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Abstract
The sensitivity of the performance measures such as the mean and the standard deviation of the queue length

and the blocking probability with respect to the moments of the service time are numerically investigated. The
service time distribution is fitted with phase type(PH) distribution by matching the first three moments of service
time and the M/G/c retrial queue is approximated by the M/PH/c retrial queue. Approximations are compared
with the simulation results.
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1. Introduction

We consider an M/G/c retrial queue in which customers arrive from outside according to a Poisson
process with rate λ and there are c identical servers and no waiting positions in the service facility.
When an arriving customer finds all the servers busy, the customer joins orbit and repeats its request
after an exponential amount of time with rate γ until the customer gets into the service facility. Let
S be the service time of a customer whose distribution function is G(x) and assume that G(0) = 0,
mk = E(S k) < ∞, k = 1, 2, 3. We also assume ρ = λm1/c < 1 for the stability of the system.

Retrial queues have been widely used to model the many practical situations in telephone systems
and telecommunication networks. Even for the Markovian retrial queues with multiple servers, the
exact results have not been obtained except for some special cases. Instead, attempts to develop al-
gorithmic or approximation methods have been extensively made. However, there are few results for
approximations of the M/G/c retrial queues in general. For the literature of algorithms or approxi-
mation methods for retrial queues, we refer the monographs Artalejo and Gómes-Correl (2008), Falin
and Templeton (1997) and references.

A distribution function F(x) on (0,∞) is said to be of phase type with representation (ααα,T ) and
denote it by PH(ααα,T ) if F(x) = 1 − ααα exp(T x)eee, where eee is the column m-vector whose components
are all 1, ααα = (α1, α2, . . . , αm) is a probability distribution and T = (ti j) is the m×m matrix with tii < 0,
1 ≤ i ≤ m and ti j ≥ 0, i , j, and Teee ≤ 000 (, 000). For more details about phase type(PH) distribution, see
Chapter 2 of Neuts (1981). It is well known that the set of PH-distributions is dense (in the sense of
weak convergence) in the set of all probability distributions on (0,∞) (e.g. see Asmussen, 2003, p.84).

There are some algorithmic methods for the retrial queue with PH distribution of service time
e.g. Breuer et al. (2002), Diamond and Alfa (1999), Artalejo and Gómes-Correl (2008, Chapter 8).

The first author of this paper was supported by a Basic Research Program of the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology(Grant Number 2009-0072282).

1 Corresponding author: Professor, Department of Statistics, Changwon National University, Changwon, Gyeongnam
641-773, Korea. E-mail: ywshin@changwon.ac.kr



170 Yang Woo Shin, Dug Hee Moon

Figure 1: Diagram for CEk, j(p; µ1, µ2) distribution

However, as far as the authors know, there is no literature on the method of how to choose the PH
distribution for approximation of M/G/c retrial queue. In this paper, the effects of the moments of
the service time to the performance measures in M/G/c retrial queues are investigated numerically.
Based on the numerical experiments, the service time distribution is fitted with phase type distribution
by matching the first three moments of service time and the M/G/c retrial queue is approximated with
the M/PH/c retrial queue.

In Section 2, we numerically investigate the sensitivity of some performance measures with re-
spect to the moments of service time. An approximation method of service time distribution in M/G/c
retrial queue with PH distribution is proposed in Section 3. Some numerical results and concluding
remarks are presented in Section 4 and Section 5, respectively.

2. Sensitivity of M/G/cM/G/cM/G/c Retrial Queue

Let X0 and X1 be the number of busy servers and customers in orbit in steady state, respectively and
set L0 = E(X0), L1 = E(X1). By V0 and V1, denote the variances of X0 and X1, respectively and set
σi =

√
Vi, i = 0, 1. It follows from Little’s formula that L0 = λm1 does not depend on the second or

the higher moments of the service time. For the single server case, it can be seen that that L1 depend
only on the arrival rate λ and the first two moments m1 and m2 of the service time and σ1 is determined
by λ and mk, k = 1, 2, 3 (Falin and Templeton, 1997).

In this section, we investigate numerically how the performance measures are affected by the
moments of the service time in multi-server case. For numerical experiments, let Ek(µ) be the Erlang
distribution of order k with parameter µ and denote by CEk, j(p; µ1, µ2) the Coxian distribution with
Erlang node that is the composition of the mixture of Ek(µ1) and E j(µ2) (see Figure 1) whose Laplace
transform f ∗(s) is given by

f ∗(s) = p
(

µ1

µ1 + s

)k (
µ2

µ2 + s

) j

+ (1 − p)
(

µ2

µ2 + s

) j

, s ≥ 0.

We also consider the hyper-exponential distribution of order 2, denoted by H2(p; µ1, µ2) or simply
H2, with the probability density function of the form

f (t) = pµ1e−µ1t + (1 − p)µ2e−µ2t, t ≥ 0.

For investigation of the influence of the moment of service time, we choose the distributions as in
Table 1 and the numerical results for the blocking probability PB = P(X0 = c), V0, L1 and V1 for
m1 = 1.0 and three cases of squared coefficient of variation of the service time C2

s = (m2 − m2
1)/m2

1 =

0.5, 2.0, 5.0 are listed in Table 2.
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Table 1: The moments of the distributions used in Table 2
C2

s Service time m3 m4
E2(2.0) 3.0 7.5

0.5 CE3,1(0.727834; 5.63299, 1.63299) 3.0 7.6
CE1,3(0.000416858; 0.0698932, 3.018) 10.0 454.1
CE1,3(0.235821; 0.465637, 6.07839) 18.0 153.1

2.0 H2(0.788675; 1.57735, 0.42265) 18.0 162.0
H2(0.975327; 1.126717, 0.183618) 28.0 535.3
CE1,2(0.200212; 0.269343, 7.79223) 66.0 979.6

5.0 H2(0.788675; 3.73205, 0.267949) 66.0 984.0
H2(0.988848; 1.17673, 0.0698478) 200.0 11257.0

Table 2: Effects of moments of service time in M/G/3 retrial queue with µ = 1.0

γ m3 m4
ρ = 0.4 ρ = 0.8

PB V0 L1 V1 PB V0 L1 V1
C2

s = 0.5
3.0 7.5 0.1129 0.9326 1.5927 2.5330 0.5591 0.6029 32.17 134.1

0.1 3.0 7.6 0.1129 0.9326 1.5926 2.5350 0.5591 0.6028 32.17 134.1
10.0 454.1 0.1129 0.9325 1.5902 2.5140 0.5590 0.6026 32.16 137.7
3.0 7.5 0.1196 0.9596 0.2317 0.3918 0.5779 0.6574 5.069 22.47

1.0 3.0 7.6 0.1195 0.9592 0.2317 0.3918 0.5778 0.6570 5.068 22.47
10.0 454.1 0.1188 0.9567 0.2256 0.3713 0.5764 0.6530 5.029 24.95
3.0 7.5 0.1296 0.9956 0.1081 0.1956 0.6093 0.7465 2.620 12.36

5.0 3.0 7.6 0.1294 0.9950 0.1082 0.1956 0.6090 0.7458 2.620 12.36
10.0 454.1 0.1283 0.9916 0.1021 0.1781 0.6067 0.7393 2.569 14.35

C2
s = 2.0

18.0 153.1 0.9402 3.5949 1.6761 0.1147 0.5625 0.6128 34.33 256.9
0.1 18.0 162.0 0.9397 3.6076 1.6755 0.1146 0.5625 0.6125 34.32 257.0

28.0 535.3 0.9398 3.5771 1.6718 0.1146 0.5623 0.6122 34.30 262.5
18.0 153.1 0.1262 0.9851 0.2976 0.7352 0.5931 0.7016 7.068 60.66

1.0 18.0 162.0 0.1257 0.9831 0.2983 0.7354 0.5926 0.6999 7.067 60.62
28.0 535.3 0.1248 0.9796 0.2866 0.6890 0.5907 0.6941 6.998 64.65
18.0 153.1 0.1366 1.0194 0.1609 0.4468 0.6261 0.7946 4.479 42.12

5.0 18.0 162.0 0.1361 1.0175 0.1633 0.4486 0.6256 0.7924 4.491 42.07
28.0 535.3 0.1349 1.0139 0.1515 0.4038 0.6230 0.7853 4.401 45.37

C2
s = 5.0

66.0 979.6 0.1170 0.9496 1.8363 6.2738 0.5682 0.6292 38.54 551.7
0.1 66.0 984.0 0.1170 0.9494 1.8362 6.2787 0.5682 0.6291 38.53 551.7

200.0 11257.0 0.1170 0.9499 1.7939 5.8355 0.5673 0.6262 38.38 620.5
66.0 979.6 0.1323 1.0052 0.4338 1.8433 0.6102 0.7501 11.00 183.6

1.0 66.0 984.0 0.1321 1.0046 0.4343 1.8428 0.6099 0.7493 11.00 183.5
200.0 11257.0 0.1279 0.9914 0.3419 1.3613 0.6004 0.7217 10.40 232.8

66.0 979.6 0.1415 1.0331 0.2864 1.3811 0.6404 0.8325 8.276 148.1
5.0 66.0 984.0 0.1413 1.0324 0.2876 1.3807 0.6400 0.8312 8.284 148.1

200.0 11257.0 0.1373 1.0219 0.1928 0.9144 0.6306 0.8070 7.504 189.7

Table 2 shows that PB and V0 are affected weakly by the second or the higher moments of the
service time that is expected from the results for the system with c = 1. We can also see from Table
2 that L1 and V1 seem to depend on the third moment m3 as well as the second moment m2. We
conclude from Table 2 that for an accurate approximation of the mean and variance of X0 and X1 in
M/G/c retrial queue using another system, the first three moments of service time should be consistent
with those of the original system.
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3. Approximations

There are some moment matching methods for fitting the general distribution by the PH distributions.
In this section we briefly introduce moment matching methods to be used for approximation.

Hyper-exponential distribution: If a positive random variable X with the first three moments mi =

E(Xi), i = 1, 2, 3 and the squared coefficient of variation satisfy C2
s > 1 and

m1m3 >
3
2

m2
2, (3.1)

then the distribution H2(p; µ1, µ2) with the preassigned moments mi, i = 1, 2, 3 is uniquely determined
by the parameters (see Whitt, 1982 or Tijms, 2003)

µ1,2 =
1
2

(
a1 ±

√
a2

1 − 4a2

)
, p =

µ1(1 − µ2m1)
µ1 − µ2

, (3.2)

where

a2 =
6m2

1 − 3m2

3/2 m2
2 − m1m3

, a1 =
1

m1

(
1 +

1
2

m2a2

)
.

The requirement (3.1) holds for the gamma distribution, lognormal distribution and Weibul distribu-
tion with C2

s > 1.

Coxian distribution with Erlang node: Bobbio et al. (2005) present explicit method to fit the first
three moments of a positive random variable by CE1, j(p; µ1, µ2) and CEk,1(p; µ1, µ2); however, the
formulae to determine the parameters are too complicated and are omitted here.

Mixture of Erlang distributions of common order: Johnson and Taaffe (1989) provide a method that a
mixture Ek,k(p; µ1, µ2) of two Erlang distributions Ek(µ1) and Ek(µ2) with probability density function

f (t) = pµ1
(µ1t)k−1

(k − 1)!
e−µ1t + (1 − p)µ2

(µ2t)k−1

(k − 1)!
e−µ2t

can fit the first three moments m1, m2 and m3 of a positive random variable X. The parameters are
given by

µ−1
1,2 =

1
2a

(
−b ±

√
b2 − 4ac

)
, p =

µ1 − µ1µ2m1/k
µ2 − µ1

,

where

a = k(k + 2)m1y, b = −
(
kx +

k(k + 2)
k + 1

y2 + (k + 2)m2
1y

)
, c = m1x,

y = m2 −
(

k + 1
k

)
m2

1, x = m1m3 −
(

k + 2
k + 1

)
m2

2.

Once the service time is approximated by a PH distribution, the M/PH/c retrial queue can be easily
modeled by a level dependent quasi-birth-and-death process(LDQBD) (e.g. see Artalejo and Gómes-
Correl, 2008) and one can use the algorithm in Latouche and Ramaswami (1999) for computing the
stationary distribution of LDQBD process. There may be several PH distributions that match the first
three moments of service time. It is recommended to use the PH distribution among them as small
number of phases as possible to save the computer memory and computing time.
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Table 3: Approximations of M/Weib(α, β)/3 retrial queue

γ
ρ = 0.4 ρ = 0.8

PB σ0 L1 σ1 PB σ0 L1 σ1
C2

s = 0.5
App. 0.1129 0.9656 1.5925 1.5928 0.5591 0.7764 32.17 11.58

0.1 Sim. 0.1128 0.9656 1.5693 1.5838 0.5596 0.7770 32.22 11.43
(c.i.) ±0.0009 ±0.0012 ±0.0264 ±0.0200 ±0.0039 ±0.0043 ± 0.59 ±0.32
App. 0.1194 0.9792 0.2319 0.6264 0.5778 0.8106 5.069 4.735

1.0 Sim. 0.1192 0.9788 0.2294 0.6235 0.5688 0.8112 5.090 4.778
(c.i.) ±0.0008 ±0.0010 ±0.0043 ±0.0115 ±0.0039 ±0.0041 ±0.098 ±0.125
App. 0.1294 0.9974 0.1087 0.4433 0.6091 0.8636 2.622 3.510

5.0 Sim. 0.1290 0.9966 0.1074 0.4408 0.6099 0.8650 2.651 3.560
(c.i.) ±0.0011 ±0.0013 ±0.0021 ±0.0090 ±0.0040 ±0.0041 ±0.064 ±0.098

C2
s = 2.0

App. 0.1146 0.9693 1.6757 1.9018 0.5624 0.7826 34.32 16.01
0.1 Sim. 0.1146 0.9691 1.6691 1.8971 0.5642 0.7805 34.48 15.98

(c.i.) ±0.0013 ±0.0016 ±0.0286 ±0.0420 ±0.0057 ±0.0066 ±0.90 ±0.74
App. 0.1258 0.9916 0.3011 0.8628 0.5930 0.8372 7.080 7.739

1.0 Sim. 0.1253 0.9902 0.2973 0.8552 0.5945 0.8352 7.158 7.838
(c.i.) ±0.0014 ±0.0017 ±0.0067 ±0.0312 ±0.0059 ±0.0059 ±0.225 ±0.338
App. 0.1363 1.0089 0.1668 0.6775 0.6260 0.8908 4.514 6.440

5.0 Sim. 0.1356 1.0073 0.1659 0.6735 0.6274 0.8887 4.590 6.521
(c.i.) ±0.0015 ±0.0019 ±0.0050 ±0.0323 ±0.0057 ±0.0060 ±0.181 ±0.312

C2
s = 5.0

App. 0.1175 0.9755 1.8301 2.4826 0.5683 0.7934 38.53 23.76
0.1 Sim. 0.1169 0.9739 1.8110 2.4762 0.5722 0.7889 39.22 24.23

(c.i.) ±0.0016 ±0.0088 ±0.0443 ±0.1125 ±0.0088 ±0.0088 ±1.64 ±1.86
App. 0.1318 1.0023 0.4045 1.3124 0.6082 0.8632 10.84 13.93

1.0 Sim. 0.1257 0.9993 0.4108 1.3087 0.6119 0.8581 11.20 14.36
(c.i.) ±0.0018 ±0.0023 ±0.0153 ±0.0859 ±0.0085 ±0.0090 ±0.62 ±1.17
App. 0.1410 1.0164 0.2521 1.1176 0.6385 0.9106 8.042 12.53

5.0 Sim. 0.1397 1.0134 0.2669 1.1215 0.6395 0.9070 8.048 11.95
(c.i.) ±0.0020 ±0.0025 ±0.0127 ±0.0857 ±0.0084 ±0.0077 ±0.470 ±0.65

4. Numerical Examples

In this section we describe the approximation procedure and make some numerical comparisons for
M/G/3 retrial queue. Two service time distributions, Weibul distribution Weib(α, β) with probability
density function

f (x) =
β

α

(
x
β

)α−1

exp
[
−

(
x
β

)α]
, x > 0

and lognormal distribution LN(µ, σ2) with probability density function

f (x) =
1

√
2πσx

exp
(
− (ln x − µ)2

2σ2

)
, x > 0

are considered. For an approximation, we first choose an appropriate PH distribution by fitting the
first three moments of the service time and then compute the performance characteristics of the ap-
proximating system. In order to fit the first three moments of the service time distribution with C2

s < 1,
we adopt the method in Bobbio et al. (2005) and the formula (3.2) is used for the case C2

s > 1.
In Table 3, the approximation results (App.) for M/Weib(α, β)/3 retrial queue with m1 = 1.0

and C2
s = 0.5, 2.0, 5.0 are compared with the simulation results (Sim.). For fitting the distribution
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Table 4: Approximations of M/LN(µ, σ2)/3 retrial queue

γ
ρ = 0.4 ρ = 0.8

PB σ0 L1 σ1 PB σ0 L1 σ1
C2

s = 0.5
App. 0.1130 0.9658 1.5928 1.5899 0.5591 0.7765 32.18 11.59

0.1 Sim. 0.1127 0.9651 1.5752 1.5796 0.5592 0.7764 32.13 11.53
(c.i.) ±0.0010 ±0.0011 ±0.0295 ±0.0255 ±0.0043 ±0.0043 ±0.61 ±0.35
App. 0.1196 0.9797 0.2308 0.6240 0.5778 0.8106 5.065 4.760

1.0 Sim. 0.1193 0.9790 0.2279 0.6198 0.5783 0.8112 5.090 4.819
(c.i.) ±0.0010 ±0.0014 ±0.0045 ±0.0132 ±0.0042 ±0.0046 ±0.103 ±0.147
App. 0.1294 0.9977 0.1065 0.4384 0.6088 0.8633 2.611 3.538

5.0 Sim. 0.1289 0.9967 0.1053 0.4361 0.6095 0.8642 2.639 3.594
(c.i.) ±0.0011 ±0.0014 ±0.0021 ±0.0106 ±0.0041 ±0.0045 ±0.067 ±0.117

C2
s = 1.0

App. 0.1136 0.9672 1.6207 1.6919 0.5603 0.7786 32.89 13.18
0.1 Sim. 0.1131 0.9662 1.6069 1.6827 0.5614 0.7778 33.06 13.16

(c.i.) ±0.0010 ±0.0013 ±0.0322 ±0.0371 ±0.0050 ±0.0054 ±0.81 ±0.52
App. 0.1220 0.9846 0.2523 0.6975 0.5834 0.8205 5.733 5.811

1.0 Sim. 0.1216 0.9837 0.2504 0.6939 0.5847 0.8202 5.793 5.915
(c.i.) ±0.0012 ±0.0014 ±0.0062 ±0.0215 ±0.0050 ±0.0051 ±0.156 ±0.238
App. 0.1322 1.0025 0.1234 0.5086 0.6156 0.8743 3.228 4.559

5.0 Sim. 0.1319 1.0018 0.1226 0.5071 0.6171 0.8745 3.283 4.663
(c.i.) ±0.0012 ±0.0016 ±0.0031 ±0.0204 ±0.0050 ±0.0049 ±0.109 ±0.207

C2
s = 5.0

App. 0.1169 0.9744 1.7895 2.4064 0.5671 0.7911 38.36 25.06
0.1 Sim. 0.1171 0.9745 1.8007 2.3932 0.5729 0.7875 39.59 26.33

(c.i.) ±0.0019 ±0.0023 ±0.0503 ±0.1217 ±0.0094 ±0.0088 ±1.90 ±2.46
App. 0.1275 0.9950 0.3370 1.1519 0.5997 0.8482 10.35 15.42

1.0 Sim. 0.1300 0.9988 0.3698 1.1911 0.6101 0.8530 11.16 16.40
(c.i.) ±0.0020 ±0.0025 ±0.0155 ±0.0880 ±0.0091 ±0.0091 ±0.80 ±1.87
App. 0.1370 1.0104 0.1887 0.9412 0.6299 0.8972 7.460 13.94

5.0 Sim. 0.1395 1.0134 0.2233 0.9947 0.6409 0.9021 8.290 14.88
(c.i.) ±0.0021 ±0.0020 ±0.0132 ±0.0904 ±0.0088 ±0.0091 ±0.710 ±1.85

Weib(α, β), we use the following distributions

CE2,1(0.751282; 2.88098, 2.09007), with m1 = 1.0, C2
s = 0.5, m3 = 2.9078,

H2(0.658726; 2.0365, 0.504441), with m1 = 1.0, C2
s = 2.0, m3 = 16.4203,

H2(0.908248; 1.8165, 0.183503), with m1 = 1.0, C2
s = 5.0, m3 = 90.0.

Simulation models are developed with ARENA. Simulation run time is set to 80,000 unit times in-
cluding 20,000 unit times of warm-up period, where the expected value of service time is one unit
time. Ten replications are conducted for each case and the average value; in addition, the half-length
of 95% confidence interval(c.i.) are obtained.

Approximation results for M/LN(µ, σ2)/3 retrial queue are listed in Table 4. The distributions
LN(µ, σ2) with m1 = 1.0 and C2

s = 0.5, 1.0, 5.0 are fitted by the following distributions

CE1,3(0.116747; 0.950128, 3.42026), with m1 = 1.0, C2
s = 0.5, m3 = 3.375,

CE1,2(0.0896414; 0.509162, 2.242735), with m1 = 1.0, C2
s = 1.0, m3 = 8.0,

H2(0.99075; 1.15827, 0.06395), with m1 = 1.0, C2
s = 5.0, m3 = 216.0.
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5. Conclusions

We have investigated numerically the effects of the moments of the service time to the performance
measures related with the number X0 of busy servers and the number X1 of customers in orbit in
M/G/c retrial queue. Numerical experiments show that the effect of the third moment of the service
time to L1 is not negligible especially for ρ small and C2

s large and the variance V1 of X1 is strongly
affected by the second moment as well as by the third moment of the service time; however, the
distribution of X0 is less sensitive to the second or higher moment of the service time than X1. Based on
these observations, we approximate the M/G/c retrial queue by M/PH/c retrial queue where the PH
distribution is determined by fitting the first three moments of the service time. Numerical experiments
lead to approximations that are significantly accurate for a wide range of service times.

The most common technique to compute the stationary distribution of the number of customers
in a multi-server Markovian queue with PH distribution of service time is the matrix analytic method.
However, the matrix analytic method requires a long computation time and large memory capacity
when both of the number of phases in PH distribution and the number c of servers are large. Therefore,
the method is limited to small values of c and to PH distribution of a lower order. The method to
approximate the multi-server queue by fitting the service time with PH distributions is not free from
the restriction of the matrix analytic method and the application of the method proposed in this paper
often restricts the number of servers and the number of phases of PH distribution. However, the many
distributions with C2

s not close to 0 arising in practical situation can be fitted by the PH distribution
with the moderate number of phases that reduces the computational problem. For example, the many
distributions with C2

s > 1 can be fitted by the H2 distribution and the size of the matrix components
of the generator of the level dependent quasi-birth-and-death process corresponding to the system
M/H2/c retrial queue is c + 1.
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