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Approximation of explicit model predictive

control using regular piecewise affine

functions: an input-to-state stability approach

B.A.G. Genuit, L. Lu and W.P.M.H. Heemels

Abstract

Piecewise affine (PWA) feedback control laws defined on general polytopic partitions, as for instance obtained

by explicit MPC, will often be prohibitively complex for fast systems. In this work we study the problem of

approximating these high-complexity controllers by low-complexity PWA control laws defined on more regular

partitions, facilitating faster on-line evaluation. The approach is based on the concept of input-to-state stability

(ISS). In particular, the existence of an ISS Lyapunov function (LF) is exploited to obtain a priori conditions that

guarantee asymptotic stability and constraint satisfaction of the approximate low-complexity controller. These

conditions can be expressed as local semidefinite programs (SDPs) or linear programs (LPs), in case of 2-

norm or 1,∞-norm based ISS, respectively, and apply to PWA plants. In addition, as ISS is a prerequisite

for our approximation method, we provide two tractable computational methods for deriving the necessary ISS

inequalities from nominal stability. A numerical example is provided that illustrates the main results.
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Approximation of explicit model predictive

control using regular piecewise affine

functions: an input-to-state stability approach

I. INTRODUCTION

Piecewise affine (PWA) controllers have been a popular and powerful control solution for constrained linear

and hybrid systems [1]–[5]. In many situations model predictive control (MPC), see e.g. the textbooks [6]–[8],

has been used as a design methodology to obtain PWA control laws, as it indeed results under some conditions

in an explicit PWA state feedback defined on a polytopic partition of the feasible set [9], [10]. Consequently,

the on-line implementation of these so-called explicit MPC controllers is reduced from on-line optimization to

a point location (a well-known problem in the field of geometrical computing, see e.g. [11]) on the polytopic

partition and a corresponding lookup table with the PWA control parameters.

Unfortunately, point location on general polytopic partitions results in high on-line computational require-

ments, especially since the complexity (in terms of elementary operations and memory needed for the on-line

evaluation) grows rapidly with the dimension of the state space. This is prohibitive for the implementation

of these solutions on fast and/or large-scale applications, as controller evaluation times will rise above the

admissible sampling period.

To overcome these limitations, research has been performed on efficient implementation of exact explicit

MPC [12]–[14] and approximation algorithms to obtain low-complexity suboptimal controllers [15]–[22]. In

particular, [12] presents a method to find a corresponding search tree for an existing partition to realize efficient

implementations of the exact optimal PWA control law. This approach is further developed and implemented in

[13]. In the research line based on approximation methods, [16] proposed an mp-QP approximation procedure

imposing a hierarchical (also referred to as multiscale) hypercubic structure as the partition of the approximate

PWA state feedback. This interesting method shares many properties with the one presented here, but applies

to linear systems and quadratic costs, while our method in principle applies to PWA systems and both linear

and quadratic costs. Based on convexity of the value function (optimal costs), [16] also provides a priori

stability guarantees and performance bounds on the approximate control law. In [23] an interpolation-based

method is presented to obtain approximate explicit MPC controllers for constrained linear systems using bilevel

optimization techniques. A beneficial feature of the method is that it does not require to compute the optimal

explicit MPC first, but still aims at minimizing the approximation error between the approximate and the optimal

PWA control law. However, construction of the approximate explicit MPC law is based on an iterative procedure

solving mixed integer linear programming (MILP) problems in each step, which can become computationally

expensive in certain cases. Besides, no a priori stability guarantees are provided, only an a posteriori MILP-

based stability test. The authors of [16] overcome the latter issues in [20], where an approximation method

for constrained linear systems is proposed, which also uses a multiscale structure as in [16], but now based
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on barycentric interpolation. Bounds guaranteeing stability and constraint satisfaction are obtained a priori. A

lower bound on the performance is derived as well. This work presents an interesting approach that applies in

the context of linear systems, exploiting convexity of the value function. As convexity and even continuity of

the value function and control law might be lost for explicit MPC laws designed for PWA systems, this method

and the one of [16] are not directly applicable to PWA systems. Also in [22] an approximation method for

linear systems using PWA functions based on regular simplices is proposed, with guarantees of local optimality

and constraint satisfaction. In addition, results of circuit implementation are presented. However, in [22] only a

posteriori checks for stability are provided. In [19] an alternative method based on polynomial approximation

of the optimal control law is presented. Here sum-of-squares (SOS) computations are used to compute the

approximate polynomial control law that has a priori stability guarantees, constraint satisfaction and some

degree of performance.

This paper proposes a novel approach to approximate (possibly discontinuous) PWA controllers with a priori

guarantees on asymptotic stability and satisfaction of input and state constraints. The approximate control law

is defined on a regular (possibly multiscale) partition, which can be chosen in a desirable way, e.g. based

on multiscale rectangles as in [16] or regular simplices as in [20], [22], [24]–[27]. Due to the choice of a

regular partition, the resulting regular PWA functions inherently result in efficient, low-complexity on-line

implementations in terms of both computational effort and memory requirements. The proposed approach is

based on the input-to-state stability (ISS) framework [28]–[30], computing a priori a lower bound on the

robustness margin of the original high-complexity PWA controller against the approximation error. This bound

is then used as a constraint for the approximation procedure to guarantee asymptotic stability (AS) of the plant

in closed loop with the approximate low-complexity PWA controller. This constraint can be expressed as local

semidefinite programs (SDPs) or (local) linear programs (LPs), depending if the ISS is based on 2-norms or

1,∞-norms, respectively. The main assets of our approach are flexibility (it can be used with any type of

polytopic partition of the high- and low-complexity controllers), decoupled subproblems (facilitating parallel

off-line computing and automated co-design of both the control parameters and the regular partition on which

they are is defined), and its ability to handle discontinuous PWA controllers and plants. In addition, stability and

constraint satisfaction are guaranteed a priori (as mentioned earlier) without needing convexity requirements

on the value function corresponding to the original high-complexity controller as e.g. in [20]. These major

advantages are obtained by requiring the original high-complexity controller to satisfy the ISS property, which

under certain conditions is inherited from nominal stability of the high-complexity closed-loop system. Two

tractable computational methods are provided in Section VI to show how and when nominal stability can be

converted into the necessary ISS conditions. In other cases, e.g. for PWA plants not automatically resulting in

ISS MPC controllers, the MPC setup has to be modified to guarantee the desired ISS property (see Remark 2

below). The latter approach is of particular interest as it might result in smaller ISS gains if compared to the

inherent ISS gains. Smaller ISS gains typically result in a lower complexity of the resulting approximate PWA

control laws.

The remainder of the paper is organized as follows. First, some notational conventions will be introduced to

conclude this section. The necessary preliminaries will be discussed in Section II. The problem is outlined in

Section III, and in Section IV, a central lemma is presented on which our approach is based. Section V discusses



3

the main approach and presents the computational algorithm. In Section VI two computational methods are

described to obtain the ISS property from nominal stability. A numerical example for a PWA plant is presented

in Section VII to illustrate our approach. Finally, conclusions are presented in Section VIII.

A. Notations and basic definitions

Let R, R+, and N denote the set of real numbers, the set of non-negative reals, and the set of non-negative

integers, respectively. We use the notation N≥c1 and N(c1,c2] (et similia) to denote the sets {k ∈ N | k ≥ c1} and

{k ∈ N | c1 < k ≤ c2}, for some c1, c2 ∈ N. When inequalities such as ≤ (et similia) are applied to vectors,

they should be interpreted elementwise throughout the paper. For matrices A,B ∈ R
n×n, the inequality A � B

(et similia) denotes that A−B is a negative semidefinite matrix.

The Hölder p-norm of a vector x ∈ R
nx is defined as

‖x‖p =







(∑

nx
|xi|

p
) 1

p , p ∈ N[1,∞)

maxi |xi|, p = ∞,
(1)

where xi is the i-th component of the vector x, and |·| denotes the absolute value of a real number. When it is not

important to specify the type of norm used explicitly, we just write ‖ · ‖. By xi and [x]i, for i ∈ {1, . . . , nx},

we denote the i-th component of the vector x ∈ R
nx . For a sequence {zp}p∈N

with zp ∈ R
l, p ∈ N,

let ‖ {zp}p∈N
‖ , sup {‖zp‖ | p ∈ N} and let z[k] denote the truncation of {zp}p∈N

at time k ∈ N, i.e.

z[k] , {zp}p∈N[0,k]
.

A function φ : R+ → R+ belongs to class K (φ ∈ K) if it is continuous, strictly increasing and φ(0) = 0.

A function φ : R+ → R+ belongs to class K∞ (φ ∈ K∞) if φ ∈ K and it is radially unbounded, i.e.

lims→∞ φ(s) = ∞. A function β : R+ × R+ → R+ belongs to class KL (β ∈ KL) if for each fixed t ∈ R+,

β(·, t) ∈ K and for each fixed s ∈ R+, β(s, ·) is non-increasing and limt→∞ β(s, t) = 0.

A set P is called a polyhedron if it can be written as the intersection of a finite number of half-spaces. A

bounded polyhedron is called a polytope. A set of polytopes P̄ =
{
P̄1, . . . , P̄nP̄

}
is called a partition of X

if ∪iP̄i = X and P̄i ∩ P̄j = ∅, ∀i, j ∈ N≥1, i 6= j. The set of extreme points (or vertices) of a polytope P

is denoted by ext(P) and defined as the minimal set of points which convex hull equals the closure of the

polytope P (denoted by cl P). For a collection P̄ =
{
P̄1, . . . , P̄nP̄

}
of sets with P̄i ⊆ R

nx , i ∈ {1, . . . , nP̄},

and another set Q ⊆ R
nx , the index set I(Q, P̄) is given by

I(Q, P̄) ,
{
i ∈ {1, . . . , nP̄} | Q ∩ P̄i 6= ∅

}
. (2)

Hence, I(Q, P̄) is the set of all the indices of sets P̄i that have a non-empty intersection with Q.

II. PRELIMINARIES

Throughout this paper we will use the input-to-state stability (ISS) framework (see e.g. [28]) for discrete-time

systems, see e.g. [30] and [31].

Consider a discrete-time dynamical system with state xk ∈ R
nx and disturbance ek ∈ R

ne at discrete time

k ∈ N, given by

xk+1 = g(xk, ek), (3)
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where g : Rnx × R
ne → R

nx is a nonlinear, possibly discontinuous function. We assume that the origin is an

equilibrium of (3) in case of zero disturbance, i.e. g(0, 0) = 0.

Definition 1: A set P ⊆ R
nx with 0 ∈ int(P) is called a robustly positively invariant (RPI) set with respect

to disturbance set E for system (3) if for all x ∈ P and all e ∈ E it holds that g(x, e) ∈ P . In case system

(3) does not depend on the disturbance e, we call a set P that is RPI simply a positively invariant (PI) set.

The following local notions of ISS and AS for discrete-time system (3) are used in this paper.

Definition 2: Let X ⊆ R
nx and E ⊆ R

ne , with 0 ∈ int(X). We call system (3) input-to-state stable (ISS) in

X for disturbances in E if there exist a KL-function β and a K-function γ such that, for each initial condition

x0 ∈ X and error sequence {ep}p∈N
, with ep ∈ E for all p ∈ N, the corresponding state trajectory satisfies

‖xk‖ ≤ β(‖x0‖, k) + γ(‖e[k−1]‖), ∀k ∈ N. (4)

Definition 3: Let X ⊆ R
nx , with 0 ∈ int(X). We call system (3) with e = 0 asymptotically stable (AS) in X

if there exists a KL-function β such that, for each initial condition x0 ∈ X, the corresponding state trajectory

satisfies

‖xk‖ ≤ β(‖x0‖, k), ∀k ∈ N. (5)

For determination of ISS and AS for discrete-time systems the following sufficient conditions can be used.

Lemma 1: [30], [31]: Let α1, α2, γ, σ ∈ K∞. Let X with 0 ∈ int(X) be an RPI set with respect to E for

system (3) and let V : X → R+ be a function with V (0) = 0. Consider the following inequalities:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (6a)

V (g(x, e))− V (x) ≤ −γ(‖x‖) + σ(‖e‖). (6b)

If inequalities (6) hold for all x ∈ X and all e ∈ E, then system (3) is ISS in X for disturbances in E. If (6)

holds for all x ∈ X and e = 0, and X is a PI set for (3) with zero disturbance, then the system (3) with e = 0

is AS in X.

A function V that satisfies the hypotheses of Lemma 1 is called an ISS Lyapunov function (ISS LF) or a

Lyapunov function (LF), respectively.

III. PROBLEM STATEMENT

In this section we provide the problem statement and motivation for the studied problem.

A. Setup

Consider a discrete-time dynamical system with input and state constraints, given by

xk+1 = f (xk,uk) (7a)

xk ∈ X , {x ∈ R
nx | Cxx ≤ cx} (7b)

uk ∈ U , {u ∈ R
nu | Cuu ≤ cu} , (7c)
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where k ∈ N denotes the discrete time, and a PWA control law u : Xf → R
nu given by

u(x) =







F 1x+ g1, x ∈ P1

...
...

F nP
x+ gnP

, x ∈ PnP
.

(8)

Here, Cx, Cu, F i, and cx, cu, gi, i ∈ {1, . . . , nP}, are matrices and vectors of appropriate dimensions,

respectively. We assume that Pi is polytopic and that

cl Pi =






x ∈ R

nx

∣
∣
∣
∣
∣
∣

CPi




x

1



 ≤ 0






, i ∈ {1, . . . , nP} , (9)

where CPi
, i ∈ {1, . . . , nP}, are matrices of appropriate dimensions. Note that Pi is not necessarily a closed

set. Due to this and the usage of non-strict inequalities in (9), cl Pi is expressed instead of Pi itself. In addition,

we assume that

P = {P1, . . . ,PnP
} (10)

forms a partition of the feasible set Xf ⊆ X. The feasible set Xf is also assumed to be polytopic (and thus

bounded) and given by

Xf = {x ∈ R
nx | Wx ≤ w} , (11)

for a matrix W and vector w of appropriate dimensions.

Remark 1: In this paper we focus on hard constraints, i.e. xk ∈ X should be satisfied for all k ∈ N. This

results in the feasible set on which the control law (12) is defined to be a subset of X, i.e., Xf ⊆ X. However,

if the state constraints xk ∈ X are interpreted as soft constraints, see e.g. [10], [22], the PWA law (12) might

be defined on a feasible set Xf larger than X. The techniques, which will be presented below, apply in a

straightforward manner also in this setting.

B. Motivation

PWA functions as in (8) defined using general polytopic partitions often lead to high on-line computational

and memory requirements, which are prohibitive for fast and/or large-scale applications, certainly in case

of a high number of regions or state dimensions. This motivates the search for approximation methods for

high-complexity PWA controllers leading to low-complexity controllers defined on partitions with less regions

and/or regions of more regular shapes that enhance fast and memory-efficient on-line implementation, while

still maintaining important closed-loop properties such as stability and constraint satisfaction.

As advocated in [16], [20], [22], [24]–[27], it can be very beneficial for the eventual (circuit) implementation

to use canonical PWA controllers that are based on regular partitions using e.g. regular simplices [20], [22], [24]–

[27] or (multiscale) hypercubes [16]. Essentially, any desired polytopic shape can be chosen in our approximation

method that follows. For these reasons, we propose a method to approximate a given PWA state feedback law

u as in (8) by a new control law ũ : Xf → R
nu given by

ũ(x) =







F̃ 1x+ g̃1, x ∈ P̃1

...
...

F̃ n
P̃
x+ g̃n

P̃
, x ∈ P̃n

P̃
,

(12)
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where the regions P̃j have a more regular shape (e.g. simplicial or hypercubic, although the procedure allows

any polytopic partition) and/or the number of regions in P̃ =
{

P̃1, . . . , P̃n
P̃

}

is smaller than the number of

regions in the original partition P , i.e. nP̃ < nP . This new control law is required to asymptotically stabilize

system (7) and satisfy state and input constraints (7b), (7c). In our setup we will allow the approximate control

law (12) to be discontinuous, while, for instance, the works in [20], [22] use continuous PWA functions (defined

on simplicial partitions) only.

Instrumental in the approach will be the study of the effect of the approximation error ek = ũ(xk)−u(xk),

k ∈ N on the closed-loop system. Therefore, we consider the perturbed closed-loop system

xk+1 = f(xk,u(xk) + ek), (13)

and propose an approach that exploits ISS properties of the original (high-complexity) closed-loop system (13)

with respect to ek. Note that the variable ek can be interpreted as an actuator noise, but here it will play the role

of the approximation error between the high-complexity and low-complexity controller. Such ISS properties

are often inherited from nominal stability conditions for the closed-loop system, as will be discussed in detail

in Section VI.

Remark 2: Alternatively to inherenting ISS from nominal stability, one can also directly design (explicit

MPC) controllers that are ISS by combining ideas in [32] for constrained systems or [33] for unconstrained

systems, together with the ISS MPC design techniques in e.g. [34]–[36]. This idea will be the objective of

future research. Once an explicit PWA control law that is ISS with respect to actuator noise (approximation

error) is obtained, or a nominally stabilizing PWA controller is available for which the conditions in Section VI

hold, the techniques as presented in this paper are applicable.

This leads us to the following problem statement:

Problem 1: Given the constrained system (7), the PWA control law (8), with Xf ⊆ X, 0 ∈ Xf , and an ISS

Lyapunov function V : Xf → R+ for the closed-loop system (13), find a PWA control law ũ : Xf → R
nu as

in (12) approximating u, defined on a more regular low-complexity partition P̃ of Xf , such that the resulting

closed-loop system

xk+1 = f(xk, ũ(xk)) (14)

is asymptotically stable (AS) in Xf , Xf is a PI set for the closed-loop system (14), and the input and state

constraints (7b), (7c) are satisfied, i.e. Xf ⊆ X and for all x ∈ Xf ,

ũ(x) ∈ U. (15)

In the remainder of this paper, we will solve Problem 1 leading to a systematic procedure (with a priori

conditions to guarantee stability and constraint satisfaction) to find a more regular control law ũ for (possibly

discontinuous) constrained PWA plants (7).

Remark 3: For ease of exposition we assumed that P̃ =
{

P̃1, . . . , P̃n
P̃

}

is a partitioning of Xf in Problem 1.

However, when applying the results in this paper in practice, one typically will choose a regular set B

encompassing Xf in a tight manner, and define a partitioning P̃ ′ =
{

P̃ ′
1, . . . , P̃

′
n
P̃′

}

of B instead, see Figure 1.

Since B is regular (e.g. hypercubic), it can indeed be partitioned into smaller regular polytopes (e.g., hypercubes

as used in [16] or regular simplices as adopted in [20], [22]), while this might be impossible for Xf . However,
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B
Xf

Fig. 1. Figure illustrating a possible choice for B.

one can easily obtain a partitioning P̃ of Xf from P̃ ′ as defined in Problem 1 by taking P̃i = P̃ ′
i ∩Xf , for all

i = 1, 2, . . . , nP̃′ . In fact, all properties regarding constraint satisfaction, stability and positive invariance will

be guaranteed for Xf only, not for the complete set B. However, in practice, one can still implement the control

law defined on a partitioning P̃ ′ of B and hence, the control law can be defined outside Xf . This is of no

concern as these parts will not be reached, because the computed approximate control law will guarantee that

Xf is positively invariant and hence, whenever x0 ∈ Xf , we have xk ∈ Xf for all k ∈ N. As a consequence,

even if the control law will be defined on B (and possibly outside Xf ), all provided properties are guaranteed

when the initial condition x0 ∈ Xf holds.

IV. A CENTRAL LEMMA

The following lemma will be instrumental in our developments. Starting from ISS of (13), and in particular

the existence of an ISS LF, the lemma provides a bound on the approximation error ‖ũ(x)− u(x)‖,x ∈ Xf ,

that guarantees that the new control law ũ asymptotically stabilizes the original system (7a) in Xf .

Lemma 2: Consider system (7) and suppose there exist a control law u : Xf → R
nu with Xf ⊆ X,

α1, α2, γ, σ ∈ K∞, a disturbance set E with 0 ∈ E and a function V : Xf → R+ with V (0) = 0 such that for

some p, q ∈ N[1,∞) ∪ {∞}

α1(‖x‖q) ≤ V (x) ≤ α2(‖x‖q), (16a)

V (f(x,u(x) + e))− V (x) ≤ −γ(‖x‖q) + σ(‖e‖p), (16b)

for all x ∈ Xf and all e ∈ E. Then for any control law ũ : Xf → R
nu that satisfies

σ (‖ũ(x)− u(x)‖p) ≤ γ (‖x‖q)− γ̃ (‖x‖q) , (17)

f(x, ũ(x)) ∈ Xf , (18)

and

ũ(x)− u(x) ∈ E, (19)

for some γ̃ ∈ K∞, and all x ∈ Xf , the closed-loop system (14) is asymptotically stable in Xf .

Proof: The proof follows from substitution of e = ũ(x)−u(x), satisfying (19), in (16b) and by applying

(17), which yields

V (f(x, ũ(x)))− V (x) ≤ −γ̃(‖x‖q), ∀x ∈ Xf (20)
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Equation (18) states that Xf is a PI set for system (14), which together with (20) and (16a) is sufficient for

asymptotic stability in Xf , according to Lemma 1.

Using this lemma, we obtain that if ũ satisfies (15), (17), (18), and (19), then Problem 1 is solved, as due to

(18) for any x0 ∈ Xf , it also holds that xk ∈ Xf ⊆ X for all k ∈ N. Based on this central lemma, the question

is now, given u, how to construct such a control law ũ using computationally friendly tools.

A first step in this direction can be obtained by observing that if γ ∈ K∞ and σ ∈ K∞ have special forms,

which is typically the case in explicit MPC, such as γ(s) = γcs
µ and σ(s) = σcs

µ for some γc, σc, µ ∈ R+,

and all s ∈ R+, then by selecting γ̃(s) = γ̃cs
µ with 0 < γ̃c < γc, (17) becomes

‖ũ(x)− u(x)‖p ≤ ρmax‖x‖q (21)

where

ρmax ,

(
γc − γ̃c

σc

) 1
µ

. (22)

This bound on the approximation error can be calculated a priori and will be used to guarantee asymptotic

stability for the approximate low-complexity controller ũ.

In the following section we will apply this central lemma to the class of PWA systems and derive a systematic

computational approach to find ũ satisfying (15), (18), (19), and (21) for all x ∈ Xf , thereby solving Problem 1.

V. APPROACH FOR PWA SYSTEMS

Consider a (possibly discontinuous) PWA system given by

xk+1 = Arxk +Bruk + ar,when xk ∈ Sr (23)

defined on a polytopic partition

S = {S1, . . . ,SnS
} . (24)

Suppose a PWA control law u : Xf → R
nu as in (8) with Xf ⊆ ∪rSr, and an ISS LF V : Xf → R+ exist,

satisfying the conditions of Lemma 2 with functions γ and σ of the form as discussed at the end of Section III,

leading to (21). To synthesize a regular approximate control law as in (12) we initially fix a new polytopic

partition P̃ =
{

P̃1, . . . , P̃n
P̃

}

of Xf consisting of regular (e.g. hypercubic or regular simplicial) regions and

show how the conditions (15), (18), (19), and (21) can be guaranteed locally for each P̃j ∈ P̃ , thereby solving

Problem 1 for 23. In Section V-F, we will also provide an automated refinement procedure, which refines an

initial coarse partition P̃init where necessary to satisfy the stability and constraint satisfaction requirements.

Hence, although we start here with a fixed partition, a synthesis procedure for the regular partition will be

provided as well.

A. Asymptotic stability

To guarantee asymptotic stability, we will use (21) (next to positive invariance of Xf and Xf =
⋃n

P̃

j P̃j).

Therefore, we write (21) for an arbitrary region P̃j , j ∈ {1, . . . , nP̃}, in a computationally friendly form. For

the Euclidean norm case (p = q = 2), we will make use of linear matrix inequalities (LMIs, [37]), for the

linear norm case (p, q ∈ {1,∞}), we will use linear programs (LPs).
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1) Euclidean norms (p = q = 2):

Since u and ũ are PWA functions as given in (8) and (12), respectively, (21) for all x ∈ Xf , can be written as

‖
[

F̃ j − F i g̃j − gi

]

︸ ︷︷ ︸

Hij




x

1



 ‖2 ≤ ρmax‖x‖2,

∀x ∈ P̃j ∩ Pi, ∀i ∈ {1, . . . , nP} , (25)

j ∈ {1, . . . , nP̃}. To convert (25) into an LMI, we now take the matrix Eij such that





x ∈ R

nx

∣
∣
∣
∣
∣
∣

Eij




x

1



 ≥ 0






= cl

(

P̃j ∩ Pi

)

. (26)

Now note that (25) is implied (using the S-procedure and Schur complements) by the LMI










ρ2maxI(nx,nx) 0

0 0



−E⊤
ijU ijEij H⊤

ij

Hij I(nu,nu)







� 0,

∀i ∈ I(P̃j ,P), (27)

j ∈ {1, . . . , nP̃}, where U ij is a symmetric matrix with nonnegative entries, and Hij ,

[

F̃ j − F i g̃j − gi

]

.

Remark 4: Note that setting up such LMIs is standard by now. In case of stability only, these are given in

[38] and in [39], while an alternative technique for implementing the S-procedure in discrete time has been

proposed in [40]. The extension to ISS follows in a straightforward way leading to (27).

The conditions (27) are in LMI-form in the variables F̃ j , g̃j of the low-complexity controller corresponding

to region P̃j , and U ij . Together with (18) and (19), affirming (27) for all P̃j , j ∈ {1, . . . , nP̃}, will guarantee

asymptotic stability in Xf for the approximate control law ũ.

2) Linear norms (p, q ∈ {1,∞}):

For brevity we assume here p, q = ∞ in (21), as the other cases with p, q ∈ {1,∞} can be derived analogously.

Similar to the Euclidean case, (21) can be written as

‖(F̃ j − F i)x+ (g̃j − gi)‖∞ ≤ ρmax‖x‖∞,

∀x ∈ P̃j ∩ Pi, ∀i ∈ {1, . . . , nP} , (28)

j ∈ {1, . . . , nP̃}. Now consider the following theorem, graphically illustrated in Figure 2, where we denote

P̃j ∩ Pi as Λi,j for compactness.

Theorem 1: Consider a polytope Λi,j ⊂ R
nx . Define the polytopes Λ0,l

i,j and Λ1,l
i,j , l ∈ {1, . . . , nx}, as

Λ0,l
i,j , {x ∈ Λi,j | ‖x‖∞ = xl} , (29a)

Λ1,l
i,j , {x ∈ Λi,j | ‖x‖∞ = −xl} , (29b)
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P2

P1

v ∈ ext

(

Λ
0,1
2,j

)

P̃j

Λ
0,1
2,j =

{

x ∈ P2 ∩ P̃j | ‖x‖∞ = x1
}

x1 = x2

Fig. 2. Figure illustrating Theorem 1, where P̃j is a box in the positive orthant of R2, Λ0,1

2,j
is the shaded polytope and the vertices are

indicated by circles (◦).

where xl denotes the l-th element of the vector x. Then the following statements are equivalent:

(i) ∀l ∈ {1, . . . , nx} , ∀s ∈ {0, 1} , ∀v ∈ ext(Λs,l
i,j),

‖(F̃ j − F i)v + (g̃j − gi)‖∞ ≤ (−1)sρmax [v]l . (30)

(ii) ∀x ∈ Λi,j ,

‖(F̃ j − F i)x+ (g̃j − gi)‖∞ ≤ ρmax‖x‖∞. (31)

Proof: To prove (i) ⇒ (ii), observe that Λi,j =
⋃1

s=0

⋃nx

l=1 Λ
s,l
i,j . As a consequence, it is sufficient to prove

(31) for all x ∈ Λs,l
i,j and each s ∈ {0, 1} and l ∈ {1, . . . , nx}. Let x ∈ Λs,l

i,j , then x =
∑

b αbv
b, for some

v1, . . . ,vns,l ∈ ext(Λs,l
i,j) and some αb ≥ 0, b ∈ {1, . . . , ns,l}, and

∑

b αb = 1. The left hand side of (31) for
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some x ∈ Λs,l
i,j can be upperbounded using the triangle inequality and (30) as

‖(F̃ j − F i)x+ (g̃j − gi)‖∞

= ‖
∑

b

αb(F̃ j − F i)v
b +

∑

b

αb(g̃j − gi)‖∞

≤
∑

b

αb‖(F̃ j − F i)v
b + (g̃j − gi)‖∞

(30)

≤
∑

b

αb(−1)sρmax

[
vb

]

l
= (−1)sρmaxxl,

= ρmax‖x‖∞. (32)

In the last equality we used the definition of Λs,l
i,j as in (29), implying that ‖x‖∞ = (−1)sxl for x ∈ Λs,l

i,j .

To show (ii) ⇒ (i), note that for any v ∈ ext(Λs,l
i,j) ⊆ Λi,j , and (−1)s [v]l = ‖v‖∞, due to the definition

of Λs,l
i,j as in (29). Hence, if (31) holds for all x ∈ Λi,j , it also holds for v and thus we obtain (30). This

completes the proof.

Hence, to compute F̃ j and g̃j , j ∈ {1, . . . , nP̃}, satisfying (28), we apply Theorem 1 for each Λi,j , P̃j∩Pi,

i ∈ I(P̃j ,P), j ∈ {1, . . . , nP̃}. Accordingly, (30) can be replaced by

±
[

(F̃ j − F i)v + (g̃j − gi)
]

e1
≤ (−1)sρmax [v]l ,

∀v ∈ ext(Λs,l
i,j), ∀s ∈ {0, 1} , ∀l ∈ {1, . . . , nx} ,

∀e1 ∈ {1, . . . , nu} , (33)

where Λs,l
i,j ⊆ Λi,j , s ∈ {0, 1} , l ∈ {1, . . . , nx}, denote the polytopes as defined in Theorem 1 using Λi,j =

P̃j ∩ Pi, i.e.

Λs,l
i,j =

{

x ∈ P̃j ∩ Pi | ‖x‖∞ = (−1)s [x]l

}

. (34)

Now, (33) for all i ∈ I(P̃j ,P) is an LP feasibility problem in F̃ j and g̃j for region P̃j to guarantee (21) (or

(28) in this case) for all x ∈ P̃j . Hence, to satisfy (28) (leading with (18) and (19) to asymptotic stability in

Xf ), the LPs in (33) have to hold for all i ∈ I(P̃j ,P) and all j ∈ {1, . . . , nP̃}.

B. Positive Invariance of Xf

The desired invariance property (18) can be written for region P̃j , j ∈ {1, . . . , nP̃}, as

Arx+BrF̃ jx+Brg̃j + ar ∈ Xf ,

∀x ∈ P̃j ∩ Sr, ∀r ∈ I(P̃j ,S). (35)

Using convexity of P̃j ∩Sr, and the explicit form of Xf as in (11), (35) can be written in terms of the vertices

of each polytope P̃j ∩ Sr, j ∈ {1, . . . , nP̃}, as

W
(

Arv +BrF̃ jv +Brg̃j + ar

)

≤ w,

∀v ∈ ext(P̃j ∩ Sr), ∀r ∈ I(P̃j ,S). (36)
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C. Disturbance set E conditions

To guarantee the desired satisfaction of e ∈ E we assume E is polyhedral (with 0 ∈ E) and given by

E = {e ∈ R
nu | Me ≤ m} , (37)

for matrix M and vector m of appropriate dimensions. Hence, (19) is given for region P̃j , j ∈ {1, . . . , nP̃},

as

M
(

(F̃ j − F i)v + (g̃j − gi)
)

≤ m,

∀v ∈ ext(P̃j ∩ Pi), ∀i ∈ I(P̃j ,P). (38)

D. Input constraint satisfaction

Similarly, the input constraints (15) can be written for region P̃j , j ∈ {1, . . . , nP̃}, as

ũ (x) ∈ U, ∀x ∈ P̃j ∩ Xf . (39)

Again, using convexity of P̃j ∩ Xf , and the definition of U as in (7c), this can be written in terms of the

vertices:

Cu

(

F̃ jv + g̃j

)

≤ cu, ∀v ∈ ext(P̃j ∩ Xf ). (40)

E. Optimization problem

The result of Subsection V-A is either a semidefinite program (SDP) in case the 2-norm is used, or a linear

program (LP) in case of 1,∞-norms. The results of Subsections V-B, V-C, and V-D are linear inequalities (36),

(38), and (40) in the new control parameters, and can easily be added to the SDP or LP of Subsection V-A.

The result is given for P̃j , j ∈ {1, . . . , nP̃}, as

min
F̃ j ,g̃j

0

s.t. a) LMIs (27) or LP conds. (33)

b) W
(

Arv +BrF̃ jv +Brg̃j + ar

)

≤ w,

∀v ∈ ext(P̃j ∩ Sr), ∀r ∈ I(P̃j ,S)

c) M
(

(F̃ j − F i)v + (g̃j − gi)
)

≤ m,

∀v ∈ ext(P̃j ∩ Pi), ∀i ∈ I(P̃j ,P)

d) Cu

(

F̃ jv + g̃j

)

≤ cu,

∀v ∈ ext(P̃j ∩ Xf )

(41)

This convex optimization problem [41] can be solved by an SDP solver such as SeDuMi [42], or with an LP

solver such as CPLEX [43] or GLPK [44], for the 2-norm and 1,∞-norm case, respectively. When a feasible

solution to (41) is found for all j ∈ {1, . . . , nP̃}, a control law ũ solving Problem 1 has been constructed.

Note that the problems for each P̃j , j ∈ {1, . . . , nP̃}, are decoupled, which means (among others) that

the total problem could be efficiently solved using parallel computing. Indeed, (41) has to be verified for

each individual P̃j , j ∈ {1, . . . , nP̃}, separately, instead of solving (41) as one monolithic problem for all P̃j
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simultanously. In addition, the local character of the conditions allows that, in case the current region P̃j results

in an infeasible problem (41), the problem can again be solved for the refinement of P̃j (i.e. P̃j split in smaller

regular subregions). A possible refinement procedure and corresponding algorithm are discussed in the next

subsection.

Remark 5: Instead of only requiring feasibility in (41), one could also replace ρmax by ρj in (27) or (33),

and minimize maxj ρj , while adding the additional constraint 0 < ρj ≤ ρmax. This way, every local control

law ũj is not only feasible, but also as close as possible to the original (possibly optimal) u.

F. Refinement procedure

A possible refinement procedure can be obtained by exploiting the local character of the problems in (41).

If, for some j ∈ {1, . . . , nP̃}, (41) is not feasible, the region can be split into smaller regular subregions of

which the local problem is given to the solver again.

Remark 6: This refinement implies a multiscale (or hierarchical) partition, which can be exploited to define

a search tree [11] corresponding to the partition (e.g. a quadtree such as in Section VII), to further facilitate

the efficient implementation of the point location, as already noted in [16]. Also in [12], [13] use is made of

(binary) search trees for efficient point location.

This refinement procedure provides an enormous advantage in the sense that one can start from a very

coarse initial partition P̃init of Xf consisting of only a few regular regions and letting the automated refinement

procedure determine where refinements are necessary in order to satisfy the stability and constraint satisfaction

conditions. Hence, from this perspective one could perceive the refinement procedure as a method to synthesize,

next to the control parameters F̃ j , g̃j , j ∈ {1, . . . , nP̃}, also the regular partition P̃ itself.

To avoid that the refinement procedure does not end (keeps on splitting into subregions), a maximum number

of regions nmax and/or maximum level of refinement hmax is added as a stopping criterium. A general setup for

the refinement procedure including these options is presented in the next subsection.

G. PWA Approximation Algorithm

Input: PWA control law u and partition P as in (8),

PWA plant dynamics and partition S as in (23),

maximum ‘approximation error’ ρmax as in (22),

maximum level depth hmax,

maximal number of regions nmax,

initial polytopic partition P̃init of Xf .

Output: PWA control law ũ and regular partition P̃ as in (12), solving Problem 1.

1: initialize, Bad := P̃init, Good := ∅, h(R) := 1 for all R ∈ P̃init, j := 0

2: while j ≤ nmax and Bad 6= ∅ do

3: select region R in Bad

4: find the overlapping regions I(R,P)

5: solve (41) for R

6: if (41) feasible then
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7: Bad := Bad \ {R}

8: Good := Good ∪ {R}

9: store control parameters F̃ j , g̃j , corresponding to R, obtained from (41)

10: j := j + 1

11: else if h(R) < hmax then

12: split R in L smaller regular subregions Ri s.t. {R1, . . . ,RL} = R

13: Bad := (Bad \ {R}) ∪ {R1, . . . ,RL}

14: store h(Ri) := h(R) + 1, i = 1, . . . , L

15: else

16: output ‘Warning: maximal level of refinement reached’

17: end (terminate algorithm)

18: end if

19: end while

20: if Bad = ∅ then

21: output ‘Stabilizing approximation found’

22: else

23: output ‘Warning: maximum number of regions reached’

24: end if

25: end

Remark 7: Several methods for splitting the regions (step 12 of the algorithm above) can be adopted. For

instance, one could use binary refinement (also known as dyadic discretization) in case of a hypercubic partition

to obtain 2nx smaller hypercubes (see Subsection VII for an illustration), multiscale regular simplicial as in

[20] or in case of conic regions, see [45]. In particular, in case of a hypercubic partition and binary refinement,

the result is an nx–dimensional octree (generalized quadtree) (see e.g. [11]).

Remark 8: In case the refinement procedure in this section is infinite–recursively refining the regions around

the origin (this might occur when the high-complexity control law u is not locally linear), it is recommended to

relax the asymptotic stability requirement to an ultimate boundedness condition guaranteeing limk→∞ ‖xk‖ ≤ ǫ

for a desirable size of the ultimate bound ǫ > 0. This can be accomplished by relaxing (21), in case of e.g.

µ = 1, to

‖ũ(x)− u(x)‖p ≤ ρmax‖x‖q +
γ̃cδ

σc

(42)

for some δ > 0, which leads to a modification of (20) into

V (f(x, ũ(x)))− V (x) ≤ −γ̃c‖x‖q + γ̃cδ, ∀x ∈ Xf . (43)

Inequality (43) can be used to guarantee ultimate boundedness to any arbitrarily small bound ǫ, by appropriately

selecting δ > 0. The bound (42) provides a relaxation to (21) often avoiding infinite recursive refinement of

the regions around the origin.
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VI. FROM NOMINAL STABILITY TO ISS

Many methods exist to design stabilizing MPC controllers for a system as in (7), including techniques based

on terminal equality constraints, terminal set and costs, artificial Lyapunov functions, and so on, see e.g. [46] for

an overview. By converting these MPC controllers into PWA state feedbacks using the explicit MPC techniques

[9], [10], indeed stabilizing PWA controllers are obtained with an accompanying Lyapunov function (often

being the value function of the MPC setup) proving the closed-loop stability. This Lyapunov function then

satisfies inequalities as in (6a) and

V (f(x,u(x))− V (x) ≤ −γ(‖x‖) (44)

for all x ∈ Xf , where γ is a K∞-function, and u : Xf → U is the explicit optimal MPC law. It is now of

interest to show under which conditions and how this nominal stability can be used to derive ISS using V as

an ISS Lyapunov function satisfying (16).

One such condition is the Lipschitz continuity of V , i.e., there exists a constant LV ≥ 0 such that for all

x, z ∈ Xf

|V (x)− V (z)| ≤ LV ‖x− z‖, (45)

together with Lipschitz continuity of the dynamics f in the control input u, i.e., there exists a constant Lf ≥ 0

such that for all x ∈ Xf and all u,v ∈ U,

‖f(x,u)− f(x,v)‖ ≤ Lf‖u− v‖, (46)

equation (16) can be inherited from (44). Indeed, under these assumptions we have for all x ∈ Xf and all e

with f(x,u(x) + e) ∈ Xf and u(x) + e ∈ U that

V (f(x,u(x) + e))− V (x)

= V (f(x,u(x) + e))− V (f(x,u(x)))

+ V (f(x,u(x)))− V (x)

≤ LV ‖f(x,u(x) + e)− f(x,u(x))‖ − γ(‖x‖)

≤ −γ(‖x‖) + LV Lf‖e‖, (47)

which is an inequality of the type (16) and thus the ISS property of (13) with respect to e (with E = R
nu )

is proven. This would be one technique to obtain inherent ISS using global Lipschitz constants. Note that

essentially what is needed to derive the above result is the existence of a σc ≥ 0 such that

V (f(x,u(x) + e))− V (f(x,u(x)) ≤ σc‖e‖ (48)

for all x ∈ Xf and all e ∈ R
nu with f(x,u(x) + e) ∈ Xf and u(x) + e ∈ U. Actually, the bound in (48)

might also be obtained for discontinuous V , see Remark 12 below.

Remark 9: To obtain ISS inherently in case of discontinuous systems and Lyapunov functions, use can be

made of techniques presented in e.g. [47], which yields ISS with respect to additive disturbances. Using the

method proposed in [32] and/or [33] these results can be converted in ISS with respect to e under certain

conditions.
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For two situations we will provide a more detailed computational approach leading to improved bounds in

the sense of smaller σc in (48) and eventually larger ρmax in (21):

1) PWA controllers as in (8) for PWA systems (23) (or linear systems) obtained from explicit LP-MPC, i.e.

based on linear costs (using 1 and/or ∞-norms) using [48]. In this case the value function V is a PWA

function as well.

2) PWA controllers as in (8) for linear systems, obtained from explicit QP-MPC i.e. based on quadratic

costs. In this case the value function V is a continuous piecewise quadratic (PWQ) function, see [10].

To explain the two computational methods, recall (21) – (22), which will play an important role in the sequel.

In particular, in the first case µ = 1 and the norm is ‖ · ‖∞ (or ‖ · ‖1) and in the second case µ = 2 and the

norm is ‖ · ‖2.

A. PWA value functions

When the MPC law u : Xf → U was designed to be stabilizing for the PWA system (23), often the value

function V : Xf → R+ is a Lyapunov function for the closed-loop dynamics xk+1 = f(xk,u(xk)) and (44)

holds. Let us now assume that V is a continuous PWA function given by

V (x) = Hix+ hi,x ∈ Pi (49)

for row vector Hi and scalar hi, i ∈ {1, . . . , nP}, and P is a polyhedral partition of Xf . We will consider

here the ∞-norm case, although for the 1-norm case the derivations are analogous.

Remark 10: For ease of exposition we assumed here that the partitions underlying V and u are the same.

If this is not the case, the calculations below can be adapted in a straightforward manner.

1) Global Lipschitz bounds: Similar to (47), in this case it is quite easy to see that

V (f(x,u(x) + e))− V (x) ≤ −γc‖x‖∞ + σc‖e‖∞, (50)

which is of the form (16b) (with ‖ · ‖∞ norms), when σc is taken to be

σc = max
i=1,...,nP

max
r=1,...,nS

‖B⊤
r H

⊤
i ‖1. (51)

Note that ‖B⊤
r H

⊤
i ‖1 is the induced ∞-norm of HiBr. Moreover, E = R

nu . Note that in proving (50) it

is important to observe that due to the fact that the switching in (23) is only dependent on the state variable

x, the right-hand side of (23) is continuous in the control variable u for fixed x, i.e. f(x,u(x) + e) =

Arx +Bru(x) +Bre + ar,when x ∈ Sr. Hence, to obtain (50) with σc as in (51) Lipschitz continuity of

the value function as in (49) is indeed sufficient.

2) Local Lipschitz bounds: Reconsidering (33), which is a local problem (only related to the region P̃j∩Pi),

one can imagine that it is possible to use more local versions of (21) with ρmax becoming a function depending

on the local region instead of using a global constant ρmax, which holds for all regions. Essentially, this idea is

best perceived by replacing the constant σc by the piecewise constant function σpc : Xf → R+ modifying (50)

to

V (f(x,u(x) + e))− V (x) ≤ −γc‖x‖∞ + σpc(x)‖e‖∞ (52)
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where now σpc satisfies σpc(x) ≤ σc for some σc > 0. In this way, locally the ISS constant σpc(x) can be

smaller than the global ISS constant σc as in e.g. (50). This is clearly beneficial in the approximation problem.

Indeed, (21) now becomes

‖ũ(x)− u(x)‖∞ ≤ ρmax,pc(x)‖x‖∞, (53)

with

ρmax,pc(x) =
γc − γ̃c

σpc(x)
≥

γc − γ̃c

σc

= ρmax. (54)

In this manner the approximation bound (21) becomes (53), which is less demanding and thus simpler PWA

functions can be used to satisfy this bound. Indeed, larger values of ρmax,pc(x) (than the worst-case global

bound ρmax) allow for larger values of ‖ũ(x)− u(x)‖, thereby enhancing feasibility of (41).

Interestingly, this local Lipschitz constant σpc(x) can be computed using an LP when V is a continuous

PWA function. Consider the region Γi,j,r , P̃j ∩ Pi ∩ Sr for some j ∈ {1, . . . , nP̃}, i ∈ {1, . . . , nP} and

r ∈ {1, . . . , nS}. To bound V (f(x,u(x) + e)) − V (f(x,u(x))) for x ∈ Γi,j,r and e ∈ E, we compute the

one-step reachable set from Γi,j,r,

Ri,j,r , Xf ∩
{
(Ar +BrF j)x+Bre+Brgj + ar | x ∈ Γi,j,r,F jx+ gj + e ∈ U, e ∈ E

}
, (55)

which is a polytopic set. Here E can be an arbitrarily chosen polytopic set with 0 in its interioir, providing a

rough bound on the approximation error e = ũ(x)− u(x), to restrict the search for the approximation law ũ

and to further bound Ri,j,r. A local Lipschitz constant σ
i,j,r
c of V on the set Ri,j,r satisfying

V (x)− V (z) ≤ σi,j,r
c ‖x− z‖∞ (56)

for all x, z ∈ Ri,j,r, can now be chosen according to

σi,j,r
c = max

i∈I(Ri,j,r,P)
‖B⊤

r H
⊤
i ‖1. (57)

Note that this choice complies with the piecewise constant function σpc : Xf → R+ given by σpc(x) = σ
i,j,r
c for

all x ∈ Γi,j,r. Note that indeed σpc(x) ≤ σc with σc as in (51). Hence, in the right-hand side of the inequality

in (33) we can replace ρmax by

ρi,j,rmax =
γc − γ̃c

σ
i,j,r
c

(58)

and carry out (33) for each set Γi,j,r instead of Λi,j = P̃j ∩ Pi. Alternatively, if it is undesirable to carry out

(33) for each Γi,j,r but only for each Λi,j , one can replace ρmax in (33) by

ρi,jmax = min
r∈I(P̃j∩Pi,S)

γc − γ̃c

σ
i,j,r
c

, (59)

which still yields better results than using the global bound in (51).

Remark 11: A further refinement is possible, leading to σpc(x) being smaller in some regions (at the cost of

more off-line computations) by considering Λs,l
ij ⊂ P̃j ∩ Pi and computing the constants σ•

c for each of these

subsets Λs,l
i,j of P̃j ∩ Pi instead of for Λi,j = P̃j ∩ Pi as above. This can be done similarly as outlined above

by using Λs,l
i,j ∩ Sr instead of Pi ∩ P̃j ∩ Sr.

Remark 12: Essentially this approach can also apply to discontinuous V as long as V is continuous on

{f(x,u(x) + e) ∈ Xf | e ∈ E,x ∈ Xf} , (60)
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as then (56) still holds. In other words, if the one-step reachability set for the perturbed system does not intersect

with discontinuities of V , this technique might still apply. See [47] for more details regarding this idea.

B. PWQ value functions

Let us consider a PWQ value function given by

V (x) = Vi(x) ,




x

1





⊤

Hi




x

1



 , x ∈ Pi (61)

for symmetric matrices

Hi =




H11

i H12
i

H21
i H22

i



 , i = 1, . . . , nP , (62)

which are decomposed according to
[

x⊤ 1
]⊤

, and P is a polytopic partition of Xf . In the explicit MPC

context this situation is studied in [10] for linear systems, i.e. f(x,u) = Ax+Bu for matrices A and B of

appropriate dimensions, and quadratic MPC costs.

Here we would like to provide an optimization-based method to obtain, for all x ∈ Xf and all e ∈ E, with

u(x) + e ∈ U,

V (f(x,u(x) + e))− V (x) ≤ −γc‖x‖
2
2 + σc‖e‖

2
2 (63)

preferably with a minimal ratio σc

γc
(cf. (21) and (22)). This optimization can be obtained by first computing

the set of all vectors
[

x⊤ e⊤
]⊤

for which the state x ∈ Pi ∩ P̃j is mapped to Pl, i.e.,

Θi,j,l =

{[

x⊤ e⊤
]⊤

∈ R
nx × R

nu

∣
∣
∣
∣
x ∈ Pi ∩ P̃j ,

(A+BF j)x+Be+Bgj ∈ Pl,F jx+ gj + e ∈ U,

e ∈ E

}

, (64)

which is polyhedral provided E is. In this case we can write

Θi,j,l =










x

e



 ∈ R
nx × R

nu

∣
∣
∣
∣
∣
∣
∣
∣
∣

M i,j,l








x

e

1







≥ 0







(65)

for some matrix M i,j,l of appropriate dimensions. Now (63) becomes

Vl((A+BF i)x+Bgi +Be)− Vi(x) ≤

− γi,j,l
c ‖x‖22 + σi,j,l

c ‖e‖22 (66)

for all
[

x⊤ e⊤
]⊤

∈ Θi,j,l, all i ∈ I(P̃j ,P), all j ∈ {1, . . . , nP̃}, and all l ∈ {1, . . . , nP}. Using the S–

procedure the quadratic constraint (66) is implied by the LMI (67) on page 19, where Ãi = A+BF i, for all

i ∈ I(P̃j ,P), all j ∈ {1, . . . , nP̃}, and all l ∈ {1, . . . , nP}.

Obviously, (67) is an LMI in the parameters γ
i,j,l
c > 0, σ

i,j,l
c ≥ 0 and the symmetric matrices U i,j,l with

nonnegative entries. Unfortunately, the objective function ρ
i,j,l
max =

γi,j,l
c

σ
i,j,l
c

that we try to maximize is not linear in

these parameters. Therefore, one has to fix one of the parameters, say γ
i,j,l
c and then minimize σ

i,j,l
c given the
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Ã
⊤

i H
11
l Ãi −H11

i + γ
i,j,l
c Inx,nx

Ã
⊤

i H
11
l B Ã

⊤

i (H
11
l Bgi +H12

l )−H12
i

B⊤H11
l Ãi B⊤H11

l B − σ
i,j,l
c Inu,nu

B⊤H11
l Bgi +B⊤H12

l

((Bgi)
⊤H11

l +H21
l )Ãi −H21

i (Bgi)
⊤H11

l B +H21
l B




Bgi

1





⊤

H l




Bgi

1



−H22
i











+M⊤
i,j,lU i,j,lM i,j,l � 0, (67)

LMI constraint (67). With a line search in γ
i,j,l
c the optimal value for ρ

i,j,l
max can be found. This optimization

has to be carried out for all regions Θi,j,l to get the global constants in (63) as

σc = max
i,j,l

σi,j,l
c and γc = min

i,j,l
γi,j,l

c . (68)

Remark 13: Instead of computing the global bounds as in (68), also here local values for γ
i,j,l
c and σ

i,j,l
c in

(63) can be used by solving the optimization problems for restricted regions P̃j ∩ Pi corresponding to (27).

Hence, local approximation bounds are obtained as discussed in Subsection VI-A for the case of PWA value

functions using local Lipschitz constants.

Remark 14: An optimization-based method as presented above for PWQ value functions can also be applied

to PWA value functions resulting in LP problems.

Remark 15: The optimization-based approach above can also apply in the case of discontinuous Lyapunov

functions V , provided finite values of σc and γc are found in (68).

VII. EXAMPLE

We will present an example to illustrate our approach on a PWA plant for the ∞-norm case. In particular, we

will approximate a stabilizing explicit PWA control law u obtained via explicit MPC, using the terminal cost

and constraint set method [46] and computed using the multi-parametric toolbox (MPT, [49], version 2.6.2).

To obtain an ISS LF, we will exploit Lipschitz continuity of the plant in u and of the value function, as also

discussed in Section VI.

The example consists of the following PWA system, proposed in [4], with

xk+1 = f(xk,uk) = Arxk +Bruk, when xk ∈ Sr, and r = 1, 2, (69)

A1 =




0.4 0.6928

−0.6928 0.4



 ,B1 =




0

1



 ,

A2 =




0.4 −0.6928

0.6928 0.4



 ,B2 =




0

1



 , (70)

constraint sets

U = {u ∈ R | −1 ≤ u ≤ 1} , (71a)

X =
{
x ∈ R

2 | −10 ≤ x ≤ 10
}
, (71b)
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and S1 =
{

x ∈ R
2 |

[

1 0
]

x ≥ 0
}

, S2 =
{

x ∈ R
2 |

[

1 0
]

x ≤ 0
}

. We append the standard MPC problem

with a terminal cost and terminal set such that the cost function becomes

J(xk,uk) = ‖PxN‖∞ +

N∑

l=1

‖Qxl‖∞ + ‖Rul‖∞, (72)

with weighting matrices

Q = I, (73)

R = 1. (74)

As said, we will use a terminal cost and set method [5], [46] and therefore will construct a matrix P and

feedback gains Kr, r = 1, 2, such that

‖P (Ar +BrKr)x‖∞ − ‖Px‖∞ + ‖Qx‖∞

+ ‖RKrx‖∞ ≤ 0, (75)

for all x ∈ R
nx and r = 1, 2. This inequality implies (among others) that ‖Px‖∞ is a Lyapunov function for

the switched linear system given by

xk+1 = (Ar +BrKr)xk, r = 1, 2. (76)

To find P and Kr satisfying (75), we use techniques presented in [5], resulting in

P =




8.8933 0.0265

0.1588 14.2315



 . (77)

Next, we take a level set of the Lyapunov function ‖Px‖∞, which also satisfies input and state constraints for

the auxiliary control law uk = Krxk, uk ∈ Sr, r = 1, 2, as the terminal set XN . To be precise, we search for

a ce ≥ 0 such that

XN = {x ∈ R
nx | ‖Px‖∞ ≤ ce} , (78a)

is inside the safe set {x ∈ X | Kx ∈ U}. In this case, ce = 13.3 is the maximum number defining such a set.

Using the parameters above, and a prediction horizon N = 7, we compute the corresponding explicit MPC

control law u, shown in Figure 3, having 277 regions. Note that the controller can be simplified to 57 regions

by merging regions containing the same control law. Using ideas in [12], the point location problem on this

irregular partition can be represented by a binary search tree with a maximum depth of 9 levels, where a single

boundary (i.e. a linear inequality) is evaluated at each node.

We will now apply the approach as discussed in Subsection VI-A using global Lipschitz continuity of the

value function. The value function V is a continuous PWA function and satisfies

V (f(x,u))− V (x) ≤ −‖Qx‖∞,x ∈ Xf (79)

as follows from the basic proof of the terminal cost and set method [46]. Using the idead in Subsection VI-A

we obtain for all x ∈ Xf and e ∈ E with f(x,u(x)) ∈ Xf

V (f(x,u(x) + e)− V (f(x,u)) ≤ σc‖e‖∞, (80)
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Fig. 3. The optimal control law u.

because of Lipschitz continuity of V , where σc can be computed as in (51). Adding (79) and (80) yields

V (f(x,u(x) + e))− V (x) ≤ −γc‖x‖∞ + σc‖e‖∞, (81)

with γc = 1 (since Q = I) and σc = 4.23. Hence, we can make use of Lemma 2 and the procedure described

in Section V (in short, solving (41)). Hereto, we program Algorithm V-G in Matlab with ρmax = 0.23 < γc

σc
and

make use of Yalmip [50] (version R14SP3) and glpkmex [51] (version 2.8) as interfaces to the GLPK linear

solver library [44] (version 4.38). We use a rectangular partition and binary refinement procedure (meaning

that each rectangle is split in 22 equally sized rectangles at the refinement step (step 12) of the algorithm in

Subsection V-G).

The resulting approximate control law ũ is displayed in Figure 4. It was calculated in 154 sec. (on a single

core of an Intel Core 2 Duo P8400, running 64-bit versions of Ubuntu 10.04 and Matlab R2009a), and has 55

regions over 5 levels of refinement. To verify the performance of this approximate control, simulations were

performed with a starting point x0 =
[

9.97 9.97
]⊤

close to the boundary of Xf , as displayed in Figure 5.

As can be seen, the closed-loop system responses of the high- and low-complexity controller are similar and

converge to the origin while remaining within the constraints, as guaranteed by our theory. Note that the original

optimal control law has 57 irregular regions (after simplification), whereas the approximate PWA state feedback

has 55 regular regions. Hence, the number of regions is comparable, but the approximate control law has the

advantage of regular regions being easier to implement on-line. To validate and demonstrate the latter statement,
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simulations are performed with Xilinx ISE 12.3 software for a Spartan 3 field-programmable gate array (FPGA).

The optimal control law with 57 regions is implemented using ideas in [12], [13], resulting in a binary tree with

a maximum depth of 9 levels. The approximate control law results in a quad-tree with a maximum depth of 5

levels. Moreover, the elementary operations performed at each node of the tree are two multiply-and-accumulate

(MAC) and one 12-bit comparison, versus two binary comparisons, for the high– versus low–complexity control

law, respectively. This results in the statistics shown in Table I, showing clearly the advantages of using the

more regular partition both in real-time evaluation time as well as memory requirements. In summary, closed-

loop simulations of the approximate control law show comparable behavior to those of the optimal control law

(see e.g. Figure 5), while leading to a four times faster on-line evaluation needing less than half the amount of

memory. It is expected that for problems of higher dimension the reduction in on-line evaluation time will be

even larger, thereby indicating the relevance of our method as an enabling step to bring explicit MPC also to

higher-dimensional fast applications.

Remark 16: While this comparison is based on FPGA implementation, similar advantages can be readily

expected for implementation on application-specific integrated circuit (ASIC)–based platforms, but also for

CPU– or GPU–based platforms, since the main rationale behind regular partitions in terms of efficient point

location and storage also applies there.
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Implementation # clock cycles # 12-bit memory cells

Exact optimal (u) 36 396

Approximate (ũ) 9 165

TABLE I

COMPARISON OF SIMULATIONS OF FPGA IMPLEMENTATIONS

VIII. CONCLUSION

In this paper we have presented a novel approximation method for PWA control laws converting high-

complexity controllers into low-complexity controllers. As a particular application domain of the presented

techniques we envision explicit MPC controllers that under certain conditions result in PWA control laws having

general irregular partitions, which are often prohibitively complex (in terms of on-line computations and/or

memory required for evaluation) for usage in the context of fast or large-scale systems. From an implementation

point of view it is therefore desirable to have low-complexity controllers, but still having guarantees with respect

to closed-loop stability and constraint satisfaction. In this paper, we therefore searched for approximate PWA

controllers that are defined over partitions with less regions and/or regions with a more regular shape, enhancing

fast and efficient on-line evaluation.

The main rationale behind the new approximation method presented in this paper is the concept of input-

to-state stability with respect to approximation errors. Based on this concept, for which we have provided two

computational methods to derive it from nominal stability, we conceived bounds on the approximation error
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between the original high-complexity PWA control law and the approximate low-complexity state feedback

preserving closed-loop stability. These stability bounds are converted into semidefinite programs (LMIs) if

2–norms are used and into linear programming (LP) problems in case of 1,∞–norms. Consequently, in the

former case constrained LMI problems and in the latter LP feasibility problems have to be solved. Interestingly,

the conditions have a local region-dependent character, which naturally allows for an automated refinement

procedure to allow more flexible PWA control functions in regions where this is necessary. Hence, our method

can start from a very coarse partition of the feasible set, which is automatically refined in regions where this is

necessary to guarantee the conditions for stability and constraint satisfaction. From this perspective, our method

synthesizes both the controller gains as well as the partition itself. This refinement inherently creates a multiscale

partition with a corresponding search tree, which in many cases can be exploited to make point location even

more efficient. As a consequence, once an ISS Lyapunov function with respect to the approximation error

is available, the presented methods apply to PWA systems and PWA controllers, while still providing a priori

guarantees on closed-loop stability and constraint satisfaction. A numerical example illustrated the main aspects

of our new approximation method.

Future work involves the question how to obtain PWA controllers that are ISS with respect to control

approximation errors by direct design (as opposed to exploiting inherent ISS as obtained from nominal stability).

First ideas for answering these questions have already been noted in Remark 2. In addition, user-friendly

numerical tools will be developed in order to implement the proposed methods in an efficient manner.
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[49] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox (MPT),” March 2006. [Online]. Available:

http://control.ee.ethz.ch/ mpt/
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