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A b s t r a c t  

One of the central problems of modern mathematical 

approximation theory is to approximate functions, or 

signals, concisely, with elements from a large candidate 

set called a dictionary. Formally, we are given a signal 

A • ~N and a dictionary "D = {¢i}iEs of unit vectors 

that span ~N. A representation R of B terms for 

input A • ~ v  is a linear combination of dictionary 

elements, R = EiehOtiCi, for ¢i • T) and some 
A, IAI _< B. Typically, B << N, so that R is a 

concise approximation to signal A. The error of the 

representation indicates by how well it approximates A, 

and is given by IIA- Rll2 = x /Et  IA[ t] - R[t]l 2" The 
problem is to find the best B-term representation, i.e., 
find a R that  minimizes IIA - RH2- A dictionary may 

be redundant in the sense that there is more than one 

possible exact representation for A, i.e., II)l > N = 

dim(IRN). Redundant dictionaries are used because, 
both theoretically and in practice, for important classes 

of signals, as the size of a dictionary increases, the error 

and the conciseness of the approximations improve. 

We present the first known efficient algorithm for 

finding a provably approximate representation for an 

input signal over redundant dictionaries. We identify 

and focus on redundant dictionaries with small coher- 

ence (ie., vectors are nearly orthogonal). We present 

an algorithm that preprocesses any such dictionary in 

time and space polynomial in IDI, and obtains an 1 + e 

approximate representation of the given signal in time 

nearly linear in signal size N and polylogarithmic in 

I/)l; by contrast, most algorithms in the literature re- 

quire 12(I/)l) time, and, yet, provide no provable bounds. 

The technical crux of our result is our proof that two 

commonly used local search techniques, when combined 

appropriately, gives a provably near-optimal signal rep- 

resentation over redundant dictionaries with small co- 

herence. Our result immediately applies to several spe- 

cific redundant dictionaries considered by the domain 

experts thus far. In addition, we present new redundant 

dictionaries which have small coherence (and therefore 

- - - - ' M o s T  Labs--Research, 180 Park Avenue, Florham Park, NJ 
07932 USA, {agilbert, muthu, mstrauss}@research.att, corn 

are amenable to our algorithms) and yet have signifi- 

cantly large sizes, thereby adding to the redundant dic- 

tionary construction literature. 

Work with redundant dictionaries forms the emerg- 

ing field of highly nonlinear approximation theory. We 

have presented algorithmic results for some of the most 

basic problems in this area, but other mathematical and 

algorithmic questions remain to be explored. 

1 I n t r o d u c t i o n  

1.1 B a c k g r o u n d  o n  M a t h e m a t i c a l  A p p r o x i m a -  

t i o n  T h e o r y  The main problem of mathematical ap- 

proximation theory is to approximate functions com- 

pactly, i.e., in small space, or using a "small number 

of terms." Formally, we are given a signal A E R ~v 

and a dictionary :D = {¢i}iEI of unit vectors that 

span IR N. A representation R of B terms for input 

A E R N is a linear combination of dictionary elements, 

R = EieAOtiq)i, for ¢i • i0 and some A, IAI < B. 
Typically, B << N. The error of the representation in- 

dicates how well it approximates A. Following the most 

common practice, we use e 2 norm: the error of approx- 

imation is IIA - Rll2 = v /Et  IA[t] - R[t]l 2, henceforth 

written tlA - Rll, or (equivalently) its square. 
Mathematical approximation theory has applica- 

tions in numerical computations, e.g., adaptive PDE 

solvers, audio signal compression, image compression 

and statistical estimation with its applications to classi- 

fication. It is a rich area with significant mathematical 

achievements and successful applications, both classical 

and novel; see [8], [9] for good surveys, and The Journal 

of Approximation Theory [16] and Constructive Approx- 

imation [2] for current mathematical developments. 

There are two approaches to mathematical approx- 

imation theory: 

• Linear Approximation Theory. We approximate 

fimctions using a fixed linear subspace of the dic- 

tionary independent of the signal. For example, if 

the dictionary is the Fourier basis, a B-term ap- 

proximation of A is given by the first (lowest) B 

frequencies of its Fourier expansion. 

• Nonlinear Approximation Theory. We seek the 
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best or optimal B-term approximation, i.e., I t  with 

IAI = B such that  I I A -  RII is minimized. In this 

setting, the terms used depend on the signal and 

do not come from a fixed subspace. There axe two 

further variations. In standard nonlinear approxi- 

mation theory, the dictionary is an orthonormal ba- 

sis of size N and each function has a unique exact 

representation I t .  It is easy to prove by Parseval's 

equality that  the best B term representation com- 

prises the B largest I(A, ¢)1 over ¢ E 7). In highly 

nonlinear approximation theory, the dictionary is 

redundant and is larger than N.  Signals have more 

than one exact representation over l)  and the best 

collection of B terms need not be the B largest. 

Generally, one wants to relate the quality of a rep- 

resentation to other parameters, such as B, the number 

of terms in the representation (a central mathematical 

question) or computational cost (in terms of N,  B and 

17)1, a central algorithmic question). There is consider- 

able mathematical analysis of linear and standard non- 

linear approximation theory and the algorithmic issues 

in both are fairly straightforward. Generalizing from 

linear to standard non-linear to highly-non-linear the- 

ory yields much better  representations, but pose much 

harder mathematical and algorithmic challenges. "Re- 

dundancy on the one hand offers much promise ]or 

greater e~iciency in terms o] approximation rate, but 

on the other hand, gives rise to highly nontrivial theo- 

retical and practical problems," (quoted from [23]). In 

fact, the mathematics of the theory of highly nonlinear 

approximation is only now emerging, and algorithmic 

complexity of these problems is wide open. The subject 

of this paper is the central algorithmic issue in highly 

non-linear approximation theory: for a given function 

A, parameter  B and a prespecified dictionary :D, find- 

ing the optimal representation of B terms. 

1.2 S t a t e  o f  t h e  A r t  The general highly-non-linear 

approximation problem of our interest is NP-hard [7]. In 

fact, the proof there implicitly shows that  the problem 

is NP-hard even to determine whether the optimal 

error is zero for the given B; hence, unless P=NP,  no 

polynomial time algorithm exists that  approximates the 

best B-term representation over an arbitrary dictionary 

even if we wish only to approximate the optimal error 

by a factor, however large. 

As a consequence, research in nonlinear approxi- 

mation theory has mostly focused on specific dictionar- 

ies. Mathematicians have studied specific dictionaries--  

spikes and sinusoids [4], wavelet packets [5, 25, 24], 

frames [6], t ime/frequency tilings with algebraic hier- 

archical structure [19]--and presented individual algo- 

rithms (some provable, some heuristic) for construct- 

ing the best B-term approximation for any given func- 

tion. Also, certain "mathematical recipes" such as al- 

gorithms for infinite dimensional Hilbert and Banach 

spaces have been proposed [22], [23]. Save these excep- 

tions, no provable, algorithmic results--running time 

for finding provably approximate B-term representa- 

tions for inputs over general redundant dictionaries--  

are currently known. 

1.3 Local Search Heuris t ics  Most of the heuristic 

algorithms for general redundant dictionaries are local 

search methods. We briefly summarize them because 

they are relevant to our results. There are two common 

approaches. 

• Find the j such that  ¢ = Cj maximizes (A - R ,  ¢) 

over ¢ E :D. Update t t  by R +- R + (A - R,  ¢) ¢, 

and repeat a total of B times. More generally, find 

the set A of B t < B of j ' s  with the largest dot 

products, and put R ~-- R +  ~ j e A  ( A , ¢ j ) C j .  We 
call this technique Be-fold matching pursuit, B *- 

MP, for B I >_ 1. 

• Maintain a small subset A C_ 7). Find the j such 

that  ¢ = Cj maximizes ( A - R , ¢ )  over ¢ E T), 

and update A ~- A U {¢j}. Update R to be 

the optimal representation of the signal over the 

subspace spanned by (¢  : ¢ E A}, and repeat this 

process a total of B times. This technique is called 

orthogonal matching pursuit, OMP. 

Both these approaches have been studied exten- 

sively in the literature (MP appears in [18] and OMP 

appears in [21]). However, there are two drawbacks in 

the state of art,  as follows: 

The first issue is of proving bounds on the error 

of the solution. 1 If the dictionary is an orthonormal 

basis, then the local search techniques above are equiv- 

alent and provably find the global optimum. In general, 

however, these methods do not provide any useful ap- 

proximation results for finding the best representation 

for input functions (these are polynomial time heuristics 

for the NP-hard problem). Such an approximation re- 

sult is not known even for special redundant dictionaries 

studied in the literature. 

The second issue is of providing an efficient imple- 

mentation, in particular, for performing each step of 

In the mathematical literature, the usual guarantee proved-- 
if any bound at all is given--is that the error of the representation 
drops off at a prescribed rate as a function of B, for all signals in 
a given input class. From an algorithmic viewpoint such as ours, 
we wish to compare the error of the algorithms' output to the 
error of the optimal representation, whatever the optimal error 
may be, for a given signal and B. This viewpoint appears to be 
novel in mathematical approximation theory literature. 
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the local search. All known algorithms require at least 

it(l:DI) time. Indeed, the general problem of finding 

the ¢ from the dictionary T~ that has the largest inner 

product with the signal is equivalent to the Farthest 

Neighbors Problem, which faces the same "dimensional- 

ity bottleneck" as the Nearest Neighbors Problem [14]- 

[15], [17]. Designing efficient algorithms for this prob- 

lem is still an open challenge, in particular, since the 

local search heuristics rely on finding the optimal such 

¢'s. This is a serious drawback because the community 

of researchers in highly nonlinear approximation theory 

are applied mathematicians who care about practical, 

implementable algorithms. 

1.4 Our Cont r ibut ions  One might be tempted to 

study the problem assuming the dictionary is arbitrary 

so as to be general. However, an arbitrary dictionary 

is not a well-motivated choice. We would like to make 

the dictionaries as large as possible to achieve as high 

a rate of compression as possible; however, for specific 

classes of applications (e.g., encoding low-quality speech 

signals, compressing high motion video), the salient fea- 

tures of these signals are well-described by specific in- 

herently suitable dictionaries. These dictionaries ex- 

hibit certain a naturalness for these applications such 

as smoothness, oscillatory behavior, etc. Redundant 

dictionaries must, therefore, balance the two needs-- 

naturalness and succinctness of vectors on one hand and 
size on the other--and designing them is sometimes an 

art. We would like our algorithmic results to apply to 

largest number of redundant dictionaries proposed by 

domain experts in this area. 

Further, it is natural to consider the scenario when 

the dictionary is provided ahead of time for preprocess- 

ing. The dictionary is typically large, say, of size it(N). 

Our goal is to process the input signal and determine a 

(near) optimal representation very efficiently. In partic- 

ular, we would prefer to avoid scanning the dictionary 

entirely while processing the input signal. 

We identify and focus on redundant dictionaries of 

small coherence. A it-coherent dictionary/) has coher- 
ence it, for 0 < it < 1, if 1(¢1,¢2) 1 ~ it for all dis- 
tinct ¢1, ¢2 E :D. A typical way to generate redundant 

dictionaries in practice is to take several orthonormal 

bases and combine them, and one gets the most out 

of this combination if the bases were as orthogonal to 
each other as possible. (Using sinusoids and spikes, as 

in [11], is an example.) Dictionaries generated in this 

manner have small coherence, thus motivating our work 

here. Coherence has been discussed as an important 

notion in the context of local search heuristics in the 

literature [18], but we appear to the first to formalize 
the concept of coherent dictionaries and study the algo- 

rithmic problem of representing function near-optimally 

over it-coherent dictionaries. 

We make two contributions. Recall that the prob- 

lem is, given input signal A and parameter B, determine 

the optimal B-term representation R over dictionary T~ 

of coherence it, i.e., such that ]IA - RI] is minimized. 

* We present an algorithm that for any e, 
itB 2 = O(e), finds an (1 + e)-factor approx- 

imation to the optimal representation in time 2 

N(Blog(liDI)/e)°(1); the dictionary preprocessing 

takes time and space polynomial in ]T~ I. 

This is the first known provably approximate result 

for approximating a function under any redundant 

dictionary with small coherence O(e/B2). In addi- 

tion, it is very fast, taking time nearly linear in the 

input size modulo the polylogarithmic factor. This 

is an exponential speedup over previous heuristics 

that take time it(I/)l) (recall that for redundant 

dictionaries, IT)I dominates N). For the dictionary 

which consists of spikes and sinusoids, our approach 

specializes to give an algorithm that finds a near- 

optimal representation in O(N 2) time, improving 

the previous best [4] of O(N 3'5) time via Linear 

Programming. 

• We explore the concept of it-coherent redundant 

dictionaries further, adding to the growing knowl- 
edge of redundant dictionary construction [3], [10]- 

[11]. 

Known redundant dictionaries are of size only 

O(N) or O(Nlog(N)); it is desirable to con- 

struct larger dictionaries if "natural" proper- 

ties of a specific application can still be cap- 

tured. We consider image processing applica- 

tions and propose a dictionary of significantly 
larger size: N3/2/B 6, that we call segmentlets. 
This generalizes a number of known natural 

constructions in that area [3], [10]-[11], such 

as beamlets, wedgelets, and ridgelets. By de- 

sign, segmentlets are it-coherent dictionaries 

for small it and hence our main algorithmic 

result applies to them too. 

Without focusing on any application, we fo- 

cus on constructing large redundant dictio- 

naries of small coherence. Using the Nisan- 

Wigderson [20] combinatorial design, we ob- 

tain such a dictionary of size exponential in 

2We assume tha t  entries in A are bounded by N °(D. The 

general result requires an additional factor in t ime and space 

polynomial in the number  of bits in entries of A. 
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N. We note that  there are other combinato- 

rial design that  provide such large dictionar- 

ies with small coherence. However, this one 

can be constructed using small-space which 

may prove valuable for some application. Our 

motivation for including the Nisan-Wigderson 

combinatorial design was primarily to show 

that  even though we focus on small conher- 

ence, nontrivial and exponentially large dic- 

tionaries can still be constructed. 

The first category of result above is our main result, 

presented in §2. All our results on specific redundant 

dictionaries can be found in §3. 

1.5 T e c h n i c a l  O v e r v i e w  Our algorithm is two- 

phased local search, OMP followed by MP. The crux of 

our technical contribution is our proof that  in O(B/e )  

iterations, our algorithm converges to within 1 + e of 

the optimal representation. At each iteration, this re- 

quires one to determine the dictionary element ¢5 whose 

dot product has magnitude at least (1 - r/) times the 

largest dot product magnitude, and it suffices to esti- 

mate C A, ¢5) to within ~ IIA[I, additively, for some ap- 

propriate r I. We are able to implement each such it- 

eration using the approximate nearest neighbors data  

structures that  have been designed recently. That  gives 

the overall result. 

There are some similarities between this work and 

our earlier work on finding near-optimal representa- 

tions of functions over Fourier [13] and Haar wavelet 

bases [12], but also some crucial differences. Both 

Fourier and wavelet bases are non-redundant dictionar- 

ies, and so efficient algorithms already existed for find- 

ing even optimal representations over them. The em- 

phasis in the previous work was on working under ad- 

ditional constraints: using only small (polylogarithmic) 

space and time, a la sampling or streaming. In our case 

here with redundant dictionaries, even given polynomial 

time and space, no previous result was known for opti- 

mal (or near-optimal) representation of functions. We 

do not focus on polylogarthmic space/t ime models, and 

leave that  additional complication open. From a techni- 

cal point of view, either OMP or MP by itself will suffice 

if we wanted to specialize our result for non-redundant 

basis such as Fourier or Hmur wavelet; furthermore, one 

would not need approximate nearest neighbors. Thus, 

both the proof of approximation as well as the algo- 

rithms are more sophisticated for redundant dictionar- 

ies. 

2 R e p r e s e n t a t i o n  o v e r  R e d u n d a n t  D i c t i o n a r i e s  

We consider vectors over ll~ N for simplicity; everything 

in this paper can be extended to C N in an obvious way. 

2.1 S m a l l  C o h e r e n c e  D i c t i o n a r y  

DEFINITION 2.1. A set :D = {¢i} of elements from l~ N 

is a dictionary with coherence It if span(/)) = II~ N, 

I1¢ill = 1 for all i, and, for all distinct i and j ,  

I ¢ 5 )  [ -< It. 

The definition of dictionary gives a condition only 

on pairs of dictionary elements. The following lemma 

gives an implication to larger sets of vectors. 

LEMMA 2.1. Let ¢0,¢1, - - .  , ¢ s  be an arbitrary set of 

B + 1 vectors from a dictionary of coherence It. We 

have 

I. I f  itB < 1, then {¢1,- . .  ,¢B} is independent. 

2. I f  i tB < 1/2, then the projection oleo onto the span 

of the other B vectors has norm at most v / ~ ) .  

3. I f  i tB < 1/2, then there exists a set {~'i : i = 

1 , . . .  ,B} of vectors such that: 

(a) The ~b's form an orthonormal system. 

(b) span(~bl,.. .  ,~bB) = span(C1, . . .  , CB). 

(c) I1¢, - ¢,112 _< s i t  2 B .  

Proof. First consider taking any linear combination 

I I of We have _> E :i 

_ < ItB~i=le ai2 by the 

Cauchy-Schwarz inequality, so 

lie I (2.1) a i¢ i  > (1 - ItB) E a~" 
i = 1  i=1 

This gives the first statement. 

The length of the projection 7r0 of ¢0 onto 

span(C1,. . .  ,¢B) is equal to the dot product (Tr0,uo) 

of 7r0 with the unit vector u0 along 7r0, which 

also equals (¢0,u0/. By the Cauchy-Schwarz in- 

equality, this is the maximum, over all unit vec- 

tors u • span(C1, . . .  ,~bB), of (¢0, u). Write u = 

~ 2 ~  2 = 1; note that  the denom- II~i~i~'H where ~ i c q  

inator is at least ~ / 1 - # B ,  by the above. Thus 

ii oll 2 • 2 • • lS at most maxlMl:=l (u, ¢o) , whmh xs at most 

max ( ~ i a i ¢ i , ¢ o )  2 < max ( ~ i a i ¢ i , ¢ o )  2 < 

max ( ~ i i t ~ i ) 2  < It2B < 2it2B, using the 
~ ,a~=l  1 - # B  - 1 - # B  - 

Cauchy-Schwarz inequality. This gives the second state- 

ment. 
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As for the third statement, let ¢~ be ¢1 -7rl ,  where 
7rl is the projection of ¢1 onto the span of {¢2,. -- , CB}. 

Thus g2~ is orthogonal to {¢2, .- .  , CB} and 

span(CA, ¢2, Ca,. • • , CB) = span(C1, ¢2, ¢3,-- • , CB)- 

By the above, 1]¢~-¢1112 = HTrln 2 _< 2# 2B. Let 

~31 = ~ -  Since 1]¢~112 + 1]7r11[2 : 1]¢11]2 = 1, it 

follows that 1 - 2#2B < I1¢1112 <- 1, so V/1 - 2#2B < 

1]¢~ 1] _< 1, and ][Rill --~3~ 1[ ~ 1 - ~ 1  - 2 # 2 B  < 2#2B. 

Since I]d2~ - ¢1 I] _< v/2-1# 2B, it follows that I]¢1 - ¢1 II _< 

2 ~  + 2#2B _< 2Vf2-#2B, using the fact that x 2 < x 

f o r 0 < x <  1. 

Recursively find ¢ 2 , - . - , ¢ B  that are orthogonal, 

have the same span as ¢2 , . . .  ,¢B, and such that 
I1¢~ - ¢~112 _< 8#2( B - 1) _< 8#2B. 

Given {¢i} C_ ~D as above, we say that {¢i} is an 

orthogonalization of {~bi}. 

2.2 Overa l l  A l g o r i t h m  Our overall algorithm is 

as follows. Starting with the zero representation 

R1 = 0, we perform OMP (the "error phase") until 

HA - Rill 2 _< 64B IIA - PLoptH 2. Suppose that R1 con- 
sists of B '  < B terms. We then perform a single round 

of MP (the "energy phase") to find a near-best ( B -  B~) - 
term representation R2 to A - R1. We then output 

RI + R2. 
More quantitatively, we proceed as follows. Below, 

we first consider the energy phase. That is, given a 

signal A, we show how to find a representation R 

for A with square error ]l A - R H  2 < ] ] A -  l:~opt][ 2 + 

C I[AI]2; i.e., worse than optimal by a small multiple 
of the energy of the signal. Our ultimate goal is the 

stronger statement, II A - RI[ 2 _< (1 + e)I[A - Ropt [I 2 = 

I I A -  Roptl] 2 + e II A -Ropt l [  2, where ~ and d depend 
on B and #. To do that, we show a modest error result 
(that is used first in the overall algorithm): given a 

signal A, we can find a representation R to A with 
square error ] ] A - R H  2 < 6 4 B I I A -  Ropt][ 2. That is, 

the square error of R is at most a moderate multiple 

of the optimal square error to the signal. Finally, 
combining these results, letting 5 = [[A - Ropt[] denote 
the optimal square error, we first reduce the square 
error to 64B52, then, by representing the residual, we 

reduce the square error to be additively suboptimal 
by d(64B52). The result will have square error (1 + 
64Be')~ 2 = (1 + e)(f 2, by definition of e. 

2.3 A l g o r i t h m  De ta i l s  

2.3.1 E n e r g y  P h a s e  We first show that we can 
roughly compare the error of two candidate representa- 

tions for A, ~ieA, ai¢i and EieA2 fliq ~i by comparing 

~ieA, (A, ¢i) with EieA2 (A, ¢i). 

LEMMA 2.2. Suppose #B _< 1. Let R1 = EieA1 °LiCi 
and R2 = ~iEA2 fli¢i be two B-term representations 
for A, such that Rj is the optimal representation 

in span (~IiEAj ¢i) ,  J = 1,2. If ~ieA1 (A'¢i )  2 ~- 
% 

EiEA2 (A, ¢i) 2, then 

IIA - Rill  2 _~ IIA - R2II 2 + 32#B IIAII 2 . 

Proof. Let {¢i : i E A1} be an orthogonalization of 

{~bi : i e A1}. Observe that R j  = ~ ieA i ( A , ¢ i ) ¢ i ,  
since each side is the unique best representation over 

span({¢i : i e Aj}) = span({¢i : i e Aj}). Since 

IIA - R j I I  2 = IIAII2--~ieA¢ (A,¢ i )  2, it suffices to show 

that ~ ieAj  (A,~bi) 2 - ~ i e A i  (A,¢i) 2 -< 16#B ]IAH 2. 

Proceeding, we have 

I(A, ¢i)12 
iEAj 

= ~ I (A ,¢ i )+(A ,¢ i -¢ i ) [  2 
iEAj 

-> ~ ( I ( A , ¢ i ) I -  I(A,¢i  - ¢i)l) 2 
iEAj 

_> ~ I<A,¢i)I 2 -  2 ~ I(A, O i ) I I ( A , ¢ i - ¢ i ) I .  
iEAj iEA~ 

A bound for the last term will be reused be- 
low, so we isolate it. By Lemma 2.1, it is 

at most 2 V / ~  []AI] ~ ieAj  I( A, ¢i)[, which, 
by the Canchy-Schwarz inequality, is at most 

2 V / ~  IIAH V/B EieAj I( A' ¢i)12" Continuing, 

I B  ieA~ I(A' ~bi) 12 

<-- IBieA~([(A,¢i)[ 
+ [(A, ¢i - ¢i)1) 2 

('<A,¢'>' + ¢'>' 

< ~ 2 B  IIAII 2 + 8#2B 3 IIAll 2, 

SO that 2 ~ ieAj  I(A,¢i)I I(A,¢i  - ¢i)1 -< 

8#B IIAH 2 J 1  + 4#2B 2 < 8#Bvf2 IIAII 2, and 

~ieA~ (A, ¢i) 2 _> ~ ieAj  (A, ¢i)2 _ 16#B I[AII 2. 

Similarly, ~ ieAj  I (A,¢i ) [2  < ~ieA~ I(A,¢i)[ 2 + 

2 ~ieAj  I( A, ¢i)I" I( A, ¢i -- ¢i)I + EieAj [(A, ~Pi - ¢i)12, 
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which is at most ~ieAj  I(A,¢~)I e + 8/~Bx/211AII e + 

sg  eBe IIAII e -< ~ e a j  I(A,¢~)I 2 + 16#BI[AII 2, since 

#B < 1/2. The result follows. 

Algorithmically, one finds the B vectors ¢ • O 

with largest dot products to A, then finds the best 

representation R to A over the span of those vectors 

(for example, by orthogonalizing the vectors first). 

The resulting representation R will have square error 

IIA - RII 2 <_ IIA - Roptl[ 2 -4- e IIAII e, for e = 321tB. 

COROLLARY 2.1. For a signal A ,  a single iteration 

of B-fold Matching Pursuit over a y-coherent dictio- 

nary 79 returns a representation R with [ I A -  RI[ 2 < 

[IA - Roptll 2 + 32pB IIAII e. 

2 . 3 . 2  E r r o r  P h a s e  Lemma 2.4 below says that  if 

we have a representation R whose error is significantly 

worse than optimal (roughly, error v/B5 compared with 

optimal value of 5), then the ¢ with largest dot product 

represents so nmch of the signal that we are forced to 

take it in any optimal or near-optimal representation. 

This principle will be used, later, to show correctness of 

a greedy algorithm. 

First we prove a lemma that  will be useful. 

LEMMA 2.3. Fix B > O. Let A be a signal. Let A be a 

set of size less than B,  and let R = ~ /eA ai¢i be the 

best representation for A over {¢i : i • A}. Let Ropt  = 

~iehop~ a~Pt¢ i be the best B-term representation for 

A over all T), subject to A C_ Aopt. (Note that ai 

does not necessarily equal a~ pt.) / f  [[A - R[[e >_ (1 + 

e) I I A -  Ropt[[ e for 64p2B 2 _< e < 1, then there exists 

i • Aopt \ A such that 

(A - R, ¢~)e > ~ IIA - Rll e 

Proof. Note that  (1 + e) > (1 - e/2) -1, so 

the hypothesis [IA - Rll e ~> (1 + e)IIA - RoptH 2 

implies (1 - e/2)[[A - R[] 2 > IIA -- Ropt[I e, so 

that IIA - r t l l  e - ~ I I A -  RII 2 _> I I A -  Roptll 2 and 

IIA - Rll e - IIA - Roptl] e >_ ~ IIA - Rll e. 
Let {¢i} be an orthogonalization of {¢/ : ¢i • 

Aopt} extending an orthogonalization of {¢i : ¢i • 

A}. Then Ropt is the best representation over {¢i : 

i • Aopt} and R is the best representation over 

{¢i : i • A}. Furthermore, by orthogonality, Ropt = 

~ieAo,t C A, ¢i) ¢i and R = E i e A  C A, ¢i) ¢/, using the 
same coefficients as Rop t .  

By Parseval's equality and orthogonality, 

- R 2 =  _ IIA-RII  e I I A -  ovtll IIRopt RII 2 

which equals  ~iEAopt\A(A,~i) e, SO it follows that,  

for some i • Aopt \ A, we have (A,¢i )  2 _> 

[[A-RIIe-IIA-R°vt[[~ > ~ [[A - RII 2. Since R is 
B -- 

orthogonal to ¢i, it follows that  ( A - R , ~ b i )  e = 

CA, ¢~)e >_ ~B I[A - Rll e. 
Now, I ( ¢ i -  ~bi, A -  R) I <  I I¢ i -  ~bill" [ I A -  RII <_ 

( ¢ ~ )  I I A -  all _< ( ¢ ~ - )  I I A -  rt , ,  so 

[ C A - R , ¢ i )  I-> IC A - R , ~ b i ) [ - I C  A - R , % - ¢ i ) [  >- 

( v / ~  - v / ~ )  IIA - RII -- v / ~  IIA - RII, and the 
result follows. 

LEMMA 2.4. Let A be a signal and let R = ~ i e A  ai¢i 

be the best representation for A over A of size less than 

B.  Suppose there's a set Aopt _D A with IAoptl = B, 

and a representation Ropt  = EieAopt  f~i¢i for A such 

that IIA - RII 2 > 64B I[A - RoptH e. Finally, assume 

8 # e ( B +  1) < ~ .  / r e  = ¢~ maximizes C A - R , ¢ )  

over ¢ • 7), then i • Aopt. 

Proof. Suppose not. By Lemma 2.3 with e = 1/2, since 

¢ / i s  maximal, C A - R,¢i /2  _> iY~ II A - RII e" Let (gej} 

denote an orthogonalization of {¢j : j • Aopt LJ {i}}. 

Then 

( A - R , ¢ i )  _> ( A - R , ¢ i )  - I I A - R I [  I[¢i-¢iLI 

_> - x / S # 2 ( B + I )  [ I A - R I [  

_> - HA - RH, 

1 so that  C A - R,g,i) 2 > ~TB l[ A - R l l  2 > [[A-PtoptU 2. 

On the other hand, since ¢i is orthogonal to 

Aopt 9 span(Aopt \ A), it follows that  <A - R,  ¢i) = 

CA - Rop t ,  ¢ i ) + ( R o p t  - R ,  ¢ i )  = ( A - a o p t ,  ~)i). A l so ,  

by optimality of Ropt, A - R o p t  is orthogonal to Ropt, so 

that liA - aopdl e = IIAll e - I I ~ p ,  ll- Finally, since gei is 

orthogonal to Aopt D A, AU{i} can be extended to a ba- 

sis, and we have liAll e _> [IRopt[[2+ (A - Ropt, ~bi) e, i.e., 

( A - R,~pi) 2 = C A - Rop t ,~ ) i )  2 g [JAil 2 - [[RoptJ[ 2 = 

IlA - Ropt II e, a contradiction. 

Algorithmically, we can start with a signal A and 

representation R = 0 over subspace A = 0. As long 
as I]A - RH 2 > 64B IIA - RoptH 2, we can identify a 

vector ¢ E 7) that  is in every optimal representation. 

We add ¢ to A, let R be the best representation over 

A, and continue looping. We terminate after at most 

B iterations, and, when we terminate, [ [ A -  R[[ < 

64B [[A - Ropt H. 
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COROLLARY 2.2. For a signal A ,  Orthogonal Matching 

Pursuit, in at most B iterations, over a/t-coherent dic- 

tionary T) , returns a representation R with I[A - RII 2 

64B IIA - Roptl[ 2. OMP stopped when IIA - RII 2 < 

64B I I A -  Roptll 2 returns a representation over a sub- 

space of dimension B ~ < B that can be extended to a B -  

dimensional subspace containing an optimal representa- 

tion. 

2.3.3 Putt ing  it All  Together 

THEOREM 2.1. Fix a dictionary D with coherence p. 

Let A be a signal and suppose it has a B - t e rm  repre- 

sentation over 79 with error I ] A -  Roptll -- 5, where 

B < 1/(32/t). Then, in iterations polynomial in 

B ,  we can find a representation with error at most 

~(1  + 2064/tB2)& 

Proof. The algorithm is as follows. Assume we know 

5 -~ I I A - R o p t H  in advance; we will remove this 

assumption below. Use Corollary 2.2 to find a B I- 

term representation Rz over A1 C_ T~ with I[A - RI] 2 < 

64B52 and such that  A1 is a subset of a space containing 

an optimal representation. Then use Corollary 2.1 to 

find a representation R2 with square error at most 

32/tB HA - RII 2 < 32.64/ t  B2 IIA - Ropt]l 2 worse than 

the best representation for A - R~. Output R1 + R2. 

We note that the hypotheses on # and B in Corol- 
laries 2.2 and 2.1 are implied by our hypothesis B < 

1/(32/t). Since, as we show below, the best represen- 

tation for A - R1 has square error at most 52(1 + 

512/t2B3), the overall representation has square error at 
most 52(1 + 512/t2B 3 + 2048/tB 2) < (1 + 2064/tB2)52, 

since /tB < 1/32. It remains only to show that 

A - R t  has a representation with square error at most 
52(1 + 512/t2B3). 

To see this, fix an optimal representation Ropt = 

~ieA ~i¢i consisting of vectors in some A D A1. Let 

{¢i} denote an orthogonalization of {¢i : ¢i e A} that 

extends an orthogonalization of {¢i : ¢i e At}. Then 

l~oP t ---- EiEA (A, ~)i) ~i and R1 = ~ i e ^ ,  (A, ~bi) ~i- 
Consider Ropt - R1, which is orthogonal 

to R1 and to A -  Ropt. We first claim that  

Ropt - R  has some good (B - I A l l ) - t e r m  repre- 
sentation over 7). Specifically, we will approxi- 

mate Ropt -- R1  ~- ~ i e h \ A t  (Ptopt - Rl,g2i) ~i by 

EiEA\A, (P~opt - R l , ~ i )  ¢i. Since each I]~i - ¢iH is 
small, we expect that  substituting ¢i for ¢i in the 

expansion for Ropt - R to be a small perturbation. We 

have H(Ropt- -R1)- - r ieA\A~ ( R o p t - R l , ¢ i ) ¢ i l  2 = 

"']]EiEA\A1 <Rop t - R1 ,  ¢ i ) ( ¢ i -  ¢i)H 2"" is at mos t  
H 

R 2 Ei en \ h l  (I~°P t - -  1,¢i) ~ieAkh, ]1¢¢i -- ¢ill 2, which is 
i i  

at most 

IIRopt - R1 II 2- B(S/t2B) 

_< IIA- Rlll 2. B(8/t2B) 

< 64B52 • B(8/t2B) _- 512/t2B352. 

Since A -  Ropt is orthogonal to span(A), it fol- 

lows that the representation ~ieh\A1 /Ropt - R1, ¢i) ¢i 
gives a representation for A -  Ri  with corresponding er- 

ror, namely 

II II iEA\A1 

= IIA - 2 

_-- 52(1 + 512#2B3). 

Using Lemma 2.2, one can find a (B - IAl l ) - te rm 

approximation R2 to A - R1 whose error is at most 

32/tB IIA - R t l l  2 < 32/tB(64B52) worse, additively, 

then the best such representation. It follows that 

IIA - ( R 1  + a 2 ) l l  

_< If(A- R,) - Rail 2 

< 52(1 ..{- 512/t2B 3) + 32/tB(64B52) 

_< 52(1 + 16/t B2 + 2048/tB2), since/tB < 1/32 

_< 52(I + 2064/tB2). 

Now suppose we do not know 5 in advance. Then 

we would not know B' -- IAll, i.e., we would not know 

when to switch from the error phase to the energy phase. 

We simply try all possibilities for B I _< B. 

So far, we have assumed that one can find the ¢ E T) 

with largest I (A, ¢) I and estimate that dot product in 

unit time. We can, in fact, make this algorithm feasible 

and obtain a result similar to Theorem 2.1 using Nearest 

Neighbor Data Structures [14], [15]-[17]. For some c, fix 

e, c/t B2 < e < i; our goal will be to find a representation 

with error at most (1 + e) worse than optimal. 

For Lemmas 2.2-2.4 and Theorem 2.1, we can prove 

that it suffices to find ¢ with near-biggest dot product 

and to approximate the dot product; i.e., to find Cj 

such that,  for all i, I (A, Cj> 12 > I (A, ¢i) 12 - r/IIAII 2 

and to estimate <A,¢j) as (A ,¢ j )~  with I (A ,¢ j /  - 

(A, Cj)~ 12 <_ 7/HAH 2, for some appropriate ~/, polyno- 

mially related to B/e .  There is a limited set S of vectors 
for which we will want dot products; specifically, we will 

want (¢1, ¢2) only if each O is a linear combination of 
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at most B vectors from 7) U {A}, in which the coeffi- 

cients are, by (2.1), at most O(IIAII 2) (here taken to be 

N °(1)) and written to the unit of precision (here taken 

to be 1). Thus there are at most ([D I + 1) O(B) possible 

vectors in S. Therefore, we can use the following steps: 

A find a representation • Normalize the signal to ~ ,  

for the normalized signal, and scale back up. For 

the normalized signal, we can get the approximate 

dot product operations from approximate ~2 dis- 

tance operations. 

• Using [1], :randomly project the signal A and the 

dictionary vectors, using a randomly-chosen lin- 

ear function h from a particular family, into a 

log ISI/~ °(1) dimensional space so the ~2 norm be- 

tween any pairs of vectors from S is approximated 
to factor (1 + ~). 

• Use the approximate nearest neighbor results 

in [14], [15]-[17] to return a (l+~?)-approximation to 

the closest dictionary vector in ~2 norm to a query 

of the form A - R ,  in time (B log(IT)l)/~) °(1) . This 

allows us to compute R1 of Theorem 2.1. To com- 

pute R2 of Theorem 2.1, we need to find the B 

largest dot products with A -  R1. To do that,  

repeatedly find the ¢i with largest dot product to 

A - R and, by properties of the nearest neighbor 

data  structure, remove h(¢i) from the dictionary, 

in time (Blog I:DI/r/) °(1). Finally, to approximate 

the best representation of A over A, find the best 

formal representation of h(A) over {h(¢) : ¢ • A} 

and use those coefficients. 

Note that,  even for Cj • A, it is possible that  

( A - R , ¢ j  / ~ 0. In fact, ( A - R , ¢ j /  may be the 

maximum dot product over ¢ • l), so we may need 

to choose ¢j on multiple iterations. One can show, 

however, that  only a small number of iterations is 

needed for OMP to find a B'-term representation R1, 

B'  < B, with I I A - R l l l  2 ~ 64BI IA-Rop t l l  2. The 

energy phase takes just a single iteration of (B - B')- 

fold MP. In summary, 

THEOREM 2.2. Fix a dictionary, T~, of coherence #, 

over vectors of length N .  For certain constants c and 

c I, fix B < c/p  and fix ~, c ' p B  2 < e < 1. There 

is an algorithm that prep~vcesses 7) taking time and 

space (BIT)I/e) °(1) . For any given signal, the algorithm 

produces a representation for A with error (1 + e) 

times that of the optimal representation taking time 

(B log I:D[/e) °(1) only. 

Note that  some cost dependence on N is hidden by 

dependence on I:DI > N. 

The idea to use nearest neighbor data  structures 

in this context was suggested independently by Piotr 

Indyk. 

3 Special Dictionaries 

In this section, we briefly explore the notion of small 

coherence dictionaries further. We consider several 

specific dictionaries and analyze their properties. 

Three desired properties of redundant dictionaries 

are their large size, their naturalness, and the possi- 

bility to find representations over them quickly. Here 

"naturalness" encompasses the idea that  signals typi- 

cal of a particular application should have concise, low- 

error representations, and that  the dictionary elements 

themselves should have semantic significance within the 

application. These goals are somewhat in conflict with 

each other; nevertheless, we show that  our criterion of 

low coherence applies to several large and natural dic- 

tionaries in the literature (or small variations). 

3.1 Spikes and Sinusoids Two fundamental or- 

thonormal bases are the spikes and sinusoids. A spike 

is a vector 8s defined by 8s(s) = 1 and 88(t) = 0 for 

t ~ s. A sinusoid is a complex-valued vector ~ defined 
by ~2~(t) = ~ e  2"i~t/N. It is immediate that  the dot 

product of any spike with any sinusoid equals 1 / x / ~  

in absolute value and the dictionary D formed by their 

union is p-coherent, for p = 1/v/N. It follows that  

the algorithm in Theorem 2.1 applies to this dictionary. 

Note that,  in particular, if the signal is exactly repre- 

sented as a sum of B spikes and sinusoids, so that  the 

optimal error is zero, then the error of our output is 

zero--we recover the signal exactly. 

We note that  Theorem 2.1 gives a running time of 

O(B 4 + B 2 N  + B N l o g ( N ) )  to find a representation 

with error at most (1 + O ( B 2 / x / ~ ) )  times optimal. 

For each of B iterations, we have a subset A C D of 

spikes and sinusoids available for the representation. 

To find the best representation R over A, we could 

find an orthonormal basis for span(A), which can be 
done in time B 3. We then need to find the the Cj's 

with biggest dot products to A -  R. We can find 

all (¢ j ,A) ' s  explicitly in time O(Nlog(N) )  and all 
(¢ j ,R) ' s  symbolically in time B N .  For the extreme 

case of B = O(v/N), our algorithm takes time O(N 2) 

to recover exactly any signal that  is exactly represented 

as B spikes and sinusoids. By contrast, in [4], the 
authors give an algorithm with runtime O(N 3"~) which 

recovers the signal exactly, assuming it consists of B 

spikes and/or  sinusoids. Even for the limited case of an 

exact representation, their algorithm is quite expensive. 

Our algorithm and [4] apply to the combination of 
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any two incoherent orthonormal bases. The analysis 

above for our algorithm assumes that one of the bases 

is presented in the coordinate system defined by the 

other (equivalently, that one can take the dot product 

between any two dictionary elements in constant time.) 

If this is not the case, then one could compute and store 

all O(N 2) such dot products in the time to multiply two 

N x N matrices, i.e., N 2+a for some a, 0 < a < 1. 

Other speedups are possible for our algorithm, using 

Theorem 2.2 in general or using techniques in [13] for 

the spikes and sinusoids dictionary in particular. Details 

will be given in the final version of this paper. 

3.2 C o m b i n a t o r i a l  Des igns  The dictionary in the 

previous subsection had small coherence and was a 

combination of two fundamental orthonormal bases but 

it was not very large. In fact, we can build a dictionary 

with small coherence that  is considerably larger using a 

combinatorial design, such as the matrix at the center 

of the Nisan-Wigderson generator. Specifically, in [20], 

the authors show how to build a collection $ of subsets 

of [1, N], for N an even power of a prime, such that  each 

subset has size exactly v/N, any two subsets intersect 

in at most d places, and the number of subsets is 
~(N(d+l)/2). 

Define T~ by T~ = {N-1/4Xs : S e $} .  It follows 

that II)[ = I$] = f l (N (a+1)/2) and, for distinct ¢1 and 

¢2 in T~, I(¢1, ¢2) 1 _< d/x/N. 
For d = 2, we get a superlinear-sized dictionary of 

size roughly N 3/2 and coherence roughly 2/v/N.  At the 

other extreme, one can take d almost as large as vrN, 

yielding coherence less than 1 and IT)] roughly 2 v'~. One 

can also use values for d between the two extremes--for  

example, if d = log(N) or d = N 1/4, the dictionary has 

N ~(l°g(g)) > N O(I) or 2 ~(N1/4) >> N O(I) elements and 

coherence l o g ( N ) / x / ~  or N -1/4, not much worse than 

the expected absolute dot product 1 / v ~  of a pair of 

random unit vectors. 

This construction gives us non-trivial dictionaries 

with extremely small coherence, extremely large size, 

or both, to which we can apply Theorem 2.1 and obtain 

efficient algorithms. 

3.3 S e g m e n t l e t s  Next, we present a redundant dic- 

tionary that  is inspired by beamlets [11], a dictionary 

used for edge detection in image analysis. Consider 

the space of functions on the square array of side v/N. 

Fix a parameter p, to be determined later. Consider 

the set of all line segments with endpoints (xl,  Yl) and 

(x~,y2), such that xl,yl ,  and Y2 are multiples of p 

and x2 = xl + p. Then the number of segments is 

~(N3/2/p3), much greater than the dimension, N,  of 
the space of functions, and any two segments intersect 

at most once and have horizontal extent exactly p. 

From each line segment, we next construct a set 

of pixels, each of which intersects the line segment. In 

general, a line segment may intersect several contiguous 

pixels in the same column; in that  case, put only the 

middle one or two intersected pixels into the associated 

set. It follows that  any two sets of pixels constructed 

this way will intersect in at most O(l)  pixels and each 

will consist of O(p) pixels. For the dictionary, take 

normalized characteristic functions on theses sets of 

pixels. The coherence is O(1/V~ ) and the size of the 

dictionary equals the number of segments, N3/2/p 3. 
Suppose we are interested in B-term representa- 

tions. To apply the above techniques, we need coherence 

less than 1/B, i.e., p > B 2. It follows that the dictio- 

nary can have size Ns/2/B 6, which is greater than N for 

sufficiently small B. In particular, the size of the dic- 

tionary is superlinear, by more than log factors. Thus 

the size of the segmentlet dictionary is larger than the 

beamlet dictionary, and we can apply Theorem 2.1 to 

obtain efficient algorithms for near-optimal B-term rep- 

resentations over segmentlets. Segmentlets are natural 

for capturing edges in images. We believe that  this dic- 

tionary will have exciting applications in image process- 

ing. 

4 Concluding Remarks 

We have presented algorithmic results for the basic 

problem in highly nonlinear approximation: An effi- 

cient algorithm for near-optimal representation of input 

signals over #-coherent dictionaries. There are several 

additional insights we can provide into highly nonlin- 

ear approximation problems. We briefly describe them 

here. 

The problem of representing functions using redun- 

dant dictionaries has a few variants. As defined above, a 

representation R for input A E I~ N is a linear combina- 

tion of dictionary elements, R = ~ ieA ai¢i  for ¢i E :D. 

In general, there are two measures to assess the good- 

ness of the representation. The first is how well it ap- 

proximates A and we measure this error IIA - Rll p in 

t p norm for 1 < p _< oo; the results in this paper focus 

on p = 2. The second metric at tempts to capture vary- 

ing notions of parsimony and we measure this with the 

£q norm of the representation itself, HRIIq = ~ ieA [Otilq 
for q = 0 or 1 < q_< oc. We focused throughout on 

minimizing the e 2 norm of the error subject to the @ 

norm of the representation equaling zero. In general, 

other (p, q) combinations may be of interest, and one 

may want to fix the ~P norm of the error (for example 

to zero) and minimize the £q norm of the representation. 

For example, instead of seeking the best B-term repre- 

sentation, we may seek the representation minimizing 
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~ i  I~il, i.e., 1[O4ll. We have a polynomial t ime solution 

for this case via linear programming when p = c¢. Let 

be the matr ix  of vector ¢i at component  j ,  ~i,j = ¢i(j)-  

Express each coefficient ai as a sum of positive and neg- 

ative parts,  ai = Pi - h i .  The linear program is to 

minimize ~ i ( P i  + nl) subject to 

( * - 4 )  _ A - e .  

Another variation is one in which we wish to minimize 

the energy of the representation, i.e., minimize IIc~112. 

This problem has a polynomial t ime solution via semi- 

definite programming.  This is because 

minimize a t a  subject to II~a - AHp < 

is a semidefinite program. Note that  atc~ is the squared 

~2 norm of the representation and the constraints define 

a convex region about  the point A E lI~ N. 

We have initiated the study of the algorithmic com- 

plexity of highly nonlinear approximation problems. 

Approximation theory is a rich area, and it is active 

in mathematics ,  signal processing and statistics; the- 

oretical computer  scientists can have a significant im- 

pact  here. Many algorithmic problems remain open. 

Finally, as remarked earlier, applied mathematicians  in 

approximation theory care about  practical algorithms. 

We believe tha t  our algorithms here are not diffcult to 

implement,  but we leave that  s tudy for the future. 
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