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APPROXIMATION OF FIXED POINTS
OF STRICTLY PSEUDOCONTRACTIVE MAPPINGS

ON ARBITRARY CLOSED, CONVEX SETS
IN A BANACH SPACE

K. P. R. SASTRY AND G. V. R. BABU

(Communicated by Dale Alspach)

Abstract. We show that any fixed point of a Lipschitzian, strictly pseudo-
contractive mapping T on a closed, convex subset K of a Banach space X
is necessarily unique, and may be norm approximated by an iterative proce-
dure. Our argument provides a convergence rate estimate and removes the
boundedness assumption on K, generalizing theorems of Liu.

Let (X, ‖ · ‖) be a Banach space. Let K be a non-empty closed, convex subset of
X and T : K → K. We will assume that T is Lipschitzian, i.e. there exists L > 0
such that

‖T (x)− T (y)‖ ≤ L‖x− y‖,
for all x, y ∈ K. Of course, we are most interested in the case where L ≥ 1.

We also assume that T is strictly pseudocontractive. Following Liu [1] this may
be stated as: there exists k ∈ (0, 1) for which

‖x− y‖ ≤ ‖x− y + r[(I − T − kI)x− (I − T − kI)y]‖,
for all r > 0 and all x, y ∈ K.

Throughout, N will denote the set of positive integers.
The following results generalize Liu [1, Theorems 1 and 2], because we remove the

assumption that K is bounded and we provide a general convergence rate estimate.
We note in passing, however, that the proof of Theorem 2 of Liu [1] does not use
the stated boundedness assumption. Our results still extend this enhanced version
of Liu [1, Theorem 2], by improving the convergence rate estimate.

Theorem 1. Let (X, ‖ · ‖),K, T, L and k be as described above. Let q ∈ K be a
fixed point of T . Suppose that (αn)n∈N is a sequence in (0, 1] such that for some
η ∈ (0, k), for all n ∈ N,

αn ≤
k − η

(L+ 1)(L+ 2− k)
; while

∞∑
n=1

αn =∞.
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Fix x1 ∈ K. Define, for all n ∈ N,

xn+1 := (1− αn)xn + αnT (xn).

Then there exists (βn)n∈N, a sequence in (0, 1) with each βn ≥ (η/(1 + k))αn, such
that for all n ∈ N,

‖xn+1 − q‖ ≤
n∏
j=1

(1− βj)‖x1 − q‖.

In particular, (xn)n∈N converges strongly to q, and q is the unique fixed point of T .

Proof. Define δn := ‖xn − q‖ for each n ∈ N. Consider any n ∈ N. Just as in the
proof of Liu [1, Theorem 1], it follows that

δn ≥ (1 + αn)δn+1 − (1− k)αnδn − (2− k)α2
n‖xn − T (xn)‖ − L(L+ 1)α2

nδn.(1)

Now, as noted in the proof of Liu [1, Theorem 2],

‖xn − T (xn)‖ ≤ (L+ 1)δn.(2)

Thus, from (1) and (2) we see that

δn+1 ≤
An
Bn

δn,(3)

where An := 1 + (1 − k)αn + (2 − k + L)(L + 1)α2
n and Bn := 1 + αn. Define

βn := 1−An/Bn. Then

βn =
αn

1 + an
[k − (L+ 1)(L+ 2− k)αn] ≥ αn

1 + αn
η ≥ η

1 + k
αn.

Further, from (3) we have

δn+1 ≤
An
Bn
· · · · · A1

B1
δ1 =

n∏
j=1

(1 − βj)δ1.

Clearly,
∑∞

n=1 βn =∞, and so
∏∞
j=1(1−βj) = 0. Thus xn → q in norm as n→∞,

and q is the unique fixed point of T .

Immediately we have two corollaries.

Corollary 1. Let (X, ‖ · ‖),K, T, L, k, q and (xn)n∈N be as in the hypotheses of
Theorem 1, where (αn)n∈N is a sequence in (0, 1] such that

∑∞
n=1 αn = ∞; and

αn → 0. Then (xn)n∈N converges strongly to q, and q is the unique fixed point of
T .

Corollary 2. Let (X, ‖ · ‖),K, T, L, k, q, η and (xn)n∈N be as in the hypotheses of
Theorem 1, where (αn)n∈N is the sequence in (0, 1] given for every n ∈ N by

αn :=
k − η

(L+ 1)(L+ 2− k)
.

Then we have the following geometric convergence rate estimate for (xn)n∈N: for
all n ∈ N,

‖xn+1 − q‖ ≤ ρn‖x1 − q‖,
where

ρ := 1− β1 = 1− η α1

1 + α1
.
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Finally, we remark that the choice η := k/2 yields

ρ = ρ0 := 1− k2

4(L+ 1)(L+ 2− k) + 2k
.

The minimal ρ value of Corollary 2 as η varies over (0, k) is less than or equal to
ρ0. Thus it is less than the ρ value of Liu [1, Theorem 2]:

ρ = 1− k2

4(3 + 3L+ L2)
.
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