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Abstract— In many digital signal processing (DSP) systems,
computations can be carried out within a tolerable error range
rather than finding the exact output, enabling significant reduc-
tions in area, delay, or power dissipation of the design. This paper
addresses the problem of approximating the multiple constant
multiplications (MCM) operation which occurs frequently in DSP
applications. We consider the realization of constant multiplica-
tions using look-up tables (LUTs) on field programmable gate
arrays (FPGA) and introduce an exact algorithm, called THETIS,
that can find a minimum number of distinct LUTs required to
realize the partial products of constant multiplications, satisfying
an error constraint. Experimental results show that THETIS can
achieve significant reductions in number of LUTs on MCM
instances and its solutions lead to less complex filter designs
on FPGA than those realized using original filter coefficients.

I. INTRODUCTION

The MCM operation realizes the multiplication of multiple
constants by an input variable and appears in many DSP sys-
tems such as fast Fourier transforms, finite impulse response
(FIR) filters (Fig. 1), and linear DSP transforms. Since the
implementation of a multiplier in hardware is expensive in
terms of area, delay, and power dissipation, efficient multipli-
erless constant multiplication design architectures have been
introduced [1], [2]. For the multiplierless design of a single
constant multiplication (SCM) on FPGA, the LUT-based mul-
tipliers (LBMs), which take into account the basic block of an
FPGA, was proposed in [2], [3]. In this technique, supposing
n-bit LUTs are used, the input variable is split into n-bit
segments, the result of a constant multiplication by an n-bit
segment (partial product) is stored in n-bit LUTs, and the
partial products are shifted and added to compute the result.
Note that shifts by a constant value can be realized using
only wires which represent no hardware cost. This technique
has been used in Altera and Xilinx FPGAs [4], [5]. In [6],
LBMs were used for the multiplierless realization of the MCM
block, where common LUTs are shared among the partial
products of constant multiplications. It was shown in [6] that
FIR filters designed using LBMs include similar number of
slices and have significantly less delay with respect to those
designed under a shift-adds architecture [1], where constant
multiplications are replaced with shifts and adders/subtractors.

Approximate computing refers to a class of methods that
relax the requirement of exact equivalence between the spec-
ification and implementation of a computing system [7]. For
example, in many image and video processing applications,
due to the limited perceptual abilities of human beings, the
accuracy of numerical outputs can be traded for reductions in
area, delay, or power dissipation of the design [8].
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Fig. 1. Transposed form FIR filter.

The approximation of the MCM operation, which targets
the shift-adds architecture and aims to reduce the number of
adders/subtractors, was proposed in [9], [10]. In this paper, we
focus on the approximation of the MCM operation realized
using LBMs with a minimum number of LUTs on FPGA. In
this problem, given an error constraint and a set of alternative
constants determined for each constant multiplication, the aim
is to select a constant from each set such that the chosen
constants satisfy the error constraint and the chosen constant
multiplications require a minimum number of distinct LUTs.
To the best of our knowledge, there exists no algorithm
proposed for this problem. To this end, we formulate this
problem as a 0-1 integer linear programming (ILP) problem
and introduce an exact algorithm THETIS. Moreover, we apply
THETIS to the filter design optimization (FDO) problem under
a tolerable error [11]. Experimental results show that THETIS
can be applied to MCM instances with a large number of
coefficients and bit-widths, finding a minimum solution in a
reasonable time, and filters designed based on the optimized
solutions of THETIS occupy significantly less slices than those
implemented using original filter coefficients.

II. BACKGROUND

A. 0-1 ILP Problem
The 0-1 ILP problem is the optimization of a linear objective

function subject to a set of linear constraints and is generally
defined as follows1:

minimize wT ·x (1)
subject to A ·x ≥ b, x ∈ {0,1}k (2)

In the objective function of the 0-1 ILP problem given in
Eq. 1, wi in w is a weight value associated with each variable
xi, where 1 ≤ i ≤ k and w ∈ Zk. In Eq. 2, A ·x ≥ b denotes a
set of j linear constraints, where b ∈ Z j and A ∈ Z j ×Zk.

1The minimization objective can be converted to a maximization objective
by negating the objective function. Less-than-or-equal and equality constraints
are respectively accommodated by the equivalences, A ·x ≤ b ⇔−A ·x ≥−b
and A ·x = b ⇔ (A ·x ≥ b)∧ (A ·x ≤ b).
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Fig. 2. (a) Realization of cx when n is 4; (b) the partial products of cx.

B. LUT Based Multiplier

Suppose that a signed 8-bit input variable x is multiplied by
a 3-bit constant c when the size of LUTs (n) is 4. Fig. 2a shows
the way of realizing cx and Fig. 2b presents the all possible
values of partial products (PPs). Note that for a signed input
variable, only the most significant n-bit segment is treated as
a signed input and for an unsigned input variable, every n-bit
segment is an unsigned input.

In LBM, each output bit of a partial product is stored in a
LUT, except the ones that consist of all 0s, all 1s, or that are
equal to an input bit. Note that an output bit of a partial product
may be equal to another output bit of the same partial product
or as commonly observed, equal to an output bit of a partial
product generated for a different constant multiplication [6]. In
this case, this LUT can be shared among the partial products.

C. Problem Definitions

The problem of approximating the MCM operation can be
defined as: given a vector of N original integer constants
c=[c0, · · · ,cN−1], a tolerable error ε > 0, and a vector error
norm, e.g., 1-norm2, find a vector of N optimized constants
c′=[c′0, · · · ,c′N−1] such that their multiplications by a variable
using LBMs require a minimum number of LUTs and the error
constraint, e.g., ||c− c′||1 ≤ ε , is satisfied.

The frequency response of an FIR filter is computed as:

H(w) =
N−1

∑
i=0

hie− jwi

where N is the filter length, h=[h0, · · · ,hN−1] ∈ RN is a
vector of floating-point filter coefficients, and w ∈ R is the
frequency in radians. The absolute error in the frequency
response is bounded by the 1-norm of the coefficient vector
error regardless of the frequency [11], given as:

∣∣|H(w)|−|H ′(w)|
∣∣≤|

N−1

∑
i=0

(hi−h′i)e
− jwi|≤

N−1

∑
i=0

|hi−h′i|=||h−h′||1

where h′ denotes a vector of optimized coefficients. Thus, the
FDO problem under a tolerable error can be defined as: given
the vector of original coefficients h and a tolerable error ε > 0,
find the vector of optimized coefficients h′ that yields a filter
design (Fig. 1) whose MCM block is realized using LBMs
with a minimum number of LUTs, satisfying ||h−h′||1 ≤ ε .

21-norm of a vector y is computed as ||y||1 = ∑N−1
i=0 |yi|.
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Fig. 3. The network generated for c=[11,25] when ε is 2 and n is 4.

III. THETIS: AN EXACT ALGORITHM

This section presents THETIS assuming that the variable,
by which the constants are multiplied, is a signed input
(Section II-B) and the 1-norm is used in the error constraint
(Section II-C). THETIS has four main parts, that are described
through an example, where c=[11,25], ε is 2, and n is 4.

In a preprocessing phase, each constant of c, whose absolute
value is not 0 and a power of 2, is moved to the target set T ,
since these constant multiplications need LBMs to be realized.
Note that the multiplication of a negative constant can be
obtained by negating the related output of the MCM block.

For our example, the target set T consists of 11 and 25.
In the first part, initially, for each target constant ti ∈ T , we

generate a set Rti consisting of constants between ti−ε and
ti+ε which are alternative constants for the realization of tix
satisfying the error constraint. Then, for each constant in each
set Rti , rti

j , we convert it to a positive and odd constant and
if it is not 0 or 1, we add it to the set P without repetition.
The set P includes all distinct constants required to realize the
constant multiplications in the set Rti of each target constant.
For each constant in P, we determine the LUTs required for the
implementation of its partial products. For each LUT, which
is not equal to an input bit or to an array with all 0s or 1s, we
check if it is already included in a set of 2n ×1 arrays called
L. If not, it is added to L. The set L includes all distinct LUTs
required to realize the constant multiplications in the set Rti

of each target constant, satisfying the error constraint.
For our example, R11={9,10,11,12,13}, R25={23,24,25,

26,27}, P={3,5,9,11,13,23,25,27}, and L consists of 53
distinct LUTs. For the partial products of each constant in P,
6, 7, 8, 10, 9, 12, 10, and 12 LUTs are required, respectively.
We note that there exist 21 LUTs shared among the partial
products of constants in P.

In the second part, the realizations of constant multiplica-
tions are represented in a Boolean network. Initially, each array
of the set L is represented as an optimization variable Olm.
Then, for each constant in P, pk, an AND gate ANDpk , which
combines all the LUTs required for its partial products, is
generated. For each target constant ti and for each constant in
Rti , rti

j , where |rti
j | is different from 0 and a power of 2, we

generate two variables Erti
j @ti and Srti

j @ti, which respectively
denote the error and selection variables, and generate a 2-input
AND gate whose output is Srti

j @ti, first input is Erti
j @ti, and

second input is the output of ANDpk , where pk is the positive
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Fig. 4. Average reduction in number of LUTs: (a) with different sizes of constants; (b) with different sizes of LUTs; (c) with different values of ε .

and odd version of rti
j . If |rti

j | is 0 or a power of 2, the same
variables and 2-input AND gate are also generated, but the
second input of this AND gate is set to 1, indicating that Erti

j @ti
and Srti

j @ti are equal to each other.
For our example, the network generated for the realization

of constant multiplications is given in Fig. 3, but only showing
two LUTs for each constant in P for the sake of clarity.

In the third part, the 0-1 ILP problem is generated. The cost
function is a linear function of optimization variables Olm with
weight values set to 1. To obtain the constraints of the 0-1 ILP
problem: i) the conjunctive normal form (CNF) of each gate
in the network is found and each CNF clause is converted to
a linear inequality [12]; ii) the error constraint is generated as
∑|T |−1

i=0 ∑|Rti |−1
j=0 |ti−rti

j |·Erti
j @ti ≤ ε; iii) for each target constant

ti, a selection constraint is generated as ∑|Rti |−1
j=0 Srti

j @ti = 1,
indicating that only one element must be selected from Rti .

In the forth part, the 0-1 ILP problem is solved using a
generic 0-1 ILP solver. The constants to be multiplied by
the input variable are determined as the ones whose variable
Srti

j @ti is set to 1 in the solution of the 0-1 ILP solver.
For our example, 19 distinct 4-bit LUTs are needed for the

generation of partial products of original constants 11 and 25.
THETIS finds a solution with 12=3≪2 and 24=3≪3, which
requires a total of 6 distinct 4-bit LUTs, satisfying the error
constraint and achieving a 68% reduction in number of LUTs.

IV. EXPERIMENTAL RESULTS

This section gives the results of THETIS on MCM and filter
instances. THETIS was written in MATLAB, run on a PC with
Intel Core i5-2410M at 2.3GHz, and equipped with the 0-1 ILP
solver SCIP2.0 [13]. The results of filter designs implemented
based on the solutions of THETIS on FPGAs are also given.
FIR filters were described in VHDL and synthesized using
the Xilinx ISE Design Suite 13.1 on the Virtex 6 xc6vlx75T-
2ff484 target device. In the synthesis script, relaxed timing
constraints were used in order to provide more freedom to the
tool to optimize area. The functionality of filters was verified
on 10,000 randomly generated input signals in simulation,
from which the switching activity information used by the
tool to compute the power dissipation was also obtained.

To explore the impact of bitwidth of constants and values
of n and ε on the results of THETIS, as the first experiment

TABLE I
SPECIFICATIONS OF FIR FILTERS.

Filter filter normalized normalized passband stopband
length passband stopband ripple ripple

1 47 0.05 0.12 0.060 0.060
2 73 0.10 0.16 0.030 0.030
3 105 0.20 0.24 0.010 0.010

set, we used 10-, 12-, and 14-bit randomly generated MCM
instances, where the number of constants (N) ranges from 10
to 100 in steps of 10. For each group, there were 30 MCM
instances. Fig. 4 shows the average reduction in number of
LUTs computed between the results of THETIS and those
found for the original constants. Fig. 4a presents the results
on different sizes of constants when ε is ⌈N/2⌉ and n is 4.
Fig. 4b shows the results on different sizes of LUTs using
12-bit constants when ε is ⌈N/2⌉. Fig. 4c gives the results on
different values of ε using 12-bit constants when n is 4.

Observe from Fig. 4a that as the size of constants in-
creases, the reduction in number of LUTs decreases due to
the fact that the number of distinct positive and odd constants,
whose multiplications are considered, increases in this case,
decreasing the sharing of LUTs. The maximum (minimum)
value of the average reduction is 30 (18.9)% on 10 (14)-bit
constants when N is 60 (100). Observe from Fig. 4b that
as the size of LUTs increases, the reduction in number of
LUTs increases, which is simply because the size of partial
products of constant multiplications, and consequently, the
number of LUTs to be considered, increases in this case,
increasing the sharing of LUTs. The maximum (minimum)
value of the average reduction is 35.9 (23.2)% when n is 6
(4) and N is 100 (60). Observe from Fig. 4c that as the value
of ε increases, the reduction in number of LUTs increases,
since more alternative constants are considered in this case.
The maximum (minimum) value of the average reduction is
35 (12.5)% when ε is N (⌈N/4⌉) and N is 50 (10).

To explore the impact of solutions of THETIS on designs
synthesized on FPGA, as the second experiment, we used
three symmetric FIR filters whose specifications are given in
Table I. On these FIR filters, we applied THETIS to the FDO
problem under a tolerable error when ε was 0.001, 0.002,
and 0.005. To do so, given the filter specifications, first, a
vector of floating-point coefficients h, which respects the filter
characteristics, was found using a linear programming tool.



TABLE II
SUMMARY OF RESULTS OF THETIS ON FIR FILTER INSTANCES.

Filter ε Q Original filter Optimized filter CPU Reduction (%)
luts FFs LUTs Slices Delay Power luts FFs LUTs Slices Delay Power (s) luts LUTs Slices

0.001 14 297 1143 1798 487 8.7 1414 231 1132 1579 427 8.6 1406 11.1 22.2 12.2 12.3
1 0.002 13 248 1082 1552 444 8.4 1404 179 1069 1368 407 8.3 1403 5.8 27.8 11.9 8.3

0.005 12 208 1045 1414 417 8.1 1400 127 1033 1222 342 8.1 1397 3.7 38.9 13.6 18.0
0.001 15 407 1842 2756 719 8.3 1424 301 1792 2512 667 8.4 1423 49.5 26.0 8.9 7.2

2 0.002 14 356 1766 2550 685 8.4 1420 242 1720 2249 605 8.5 1416 27.0 32.0 11.8 11.7
0.005 12 229 1610 2045 574 8.0 1401 146 1599 1856 520 8.2 1400 9.7 36.2 9.2 9.4
0.001 15 474 2668 4188 1084 8.9 1447 342 2637 3442 913 9.2 1440 61.4 27.8 17.8 15.8

3 0.002 14 398 2555 3584 959 8.1 1418 265 2503 3067 845 8.7 1411 61.0 33.4 14.4 11.9
0.005 13 305 2459 3177 858 8.3 1411 160 2391 2662 711 8.5 1406 23.9 47.5 16.2 17.1

Second, the minimum quantization (Q) value, that is used to
convert the floating-point coefficients to integers was found
taking into account the error constraint. Note that the use
of a minimum Q value yields reduction on the size of filter
coefficients and on the size of registers, adders, and multipliers
in the filter design (Fig. 1). Thus, the vector of original integer
coefficients were determined as round(h·2Q) and in THETIS,
the alternative integer constants for each coefficient hi ranges
between round((hi−ε)·2Q) and round((hi+ε)·2Q).

Table II presents the results of filter designs when the
bitwidth of the signed filter input was 12. In this table, luts
denotes the number of distinct 6-input LUTs required to realize
the partial products of filter coefficients in the MCM block of
the filter. Also, FFs, LUTs, and Slices stand for the number of
flip-flops, LUTs, and slices used in the design of FIR filters on
the target FPGA device, respectively and Delay and Power are
the delay in the critical path in ns and total power dissipation
in mW , respectively. Finally, CPU is the CPU time of THETIS
in seconds required to find the vector of optimized coefficients.

Observe from Table II that the solutions of THETIS need
significantly fewer LUTs than original filter coefficients for the
realization of partial products in the MCM block. Hence, the
FIR filters designed based on the solutions of THETIS require
fewer LUTs and slices than those designed using original filter
coefficients. As can be seen from the frequency responses
generated for Filter 3 when ε is 0.005 in Fig. 5 and Table II,
a reduction of 17.1% in number of slices in the filter design
can be achieved under slight tolerable errors. Also, the filters
designed using optimized coefficients require less flip-flops
than those designed based on original coefficients, since the
sizes of coefficients can be reduced by THETIS. However,
the original and optimized filter designs have similar delay
and power dissipation values. Observe that THETIS can find
a minimum solution in a reasonable time. Note that similar
results given in Table II were obtained when 4- and 5-bit LUTs
were considered and Virtex 4 and 5 FPGA devices were used.

V. CONCLUSIONS

This paper addressed the problem of approximating the
MCM operation realized using LBMs on FPGA and intro-
duced an exact algorithm THETIS that can find a minimum
number of distinct LUTs required to generate the partial prod-
ucts of constant multiplications. Experimental results showed
that THETIS can find significant reductions in number of LUTs
in the MCM operation. Furthermore, the application of THETIS
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Fig. 5. Zero-phase frequency responses of Filter 3 when ε is 0.005.

to the FDO problem under a tolerable error indicated that its
solutions lead to filter designs requiring fewer LUTs and slices
on FPGA than original filter designs.
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