)〉2Rn + | v |2m,Ω′,Rn

)1/2

,

defined, for all B ∈ Bη, is a norm on Hm(Ω′; Rn), uniformly equivalent over Bη to
the usual Sobolev norm ‖ · ‖m,Ω′,Rn .

The proof of this proposition is analogous to the proof of [1, proposition 6.2].
Now, we assume that the family (Xh)h∈H is such that there exists a linear

operator ρh : L2(Ω′; R3) → Vh satisfying

(i) For all l = 0, . . . ,m, and all y ∈ Hm(Ω′; R3),

|y − ρhy|l,Ω′,R3 ≤ Chm−l|~y|m,Ω′,R3 ; (4.4)

(ii) For all y ∈ Hm(Ω′; R3),

lim
h→0

|y − ρhy|m,Ω′,R3 = 0 .

Also assume that the cardinality of the subsets Ad
1 and Ad

2 satisfies

max{N1(d), N2(d)} ≤ C d−p, (4.5)

and that the family (Th)h∈H satisfies the inverse assumptions (c.f. P. G. Ciarlet
[3]):

∃ν > 0, ∀h ∈ H, ∀K ∈ Th,
h

hK
≤ ν. (4.6)
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Lemma 4.2. Assume that (4.2), (4.3), (4.4), (4.5), (4.6) hold. Then, there exists
a constant C > 0 such that for any y ∈ Hm(Ω′; R3), d ∈ D and h ∈ H, one has∑

a∈A

〈(ρhy − y)(a)〉2R3 ≤ Ch2m−2|y|2m,Ω′,R3 , (4.7)

∑
b∈Bd

〈Di(ρhy − y)(b)〉2R3 ≤ C
h2m−4

d2
|y|2m,Ω′,R3 , i = 1, 2 . (4.8)

Proof. Reasoning as in [1, Lemma 6.1], we deduce that there exists a constant
C > 0 such that for any y ∈ Hm(Ω; R3), d ∈ D and h ∈ H, and for any K ∈ Th,
one has

max
u∈K

〈y(u)〉2R3 ≤ Ch−2
m∑

`=0

h2`|y|2`,K,R3 , (4.9)

max
u∈K

〈Diy(u)〉2R3 ≤ Ch−2
m−1∑
`=0

h2`|y|2`+1,K,R3 , i = 1, 2. (4.10)

Thus, taking ρhy − y instead of y in (4.9), we deduce that∑
a∈A

〈(ρhy − y)(a)〉2R3 ≤
∑

K∈Th

∑
a∈A∩K

〈(ρhy − y)(a)〉2R3

≤ Ch−2N1

∑
K∈Th

m∑
`=0

h2`|ρhy − y|2`,K,R3

≤ Ch−2N1

m∑
`=0

h2`|ρhy − y|2`,Ω′,R3 .

Hence, from (4.4), we have

∑
a∈A

〈(ρhy − y)(a〉2R3 ≤ Ch−2N1

m∑
`=0

h2`h2m−2`|y|2m,Ω′,R3

≤ Ch−2N1(m + 1)h2m|y|2m,Ω′,R3 ,

and we conclude that (4.7) holds. Analogously, taking ρhy−y instead of y in (4.10)
we deduce, for i = 1, 2, that

∑
b∈Bd

〈Di(ρhy − y)(b)〉2R3 ≤ Ch−2N2

m−1∑
`=0

h2`|ρhy − y|2`+1,Ω′,R3 .

Hence, from (4.4), we have∑
b∈Bd

〈Di(ρhy − y〉2R3 ≤ Ch−2N2mh2m−2|y|2m,Ω′,R3 ,

and, from (4.5), we conclude that (4.8) holds. �

Now we state the main result.



164 A. KOUIBIA, M. PASADAS EJDE/CONF/11

Theorem 4.3. Assume that (4.2)–(4.6) hold, and that

ε = o(d−p), d → 0, (4.11)

τ h2m−4

dp ε
= o(1), d → 0, (4.12)

h2m

dp ε
= o(1), d → 0, (4.13)

Then, one has
lim
d→0

‖σdh
ετ − f‖m,Ω′,Rn = 0. (4.14)

Proof. Step 1. For all d ∈ D, from Theorem 3.3 we have

Jd
ετ (σdh

ετ ) ≤ Jd
ετ (ρhf)

where, for each h ∈ H, ρh is the operator given in (4.4), which means that

|σdh
ετ |2m,Ω′,Rn ≤

1
ε
〈Ld(ρhf − f)〉2N1,n +

τ

ε
〈Πd(ρhf)〉2N2,pn + |ρhf |2m,Ω′,Rn .

From (4.4) and Lemma 4.2, we obtain

〈Ld(ρhf − f)〉2N1,n ≤ CN1h
2m|f |2m,Ω′,Rn

and taking into account

〈Πd(ρhf)〉2
N2,pn

≤ CpN2h
2m−4|f |2m,Ω′,Rn ,

|ρhf |2m,Ω′,Rn = o(1) + |f |2m,Ω′,Rn , d → 0 ,

we deduce from (4.5) and Lemma 4.2 that there exist C1 > 0 and C2 > 0 such that

|σdh
ετ |2m,Ω′,Rn ≤

(C1h
2m

dpε
+

C2h
2m−4τ

dpε
+ 1

)
|f |2m,Ω′,Rn + o(1), d → 0, (4.15)

〈Ld(σdh
ετ − f)〉2N1,n = o(ε), as d → 0. (4.16)

Let B0 = {b01, . . . , b0∆} be a P̃m−1(Ω′)-unisolvent subset of points of R and let η
be the constant of the Proposition 4.1. Obviously, there exists η′ ∈ (0, η] such that

B(b0j , η
′) ⊂ R for j = 1, . . . ,∆ .

From (4.3), for all d ∈ D, d < η′, j = 1, . . . ,∆,

B(b0j , η
′ − d) ⊂

⋃
a∈Ad

1∩B(b0j ,η′)

B(a, d) .

If Nj = card(Ad
1 ∩B(b0j , η

′)), it follows: for all d ∈ D, d < η′, j = 1, . . . ,∆,

(η′ − d)p ≤ Njd
p .

Consequently, for any d0 ∈ (0, η′), all d ∈ D, d ≤ d0, j = 1, . . . ,∆,

Nj ≥ (η′ − d0)pd−p . (4.17)

Now, from (4.11) and (4.16) it follows that for j = 1, . . . ,∆,∑
a∈Ad

1∩B(b0j ,η′)

〈(σdh
ετ − f)(a)〉2

Rn
= o(d−p), as d → 0 . (4.18)

If ad
j is a point of Ad

1 ∩B(b0j , η
′) such that

〈(σdh
ετ − f)(ad

j )〉Rn
= min

a∈Ad
1∩B(b0j ,η′)

〈(σdh
ετ − f)(a)〉

Rn
,
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it follows from (4.17) and (4.18) that for j = 1, . . . ,∆,

〈(σdh
ετ − f)(ad

j )〉Rn
= o(1), as d → 0 . (4.19)

We denote by Bd the set {ad
1, . . . , a

d
∆}. Applying the Proposition 4.1 with B = Bd,

for d sufficiently close to 0, it results from (4.12), (4.13), (4.15) and (4.19) that
There exists C > 0, α > 0, such that for all d ∈ D, d ≤ α we have

‖σdh
ετ ‖m,Ω′,Rn ≤ C .

This implies that the family (σdh
ετ )d∈D, d≤α is bounded in Hm(Ω′; Rn). Then, there

exists a sequence (σdlhl
εlτl

)l∈N, extracted from such family, with liml→+∞ dl = 0,

liml→+∞ hl = 0, εl = ε(dl), τl = τ(dl), εl = o(d−p
l ), τl h2m−4

l

dp
l εl

= o(1), h2m
l

dp
l εl

= o(1),
as l → +∞, and an element f∗ ∈ Hm(Ω′; Rn) such that

f∗ converges weakly to σdlhl
εlτl

inHm(Ω′; Rn) as l → +∞ . (4.20)

Step 2. Arguing by contradiction, it is easy to prove that f∗ = f .
Step 3. From (4.20) and taking into account that f∗ = f and Hm(Ω′; Rn) is
compactly injected in Hm−1(Ω′; Rn) we have:

f = lim
l→+∞

σdlhl
εlτl

in Hm−1(Ω′; Rn) . (4.21)

Consequently,
lim

l→+∞
((σdlhl

εlτl
, f))

m−1,Ω′,Rn
= ‖f‖2

m−1,Ω′,Rn
.

Using again (4.20) and that f = f∗, we obtain

lim
l→+∞

(σdlhl
εlτl

, f)m,Ω′,Rn = lim
l→+∞

(
((σdlhl

εlτl
, f))m,Ω′,Rn − ((σdlhl

εlτl
, f))

m−1,Ω′,Rn

)
= |f |2m,Ω′,Rn .

(4.22)
Since, for all l ∈ N,

|σdlhl
εlτl

− f |2m,Ω′,Rn = |σdlhl
εlτl

|2m,Ω′,Rn + |f |2
m,Ω′,Rn

− 2(σdlhl
εlτl

, f)
m,Ω′,Rn

.

From (4.15) and (4.22) we deduce

lim
l→+∞

|σdlhl
εlτl

− f |
m,Ω′,Rn

= 0 ,

which, together with (4.21), imply

lim
l→+∞

‖σdlhl
εlτl

− f‖
m,Ω′,Rn

= 0 .

Step 4. To complete this proof we will argue by contradiction. Suppose that (4.14)
does’nt hold. Then, there exist a real number µ > 0 and three sequences (dl′)l′∈N,
(hl′)l′∈N, (εl′)l′∈N, and (τl′)l′∈N, with

lim
l′→+∞

dl′ = 0, hl′ = h(dl′), εl′ = ε(dl′),

τl′ = τ(dl′), εl′ = o(d−p
l′ ),

τl′h
2m−4
l′

dp
l′εl′

= o(1),
h2m

l′

dp
l′ε l′

= o(1),

as l′ → +∞, such that for all l′ ∈ N,

‖σdl′hl′
εl′τl′

− f‖m,Ω′,Rn ≥ µ . (4.23)
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Now, the sequence (σdl′hl′
εl′τl′ )l′∈N is bounded in Hm(Ω′; Rn). Then, the reasoning

of Steps 1–3 shows that there exists a subsequence convergent to f , which is a
contradiction with (4.23). �
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