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ABSTRACT. By means of an exhaustion process it is shown that Teichmuller's metric 
and Kobavashi's metric arc equal for infinite dimensional Tcichmuller spaces. By the 
same approximation method important estimates coming from the Reich·Strebel 
inequality are extended to the infinite dimensional cases. These estimates are used to 
,how that Teichmuller's metric is the integral of its infinitesimal form. They are also 
used to give a sufficient condition for a sequence to be an absolute maximal 
sequence for the Hamilton functional. Finally, they are used to give a new sufficient 
condition for a sequence of Beltrami coefficients to converge in the Teichmuller 
metric. 

Introduction. The subject of this paper is Teichmiiller spaces of infinitely gener-
ated Fuchsian groups. By approximation techniques involving theta series and 
finitely generated subgroups of a given group, we extend certain important results 
already known in the finite case to the infinitely generated case. 

In § I we set up the approximation technique and cite the necessary theorems 
involving Poincare series and approximation by rational functions. 

In §2 we consider Kobayashi's extremal problem for Teichmiiller spaces with 
complex structure and prove the following new result. The theorem of Royden on 
the equality of the Kobayashi and Teichmiiller me tries remains true in the infinite 
cases. These cases include Teichmiiller spaces of groups of the first and second kind. 
In particular, the case of universal Teichmiiller space is included. 

In §3 we prove the important main inequality of Reich and Strebel [14). Its most 
significant consequences are upper and lower estimates for the extremal value of the 
dilatation in a given Teichmiiller class. The chief result of this section is that these 
upper and lower estimates hold even in the infinite dimensional cases. 

In §4 we derive the well-known [16) infinitesimal form of Teichmiiller's metric. We 
use this general form together with the Hamilton condition as developed by Reich 
and Strebel [14) to show that Teichmiiller's metric is equal to the integral of its 
infinitesimal form. O'Byrne already obtained this result in [6, 7, 13). The method 
used here is more direct and the theorem is proved in greater generality. 

In §5, we give a sufficient condition for a sequence C(Jn to be an absolute maximal 
sequence for the Hamilton functional H[p,). We do not know if this condition is also 
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368 F. P. GARDINER 

necessary. But if it were, then one would know that if v ~ t-t and v and t-t are both 
extremal then tv ~ tt-t for 0 ,,;;; t ,,;;; l. 

§6 gives a condition under which the solution to Kobayashi's extremal problem is 
unique. It turns out to be the same as the classical condition under which it is known 
that Teichmiiller's extremal problem has a unique solution. However, there is no 
known relationship between the two forms of uniqueness. Moreover, it is not known 
whether a geodesic joining two points in an infinite dimensional Teichmiiller space is 
unique. 

§7 gives a sufficient condition for a sequence of Beltrami coefficients to converge 
to zero in the Teichmiiller metric. This sufficient condition is a consequence of the 
estimates in §3. 

I would like to thank the referee for numerous helpful suggestions. 

1. The approximation method. Let f be a Fuchsian group with limit set A c;;: R = 
R U {oo}. Let C be a closed subset of R which contains A and is invariant under f. 
When f is elementary or consists of the identity alone, we require that (C - A)/f 
contain three or more points. In particular we will assume C contains 0, I and 00. 

Using conjugation by a Mobius transformation which fixes R, it is clear that this 
assumption involves no loss of generality. M(f) is the set of all elements t-t of Lx;Cc) 
with support in the upper half plane U such that 

(l.l) (i) Iit-tiloo < I and 
(ii) t-t(Ax)A'(z) =t-t(z)A'(z) forallAinf. 

We call such a t-t a Beltrami coefficient. For each t-t in M(f), let [t be the extension of 
t-t to the lower half plane given by the rule [t(Z) = t-t (z) and let wI' be the unique 
quasiconformal homeomorphism of the extended complex plane t = c U {oo} 
which satisfies 

On M(f) we put an equivalence relation. Two Beltrami coefficients t-t and v are 
equivalent (t-t ~ v) if w/x) = w,,(x) for all x in C. The Teichmiiller space T(f) is 
M(f) factored by this equivalence relation. 

When f is infinitely generated or when (C - A) /f is infinite, the Teichmiiller 
space is an infinite dimensional manifold. On the other hand, if f is finitely 
generated and if (C - A)/f is a finite set, then T(f) is finite dimensional. In order 
to approximate the infinite dimensional case by finite dimensional ones, let fn be a 
sequence of finitely generated subgroups of f with limit sets An and Cn a sequence of 
subsets of C satisfying: 

(i) fn c;;: fn+1 and U fll = f, 
(ii) Cn c;;: CIl +1 and UCn = C, 

(1.3) (iii) Cil is invariant under fn' Cil :> An and (Cn - An )/fll 
is a finite set, 

(iv) 0, 1 and 00 are elements of C1. 
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It is clear that such a sequence of subgroups rn of r and subsets Cn of C will exist 
for a given group r and closed set C. Notice that T(rn) is a set of equivalence classes 
of elements of M( r,,). Two elements Il and I' are equivalent (Il ~ n 1') if w/ x) = wv ( x) 
for all x in C", 

Now let rl = C - C and rl" = C - C", Also, let M(r", rl,,) be the set of complex-
valued measurable functions Il with support in rl n satisfying (l.l) with the exception 
(1.1)(ii) is to hold for all A in rn' Let w = w/L be the unique holomorphic self-map-
ping of C satisfying a w /az = Ila w /az and normalized to fix 0, 1 and 00. Define Il to 
be strongly equivalent to I' and write Il =n I' if w/L(x) = WV(x) for all x in C" and if 
w/L is homotopic to WV to rl". Using the notation of Kra in [11], define the 
Teichmillier space T(r", rl,,) to be M(r", rln)/=n. 

Let 7T: M(r) ---> M(rn, rln) be defined by 7T(Il)(Z) = Il(z) for z in U, the upper half 
plane, and 7T(Il)( z) = 0 for z in L, the lower half plane. 

LEMMA 1.1. Let C = R. For Il and I' in M(r) and Il ~ I' one has 7T(Il) =,,7T(V). 

PROOF. It is well known [6] that w/x) = wJx) for all in R implies w 7T(/L)(x) = 
w 7T(V)(x) for all x in R and, hence, for all x in Cn' Furthermore, by Ahlfors [1, p. 119] 
there is a homotopy hI: U --> w 7T(/L)(U) for which ho(z) = w 7T(/L)(z) for z in U and 
hl(z) = w 7T(V\z) for z in U and h/x) = w 7T(/L)(x) = w 7T(V)(x) for x in Rand 
0",-; t ",-; 1. This homotopy extends to a homotopy hI from rln to w 7T(/L)(rl n) by setting 
hl(z) = w 7T(/L)(z) = w 7T(V)(z) for z in L U R. It follows that 7T(Il) and 7T(I') are 
strongly equivalent and this completes the proof. 

Lemma l.l implies that the mapping 7T induces a mapping from T( r) to 
T(rn , rl,,). We denote the induced mapping by the same letter 7T. Since the complex 
structures on T(r) and on T(r", rln) are mherited from M(r) and M(I:, rl n), this 
induced mapping is holomorphic. 

Now suppose Il is extremal in its class in M(r). By this we mean that k = 1IIllix ",-; 
1II'IL>o for all I' in M(r) for which I' ~ Il. Let 

(1.4) 

be extremal in the class of 7T(Il) in M(rn, rln) under the relation =n. Here 
0",-; k n < 1 and 11" is an integrable, holomorphic, quadratic differential for rn on rl n • 

That is, lIn is holomorphic on rln' lIn( Az )A'( Z)2 = lIn( z) for z in rl" and 

f 1 11Inl dx dy < 00. 
[·vr 

The class of 7T(Il) in M(rn, rln) possesses an extremal element of the form (1.4) and it 
is unique if 7T(Il) is not equivalent to zero under the relation =", This fact is 
Teichmilller's theorem applied to the space T(r/L' rl n ), which is isomorphic to the 
Teichmilller space of the Fuchsian group of the first kind obtained by lifting rn 
under the universal covering mapping of U onto rln. 

Obviously k n ",-; kn+ 1 ",-; k for all n since the equivalence relations induced by ~ , 
=n+ I and =n are progressively finer. The fact that ~ is finer than =n+ 1 is Lemma 
1.1 and depends on the assumption that C = R. The fact that =n+ 1 is finer than =n 
follows from the inclusion Cn C Cn + I' 
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LEMMA 1.2. Suppose C = R. Let p, he extremal in its class ill M( nand k = II~(II-x:' 

Assume kll 11)11 1/1)11 in (1.4) is extremal in the class of 7T(p,) in M(I~" r2 11 ) under the 
equivalence relation = 11' Then lim 11 . x k 11 = k. 

PROOF. Consider the mappings 11"'" where VII = k n i 1)111/1)11' By hypothesis 11,1',,( x) 

= W"il'l(X) for all x in CII • Let w" be a normalized limit of ~ome subsequence of 11"'''. 

Such a limit exists because Ilvllllx = k ll ,,;; k < I :or all n. Also v(A.::)A'(.::) = 
v( z )A'( z) for all A in [. It is clear from (1.3 )(iv) and from the hypothesis C = R that 
wl'( x) = w"( x) for all x in R and that therefore V restricted to the upper half plane is 
equivalent to p,. Moreover, v restricted to L is trivial in M( r. L), (but v might not be 
identically zero in L). By the fact that p, is extremal in its class, it follows that 
Ilv 1 Vlloo ;? 11p,11:x; = k. But if kll ,,;; k- f for all n and for some positive E, one would 
have Ilvll"" ,,;; k - E, a contradiction. Hence the lemma follows. 

Let M"mm([II,r2 I1 ) be those!1 in M(rll,~211) for which P,(':)=,u(.::). From 
Teichmuller's theorem, for a given !1 in M'\111l11( I'll' r2,,), there is an extremal element 
equivalent under =11 to p, of the form 

(1.5 ) k :,icrlli / C{II 

where 0 ,,;; k:, < 1 and <PII is a symmetric, integrable. holomorphic. quadratic dif-
ferential for I'll on r2 11 . Let p, in M"mm( 1', n) be extremal under the equivalence 
relation induced by the set C. Since C~, C C~,. ICC, one has k:, ,,;; k:, . I ~ k for all 
n. An argument similar to but easier than the proof of Lemma 1.2 gives the 
following lemma and so we omit its proof. 

LEMMA 1.3. lim ll • x k:, = k 

REMARK. In contrast to Lemma 1.2. in this lemma we do not assume C = R. This 
is because it is obvious that when!1 and v are symmetric and p, ~ 1'. then p, =" 1'. 

Now let w be a fundamental domain for [ in U and w a fundamental domain for 
r in r2. Similarly. let W II and wlI be fundamental domains for I~, acting on U and r211 
respectively. It is clear that we may pick these fundamental domains so that 
W C wl1 + I C wlI and wlI is the union of Wn and its complex conjugate and an 
appropriate part of the real axis. 

The Poincare theta series operator is defined by 8F= ~ F( B(::. »)B'(.::)2 where the 
summation is taken over all B in the group [ and 8" is given by the same summation 
except it is taken over all B in the group I'll' Let D be a domain in t and A( D) be 
the set of all holomorphic functions F defined on D such that II F11 = .ifni F(.::) i dx dr 
is finite and IF(.:')I= 0(1.:-1-4 ) as .:- ~ 00 if 00 is an interior point of D. In our 
applications D will be either U or r2. 

Now suppose D is contained in the set of discontinuity of r. Let A( D. [) be the 
set of all holomorphic functions <P in D such that <P( Az )A'(::)" = <p(.:-) for all A in [ 
and z in D and II<pII = fID/rl<P(.:-)ldxdv is finite. Finally. if D is symmetric with 
respect to complex conjugation, let A ,( 12.~~d A,( D. n be the subsets of A( D) and 
A( D, [) whose elements satisfy F(Z) = F( z). 

The following well-known result [3, 11] is stated for special domains D. 
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LEMMA IA. Le{ D he rhe upper half plane U or the set Q = t -- C defined ahove. 
Then e: A( D) ~ A( D. r) is a continuous surJectice linear operator between Banach 
spaces. e has florm less than or equal to one and the image of the unit ball contains the 
ball of radius one-third. If D is symmerric under complex conjugation, the same 
S{(lrements are [rue for the restriction of e to (/ map from AS< D) onto A) D, ['). 

Let R( n) be the subset of A( n) which consists of rational functions with at most 
simple poles lying in C = t - Q. Similarly, RJ Q) is the subset of AJ Q) consisting 
of rational functions with at most simple poles in C. 

The following lemma is well known. 

LEMMA 1.5 [2, 11]. R(Q) is dense in AW) and RJQ) is dense in A,(Q). 

2. Extremal holomorphic mappings from a disk into T( n. In this section we 
assume C = It and hence. T( f) is a complex manifold. The cases when r is finitely 
or infinitely generated and either of the first or second kind are included. Let ~'1' be 
the family of holomorphic functions from the unit disk ~ into T( r). Let P and Q be 
elements of T( r). Among all fin :1' which map 0 into P and a positive number r into 
Q. we consider the problem of finding the minimum value of r. 

THEOREM 2.1. The minimum value of r fi)r this prohlem is the numher k = Ilflllx 
'where fl is the Beltrami coefficient of an extremal quasiconformal mapping joining P to 
Q. A function for which this minimum value is achieved is any holomorphic function f of 
the form f(::) = [zf.L/!11l yJ where p, is the Beltrami coefficient of an extremal mapping 
joining P to Q. 

PROOF. The crux of the matter is to show that for every fin \'t which takes 0 into P 
and a positive number r into Q = [p, lone has the inequality r;:;' k, since the 
mapping described in the second part of the theorem will map .:1 into T( r) taking 0 
into P and k into Q. 

To see that r;:;' k we rely on the fact that Royden has proved this in the finite 
dimensional case [16]. His proof requires no alteration in the case where T( f) has 
elliptic or parabolic elements. In our situation we have holomorphic mappings 

(T(rn • rl,J is defined in §I just before Lemma 1.1.) We assume without loss of 
generality that T( 1') is based at the point P so that P is represented by the zero 
Beltrami coefficient. We know that 1T 0 f(O) = 0 and 1T 0 f( r) is representable in the 
form k n l7)n 1/7),,· By Royden's theorem r;:;' k n for all n. By Lemma 1.2, r;:;' k. 

COROLLARY 2.1. The Kohayashi and TeichmU/ler metrics on T( r) coincide. 

PROOF. Let d K be Kobayashi's (pseudo) metric and d T be Teichmilller's metric. 
Let d l ( P, Q) = ; log(l + r )/(1 - r) where r is the minimum value achieved in the 
extremal problem of Theorem 2.1. Let 

n 

d n { P, Q) = inf L diU" Pi I) 
,~I 
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where the infimum is taken over all points PO"" 'Pn in T(f) such that Po = P and 
Pn = Q. Obviously, d n+, ,,;;;; d n for all n. By definition, dK(P, Q) = limn_x dn(P, Q). 
It is clear that if d, satisfies the triangle inequality, then d, = d n for all n and, hence, 
d, = d K' By the preceding theorem, d, does satisfy the triangle inequality since it is 
identical to Teichmtiller's metric. Therefore, d, = d T = d K' 

3. The fundamental inequality of Reich and Strebel for T( f). In this section we do 
not require e to be all of R and hence T(I') may not have complex structure. As 
usual, Q is the complement in t of C. In its most elementary form the main 
inequality of Reich and Strebel [14, 15, 17) contains two variables !l and <po Here!l is 
a trivial element of M(I'), that is wl'(x) = x for all x in e and <p is in A/Q, f). The 
inequality says 

(3.1 ) 

where W is a fundamental domain for I' in U. In the case where e = R, we may drop 
the real part symbol in the left side of (3.1). Also, in this case A seQ, f) is replaced by 
A( U, f). The inequality (3.1) follows easily from Teichmtiller's inequality [5) in finite 
dimensional cases. Thus we assume it is known when A,(Q, f) is finite dimensional 
and show how to prove it for infinite dimensional cases. The hypothesis that !l is 
trivial in M(f) implies its symmetric extension is trivial in M(fn, Qn) since en C c. 
Thus we assume 

(3.2) 

for <Pn in A,(Qn' fn)' 
In order to view (3.1) as a limit of (3.2), we need the following lemma. 

LEMMA 3.1. Let en be the Poincare theta series operators for the groups rn in (3.1). 
Let Wn and W be fundamental domains for rn and I' in the upper half plane U with 
W C WI!' Suppose G is a measurable function defined on U and f f u I G I dx dy < 00. 

Then 

lim If lenG - eGI = o. 
ll-X W 

PROOF. Start with the inequality 

The second term on the right-hand side of (3.3) is less than or equal to 

(3.4) ff ~ IG(Az)A'(Z)21 
w 

where the sum is over all A in I' - f n . We can select no so that for n ;;;, no this sum is 
less than el2 since the theta series of an integrable function converges absolutely. 
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The first term on the right side of (3.3) is less than or equal to 

(3.5) 

Since fnw is an increasing sequence of sets whose umon IS U and since G is 
integrable, (3.5) approaches zero. The proof of the second part of the lemma is 
similar so we omit it. 

THEOREM 3.1 [5, 17]. The inequality (3.1) holds whenever wix) = x for all x in C 
and for all cp in A,(Q, f). The space As(Q, f) may be finite or infinite dimensional. 

PROOF. Let Fbe in R,(Q) and have simple poles in the closed set Cno. Since we are 
assuming that (3.2) is true for finite dimensional spaces and since wi x) = x for all x 
in Cno' we know that (3.2) is true with CPn replaced by 8 nF for all n ;? no. Since p, is a 
Beltrami differential for f and fno C f, one has 

ff (8nF)~dxdY = ff (8F)P,2 dxdy . 
Wn I - I p, I w I - I p, I 

Since I p, I is automorphic for f, on letting the function G of Lemma 3.1 be 
I p, 12 F 1(1 - I p, 12), it follows that the right side of (3.2) approaches 

ff 1p,1218FI 
-'-'--:"":"'-2-'- dx dy as n --> 00. 

wl-Ip,1 

Now Lemma 1.5 tells us that R,(Q) is dense in As(Q). This fact together with the 
fact that 8 is surjective proves (3.1) in the general case. 

By elementary calculations (3.1) extends to an inequality involving three variables 
cP, p, and VI. This inequality is called the main inequality of Reich and Strebel [17]. 
Here cP is any element of A,.(f, Q) with J fw I cP I = I, p, is any element of M(f) and VI 

is any element of M(wl'f(wl't l ) for which wPI 0 wI' has trivial Beltrami coefficient in 
M(f). Let p(z) = dWI'(z)ldz. 

THEOREM 3.2 [17]. For all cp, p, and VI as described above 

(3.6) I ,,;;;ff I III - p,cp/lcpW . II - v l (pcplplcpl)OI2 dxd 
w cp I - I P, 12 I - I V I 12 y 

where O( z) = (l - jiip II cp D/( I - p,cp II cp I)· 

PROOF. One applies (3.1) to the trivial Beltrami coefficient of the mapping 
wPI 0 wI'. Then the verification is a routine calculation. The proof given in [14] is 
different. 

LEMMA 3.2 [17]. Let ko be the minimum value of Ilvlloo where V ~ P, and Ko = 
(l + ko)/(l - ko)· Then for all cp in As(f, Q) with Ilcpll = J!wI cp I dx dy = I, one has 

(3.7) K- I ,,;;;ff I III - p,cp/l cp 112 dxd . 
o wCP 1-1p,12 y 
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PROOF. Let v ~ f.t and VI satisfy w'" 0 joj,~(z) = z for all z and suppose v is extremal 
in the class of f.t. Then wv , 0 w!' is trivial and ko = Ilvlll ac . The second fraction in the 
integrand in (3.6) is bounded by (l + keY I( I - ke~). Thus (3.7) follows. 

For the finite dimensional cases the inequality (3.7) also follows from the 
Teichmuller inequality [5]. 

To state the next theorem, we introduce the functional 

(3.8) I[f.t] = sup Re ff p'cP dx dr 
wl-Ip,12 . 

where the supremum is taken over all cP in A,( r, Q) with norm one. The following 
theorem is proved in [14]. We include it for the sake of completeness. 

THEOREM 3.3 [14]. Let ko he the smallest value ofllvllx where v ~ p, in M(r) and let 
k = 11p,llac' Then 

k k 2 J[ ] ,,:: __ 0_ -L __ 
P, ~l+ko' l-k2' (3.9) 

PROOF. Subtracting 1 from both sides of (3.7) and expanding out the numerator of 
the integrand on the right-hand side, you get 

I-k 
___ 0 - 1 ~ -2 Reff 
1 + ko w 

p'cP +- 2ff 1P,12Icp~dxdr. 
- I p, 12 OJ 1 - I p, I~ . 

This simplifies to 

Reff _~~~ko_ +ff 1£12 1cpl 
w I - I f.t 12 1 + k () w 1 - I P, 12 . 

On taking suprema over all cP with norm one and using the fact that 11f.tllx = k. this 
leads to (3.9). 

The next theorem gives a lower bound for J[p,]. It appears in [14], although the 
fact that it remains valid when r is infinitely generated is a new result. 

THEOREM 3.4. Let ko he the minimum ualue of Ilvlloc where v ~ p, in M(r) and let 
k = 11f.tlloo" Then 

(3.1O) 

PROOF. Let k:, be the minimum value of Ilvlloc where v =11 p,. From Lemma 1.3 we 
know that k:, ~ ko and k:, converges to k o' Let K~ = (1 + k;, )/(1 - k;,). By 
applying inequality (3.6) in the finite dimensional case and letting VI be determined 
by the conditions wv , 0 wvCz) = z and v = k:,lcplll/cp", the Teichmiiller extremal 
Beltrami coefficient in the class of p, under the relation =", we get 

(3.11) K' ~ff I III + p,cp,,/1 cP" 112_ 
" ,cP" 1 - I 12 

W II fl 
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where CfJI1 is an element of A,.( [211' I~,) and JL"I CfJn 1 = I. Subtracting I from both sides 
of (3.11) and expanding out the numerator of the integrand, (3.11) leads to 

(3.12) ~";;'R if ~~+if 1p,121CfJI1I 
I - k' e I _ 11 I _ 12 . 

11 (oJ" 1 p, (oJ" 1 p, 

Since f fw"l CfJI1I= I, the second term on the right in (3.12) is bounded by k 2/( I - k 2). 
Pick F" in A,([2) such that 8 11 F" = CfJI1 . Clearly, 

if p'CfJI1 if P,F" if p,8F" 
(oJ" I - 1 P, 12 = U ~I P, 12 = (oJ I - 1 P, 12 

and f{,1 8F" I";;' ffw"lCfJnl= I. Hence 

(3.13) -~ ,,;;, Re if p,8F" + ~~ . 
I - k:, (oJ I - 1 P, 12 I - k 2 

The facts that (3.13) holds for every n, that k;,/(l - k~) increases to ko/(J - k o) 
and that 8 F" is an element of A ,ymm( 1', [2) for which f fw 1 e F" I,,;;, I all taken together 
imply (3.10). 

An important application of Theorems 3.3 and 3.4 is the calculation of the 
infinitesimal form of Teichmilller's metric. We arrive at the infinitesimal form for 
both the finite and infinite dimensional cases at the same time. For the case of 
universal Teichmilller space Cf = {identity}) this result appears in [14]. 

THEOREM 3.5. Let koCt) be the minimum value of Ilvllx where 11 ~ tp, and let 
ko = lim r _ o f koU )It. Then 

(3.14) ko = sup Re 11 p'CfJ 
(oJ 

where the supremum is over all CfJ in A ,( [2, f) where f!w 1 CfJ 1 = 1. 

PROOF. From (3.10) 

Dividing both sides by t > 0 and letting t .~ 0 we get 

lim (ko(t)lt)";;' sup Re 11 p'CfJ· 
I-O~ II'PI!= 1 (oJ 

A similar manipulation of inequality (3.9) yields 

lim ko(t )It ~ sup Re 11 p'CfJ· 
I ~()+ 11'P11=1 (oJ 

Putting these last two inequalities together, one gets (3.14). 
A second consequence of Theorems 3.3 and 3.4 is Reich's and Strebel's necessary 

and sufficient condition for extremality, which follows. 
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THEOREM 3.6 [14]. Let p, EO M(f) and k = 11p,1100. Let ko be the minimum value of 
111'1100 such that wp(x) = wJ.'(x) for all x in C. Then k = ko if, and only if, f[p,] = 
k/(I - k 2 ). 

PROOF. Suppose k = k o. Then from Theorem 3.4 

f[p,];;. (k/ (I - k)) - (k 2/ (I - k 2 )) = k/ (I - k 2 ). 

Since the opposite inequality is obvious, this proves the first half of the theorem. 
Conversely, suppose f[p,] = k/(l - k 2 ). Then from Theorem 3.3, k/(l - k 2 ) ~ 

(ko/(l + k o» + k 2/(l - k 2 ). This implies k/(l + k) ~ ko/(l + ko), and hence, 
k ~ k o. Since obviously k ;;. ko, this proves the second half of the theorem. 

The condition that f[p,] = k/(I - k 2 ) is very close to what is called Hamilton's 
condition. 

Let H[p.] be the functional defined by 

(3.15) H[p,] = supRe ff p.cp 
w 

where the supremum is over all cp in A/Q, f) with Jlwlcpl= 1. By elementary 
methods [14] one can show that H[p.] = k if, and only if, f[p.] = k/(l - k 2 ). In fact 
a sequence cp" in As(Q, f) with J Iw I cp" I dx dy = I will realize the maximum k for 
H[p,] if, and only if, the same sequence cp" realizes the maximum k/(l - k 2 ) for 
f[p.]. Hence, Theorem 3.6 has the following 

COROLLARY [10, 14]. A necessary and sufficient condition for p. to be extremal is that 
H[p,] =k. 

The necessity in this corollary was proved by Hamilton [10] and the sufficiency by 
Reich and Strebel [14]. 

4. The infinitesimal form of Teichmillier's metric. If p, is an extremal element in its 
class in M(f) and if ko = 1Ip,lIoo' then the Teichmiiller distance d from the class [0] to 
the class [p.] is by definition 

(4.1 ) 

For economy in notation we will write d(O, p.) in place of d([O], [p,]). By Theorem 3.5 
it is immediate that for t ;;. ° 
(4.2) 

where H[p.] is defined in (3.15). 
Using the translation mapping Wo ~ wT = Wo 0 (wJ.')-" the Teichmiiller space T(f) 

formed from M( f) is isometrically transformed into T( WJ.' fw/) and the point [p, J is 
transformed into [0]. By translating the formula (4.2) in this way, (4.2) yields the 
infinitesimal form of Teichmiiller's metric at every point [p,] in T(f). The infinitesi-
mal metric F([p.], 1') will be a nonnegative function, homogeneous in the variable I' at 
every point [p,] in T( f). By definition, F([p.], I' )is the derivative with respect to t at 
t = ° of the function d(p., p, + tv). If we let RJ.' be right translation by wJ." from (4.2) 
we find that 

d(p" p, + tv) = d(O, R~'(p, + tv)) = tsupRe ff cpS(v) + o(t), 
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where S is the derivative of R~I at p,. Here, the integral is over a fundamental 
domain w/L for f/L = w/Lf(w/Lt l and the supremum is over all cp in A,(Q/L' f/L) with 
J L) cp 1= 1. We are using the obvious notation Q/L = w/L(Q). Calculation of the 
Beltrami coefficient of Wa 0 (w/Lt l yields 

(4.3) WI(o) =[ 0 - p, .1.] 0 W~I 
/L I-p,o () /L 

where () = pip and p = aW/L/az. Letting 0 = p, + tv, we find S(v) = v/(l -1p,12 ){} 

and 

( 4.4) F([p,], v) = supRe ff cp(w)[ _v 2·~) dudv 
w" 11p,1 

where the supremum is over all cp in As(Q/L' f/L) for which J L) cp 1= I and W = u + iv. 

LEMMA 4.1 [6]. The function F from the tangent bundle of T(f) to R is continuous. 

PROOF. Since right translation R/L is an isometry, it suffices to show that F is 
continuous at p, = 0. In other words, we must show that I F(O, v) - F(p" vI) 1< E if 
11p,lloo < 8 and Ilv - vIii < 8. Since F is homogeneous and sub linear in the second 
variable, it suffices to prove the same inequality with VI replaced by v and for 
Ilvlloo < 1. We claim it suffices to prove the inequality 

(4.5) F(O, v) < F(p" v) + E for 11p,lloo < 8 and Ilvll"" < 1. 

For, if we show this, then by applying the translation mapping R~I, we find that 

(4.6) F{p,I,(R~I);)(v)) < F{O, (R~I)~(V)) + E, 

where P,I is the Beltrami coefficient of the inverse mapping of w/L. Of course, by 
(R~I)~(V) we mean 

lim (I/t)[ R~I(O + tv) - R~I(O)]. 
1-0 

Moreover, by using formula (4.3) one sees that 

( R~ I )~( v) = [ I _VI P, 12 . ~ ] 0 W/L~ I, 

(R~I)~(v) =[V{I -1p,1 2)( ~)] 0 W;I. 

It is clear that the Loo -norm of the difference between the two quantities in (4.6) is 
bounded by a constant times 11p,11~ IIvll"". Thus, for sufficiently small 11p,lloo' from 
(4.5) we obtain the inequality F(p, I' v) < F(O, v) + 2E. 

Hence, we have reduced the lemma to proving (4.5). Now, we observe that it is 
sufficient to consider the case when C = R. For, if C is a proper subset of R, we may 
consider the universal covering of the domain Q = t - C. Under this covering the 
symmetric Beltrami coefficients lift to Beltrami coefficients defined on the universal 
covering surface U which are compatible with an anticonformal involution. Al-
though the group f may lift to a group of either the first or second kind acting on U, 
the equivalence relation on Msymm(Q, f) lifts to the relation determined by saying 
p, ~ jJ if wix) = w.(x) for all x in R. 
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Let GI' be the theta series operator for the group fll and so (io i~ G. By (4.4). there 
is an element <p in A(f. U) such that 11<p1! = 1 and F(O. v) < ii", <pv dx dr + E/2. We 
then can find G in A( U) such that GG = (p. Clearly. 

f f <p v dx Jr ,= f ( G /' d\ dr. 
w J( 

We must find an element I/; in A( I> U) such that 111/;11 ~ I and 

if IIMllx is sufficiently small. As our candidate for I/; we pick GIlG/IIG,IGII. Clearly. to 
complete the proof of Lemma 4.1. it suffices to prove the following 

LEMMA 4.2. Let G he in A(U). Then jj",,.iG,PI approaches IUGCI as ilMI!x 
approaches zero. 

PROOF. Let A~ be an enumeration of fll and Gil' be the truncation of Gii to the first 
n elements of fll and Gn the corresponding summation for r. Clearly . .I I GI'"G! 
converges to J.U GIlG I as 11,tt11", .~ O. In order to pass to the sum over al! elements of 
fll and r. we will show that for any f > O. there exists II 0 and;:; > O. such that for 
n:;'" no and 11,tt!lx < 8 

(4.7) 

To simplify notation. let C be replaced by the unit disk ..l and assume the groups 
rand 1'1' act on ..l. Pick r < I so that /(r i.'I- i I GI< f and pick 1111 so that 
D = U;:'c I A"( w) contains the disk or radius (r + 1)/2. Now wll = H;,( w) and hence 
\t~(D) = U::"=I A;:(wl')' Since }t~ satisfies a Hi.'llder condition of order a = I/K 
where K = (1 + 11,ttllx )I(] - Ilftll",). we see that for sufficiently smallll,ttlix' l\~( D) 
d {z: I z 1< r}. This implies (4.7) is bounded by (fr. lei' ! I G I which is less than E. This 
completes the proofs of Lemmas 4.1 and 4.2. 

- -
Now let dbe the integrated form of (4.4). This means d(p. q) = inf L(y) where y 

is a piecewise smooth path joining p to q. that is. yeO) = p. y(t(l) = q and L(y) = 
f~(> F(y(t). y'(t» dr. It is a generai and elementary fact that if F is a continuous 
function on the tangent space. then d ~ d. 

THEOREM 4.1. For any T( n. d = d. thar is. Teichmuller's merric is rhe inregra! oj 
its infinitesimal form. 

PROOF. This theorem is elementary for finite dimensional Tcichmilller spaces and 
is mentioned in [16. p. 370). The general case is treated by O'Byrne [13. p. 326] by 
means of a general theorem concerning quotients of Finsler structures. Here. we 
prove this result more directly and in slightly greater generality by using the explicit 
formula for the metric (4.4) and by using Theorem 3.6. 

We must show d ~ d. Assume 11,tt1!"" = 1 and k,tt is extremal so d(O. [k,tt]) = 
110g(l + k)l(l - k). 
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Let y(t)= [t,u), 0";: t";; k. We wil] show that L(y) = d(O, [kJ..l)) and it will follow 
that d,,;; d. Since y'(1) =,u; \ve must calculate F([tJ..lL J..l). We know that 14'11' and 
(WIM)1 are hoth extremal. The Beltrami coefficient of (wl"r l is -tJ..l/{) where 
{} = pip andp = (J\\I,,/dz. Since --tJ..l/() is extremal. Theorem 3.6 tells us that 

(4.8) sup Re JI <p----t0,---; . ldu de = ~.~ 
0. 1' I -- t" I J..l1- () I - t ~ 

where the supremum is over all cP in AJr2M• I:) with Icpl= 1. From (4.4) and 
(4.8) one sees that F([t~t), J..l) = 1/(1 - t 2 ). and therefore, 

j'A fA elt I I + k F(y(t).y'(t»)dt= --7 =~Iog~. 
() () I - t· I k 

5. Maximal sequences. A sequence (PI/ in A,(n, f) with JlwlCPnl= I is called a 
maximal sequence for the functional HLu] in (3.15) if H[J..l) = liml/_ x Rej!wJ..lCPI/' It 
is called an absolute maximal ~equence if 

THEOREM 5.1. Suppose J..l is extremal in M( I') and iiJ..lllx. = k. Suppose CPI/ is in 
AJr2, nand 1U <fin 1= 1. ff[kl/\cpl/I/cp,,] coneerges in the TeichmUller metric to [J..l), 
then <fin is an absolute maximal sequence for J..l. 

PROOF. Since ,u is extremal and iiJ..lil?:; ::-..:c k. one has d(O, J..l) = i log(1 + k )/(1 - k). 
Since k" I cP" I/cp" is extremaL d(O. kl/ I cP" I/cpl/) = ~ log(l + kl1 )/(1 - k l1 ). But I d(O. J..l) 
-- d(O. k"lCPII )1";; d(fl. kl1 I <Til I/cpl/) and the latter quantity approaches zero. by 
hypothesis. so we know KII approaches K. Let i log KI1(t) be the Teichmul!er 
distance from [II'] to [k 1/ i Cfll i/cpl/]' From Theorem 5.1 of [9) one knows that 

(5.1) 
K,,( t) -.- ~ ~~---~~--~ 

KI/ I -t- 21 Re fr.., I!CP" + O( (2) 

where the constant in O( t:) depends only on 111'11 x and k. Since lim,,_:xc ~ log K,,(t} 
= d(tv.fl) and lim,,_ x K, = K. taking the limit in (5.1) as n ~ 00 yields 

(5.2) d( fI'. ,11,) :? ~ log K-- t ~~ Re f f vcp" + O( t 2 ). 
w 

From the fact that [ffl) is a geodesic (by the proof of Theorem 4.1), one has 

(5.3 ) d(O. JL) = d(O. tJ..l) + d(tJ..l' fl) for 0,,;; t";; 1. 

The derivative with respect to t of the left side of (5.3) is zero and, since the first 
term on the right of (5.3) is differentiable from the right, the second term must also 
be differentiable and this second term will have derivative given by the first order 
term in (5.2). Combining these facts. we obtain 

(5.4) lim Re If fl% = sup Re If J..lcP = k 
f/'''X w liq:'II--= i 

which shows that cP" is an absolute maximal sequence for J..l. 
This theorem is of interest only for infinite dimensional Teichmuller spaces. 
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6. Uniqueness for Kobayashi's extremal problem. We can now show that the 
extremal function f for the extremal problem posed in §2 is uniquely determined 
when the point P = [0] and the point Q = [kIIPI/IP] where IP is integrable. 

THEOREM 6.1. Let [0] and [k lIP I/IP] be points in Teichmuller space T(f) and assume 
C = Rand fLIIPI= 1. If f is any holomorphic function from 6 into T(f) for which 
f(O) = [0] and fer) = [k I IP I/IP] where r> 0, then r > k unless fez) = [z I IP I/IP], in 
which case r = k. 

PROOF. By Theorem 2.1, r ;;;. k so what remains to be shown is that if r = k then 
fez) = [zIIPI/IP]· Let dt; be the Poincare metric on the unit disk 6. Since the 
Poincare metric is Kobayashi's metric for 6 and since holomorphic mappings are 
contracting under Kobayashi metrics, one has 

(6.1 ) d(f(s), f(t))';;;; dt;(s, t). 

By the triangle inequality 

(6.2) d(f(O), f(k))';;;; d(f(O), f(s)) + d(f(s), f(k))';;;; dt;{O, s) + d::,{s, k). 

For 0 ,;;;; s ,;;;; k the right-hand side of (6.2) is dt;(O, k). Since we are assuming r = k, 
the left- and right-hand sides of (6.2) are equal and so from (6.1) the corresponding 
terms are equal. We have 

(6.3) d(f(s), f{k)) = dt;(s, k) 

and 

( 6.4) d( f(O), f{s)) = dt;{O, s) 

for each s with 0,;;;; s';;;; k. Now letf(s) = [ft] where ft is extremal in its class. Since 
the Teichmuller distance from 0 to [ft] is 110g(l + s )/(1 - s), this implies that 
Ilftlloo = s. Choose a so that the T which satisfies wT = W" 0 wI' is in the same class as 
k lIP I/IP and so that a is extremal in its class. From (6.3) this implies Iialloo = 
(k - s)/I(l - sk) so 

(6.5) 
k-s 
1 - sk' 

Since Iftl';;;; s, one cannot have ITI> k on any set of positive measure and have 
equality in (6.5). Thus IITlloo ,;;;; k. It follows that T = k lIP I/IP since k lIP I/IP is unique 
extremal in its class. Hence we have equality in (6.5) with T replaced by k I IP I/IP. We 
know that I ft I';;;; s almost everywhere. If on any set of positive measure ft were not 
equal to slIP I/IP, then again (6.5) could not be an equality. Hence ft = slIP I/IP 
almost everywhere. This argument holds for every s with 0 ,;;;; s ,;;;; k. Hence the two 
functions f( z) and g( z) = [z I IP II IP] are identical for all z in 6 and this completes 
the proof. 

Notice that in the step where we concluded that T = k I IP I/IP, we only used that 
k I IP 1/q; is unique extremal in its class. For the next step we also needed to know that 
slIP I/IP for 0,;;;; s ,;;;; k is unique extremal in its class. It is only for differentials of 
Teichmuller form k I IP I/IP where IP has finite norm that we can make this conclusion. 
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7. A criterion for Teichmiiller convergence. Let 

(7.1 ) 8 2(fL) = sup ff IfLl 2 1<pldxdy 
w 

where the supremum is over all <P in A,.(r2, r) with f!wl <P 1= 1. Recall that the 
Teichmtiller distance d(O, fL) depends on the closed subset e of R. Specifically, 
d(O, fL) = ~ log Ko where Ko is the minimal dilatation of a mapping Wp and v E M(r) 
and wJ x) = wl'( x) for all x in C. The expression (7.1) also depends on e since 
e = t - r2 and the supremum is over a set of differentials <P in A/r2, r). 

THEOREM 7.1. Suppose f is a finitely generated Fuchsian group (possibly the 
identity) and fL is in M( f) and I fL I.;;: k < 1. Let ko be the minimal value of II vII 00 where 
v ~ fl. Then k o ';;: 2(1 - kr I8(fL) and, in particular, d(O, fL) converges to zero if 
IlfLlloo .;;: k and if 8(fL) converges to zero. 

PROOF. When A,(r2, f) is finite dimensional one has the inequality 

(7.2) K .;;:If I III + fL<p/1 <P 112 
o w<P l-lfLl2 

where <P is a holomorphic quadratic differential with f fw I <P 1= 1 and <P is uniquely 
determined by the condition that k I <P I/<p ~ fl. We can extend (7.2) to the case where 
e is an arbitrary closed subset of R, invariant under f and containing A, but the 
group f remains fixed. The inequality becomes 

(7.3) K .;;: su If I III + fL<p/1 <P 112 
o P w <P 1 - I fL 12 

where the supremum is over all <P in A s( r2, f) with f!w I <P 1= 1. This is because as the 
subsets en increase to e, the spaces A,(r2Il' f) form an increasing sequence whose 
union is dense in A/r2, f). Subtracting 1 from both sides of (7.3) and expanding out 
the numerator on the right-hand side and dividing by 2, we obtain 

(7.4) ko If fL<P If IfL121<p1 ~k .;;: sup Re 2 + sup 2 . 
o I-lfLl l-lfLl 

The denominators in both integrals on the right-hand side of (7.4) are bounded 
below by 1 - k 2 and, therefore, 

(7.5) 

where the suprema are again over all <P with f fw I <P 1= 1. The first integral on the 
right side is less than or equal to 

(7.6) 

But the right-hand integral in (7.6) is normalized to equal one. Hence we have 
ko(l - kofl(l - k 2 ) .;;: 8 + 82 which obviously implies k o ';;: 2(1 - kf 18. This 
proves the theorem. 
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REMARK. A common fallacy is to assume that 1 f-t" I"';:: k < I and f-t" ~ ° in the 
pointwise sense implies d(O, f-t,,) ~ 0. Although it is true that under these circum-
stances w!-'Jz) will converge uniformly on compact subsets to z, the following simple 
example shows that d(O, f-t,,) does not necessarily converge to zero. 

EXAMP1.E. Letf-t" = ~Cl1z"(l -lzI2)2 forlzl< I where 

e,,:::CC: (I + 4/n),,/2((n + 4)/4) 

and let <f!n = hnz" where hn = (n + 2)/2'77. Then it is easy to see that 11f-t"llx = ~ and 
ff I<f!"1= I. Also f-t" converges in the bounded pointwise sense to zero and so I1MJZ) 
converges to z uniformly on ;}. 

Let k" be the minimal value of Ilvlloc for which v ~ f-t". From inequality (3.9) one 
finds 

On the other hand, 

which equals 

k" [] I 
~ I f-t" - 99' I + k" 

j 27Tjll "l( ")" .- - her -" + 1 - r - - dr d () 
o () 10 " " 

I (. 4 ) ,,/2 ( n + 4 ) I 
10 1 -+ n 4 (n -+-1-)-( n-+-3-) 

and this approaches .04618. 
Thus we have a sequence of points [f-t"l in universal Teichmuller space such that 
(i) Ilf-tniloo = iij, 
(ii) d(O, f-t,,) ~,\j for all n, and 
(iii) f-t ,,( z) converges pointwise to 0. 
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