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Abstract Several finite element methods for large defor-
mation elastic problems in the nearly incompressible and
purely incompressible regimes are considered. In particular,
the method ability to accurately capture critical loads for
the possible occurrence of bifurcation and limit points, is
investigated. By means of a couple of 2D model problems
involving a very simple neo-Hookean constitutive law, it is
shown that within the framework of displacement/pressure
mixed elements, even schemes that are inf-sup stable for lin-
ear elasticity may exhibit problems when used in the finite
deformation regime. The roots of such troubles are identi-
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fied, but a general strategy to cure them is still missing. Fur-
thermore, a comparison with displacement-based elements,
especially of high order, is presented.

Keywords Incompressible nonlinear elasticity · Stability ·
Mixed finite elements

1 Introduction

Modern engineering is progressively approaching problems
which are always more and more complex, involving phe-
nomena such as strong non-linearities as well as multi-
physics and multi-scale phenomena. To do so, the design
is often based on the exploitation of sophisticated numeri-
cal schemes, developed to reproduce in a virtual computer-
based environment such a physical complexity. In particu-
lar, designers often tend to use as approximation schemes
finite-element methods which are developed, tested and the-
oretically validated (through standard modern mathematical
approaches, e.g., see [12]) for very different situations.

One of the standard realms in which these situations may
occur is the case of solid bodies undergoing large deforma-
tions and subject to internal material-based constraints, such
as volume incompressibility. To solve such non-linear highly
constrained problems designers often adopt with “no fear”
schemes developed for small-strain regimes.

Accordingly, the goal of the present paper is to show that in
some (specific) situations problems may arise and, therefore,
caution should be exerted. In particular, at the continuum
level finite deformation problems may exhibit physical insta-
bilities, while the corresponding discretizations may exhibit
both physical and non-physical (numerical) instabilities, as
already identified in previous works (see [27,25,20] and [5]).
A fundamental problem is that, due to the lack of closed form
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solutions for non-trivial finite-strain problems, it is very dif-
ficult to test numerical approximation schemes against the
ability to capture only physical stabilities, avoiding instead
the raising of numerical non-physical pathological effects.
However, we remark that interesting contributions on the
finite element approximation of large deformation elastic-
ity problems have been presented also in [11,13,15,26,28]
and [29].

The paper is organized as follows. We start focusing on
a specific class of materials (i.e., neohookean ones), intro-
duce a Lagrange multiplier approach to properly fulfill the
incompressibility constraint at the continuum level and dis-
cuss the requirements for a stable continuum response. We
then introduce in a formal way possible field discretizations
in a Galerkin approach, discussing the requirements for a
stable discrete formulation. Finally, we focus the discussion
on two specific problems on which we test several different
specific approximation schemes, highlighting the raising of
some unresolved issues.

2 The large deformation elasticity problem and the
stability range

In this paper we adopt the so-called material description
to study the finite strain elasticity problem (cf., e.g., [10]
or [14]). Accordingly, we suppose that we are given a refer-
ence configuration � ⊂ R2 for a bounded material body B.
Therefore, the deformation of B can be described by means
of the map ϕ̂ : � → R2 defined by

ϕ̂(X) = X + û(X) , (1)

where X = (X1, X2) denotes the coordinates of a mater-
ial point in the reference configuration and û(X) represents
the corresponding displacement vector. Following standard
notations (see [10,16,21,22], for instance) we introduce the
deformation gradient F̂ = F(û) and the right Cauchy-Green
deformation tensor Ĉ = C(û) by setting

F̂ = I + ∇û , Ĉ = F̂T F̂ , (2)

where I is the second-order identity tensor and ∇ is the gra-
dient operator with respect to the coordinates X.

As usual, we assume that the boundary � = ∂� is split
into two parts, �D and �N , where displacement and traction
boundary conditions are respectively imposed. We assume
that the measure meas(�D) is strictly positive, in order to
neglect rigid body motions. Furthermore, we consider only
homogeneous displacement boundary conditions. For gen-
eral displacement boundary conditions, only easy and stan-
dard modifications are required. We are interested in external
loads whose work is of the form

F(û; γ ) = γ

(∫
�

f · û +
∫

�N

p · û
)

, (3)

where γ is a real loading parameter, f = f(X) is a given dead
bulk load, and p = p(X) is a given dead traction. Accord-
ingly, we limit our discussion only to the case of proportional
loadings, but this assumption can be easily removed and it
does not imply real limitations to the study.

For the description of the large deformation elastic prob-
lem we may introduce two possible energy functionals, listed
in the following.

– Displacement-based energy functional Given a smooth
real function � : R+ → R such that

�(J ) = 0 if and only if J = 1; (4)

�′(1) �= 0, (5)

and the constant Lamé parameters μ and λ, the elastic
energy functional can be written in the following dis-
placement form:

	d (û) =
∫
�

{
1

2
μ

[
I : Ĉ − 2

]
− μ ln Ĵ + λ

2
�( Ĵ )2

}
− F(û; γ ) (6)

where Ĵ = det(F̂). We remark that �( Ĵ ) is the key
ingredient to model the elastic energy due to volumet-
ric deformations. Examples of commonly used functions
�( Ĵ ) are given in Sect. 6.1.1, while details on its physical
interpretation can be found in Chap. 7 of [24].

– Mixed energy functional Introducing the pressure-like
variable p̂ := λ�( Ĵ ) (in the following referred to as
pressure, for simplicity), the elastic energy functional can
be written in the following mixed form:

	m (û, p̂) =
∫
�

{
1

2
μ

[
I : Ĉ − 2

]
− μ ln Ĵ + p̂�( Ĵ ) − 1

2λ
p̂2

}

−F(û; γ ). (7)

In particular, we will be interested in the purely incom-
pressible case, which can be obtained by letting λ →
+∞ in (7):

	inc
m (û, p̂) =

∫
�

{
1

2
μ

[
I : Ĉ − 2

]
− μ ln Ĵ + p̂�( Ĵ )

}

−F(û; γ ). (8)

For the displacement-based formulation (6), since pure
incompressibility cannot be imposed, we will consider the
nearly incompressible case, which corresponds to the choice
λ >> μ.

According to the choices above, we have the correspond-
ing variational formulations described below.
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2.1 Displacement-based formulation

In a variational framework, the equilibrium equations stem-
ming from functional (6) are found by imposing d 	d(û)[v]
= 0 for a generic virtual displacement field v. Explicitly, this
reads:

μ

∫
�

[F̂ − F̂−T ] : ∇v + λ

∫
�

�( Ĵ ) π( Ĵ ) F̂−T : ∇v

−F(v; γ ) = 0 (9)

where the function π(J ) is defined as

π(J ) = �′(J )J. (10)

In studying the stability features of a solution û to Prob-
lem (9), a crucial quantity is the second variation of 	d(û),
i.e. the bilinear form d2	d(û)[u, v] defined by

d2	d(û)[u, v] : = μ

∫
�

∇u : ∇v +
∫

�

[
μ − λ�( Ĵ ) π( Ĵ )

]

×(F̂−1∇u)T : F̂−1∇v + λ

∫
�

�( Ĵ )

× (F̂−T : ∇u)(F̂−T : ∇v) (11)

for every virtual displacement u and v. In the above, �(J ) is
defined as

�(J ) = �(J )
[
�′′(J )J 2 + �′(J )J

] + π(J )2. (12)

We introduce the following definition.

Definition 1 A solution û ∈ U to Problem (9) is a
linearization-stable regular point if the coercivity condition
for d2	d(û) holds true, i.e.:

αγ > 0 with αγ := inf
v∈U

d2	d(û)[v, v]
||v||2U

. (13)

In the above, U denotes the space of virtual displacements,
equipped with a suitable norm ||·||U . For details, refers to [14]
or [19].

Remark 1 We remark that assumptions (4) and (5) assure that
for an unloaded body (i.e. γ = 0), the trivial displacement
field û = 0 is the only solution to the Euler equations (9) and
the usual problem is recovered in the infinitesimal elasticity
regime. Indeed, a direct computation shows that the corre-
sponding second variation d2	d(0)[u, v] (see (11)) reduces
to

d2	d (0)[u, v] := 2μ

∫
�

ε(u) : ε(v) + λ �′(1)2
∫

�

divu divv , (14)

where ε(·) denotes the usual symmetric gradient operator.
Therefore, due to Korn’s inequality, the bilinear form (14)
satisfies the coercivity condition (13) (see [12] or [17], for
instance). In addition, we notice that the form (14) is exactly
the one involved in classical infinitesimal elasticity problems,
with Lamé parameters μ and λ �′(1)2. This also explains
why �(J ) is often chosen to satisfy �′(1) = 1.

We finally introduce the definition of stability range for
Problem (9) .

Definition 2 We define the stability range of Problem (9)
as the interval Sd(μ, λ) = (γm, γM ) ⊆ R, where γm (resp.,
γM ) is the largest negative (resp., smallest positive) value for
which the coercivity condition (13) fails.

Therefore, γm and γM are singular points, such as bifur-
cation or limit points.

2.2 Mixed formulation (purely incompressible case)

In a variational framework, the equilibrium equations stem-
ming from functional (8) are found by imposing d 	inc

m (û)

[v, q] = 0 for generic virtual displacement and pressure
fields v and q. Explicitly, this reads:

⎧⎪⎪⎨
⎪⎪⎩

μ

∫
�

[F̂ − F̂−T ] : ∇v +
∫
�

p̂ π( Ĵ ) F̂−T : ∇v − F(v; γ ) = 0

∫
�

�( Ĵ ) q = 0.

(15)

We remark that the second equation of (15) represents a non-
linear constraint.

In studying the stability features of a solution (û, p̂) to
Problem (15), a crucial quantity is the second variation
of 	inc

m (û, p̂), i.e. the bilinear form d2	inc
m (û, p̂)[(u, p),

(v, q)] defined by

d2	inc
m (û, p̂)[(u, p), (v, q)] = aγ (u, v) + bγ (v, p) + bγ (u, q) (16)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aγ (u, v) := μ

∫
�

∇u : ∇v +
∫

�

[
μ − p̂ π( Ĵ )

]
(F̂−1∇u)T : F̂−1∇v

+
∫

�

p̂ k( Ĵ ) (F̂−T : ∇u)(F̂−T : ∇v)

bγ (v, q) :=
∫

�

qπ( Ĵ )F̂−T : ∇v ,

(17)

and the function k(J ) is defined as

k(J ) = �′′(J )J 2 + �′(J )J (18)

In addition, u and v (p and q) are generic virtual displace-
ment (pressure) fields, respectively. We remark that the forms
aγ (·, ·) and bγ (·, ·) depend on γ , since F̂ and p̂ do so.

We now introduce the following definition.

Definition 3 A solution (û, p̂)∈U × P to Problem (15) (û,

p̂; γ ) is a linearization-stable regular point if d2	inc
d (û, p̂)

satisfies the coercivity on the kernel condition, i.e. it holds

αγ > 0 with αγ := inf
v∈Kγ

aγ (v, v)

||v||2U
, (19)

where

Kγ := {
v ∈ U : bγ (v, q) = 0 ∀q ∈ P

}
. (20)
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In the above, U and P denote the spaces of virtual dis-
placements and virtual pressures, equipped with suitable
norms || · ||U and || · ||P . For details, refer to [19].

We finally introduce the definition of stability range for
Problem (9) .

Definition 4 We define the stability range of Problem (9)
as the interval Sinc

m (μ) = (γm, γM ) ⊆ R, where γm (resp.,
γM ) is the largest negative (resp., smallest positive) value for
which the coercivity on the kernel condition (19) fails.

Remark 2 According to Definitions 2 and 4, it can be proved
that the stability range computed with the displacement-
based formulation letting λ → +∞, coincides with the sta-
bility range computed with the purely incompressible mixed
formulation, i.e. limλ→+∞ Sd(μ, λ) = Sinc

m (μ). The above
relation is independent of the choice of the function �(J ),
provided it satisfies conditions (4) and (5) of Remark 1, as
detailed in Sect. 2.2.1.

2.2.1 Independence of the stability range from the choice of
�(J )

We now show that the stability range for incompressible
materials does not depend on the choice of the function �(J ),
provided that �(J ) satisfies assumptions (4) and (5). We
consider a general framework, i.e. we do not restrict to neo-
Hookean constitutive laws in 2D, but we here allow for more
complicated materials, as well as for different loading histo-
ries and possibly for 3D problems. Therefore, we introduce
the following functional (cf. (8))

	�
m(û, p̂) =

∫
�

W (û) +
∫

�

p̂ �(J (û)) − F(û; γ ) , (21)

where W (û) is a general elastic energy density function. The
equilibrium equations stemming from functional (21) are the
equations d 	�

m(û, p̂)[v, q] = 0 for generic virtual displace-
ment and pressure fields v and q, i.e. (cf. (15)):

⎧⎪⎪⎨
⎪⎪⎩

∫
�

dW (û)[v] +
∫

�

p̂ �′(J (û)) dJ (û)[v] − ∂γ F(v; γ ) = 0
∫

�

�(J (û)) q = 0 ,

(22)

where dW (û)[v] and dJ (û)[v] denote the variation of W (û)

and J (û) along v, respectively. Also, ∂γ F(v; γ ) is the deriv-
ative of F(v; γ ) with respect to γ . We remark, in particu-
lar, that the second equation of (22) imposes the constraint
J (û) = 1.

The second variation of 	�
m(û, p̂) is defined by (cf. (16)

and (17)):

d2	�
m (û, p̂)[(u, p), (v, q)]=a�

γ (u, v)+b�
γ (v, p)+b�

γ (u, q) (23)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a�
γ (u, v) :=

∫
�

d2W (û)[u, v] +
∫
�

p̂ �′′(J (û)) dJ (û)[u] dJ (û)[v]

+
∫
�

p̂ �′(J (û)) d2 J (û)[u, v]

b�
γ (v, q) :=

∫
�

q�′(J (û)) dJ (û)[v].

(24)

Above, d2W (û)[u, v] and d2 J (û)[u, v] are, respectively, the
second variation of W (û) and J (û), evaluated for (u, v).

We now recall that, given γ ∈ R, a solution (û, p̂) ∈ U ×
P to Problem (22) is a linearization-stable regular point if
d2	inc

d (û, p̂) satisfies the coercivity on the kernel condition,
i.e. it holds (cf. Definition 3):

αγ := inf
v∈Kγ

a�
γ (v, v)

||v||2U
> 0 , (25)

where

K �
γ := {

v ∈ U : �′(J (û)) dJ (û)[v] = 0
}
. (26)

To show that the stability range is independent of the
choice of �(J ), we fix γ ∈ R in the stability range (see
Definition 4) and a corresponding linearization-stable regu-
lar point (û, p̂) ∈ U × P . We now select a different func-
tion �̃(J ) such that �̃(J ) = 0 if and only if J = 1, and
�̃′(1) �= 0, but holding the same parameter γ fixed. We want
to show that the stability is not affected by this new choice.

We then consider the couple (û, p̃), where p̃ is defined by

p̃ = p̂
�′(1)

�̃′(1)
= p̂

�′(J (û))

�̃′(J (û))
. (27)

Since �(J (û)) = �̃(J (û)) = 0, from (22) and (27) we infer
that the couple (û, p̃) solves

⎧⎪⎪⎨
⎪⎪⎩

∫
�

dW (û)[v] +
∫

�

p̃ �̃′(J (û)) dJ (û)[v] − ∂γ F(v; γ ) = 0
∫

�

�̃(J (û)) q = 0.

(28)

Therefore, (û, p̃) is a critical point for the functional

	�̃
m(û, p̃) =

∫
�

W (û) +
∫

�

p̃ �̃(J (û)) − F(û; γ ). (29)

The second variation of the above functional, evaluated in
(û, p̃), reads

d2	�̃
m(û, p̃)[(u, p), (v, q)] = a�̃

γ (u, v) + b�̃
γ (v, p)

+b�̃
γ (u, q) (30)

where
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a�̃
γ (u, v) :=

∫
�

d2W (û)[u, v] +
∫

�

p̃ �̃′′(J (û)) dJ (û)[u] dJ (û)[v]

+
∫

�

p̃ �̃′(J (û)) d2 J (û)[u, v]

b�̃
γ (v, q) :=

∫
�

q�̃′(J (û)) dJ (û)[v].

(31)
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Since both �′(J (û)) = �′(1) and �̃′(J (û)) = �̃′(1) are
different from zero, we deduce (cf. (26))

K �̃
γ = K �

γ := {
v ∈ U : dJ (û)[v] = 0

} := Kγ . (32)

We now compute a�̃
γ (v, v) for a generic v ∈ Kγ . It holds:

a�̃
γ (v, v)=

∫
�

d2W (û)[v, v]+
∫

�

p̃ �̃′(J (û)) d2 J (û)[v, v].
(33)

Recalling (27) and (24), we have

a�̃
γ (v, v) = a�

γ (v, v) ∀v ∈ Kγ . (34)

Therefore, the coercivity on the kernel condition (25) for
a�
γ (·, ·) and for a�̃

γ (·, ·) are equivalent. It follows that

– (û, p̂) is a linearization-stable regular point for the func-
tional 	�

m(û, p̂) if and only if (û, p̃) is a linearization-

stable regular point for the functional 	�̃
m(û, p̃). As a

consequence, the stability range is not affected by the
choice of the function �(J ).

To summarize, we list below which are the key ingredients
to make the stability range independent of �(J ).

P1. The non-linear equilibrium equations (22) impose the
constraint

J (û) = 1 exactly. (35)

P2. The second variation d2	�
m(û, p̂)[(u, p), (v, q)]

(cf. (23) and (32)) has to be tested with virtual displace-
ments v compatible with the constraint J (û) = 1 (i.e.
v ∈ Kγ ), which explicitly reads:

dJ (û)[v] = 0 exactly. (36)

3 Stability range for the discretized problems via
Galerkin approximations

3.1 Stability range for displacement-based approximations

We now introduce a Galerkin approximation of Problem (9)
(see, for instance, [4,12,17]). We thus select a finite dimen-
sional subspace Uh ⊂ U (h > 0), and consider the discrete
problem

μ

∫
�

[F̂h − F̂−T
h ] : ∇vh + λ

∫
�

�( Ĵh) π( Ĵh) F̂−T
h : ∇vh

−F(vh; γ ) = 0 (37)

for a generic discrete virtual displacement field vh . In the
above, F̂h is the discrete deformation gradient corresponding
to the unknown discrete displacements ûh , and Ĵh = det F̂h .

Analogously to what happens for the continuous problem
(see Sect. 2.1), the stability for a solution ûh to Problem (37),
depends on the second variation of 	d(ûh), i.e. the bilinear
form

d2	d (ûh)[uh , vh ] :=μ

∫
�

∇uh : ∇vh

+
∫

�

[
μ − λ�( Ĵh) π( Ĵh)

]
(F̂−1

h ∇uh)T : F̂−1
h ∇vh

+λ

∫
�

�( Ĵh) (F̂−T
h : ∇uh)(F̂−T

h : ∇vh) ,

(38)

for every virtual discrete displacements uh and vh . We intro-
duce the following definition.

Definition 5 For a solution ûh ∈ Uh to Problem (37), we
say that (ûh; γ ) is a linearization-stable regular point if the
discrete coercivity condition for d2	d(ûh) holds true, i.e.:

αγ,h := inf
vh∈Uh

d2	d(ûh)[vh, vh]
||vh ||2U

> 0. (39)

We finally introduce the definition of stability range for
Problem (37) .

Definition 6 We define the stability range of Problem (37)
as the interval Sd,h(μ, λ) = (γm,h, γM,h) ⊆ R, where γm,h

(resp., γM,h) is the largest negative (resp., smallest positive)
value for which the coercivity condition (39) fails.

3.2 Stability range for mixed approximations (purely
incompressible case)

We now introduce a Galerkin approximation of Problem (15)
(see, for instance, [4,12,17]). We thus select a family of finite
dimensional subspaces Uh ⊂ U and Ph ⊂ P (h > 0), and
consider the discrete problem
⎧⎪⎪⎨
⎪⎪⎩

μ

∫
�

[F̂h −F̂−T
h ] : ∇vh +

∫
�

p̂h π( Ĵh) F̂−T
h : ∇vh −F(vh; γ )=0

∫
�

�( Ĵh) qh =0 ,

(40)

where F̂h is the deformation gradient corresponding to the
unknown displacements ûh , Ĵh = det F̂h and p̂h is the dis-
crete unknown pressure field.

Analogously to what happens for the continuous problem
(see Sect. 2.2), the stability of a solution (ûh, p̂h) to Prob-
lem (40) depends on the second variation of 	inc

m (ûh, p̂h),
i.e. on the bilinear form

d2	inc
m (ûh, p̂h)[(uh, ph), (vh, qh)]

= aγ,h(uh, vh) + bγ,h(vh, ph) + bγ,h(uh, qh) (41)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aγ,h(uh, vh) := μ

∫
�

∇uh : ∇vh

+
∫

�

[
μ − p̂h π( Ĵh)

]
(F̂−1

h ∇uh)T : F̂−1
h ∇vh

+
∫

�

p̂h k( Ĵh) (F̂−T
h : ∇uh)(F̂−T

h : ∇vh)

bγ,h(vh, qh) :=
∫

�

qhπ( Ĵh)F̂−T
h : ∇vh .

(42)

We introduce the following definition.

Definition 7 For a solution (ûh, p̂h) ∈ U × P to Prob-
lem (40), we say that (ûh, p̂h; γ ) is a linearization-stable
regular point if d2	inc

d (ûh, p̂h) satisfies the discrete coer-
civity on the kernel condition, i.e. it holds

αγ,h := inf
v∈Kγ,h

aγ,h(vh, vh)

||vh ||2U
> 0 (43)

where

Kγ,h :={
vh ∈ Uh : bγ,h(vh, qh)=0 ∀qh ∈ Ph

}
. (44)

We finally introduce the definition of stability range for
Problem (40) .

Definition 8 We define the stability range of Problem (40)
as the interval Sinc

m,h(μ) = (γm,h, γM,h) ⊆ R, where γm,h

(resp., γM,h) is the largest negative (resp., smallest positive)
value for which the coercivity on the kernel condition (43)
fails.

3.3 The influence of the approximation scheme and of
�(J ) on the stability range

We focus on the mixed formulation for purely incompress-
ible materials (see Sect. 2.2). As shown in Sect. 2.2.1, we
first remark that for the continuous problem any smooth
choice of �(J ) satisfying assumptions (4) and (5) of
Remark 1, leads to the same stability range. In our neo-
hookean case, the bilinear forms entering in the second varia-
tion d2	inc

m (û, p̂)[(u, p), (v, q)] become (see (16) and (17)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aγ (u, v) := μ

∫
�

∇u : ∇v

+
∫

�

[
μ − p̂π(1)

]
(F̂−1∇u)T : F̂−1∇v

+
∫

�

p̂ k(1) (F̂−T : ∇u)(F̂−T : ∇v)

bγ (v, q) :=
∫

�

qF̂−T : ∇v.

(45)

The key ingredients to make the stability range indepen-
dent of �(J ) are (cf. (35) and (36)) are: (P1) the non-
linear equilibrium equations (15) impose the constraint Ĵ =
1 exactly; (P2) the second variation d2	inc

m (û, p̂)[(u, p),

(v, q)] (cf. (16)) has to be tested with virtual displacements
v compatible with the constraint Ĵ = 1 (i.e. v ∈ Kγ ), which
here explicitly reads F̂−T : ∇v = 0 exactly.

In particular, when v ∈ Kγ , we have

aγ (v, v) := μ

∫
�

∇v : ∇v

+
∫

�

(μ − p̂π(1)) (F̂−1∇v)T : F̂−1∇v. (46)

We now consider the discrete problem, i.e. Problem (40).
Looking at the second equation, we see that the constraint
�( Ĵh) = 0 is imposed only weakly, through the Lagrange
multiplier discrete test functions qh ∈ Ph .

As a consequence, we do not expect to have, in general,
Ĵh = 1 point-wise. One may argue that, at least for “very fine
meshes”, the discrete solution should satisfy Ĵh ≈ 1 (hence
�( Ĵh) ≈ 0 and π( Ĵh) ≈ π(1) = �′(1)).

However, even if we assume that the discrete solution is
able to enforce Ĵh = 1, the forms in the discrete second
variation d2	inc

m (ûh, p̂h)[(uh, ph), (vh, qh)] would become
(cf. (41) and (42)):
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aγ,h(uh , vh) = μ

∫
�

∇uh : ∇vh

+
∫
�

[
μ − p̂h�′(1)

]
(F̂−1

h ∇uh)T : F̂−1
h ∇vh

+
∫
�

p̂h
[
�′′(1) + �′(1)

]
(F̂−T

h : ∇uh)

× (F̂−T
h : ∇vh)

bγ,h(vh , qh) =
∫
�

qh F̂−T
h : ∇vh ,

(47)

where we have used (see (10) and (18))

π( Ĵh) = �′(1), k( Ĵh) = �′′(1) + �′(1). (48)

We are now ready to realize that the discrete stability range
is affected by the choice of (1) the numerical scheme and of
(2) the function �(J ).

Indeed, we may address the following considerations.

1. Dependence on the chosen numerical scheme We notice
that, when testing aγ,h(vh, vh) with a generic vh ∈
Kγ,h (see (44)), the last term of aγ,h(vh, vh) cannot
be neglected, since F̂−T

h : ∇vh is not zero, in general.

Indeed, vh ∈ Kγ,h means F̂−T
h : ∇vh = 0 only weakly.

Therefore, the quadratic form to test for the discrete coer-
civity on the kernel, is

aγ,h(vh , vh) = μ

∫
�

∇vh : ∇vh

+
∫
�

[
μ − p̂h�′(1)

]
(F̂−1

h ∇vh)T : F̂−1
h ∇vh

+
∫
�

p̂h
[
�′′(1) + �′(1)

]
(F̂−T

h : ∇vh)(F̂−T
h : ∇vh).

(49)
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We remark that the first two terms in (49) are consis-
tent, up to the approximation of (û, p̂) by means of
(ûh, p̂h), with the corresponding ones at the continu-
ous level (cf. (46)). However, since the two terms above
have to be tested for vh ∈ Kγ,h , which does not imply
F̂−T

h : ∇vh = 0, the positivity of the form

μ

∫
�

∇vh : ∇vh +
∫
�

[
μ − p̂h�′(1)

]
(F̂−1

h ∇vh)T : F̂−1
h ∇vh

does depend on the selected numerical scheme, since
Kγ,h does so. In particular, we expect that:

– the more Kγ,h is “close” to the continuous kernel Kγ

(cf. (20)), the more the discrete stability range will be
well-approximated by the numerical method.

2. Dependence on the chosen function �(J ) We see that the
term
∫

�

p̂h
[
�′′(1) + �′(1)

]
(F̂−T

h : ∇vh)(F̂−T
h : ∇vh)

(50)

represents a potential source of stability or instabil-
ity for the discrete problem, depending on the product
p̂h [�′′(1) + �′(1)]. In any case, we expect that the dis-
crete stability range Sinc

m,h(μ) may depend on the choice
of �(J ) through its derivatives �′(1) and �′′(1) (and
especially through the sign of [�′′(1) + �′(1)].

Remark 3 We remark that the troubles cannot be avoided by
simply insisting that [�′′(1)+�′(1)] = 0. Indeed, this choice
only results in making the term (50) negligible. However, the
problems arising from the choice of the numerical scheme
still needs to be solved. We will see in Sect. 6 that �(J ) =
ln J , which satisfies [�′′(1)+�′(1)] = 0, is not a satisfactory
choice, in general.

To summarize all the previous discussion, we list below
the two main sources that make the satisfaction of the discrete
coercivity on the kernel condition (7) possibly dependent on
the choice of �(J ) and on the approximation scheme, thus
potentially spoiling the good approximation of the stability
range.

S1h . The non-linear equilibrium equations (40) impose
the constraint

Ĵh = 1 only weakly. (51)

S2h . The second variation d2	inc
m (ûh, p̂h)[(uh, ph), (vh,

qh)] (cf. (41)) has to be tested with virtual displacements
vh belonging to the discrete kernel Kγ,h , thus satisfying

F̂−T
h : ∇vh = 0 only weakly. (52)

We remark that Property (52) means relaxing the lin-
earized incompressibility constraint, a strategy commonly
used to avoid the volumetric locking phenomenon in mixed
finite element schemes, especially of low-order. Therefore,
we expect that:

• if the constraint Ĵh = 1 is imposed too weakly, one
risks a failure in efficiently detecting the stability range
of the problem under consideration;
• if the constraint Ĵh = 1 is imposed almost exactly, one
risks volumetric locking phenomenon to occur.

To the best authors’ knowledge, a rigorous theory concern-
ing a “correct balancing” for the incompressibility constraint
imposition, or general cures for “unbalanced” schemes, is
still missing in this context.

4 Two examples

We now present two problems which are then used as bench-
marks in Sect. 6 to explore the performance of the numer-
ical schemes under investigation (and presented in Sect. 5)
in approximating the stability range. However, we point out
that, since no rigorous general theory on the stability range
approximation is available, numerical schemes passing these
benchmarks, are not necessarily reliable for a generic large
deformation elastic problem.

4.1 Problem 1

This problem has already been considered in [5] and [6], but
only with a specific choice of the volumetric term modeling
(i.e., with a specific choice of �(J )). We consider a square
material body with reference configuration � = (−1, 1) ×
(−1, 1), as shown in Fig. 1.

The upper part of the body boundary is traction free, while
the remaining boundary is clamped. The body is subjected
to a vertical uniform body force γ f with f = (0, 1)T and γ

a real loading parameter (cf. (3)).
Reference [5] reported that for every γ ∈ R the problem

admit at least a trivial solution, i.e. û = 0 and p̂ = γ (1−Y ).
It is also proved that for this problem the stability range (cf.
Definition 4) is

Sinc
m (μ) = (−∞, γM ), (53)

with γM a suitable positive real number. In Reference [6]
a very accurate estimate γM ≈ 6.6 μ has been computed, by
means of NURBS approximation schemes (see [8] and [18],
for instance), based on a suitable stream function formulation
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Fig. 1 Problem 1.

Fig. 2 Problem 2.

of the linearized problem. Therefore, in the following we
will consider γM = 6.6 μ as the optimal target value for the
numerical schemes in detecting the supremum of the problem
stability range.

4.2 Problem 2

We consider a rectangular material body with reference con-
figuration � = (−2, 2) × (−1, 1), as shown in Fig. 2.

The bottom part of the body boundary is clamped, while
both left and right sides are on vertical rollers, hence con-
straining only the horizontal displacements. Finally, the left
top part of the body is subjected to a vertical uniform load
per unit length, while the right top part is set to be traction
free.

The surface uniform load can be expressed as γ p with
p = (0,−1)T and γ a real loading parameter (cf. (3)).

Trivial solutions to the problem are not available, for γ �=
0. In addition, as far as we know, for this problem nothing
is known concerning the stability range, neither theoretically
nor computationally.

5 Numerical schemes

We now introduce the finite element schemes we used for the
analyses of the problems detailed in Sect. 4. Let Th be a trian-
gular or a quadrilateral mesh of �, h being the meshsize. In
the sequel, we denote with Pk(K ) the space of polynomial
functions of degree at most k, defined on the generic ele-
ment K . Also, for a generic quadrilateral element K , Qk(K )

denotes the space of polynomial functions of degree at most
k with respect to each variable ξ and η, where (ξ, η) are the
standard local coordinates on K .

5.1 Displacement-based finite element methods

Concerning formulation (37), we have considered the fol-
lowing elements (see, e.g., [12,17]).

– The Tk elements For triangular meshes and for 4 ≥ k ≥
2, we set the discrete displacement space as

Uh =
{

vh ∈U ∩ C0(�)2 : vh|T ∈ Pk(T )2 ∀T ∈Th

}
.

(54)

Therefore, the displacements are approximated by means
of continuous functions. We remark that here we do not
consider the case k = 1, because that choice leads to the
most severe volumetric locking phenomenon.

5.2 Mixed finite element methods

Concerning formulation (40), we have considered the fol-
lowing elements.

– The MINI element (see [3] or [12], for instance). It is a
triangular element. For the discretization of the displace-
ment field, we take

Uh =
{

vh ∈ U ∩ C0(�)2 : vh|T ∈ P1(T )2

+B(T )2 ∀T ∈ Th

}
, (55)

where B(T ) is the linear space generated by bT , the stan-
dard cubic bubble function on T . For the pressure dis-
cretization, we take
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Ph =
{

qh ∈ C0(�) : qh|T ∈ P1(T ) ∀T ∈ Th

}
.

(56)

Therefore, both the displacements and the pressures are
approximated by means of continuous functions. This
element is well known to be stable in the incompressible
range in linear elasticity.

– The Qk/P(k −1) element (see [12] or [17], for instance).
For k = 1, 2, they are classical quadrilateral elements.
For the discretization of the displacement field, we take

Uh =
{

vh ∈U ∩ C0(�)2 : vh|K ∈ Qk(K )2 ∀K ∈Th

}
.

(57)

For the pressure discretization, we take

Ph ={
qh ∈ P : qh|K ∈ Pk−1(K ) ∀K ∈Th

}
. (58)

Therefore, the displacements and the pressures are
approximated by means of continuous and discontinu-
ous functions, respectively. For k = 2, the element is
well known to be stable in the incompressible range in
linear elasticity.

– The Tk/T(k − 1) elements (Taylor-Hood elements)
(see [12] or [17], for instance). They are triangular ele-
ments with continuous pressure approximation. Fix k ≥
2. For the discretization of the displacement field, we take

Uh =
{

vh ∈U ∩ C0(�)2 : vh|T ∈ Pk(T )2 ∀T ∈Th

}
.

(59)

For the pressure discretization, we take

Ph =
{

qh ∈C0(�) : qh|T ∈ Pk−1(T ) ∀T ∈Th

}
.

(60)

Therefore, both the displacements and the pressures are
approximated by means of continuous functions. Under
minor restrictions on the used meshes, these elements are
stable in the incompressible range in linear elasticity.

– The T2/P0 element (see [4] or [12], for instance) It is a
triangular element. For the discretization of the displace-
ment field, we take

Uh =
{

vh ∈U ∩ C0(�)2 : vh|T ∈ P2(T )2 ∀T ∈Th

}
.

(61)

For the pressure discretization, we take

Ph = {
qh ∈ P : qh|T ∈ P0(T ) ∀T ∈ Th

}
. (62)

Therefore, the displacements and the pressures are
approximated by means of continuous and discontinuous
functions, respectively. This element is well known to be
stable in the incompressible range in linear elasticity.

6 Numerical results

We now report the numerical results relative to the approx-
imation of the stability range for the two problems detailed
in Sect. 4 using the schemes addressed in Sect. 5.

Both problems are studied with different square meshes,
indicated as n × m, with n and m referring to the number of
subdivisions in direction x and y, respectively. Obviously, for
Problem 1 of Sect. 4.1 we have n = m, while for Problem 2
of Sect. 4.2 we have n = 2m. When triangular elements are
employed, the meshes are obtained by dividing each square
element by means of one diagonal (see Fig. 3)

All the methods are implemented through the code Ace-
Gen © and the problems are solved using AceFEM© and
adopting a Newton iteration solver. For details on AceGen©

and AceFEM© see [2] and [1], respectively.
We consider the following value for the material constants

μ = 40 , λ = 105μ.

We remark that the value of λ is used only for the
displacement-based formulations and it is set to reproduce
an almost incompressible situation.

For both problems and all analyses, we start from the
unloaded state and we progressively increase the load until
the first numerical critical value is found. The numerical crit-
ical value is here defined as the point where a sign change
for the tangent matrix eigenvalues occurs. It can be proved
that this actually means that the numerical critical value is
essentially the first value when:

– for displacement-based schemes, the discrete coercivity
condition (39) fails;

– for mixed schemes, the discrete coercivity on the kernel
condition (43) fails.

All the results are reported using the scaled loading para-
meter γ̄ = γ

μ
, and the computed critical values are denoted

as γ̄cr .

6.1 Numerical results for Problem 1 (Sect. 4.1)

6.1.1 Tension test

For this problem, we explore the numerical capability in
detecting the correct stability range for all the numerical
schemes introduced in Sect. 5. In addition, for every scheme
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Fig. 3 Typical triangular mesh for Problem 1 (left), and for Problem 2 (right).

Table 1 Problem 1—Results
for different functions �(J ),
displacement-based elements

Elm �(J ) Mesh γ̄cr tension Elm �(J ) Mesh γ̄cr tension

T4 (J − 1) 4 × 4 6.67 T2 (J − 1) 8 × 8 6.90

8 × 8 6.62 16 × 16 6.68

16 × 16 6.60 32 × 32 6.63

32 × 32 6.60 64 × 64 6.63

log J 4 × 4 6.67 log J 8 × 8 6.90

8 × 8 6.62 16 × 16 6.69

16 × 16 6.60 32 × 32 6.63

32 × 32 6.60 64 × 64 6.63

(1 − 1
J ) 4 × 4 6.67 (1 − 1

J ) 8 × 8 6.90

8 × 8 6.62 16 × 16 6.68

16 × 16 6.60 32 × 32 6.62

32 × 32 6.60 64 × 64 6.60

T3 (J − 1) 8 × 8 6.64

16 × 16 6.61

32 × 32 6.60

64 × 64 6.60

log J 8 × 8 6.64

16 × 16 6.62

32 × 32 6.60

64 × 64 6.60

(1 − 1
J ) 8 × 8 6.64

16 × 16 6.61

32 × 32 6.60

64 × 64 6.60

and every mesh, we select three different choices of �(J ),
namely:

– �(J ) = J − 1, which gives k(1) = 1 (cf. (18));
– �(J ) = log J , which gives k(1) = 0;
– �(J ) = (

1 − 1
J

)
, which gives k(1) = −1.

From the discussion of Sect. 3.3, it should be clear that
the three choices above induce potentially different effects

on the stability range, as numerically detected by the mixed
schemes. We also recall that, according to the results of [5]
and [6] (cf.also Sect. 4.1), the numerical detected critical
value is accurate when γ̄cr ≈ 6.60 .

• Displacement-based schemes Different order interpola-
tions are used for triangular elements. The results are depicted
in Table 1. We remark that, for this test, the stability range
is accurately detected for all the schemes and all the choices
for �(J ). However, we notice that:

123



Comput Mech

Table 2 Problem 1—Results
for different functions �(J ),
triangular mixed elements

Elm �(J ) Mesh γ̄cr tension Elm �(J ) Mesh γ̄cr tension

T2/T1 (J − 1) 8 × 8 6.7 T2/P0 (J − 1) 8 × 8 6.55

16 × 16 6.60 16 × 16 6.6

32 × 32 6.60 32 × 32 6.6

64 × 64 6.60 64 × 64 6.6

log J 8 × 8 6.68 log J 8 × 8 1.45

16 × 16 6.65 16 × 16 1.07

32 × 32 6.63 32 × 32 1.02

64 × 64 6.60 64 × 64 1

(1 − 1
J ) 8 × 8 6.68 (1 − 1

J ) 8 × 8 2.45

16 × 16 6.63 16 × 16 0.575

32 × 32 6.60 32 × 32 0.525

64 × 64 6.60 64 × 64 0.525

T3/T2 (J − 1) 4 × 4 6.68 MINI (J − 1) 8 × 8 7.425

8 × 8 6.63 16 × 16 6.775

16 × 16 6.60 32 × 32 6.675

32 × 32 6.60 64 × 64 6.625

log J 4 × 4 6.63 log J 8 × 8 1.25

8 × 8 6.63 16 × 16 1.225

16 × 16 6.60 32 × 32 1.15

32 × 32 6.60 64 × 64 1.075

(1 − 1
J ) 4 × 4 6.63 (1 − 1

J ) 8 × 8 0.625

8 × 8 6.60 16 × 16 0.65

16 × 16 6.60 32 × 32 0.625

32 × 32 6.60 64 × 64 0.575

1. the condition number of the tangent matrix becomes
significantly large with mesh refinement, especially for
high-order schemes;

2. the use of low-order elements may give poor approxima-
tion results, due to the volumetric locking phenomenon.

• Mixed schemes Different mixed formulations were used
to obtain results for the model problem. They are reported in
Tables 2 and 3 (triangular and quadrilateral schemes, respec-
tively).

We remark that the schemes, apart from the Taylor-Hood
elements, are very sensitive to the choice of the function
�(J ). The best choice is here �(J ) = J −1. This should not
be a surprise, because in this case the term (50) has a stabiliz-
ing effect, since we have p̂h (�′′(1)+�′(1)) = γ rh ≥ 0 (rh

being an approximation of r , in most cases exactly coinciding
with r ). In addition, the worst choice is here �(J ) = 1−1/J .

We end this subsection by showing a couple of eigenvec-
tors associated with the found numerical critical value. More
precisely:

1. The eigenmode associated with the correct value γ̄cr =
6.60 for a solution using the T2/P1 element and �(J ) =

J − 1 (see Table 2) is depicted in Fig. 4. We remark
that the computed eigenmode is physically reasonable.
Here only the result for this element is plotted since the
eigenmodes for other element formulations in Tables 1–3
leading to γ̄cr ≈ 6.60 are very similar.

2. The eigenmode of the last converged state at γ̄cr = 0.525
is plotted in Fig. 5 for the T2/P0 element using the func-
tion �(J ) = (1 − 1

J ), see Table 2. The local instability
can be observed in the lower part of the domain. We
remark that eigenmodes that are related to incorrect val-
ues γ̄cr �= 6.60 can have different shapes. Usually one
finds some local type of hourglassing or other unphysical
instability.

6.1.2 Compression test

For the compression test, we explore the numerical behav-
iour only for a few elements and a single mesh, but we still
consider all the three functions �(J ) detailed in Sect. 6.1.1.
We recall that, due to the results of [5] and [6], the numerical
detected critical value is accurate when γ̄cr approaches −∞
(cf. (53)). From a computational point of view, we consider
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Table 3 Problem 1—Results
for different functions �(J ),
quadrilateral mixed elements

Elm �(J ) Mesh γ̄cr tension Elm �(J ) Mesh γ̄cr tension

Q2/P1 (J − 1) 8 × 8 6.6 Q1/P0 (J − 1) 8 × 8 7.275

16 × 16 6.6 16 × 16 6.775

32 × 32 6.6 32 × 32 6.65

64 × 64 6.6 64 × 64

log J 8 × 8 1.325 log J 8 × 8 2.375

16 × 16 1.225 16 × 16 2.225

32 × 32 1.125 32 × 32 1.9

64 × 64 1.1 64 × 64 1.725

(1 − 1
J ) 8 × 8 0.675 (1 − 1

J ) 8 × 8 1.625

16 × 16 0.675 16 × 16 1.125

32 × 32 0.575 32 × 32 0.95

64 × 64 0.55 64 × 64 0.875

1.187 10 6

Fig. 4 Physical eigenmode at γ = 6.60 using the T2/P1 element and
�(J ) = J − 1.

the value γ̄ = −660 as the numerical −∞. Accordingly, we
stop our analysis at that value, if no eigenvalue sign change
for the tangent matrix occurs before. The numerical results
are reported in Table 4.

We remark that the mixed schemes are again sensitive to
the choice of the function �(J ). The best choice is here
�(J ) = 1 − 1/J . Again, this should not be a surprise,
because in this case the term (50) has a stabilizing effect,
since we have p̂h (�′′(1) + �′(1)) = −γ rh ≥ 0 (rh

being an approximation of r , in most cases exactly coin-
ciding with r ). Unfortunately, this optimal choice is the
worst for the tension test. In addition, the worst choice

0.00619103

Fig. 5 Eigenmode of last converged solution at γ = 0.525 for T2/P0
and �(J ) = (1 − 1

J ).

for the compression test is the optimal one in the tension
test.

6.2 Numerical results for Problem 2 (Sect. 4.2)

Also for this example we report the computed critical value
γ̄cr . We recall that no results on the stability range is available
for this problem (cf. Sect. 4.2).

• Displacement-based schemes In Table 5 we report the
numerical results for displacement-based schemes on several
meshes, and corresponding to �(J ) = J − 1.
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Table 4 Problem 1—Results for different functions �(J ), compres-
sion test

Elm �(J ) Mesh γ̄cr compression

T4 (J − 1) 16 × 16 −660 (−∞)

log J 16 × 16 −660 (−∞)

(1 − 1/J ) 16 × 16 −660 (−∞)

T2/T1 (J − 1) 32 × 32 −535

log J 32 × 32 −660 (−∞)

(1 − 1/J ) 32 × 32 −660 (−∞)

T2/P0 (J − 1) 32 × 32 −77.5

log J 32 × 32 −100

(1 − 1/J ) 32 × 32 −125

Table 5 Problem 2—Results for �(J ) = J − 1, displacement-based
elements

Elm �(J ) Mesh γ̄cr

T4 (J − 1) 4 × 2 90.4

8 × 4 75.5

16 × 8 71.6

32 × 16 65.1

64 × 32 62.3

T3 (J − 1) 16 × 8 96.9

32 × 16 78.41

64 × 32 69.54

128 × 64 63.18

T2 (J − 1) 16 × 8 80.8

32 × 16 71.8

64 × 32 67.3

128 × 64 64.2

256 × 128 62.2

• Mixed schemes Still for the choice �(J ) = J − 1,
we report the numerical results for several mixed schemes
and meshes in Tables 6 and 7 (triangular and quadrilateral
elements, respectively).

• Different Choices of �(J ) We now consider a selec-
tion of finite element schemes. For each element we fix a
representative mesh, in such a way that the corresponding
degrees of freedom are comparable. We then investigate on
the numerical behaviour in detecting the stability range for
the three functions �(J ) presented in Sect. 6.1.1 (Table 8).

7 Conclusions

In this paper we have considered several finite element
schemes for the approximation of large deformation elas-
tic problems in the nearly incompressible and purely incom-
pressible regimes. In particular, we focused on the method’s

Table 6 Problem 2—Results for �(J ) = J − 1, triangular mixed
elements

Elm �(J ) Mesh γ̄cr

MINI (J − 1) 32 × 16 86.0

32 × 64 74.7

64 × 128 68.2

128 × 256 64.5

T2/P0 (J − 1) 16 × 8 58.0

32 × 16 53.6

64 × 32 58.9

128 × 64 57.7

T2/T1 (J − 1) 16 × 8 53.3

32 × 16 62.5

64 × 32 62.6

128 × 64 62.9

T3/T2 (J − 1) 16 × 8 70.7

32 × 16 64.7

64 × 32 62.3

128 × 64 61.2

Table 7 Problem 2—Results for �(J ) = J − 1, quadrilateral mixed
elements

Elm �(J ) Mesh γ̄cr

Q2/P1 (J − 1) 16 × 8 60.5748

32 × 16 57.3658

64 × 32 55.2208

128 × 64 40.128

Q1/P0 (J − 1) 32 × 16 69.0

64 × 32 64.7

128 × 64 62.6

256 × 128 61.6

ability to accurately reproduce the stability range of a given
problem, i.e. the ability to accurately capture critical loads
for the possible occurrence of bifurcation and limit points.
By means of a couple of 2D model problems involving a
very simple neo-Hookean constitutive law, we were able to
highlight the following issues.

Concerning the displacement/pressure mixed formula-
tion:

• Even finite element schemes which are known to perform
optimally in the infinitesimal framework, may fail the
stability range detection to large extent. This is the case
of the MINI element and the popular Q2/P1 element,
for instance. For the MINI element, a rigorous (though
not optimal) analysis of the failure to detect the stability
range for Problem 1 (Sect. 4.1), and with �(J ) = ln J ,
has been developed in [5].
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Table 8 Problem 2—Results for different functions �(J )

Elm �(J ) Mesh γ̄cr

T4 (J − 1) 32 × 16 59.328

log J 32 × 16 59.328

(1 − 1/J ) 32 × 16 59.328

T2/T1 (J − 1) 64 × 32 62.5753

log J 64 × 32 64.6257

(1 − 1/J ) 64 × 32 65.3834

T2/P0 (J − 1) 64 × 32 50.265

log J 64 × 32 62.703

(1 − 1/J ) 64 × 32 62.230

• The discrete stability range, as numerically detected,
depends on both the scheme and on the function �(J )

which models the volumetric term in the elastic energy
density. For the incompressible limit situation, the more
the numerical scheme relaxes the incompressibility con-
straint, the more the discrete stability range tends to be
inaccurately approximated.

For the displacement-based formulation:

• In the nearly incompressible regime, the methods seem
to be robust in detecting the stability range. However, we
notice that, in order to avoid volumetric locking effect,
high-order elements should be preferred. This implies
very large condition numbers for the resulting tangent
matrices.

Possible promising alternatives for an accurate approxi-
mation of large deformation elastic problems are as follows.

1. The use of NURBS-based approximation schemes. On
the one hand, the higher inter-element continuity might
alleviate the ill-conditioning effects when dealing with
the displacement-based formulation. Even though in a
different context, some numerical evidence of this possi-
ble improvement in the condition number of the stiff-
ness matrix can be found in [9]. On the other hand,
the exact satisfaction of the incompressibility constraint
seems to be accessible when dealing with the displace-
ment/pressure mixed formulation or even with a higher-
order formulation involving a stream function (see [6]
and [7] for first attempts towards this direction).

2. The use of different mixed formulation. For instance,
one may think of considering the Hu-Washizu formu-
lation as the basis for the discretization procedure. We
report promising results obtained following this strategy:
Table 9 displays the outcomes concerning the problem of
Sect. 6.1.1, while Table 10 those concerning the problem

Table 9 Problem 1—Results for different functions �(J ), Hu-Washizu
mixed element

Elm �(J ) Mesh γ̄cr tension

Q1/EI4 (J − 1) 8 × 8 7.5

16 × 16 6.85

32 × 32 6.675

64 × 64 6.625

log J 8 × 8 7.5

16 × 16 6.85

32 × 32 6.675

64 × 64 6.625

(1 − 1
J ) 8 × 8 7.5

16 × 16 6.85

32 × 32 6.675

64 × 64 6.625

Table 10 Problem 2—Results for �(J ) = J − 1, Hu-Washizu mixed
element

Elm �(J ) Mesh γ̄cr

Q1/EI4 (J − 1) 32 × 16 78.8

64 × 32 70.0

128 × 64 65.5

256 × 128 63.1

of Sect. 6.2. For details on the employed approximation
scheme, we refer to [23].

Other possible techniques to explore are the ones tak-
ing advantage of Discontinuous Galerkin or nonconforming
approaches.

We finally remark that an exhaustive theoretical analysis
about the method capability to capture the stability range for
a general large deformation elastic problem is still missing.
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