PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 10, Pages 2907–2909 S 0002-9939(00)05362-4 Article electronically published on March 2, 2000

APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS ON ARBITRARY CLOSED, CONVEX SETS IN A BANACH SPACE

K. P. R. SASTRY AND G. V. R. BABU

(Communicated by Dale Alspach)

ABSTRACT. We show that any fixed point of a Lipschitzian, strictly pseudocontractive mapping T on a closed, convex subset K of a Banach space Xis necessarily unique, and may be norm approximated by an iterative procedure. Our argument provides a convergence rate estimate and removes the boundedness assumption on K, generalizing theorems of Liu.

Let $(X, \|\cdot\|)$ be a Banach space. Let K be a non-empty closed, convex subset of X and $T: K \to K$. We will assume that T is *Lipschitzian*, i.e. there exists L > 0 such that

$$||T(x) - T(y)|| \le L ||x - y||,$$

for all $x, y \in K$. Of course, we are most interested in the case where $L \geq 1$.

We also assume that T is strictly pseudocontractive. Following Liu [1] this may be stated as: there exists $k \in (0, 1)$ for which

$$||x - y|| \le ||x - y + r[(I - T - kI)x - (I - T - kI)y]||,$$

for all r > 0 and all $x, y \in K$.

Throughout, N will denote the set of positive integers.

The following results generalize Liu [1, Theorems 1 and 2], because we remove the assumption that K is bounded and we provide a general convergence rate estimate. We note in passing, however, that the proof of Theorem 2 of Liu [1] does not use the stated boundedness assumption. Our results still extend this enhanced version of Liu [1, Theorem 2], by improving the convergence rate estimate.

Theorem 1. Let $(X, \|\cdot\|), K, T, L$ and k be as described above. Let $q \in K$ be a fixed point of T. Suppose that $(\alpha_n)_{n \in \mathbb{N}}$ is a sequence in (0, 1] such that for some $\eta \in (0, k)$, for all $n \in \mathbb{N}$,

$$\alpha_n \le \frac{k-\eta}{(L+1)(L+2-k)}; \quad while \sum_{n=1}^{\infty} \alpha_n = \infty.$$

O2000 American Mathematical Society

Received by the editors May 4, 1998 and, in revised form, November 2, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47H17.

Key words and phrases. Banach space, Lipschitzian mapping, strictly pseudocontractive mapping, fixing points.

This research was supported by UGC, India, Grant No. U4/4997/97-98.

Fix $x_1 \in K$. Define, for all $n \in \mathbf{N}$,

$$x_{n+1} := (1 - \alpha_n)x_n + \alpha_n T(x_n)$$

Then there exists $(\beta_n)_{n \in \mathbf{N}}$, a sequence in (0,1) with each $\beta_n \ge (\eta/(1+k))\alpha_n$, such that for all $n \in \mathbf{N}$,

$$||x_{n+1} - q|| \le \prod_{j=1}^{n} (1 - \beta_j) ||x_1 - q||.$$

In particular, $(x_n)_{n \in \mathbb{N}}$ converges strongly to q, and q is the unique fixed point of T.

Proof. Define $\delta_n := ||x_n - q||$ for each $n \in \mathbb{N}$. Consider any $n \in \mathbb{N}$. Just as in the proof of Liu [1, Theorem 1], it follows that

(1)
$$\delta_n \ge (1+\alpha_n)\delta_{n+1} - (1-k)\alpha_n\delta_n - (2-k)\alpha_n^2 ||x_n - T(x_n)|| - L(L+1)\alpha_n^2\delta_n$$
.
Now, as noted in the proof of Liu [1, Theorem 2],

(2)
$$||x_n - T(x_n)|| \le (L+1)\delta_n.$$

Thus, from (1) and (2) we see that

(3)
$$\delta_{n+1} \le \frac{A_n}{B_n} \delta_n,$$

where $A_n := 1 + (1-k)\alpha_n + (2-k+L)(L+1)\alpha_n^2$ and $B_n := 1 + \alpha_n$. Define $\beta_n := 1 - A_n/B_n$. Then

$$\beta_n = \frac{\alpha_n}{1+a_n} [k - (L+1)(L+2-k)\alpha_n] \ge \frac{\alpha_n}{1+\alpha_n} \eta \ge \frac{\eta}{1+k}\alpha_n.$$

Further, from (3) we have

$$\delta_{n+1} \leq \frac{A_n}{B_n} \cdots \frac{A_1}{B_1} \delta_1 = \prod_{j=1}^n (1-\beta_j) \delta_1.$$

Clearly, $\sum_{n=1}^{\infty} \beta_n = \infty$, and so $\prod_{j=1}^{\infty} (1 - \beta_j) = 0$. Thus $x_n \to q$ in norm as $n \to \infty$, and q is the unique fixed point of T.

Immediately we have two corollaries.

Corollary 1. Let $(X, \|\cdot\|), K, T, L, k, q$ and $(x_n)_{n \in \mathbb{N}}$ be as in the hypotheses of Theorem 1, where $(\alpha_n)_{n \in \mathbb{N}}$ is a sequence in (0,1] such that $\sum_{n=1}^{\infty} \alpha_n = \infty$; and $\alpha_n \to 0$. Then $(x_n)_{n \in \mathbb{N}}$ converges strongly to q, and q is the unique fixed point of T.

Corollary 2. Let $(X, \|\cdot\|), K, T, L, k, q, \eta$ and $(x_n)_{n \in \mathbb{N}}$ be as in the hypotheses of Theorem 1, where $(\alpha_n)_{n \in \mathbb{N}}$ is the sequence in (0, 1] given for every $n \in \mathbb{N}$ by

$$\alpha_n := \frac{k - \eta}{(L+1)(L+2-k)}$$

Then we have the following geometric convergence rate estimate for $(x_n)_{n \in \mathbf{N}}$: for all $n \in \mathbf{N}$,

$$||x_{n+1} - q|| \le \rho^n ||x_1 - q||,$$

where

$$\rho := 1 - \beta_1 = 1 - \eta \frac{\alpha_1}{1 + \alpha_1}.$$

2908

Finally, we remark that the choice $\eta := k/2$ yields

$$\rho = \rho_0 := 1 - \frac{k^2}{4(L+1)(L+2-k) + 2k}.$$

The minimal ρ value of Corollary 2 as η varies over (0, k) is less than or equal to ρ_0 . Thus it is less than the ρ value of Liu [1, Theorem 2]:

$$\rho = 1 - \frac{k^2}{4(3+3L+L^2)}.$$

Acknowledgements

We would like to thank the referee for his valuable comments and suggestions which helped in shaping our paper to the present form.

Reference

 Liwei Liu, Approximation of fixed points of a strictly pseudocontractive mapping, Proc. Amer. Math. Soc. 125 (1997), 1363–1366. MR 98b:47074

Department of Mathematics, Andhra University, Visakhapatnam 530 003, India