Ann. Data. Sci. (2014) 1(1):5-14
DOI 10.1007/540745-014-0002-z

Approximation of Irregular Geometric Data by Locally
Calculated Univariate Cubic L! Spline Fits

Ziteng Wang - John Lavery - Shu-Cherng Fang

Received: 20 December 2012 / Revised: 19 March 2013 / Accepted: 20 April 2013 /
Published online: 25 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract L' splines have been under development for interpolation and approxi-
mation of irregular geometric data. We investigate the advantages in terms of shape
preservation and computational efficiency of calculating univariate cubic L! spline
fits using a steepest-descent algorithm to minimize a global data-fitting functional
under a constraint implemented by a local analysis-based interpolating-spline algo-
rithm on 5-node windows. Comparison of these locally calculated L' spline fits with
globally calculated L' spline fits previously reported in the literature indicates that
the locally calculated spline fits preserve shape on the average slightly better than
the globally calculated spline fits and are computationally more efficient because the
locally-calculated-spline-fit algorithm can be parallelized.
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1 Introduction

Over the past decade and more, L! splines have been under development for interpo-
lation and approximation of irregular geometric data, that is, data with abrupt changes
in magnitude, direction and/or spacing. L' splines, which are based on nonlinear
programming that implements a geometric principle of shape preservation, have the
advantage of being free of the extraneous oscillation common in other interpolants and
approximants such as unconstrained and constrained polynomial and rational splines,
including those with penalties, a posteriori filtering and fairing. Recent advances
in univariate and bivariate L! interpolating splines (see [1,2,5,7,8,12,14,16] and
[10,13], resp.) have been accompanied by some but fewer advances in univariate
and bivariate L' approximating splines (see [9, 11] and [3], resp.). This is unfortunate,
since approximation is, from a practical point of view, more important than interpo-
lation.

In 2007, Auquiert, Gibaru and Nyiri discovered that L' interpolating splines cal-
culated on small sets of 5 nodes preserve linearity of 3-node subsets of the 5 nodes
[2]. This discovery led to the development of univariate L' interpolating splines cal-
culated locally on 5-point windows [7,8,14,16]. These locally calculated L' inter-
polating splines have the dual advantage of enhanced shape preservation and sharply
reduced computing time, the latter of which is due an algorithm in which parallel
analysis replaces sequential raw computing. The local-calculation approach that has
been successful for interpolating splines has, however, not previously been investi-
gated for approximating splines. This paper is a first step toward developing locally
calculated L' approximating splines to replace the previously globally calculated L'
approximating splines.

Approximation by L' (and other) splines can be carried out using spline fits or
smoothing splines. Spline fits are calculated by minimizing a data fitting functional
over a manifold of interpolating splines. Smoothing splines are calculated by min-
imizing a linear combination of a data fitting functional and an interpolating spline
functional over a spline space. Smoothing splines depend on a “balance parame-
ter” that represents the relative weight of fitting the data vs. that of smoothing out
local variations in the data. Many researchers have investigated the balance para-
meter for classical smoothing splines (see [15] and references therein) but prac-
tically relevant, optimal balance parameters for large classes of data are not yet
available. For L! smoothing splines, no theoretical information is available at all
[9,11]. For this reason, spline fits, which do not require the user to provide a bal-
ance parameter, are of high interest and are the approximating splines that we choose
here.

The precise goal of the present paper is to investigate the advantages in terms
of shape preservation and computational efficiency of calculating univariate cubic
L' spline fits using a steepest-descent algorithm to minimize a global data-fitting
functional under a constraint implemented by the local analysis-based interpolating-
spline algorithm of [16] on 5-node windows. We will compare these “locally
calculated L! spline fits” with the globally calculated L! spline fits presented
in[11].
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2 Cubic L! Spline Fits: Definitions and Algorithms

Let the data to be approximated be (X, Z,n), m = 1,2, ..., M, where all of the x,,, are
in a finite real interval [xo, x7]. Let there be given strictly monotonically increasing
but otherwise arbitrary spline nodes x;,i = 0, 1, ..., I. Let the function values and the
first derivatives of the spline fit at these nodes be denoted by z; and b;, respectively.

Let z denote (zg, z1,.-.,2z7) and b denote (bg, by, ...,br). Let hj = xj4+1 — x;
and t = 5 — % for —0.5 < t < 0.5. We consider C'-smooth piecewise cubic
polynomials z(x) with nodes x;,i =0, 1, ..., I, of the (Hermite) form

() = (b= 3 +20) 2+ (34 3 =2z

()
+(§— 3t =32+ ) hibi + (—§ — 5t + 32+ %) hibi
in each interval [x;, x;+1],i =0, 1,..., I — 1. A cubic L! spline fit is a function z(x)
of form (1) that minimizes the data fitting functional
M
F(z,b) = D |z(&n) — Zn]| 2)
m=1

over a manifold of cubic L! interpolating splines. The free parameters in a cubic L'
spline fit are the function values z; = z(x;),i = 0,1, ..., I, at the nodes. The first
derivatives b; = dz/dx(x;),i = 0, 1, ..., I of the spline fit are dependent variables
that are calculated locally or globally from the z; by minimizing an L' interpolating
spline functional as described in the next two paragraphs.

A globally calculated cubic L' interpolating spline is a function of form (1) that
minimizes the global functional

Xy

/

X0

d*z

[11] over all functions of form (1). In this minimization process, the z; are fixed and
the free variables are the first derivatives b; = dz/dx(x;), i = 0,1,..., I of the
spline. Nonuniqueness is handled by choosing the feasible b; that are closest to 0, a
“regularization procedure” that was used for the computational examples in [11] with
which we will compare the new results in this present paper. [Other regularizations
could be used. In [16], nonuniqueness is handled by choosing the feasible b; that is
closest to (zj41 — zi—1)/(Xit1 — Xi—1)].

A locally calculated cubic L' interpolating spline [16] is a function of form (1)
in which each of the first derivatives b;,i = 3,4, ..., 1 — 3 for (1) is calculated by
minimizing the local 5-node-window spline functional

Xi42

/

Xi—2

d?z

1| dx )

over the free variables by, k =i —2,i — 1,i,i +1,i + 2, withzx, k =i —2,i —
1,i,i+1,i+2, fixed. The first derivatives bg, b| and b, are calculated by minimizing
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functional (4) with i = 2 and the first derivatives b;_», b;_1 and b; are calculated by
minimizing functional (4) with i = I — 2. Nonuniqueness is handled by choosing the
feasible b; that is closest to 0.

The coefficients of a globally calculated L' spline fit are the solution of a two-
level or “bilevel” optimization problem, namely, that of minimizing the ¢' data-
fitting functional (2) for the z; subject to a constraint that the b; are functions of
the z; that are determined by minimizing the global L' interpolating spline func-
tional (3). Many approaches for solving bilevel optimization problems exist, includ-
ing branch-and-bound, complementary-pivoting, descent, penalty-function and trust-
region approaches [6]. However, there are still many challenges, especially for nonlin-
ear bilevel problems, a category that includes calculation of the coefficients of globally
calculated L' spline fits. In [11], a “Lagrange-multiplier primal-affine algorithm” was
used to solve this bilevel problem. On each iterative step, this algorithm applies a
primal-affine approach to reduce the minimization of the data-fitting functional (2)
and the minimization of the global L interpolating spline functional (3) to weighted
least-squares problems. One formulates the linear systems that correspond to these
two problems, links these two linear systems by Lagrange multipliers and computes
the next iterate by solving the resulting larger linear system. A theoretical proof of of
convergence is not available but computational results indicate good performance. At
the same time, the method is relatively computationally expensive due to the global
structure of the calculations.

The recent development of locally calculated L' interpolating splines, which are
better at shape preservation and much more computationally efficient than globally cal-
culated L' interpolating splines, opens up opportunities for approximation by locally
calculated L' spline fits that we wish to begin to explore in this paper. The opportunities
are threefold: (1) increased computational efficiency by shifting from minimization
of a global L' interpolating spline functional to parallel minimization of many local
L' interpolating spline functionals, (2) increased shape-preservation capability and
(3) potential availability of theoretical proof of convergence due to knowledge of the
analytical structure of the b; when they are calculated locally from the z;. There exists
no known analogue of this analytical structure for globally calculated L' splines. The
present paper focuses on the first two of these opportunities.

The algorithm that we propose for locally calculated L' spline fits is a steepest-
descent algorithm for minimizing F(z, b(z)) with z as a free, unconstrained vector
of variables. The initial iterate from which the steepest-descent process starts is the
linear spline fit of the data. The linear spline fit is the function ¢ (x) that minimizes the
data fitting functional

M
z |C(£m) _2m| (5)
m=1

over the manifold of C%-smooth piecewise linear polynomials ¢ (x) with nodes x;,
i=0,1,...,1,of the form

f(x) = Y0, 4 Lomid g, 6)
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in each interval [x;, x;4+1]. The linear spline fit is geometrically close to the cubic
L' spline fit (an observation for which theoretical proof is not yet available), which
is a factor in promoting good performance of the steepest-descent algorithm that we
introduce here.

To proceed from an approximant z¥) on the kth step to the next approximant
2®+D we first compute a numerical gradient v(k) of F(z,b(z)) with respect to z at
z = z©_ The derivative db/dz that occurs in this gradient is calculated by analytical
differentiation of the b(z) of [7,16] but with nonuniqueness resolved by choosing
the feasible b; that is closest to O instead of by choosing the b; closest to (zj+1 —
Zi—1)/(xi+1 — xi—1). This formula is not fully applicable at boundaries where the
analytical derivative of b with respect to z is discontinuous. This aspect of the algorithm
will be adjusted in the future. However, since the initial iterate, the linear spline fit,
is close to the final solution, that is, to the cubic L' spline fit, there are not a large
number of boundaries with discontinuous derivatives between the initial iterate and the
final solution and the current version of the algorithm performs well. After calculating
v®, we use golden section line search to numerically calculate a step length y ®)
that minimizes F(z® — yv®, bz® — yv®)) over 0 < y < 1. Finally, we set
25D = 20 O G® If F*D pEktD)) > F@® bz®)), we stop and
output z©) . Otherwise, we increase k by 1 and repeat the process. A maximum number
of iterations (100 in our computational experiments) is set for potential cases of slow
convergence or non-convergence.

3 Computational Results

Computations were carried out on a LENOVO Thinkpad T410 laptop with an Intel
Core 15 2.67GHz CPU and 4.00GB RAM. The software environment was Microsoft
Windows 7 Professional and MATLAB R2012a. Locally calculated L' spline fits
were computed using a MATLAB code and globally calculated L! spline fits were
computed using a legacy C++ code, both codes implemented sequentially. On the T410
laptop, MATLAB was 112.3 times slower than a C++ code for a task consisting of 107
additions and 107 multiplications. In reporting CPU times below, we have normalized
the CPU times required by the MATLAB code to corresponding C++ code CPU times
by division by 112.3.

We present in Table 1 computational results for locally and globally calculated
cubic L! spline fits for “data-and-node sets” 1, 2 and 4, resp., of [11]. These cubic
L! spline fits are shown in Figs. 1, 2, 3, 4, 5, 6. In these figures, the data points are
represented by the symbol + and the spline nodes are represented by the symbol
o.

Comparison of the locally calculated L' spline fits of Figs.1, 3 and 5 with the
corresponding globally calculated L' spline fits of [11] in Figs.2, 4 and 6 indicates
that the locally calculated spline fits preserve shape in these computational experiments
on the average slightly better than the globally calculated spline fits, a situation that is
reflected in the £! errors for data-and-node sets 1 and 4. This observation is analogous
to previous results in the literature that indicate that locally calculated L' interpolating
splines preserve shape slightly better than globally calculated L' interpolating splines.
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Fig. 1 Locally calculated cubic L! spline fit for data-and-node set 1
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Fig. 3 Locally calculated cubic L! spline fit for data-and-node set 2
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Fig. 5 Locally calculated cubic L! spline fit for data-and-node set 4
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Fig. 6 Globally calculated cubic L! spline fit for data-and-node set 4
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Table 1 Computational results

Locally calculated L! spline fit Globally calculated L! spline fit
Data-and-node set # of iterations CPU time ¢! error CPU time 2! error
1 1 3.5ms 0.0494 3.8 ms 0.0501
2 21 10.4 ms 0.123 1.8 ms 0.102
4 5 1.9 ms 0.902 1.9 ms 1.36

The locally calculated L' spline fit for data-and-node set 2 preserves shape better
than the globally calculated L' spline fit in the interval [4, 5] but not as well in the
intervals [1, 3.5] and [7, 9.5]. The sequential computing times for locally and globally
calculated L' spline fits reported in Table 1 are of the same order of magnitude. (No
further conclusion about relative computing time is appropriate at present due to the
small amount of data and the fact that the MATLAB computing time for the locally
calculated L' spline fits was artificially normalized to a corresponding C++ computing
time.) The sequential structure of the current locally-calculated- L ' -spline-fit code will
be parallelized in the future, which will lead to a large increase in computational
efficiency. The globally-calculated-L ! -spline-fit code cannot be parallelized.

4 Conclusion

The evidence that we have presented here is preliminary but is already sufficient
to suggest that further investigation of the local-calculation approach for L' spline
fits may well lead to significant advances in shape-preserving approximation. While
it is commonly expected that one must trade off shape-preservation capability vs.
computational efficiency, the results presented here indicate that the local-calculation
approach with its parallel structure may allow both shape-preservation capability and
computational efficiency to be enhanced simultaneously. One option that has not yet
been investigated but that will be investigated in the future is replacement of the global
data-fitting functional (2) by local ¢! data-fitting functionals, perhaps on the same 5-
node windows that are used for the local L' interpolating spline functional (4).
Theoretical proof of convergence of the algorithm is hampered by the complexity
of the dependence of b on z. The authors expect that the interplay of the regularization
strategy for the L' interpolating spline functional (that is, how a specific solution is
chosen when the minimum occurs over a whole interval) with the resulting smoothness
of b(z) will play a large role in this proof when the authors develop it in the future.
The results about univariate L' spline fits that we have presented here are not merely
a step toward improved univariate approximation but also a basis for bivariate and
multivariate approximation. In contrast to the situation with univariate conventional
splines, univariate L' splines generalize in natural ways to higher dimensions, a state-
ment that is valid not merely for interpolating splines but also for spline fits. Further
univariate results will pave the way for future investigation of the shape-preservation
capability and computational efficiency of bivariate and multivariate L' spline fits.
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