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Basis Function Neural Networks

Robert J. Schilling, Senior Member, IEEE, James J. Carroll, Jr., Member, IEEE, and
Ahmad F. Al-Ajlouni, Member, IEEE

Abstract—A technique for approximating a continuous function
of variables with a radial basis function (RBF) neural network is
presented. The method uses an-dimensional raised-cosine type of
that RBF is smooth, yet has compact support. The RBF network co-
efficients are low-order polynomial functions of the input. A simple
computational procedure is presented which significantly reduces
the network training and evaluation time. Storage space is also re-
duced by allowing for a nonuniform grid of points about which the
RBFs are centered. The network output is shown to be continuous
and have a continuous first derivative. When the network is used
to approximate a nonlinear dynamic system, the resulting system
is bounded-input bounded-output stable. For the special case of
a linear system, the RBF network representation is exact on the
domain over which it is defined, and it is optimal in terms of the
number of distinct storage parameters required. Several examples
are presented which illustrate the effectiveness of this technique.

Index Terms—Function approximation, neural network, non-
linear system, radial basis function (RBF).

I. INTRODUCTION

M ANY of the applications of neural networks, particularly
in the areas of nonlinear system identification and con-

trol, reduce to the problem of approximating unknown functions
of one or more variables from discrete measurements [1]–[7]. A
number of authors have established that multilayer feedforward
neural networks, with a variety of activation functions, serve as
universal approximators [8]–[18]. For example, Horniket al.in
[8] use the Stone–Weierstrass theorem to prove that a two-layer
feedforward network can approximate a continuous real func-
tion on a compact subset of arbitrarily closely in the
norm. More generally, continuous nonlinear functionals can be
approximated with feedforward neural networks, and these can
be used to directly approximate the outputs of dynamical sys-
tems [5], [6]. This article focuses on the problem of approxi-
mating a continuous function of variables over a compact re-
gion using a radial basis function (RBF) neural network. RBFs
implement localized representations of functions, and are easier
to initialize and train than multilayer perceptrons [19]–[26].

A raised-cosine type of RBF is introduced that is smooth, yet
has compact support. The-dimensional RBF is represented as
a product of one-dimensional (1-D) functions. The network
structure consists of a sum of RBF terms with each term cen-
tered about a grid point and scaled by a coefficient function.
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The coefficient functions are either zeroth or first-degree poly-
nomials of the input vector. In either case the weights of the
network can be easily initialized. For the case of constant coef-
ficients, the weights can be chosen such that the network output
is exact at each of the grid points. For first-degree polynomial
coefficients the weights can be chosen such that both the net-
work output and its derivative are exact at the grid points.

The proposed network has a fixed structure, rather than one
that can grow or shrink as the network is trained [7], [25]–[26].
However, if the function to be approximated is known to vary
rapidly in some regions, but be relatively flat in others, then the
total number of grid points can be reduced by allowing for a
nonuniform distribution of the grid points with a higher density
grid used in regions of rapid variation. The localized nature of
the representation can also be exploited to substantially reduce
the time required to evaluate and train the network.

A network based on a raised-cosine RBF has a number of
useful qualitative properties in terms of interpolation. Included
among these are the fact that the network output and its first
derivative are continuous functions of the input. When a raised-
cosine RBF network is used to approximate a nonlinear dynamic
system, the resulting system is bounded-input bounded-output
(BIBO) stable. For the special case of a linear system, the RBF
network reduces to an exact representation on the domain over
which it is defined. The resulting linear system is also optimal
in the sense that requires the minimum number of storage pa-
rameters.

The remainder of this article is organized as follows. A ze-
roth-order network based on a raised-cosine RBF is introduced
in Section II. The network is generalized to a first-order RBF
network in Section III. Section IV discusses implementation is-
sues including a simple technique for increasing network speed
by exploiting the compact support property of the raised-cosine
RBF. The application of the RBF network to the approxima-
tion of continuous-time nonlinear dynamic systems is discussed
in Section V. Examples of applications involving the modeling
and simulation of linear and nonlinear dynamic systems are pre-
sented in Section VI. Conclusions are presented in Section VII.

II. ZEROTH-ORDER RBF NETWORK

A. Center Point Grid

Let denote the function to be approximated where
is a closed bounded rectangular region. More specif-

ically, if the vectors and denote the lower and upper
limits of , respectively, then

(1)

1045–9227/01$10.00 © 2001 IEEE



2 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 1, JANUARY 2001

It is assumed that values of are available at discrete
points within . The RBF network includes terms with the

th term consisting of RBF centered about point and
scaled by weight . If and denote column vec-
tors, then the network output can be expressed in compact form
as

(2)

Suppose there are grid points along dimension, for
, ordered as follows:

(3)

Here and . Since there are grid points per
dimension, the total number of grid points is

(4)

The total number of grid points can also be expressed as
where is the geometric mean of the

numbers of grid points per dimension.
If the function is known to vary rapidly in some regions,

and be relatively flat in others, then the number of grid points,
, can be reduced by allowing for a nonuniform distribution of

points. Specifically, a higher density grid can be used in those
regions of where the variation of is large, while a lower
density grid can be used in regions where is relatively flat.
To provide for an efficient implementation, which reduces the
time required to evaluate , it is useful to develop a function
which maps the nonuniform grid in (3) into a grid with uniform
unit spacing. Consider, in particular, the following piecewise-
linear interpolating polynomial for the points in (3).

(5)

The function . Furthermore, by construc-
tion, maps the th grid value into the integer

(6)

It follows that the function maps the nonuniform
grid into a uniform grid with unit spacing between adjacent
points. As a special case, if the original grid in (3) is uniform,
but with a different constant spacing for each dimension, then

in (5) simplifies to

(7)

Next, let be avector indexwhich species theth grid
point, , where represents the positive integers and

for . Thus the th element of the vector
is

(8)

In order to avoid the need to use separate summations in
the formulation of the network output , it is helpful
to reorder the grid points into a 1-D array of points

by introducing ascalar index which
can computed from the vector index as follows:

(9)

There will be a RBF centered at each grid point with
and decreasing as the radius in-

creases. Using the scalar indexin (9), the output of the RBN
can then be expressed as in (2) which corresponds to the single
summation

(10)

B. RBFs

RBFs are constructed such that vanishes, or becomes
extremely small, for sufficiently large values of the radius

. It is this feature that makes the network an efficient local
representation because for a given, only a limited number of
terms in (10) will be active and contribute to the output.

To construct a general RBF it is useful to first examine
the special case of a 1-D RBF centered at . Webb
and Shannon [25] discuss several candidate functions, the most
popular one being

(11)

The function is the normal orGaussianRBF. The func-
tion can be shown to be optimal, in a least squares sense,
for fitting data that has normally distributed noise on the input
[23]. The Gaussian function is also infinitely differentiable and
all of the derivatives are continuous. Suppose

is used as an RBF. If is sufficiently small, then
will be a good approximation of at the grid points when the
weights are set to . However, midway between the
grid points and the approximation is poor. This can
be remedied by using larger but then the representation be-
comes less localized with more terms contributing to the output.
This is a consequence of the fact that for all finite .

An alternative approach is to use the followingraised cosine
as a 1-D RBF centered about zero

(12)

Note that and for . Unlike the
Gaussian RBF, is zero outside the closed bounded region,

which makes a function with compact support.
The raised-cosine function in (12) can be regarded as an analog
version of the Hanning window sequence used in digital filter
design. A graphical comparison of and is shown in
Fig. 1(a), and comparison of the derivatives, and ,
is shown in Fig. 1(b).
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(a)

(b)

Fig. 1. 1-D RBFs: (a) Gaussian ( ) and raised-cosine ( ) functions. (b) First derivatives of Gaussian ( ) and raised-cosine ( ) functions.
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Fig. 2. A two–dimensional (2-D) raised-cosine RBF,�(x), centered at the origin with a uniform unit grid.

The 1-D case is generalized todimensions by expressing
as a product of 1-D RBFs.

(13)

The basic RBF network in (2) has a number of useful qualitative
properties. Using (6), (12), and (13), the RBF satisfies the
following orthogonalproperty with respect to the grid points:

(14)

The orthogonal property is a direct consequence of the fact
that the raised cosine in (12) has compact support. Since the
Gaussian RBF does not have compact support, it does not
satisfy (14). Using (14), it follows from (2) that
for . Consequently, if for ,
then the zeroth-order RBF network output in (2) is exact at the

grid points

(15)

Another important qualitative property is the relative smooth-
ness of the network output. From (12) and Fig. 1(a), it is evi-
dent that is a continuous function taking on values in the
interval . Since the piecewise-linear interpolating polyno-
mial in (6) is also continuous, it follows from (13) that

is a product of compositions of continuous functions and
is therefore itself a continuous function whose value lies in the
interval . A plot of for the case , ,
and a uniform unit grid is shown in Fig. 2. Since the raised-co-
sine RBF is continuous, the network output in (2)
is continuous.

The derivative of the 1-D raised-cosine RBF in (12) is shown
in Fig. 1(b) and can be expressed

(16)

Thus is continuous. First consider the case of a uniform
grid in (7). In this case the derivative of the piecewise-linear
interpolating polynomial, , is constant.
As a result, the following derivative is then continuous:

(17)

Since is a continuous function of , it then
follows from (13) that the gradient is continuous which
means that is continuous.

For the more general case of a nonuniform grid, the deriva-
tive of the piecewise-linear interpolating polynomial is not
defined at the grid point coordinates where the slope abruptly
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changes. However if, for example, the right-hand side deriva-
tive, , is used, then from (5)

(18)

Thus the only thing that changes in (17) is that the denomi-
nator is replaced by where depends on
and changes when crosses a grid boundary. However, recall
from (6) that the numerator of the right-hand side of (17) is zero
at the grid points. Thus the expression in (17) is again contin-
uous assuming the right-hand side derivative is used. It then fol-
lows from (13) that the gradient is continuous which
means that is continuous for a nonuniform grid when
the right-hand side derivative is used. A similar argument could
have been applied using the left-hand side derivative.

Next, recall from (6) that when , the argument
in (17) is an integer which means that the derivative in

(17) evaluates to zero. Using (13) one can then conclude that at
the grid points

(19)

The simplest possible function to approximate is the 1-D con-
stant function, , which can be thought of as a polyno-
mial of degree zero. Consider the case with
grid points at and . Then from (6) we have

and . Finally, using (12) and (13) it
can be shown that the followingconstant interpolationproperty
holds in this case

(20)

Consequently, when the network output
is exact. That is, the raised-cosine RBF network can represent

a constant function exactly using two terms. Although this is not
a profound result, it is a useful one (see, e.g., [24]). Moreover, it
is worth noting that when the Gaussian RBF in (11) is used, an
exact representation of a constant is not possible unless a lim-
iting special case (the inclusion of a bias term, )
is used. However, the presence of a bias term destroys the local
nature of the representation because, in general, the value of
will affect the values of all of the other weights. The constant in-
terpolation property in (20) can be extended to the general case,

, and it also holds when (see the Appendix). We
summarize the properties of the zeroth-order RBF network as
follows.

Proposition 1 (Zeroth-Order RBF Network):When the
raised-cosine RBF is used, the zeroth-order RBF network in
(2) has the following properties.

1) The network output, , and its gradient, are
continuous.

2) If for , then the network output is
exact on the center point grid, and the gradient is zero on
the grid

3) If , then the RBF network is an exact represen-
tation of on when for and

for .
4) The number of weights needed to train the network is

5) The number of nonzero terms in is, at most, .
The last two properties are concerned with the size and speed

of the network. Property 5) is a result of the fact that there are,
at most, two nonzero RBF terms per dimension because
is a function with compact support.

III. FIRST-ORDER RBF NETWORK

The exact representation property, in Property 2), can be
extended by considering a simple generalization of the ze-
roth-order RBN to a first-order RBN. In particular, the constant
weighting coefficients in (2) can be replaced by first-degree
polynomial functions of the input

(21)

Here the parameters to be identified during training now include
a constantweight vector and a linearweight matrix

. In this case, the number of weights has increased by a factor
of .

To verify that the first-order RBN satisfies the basic inter-
polation property on the center point grid, note from (14) and
(21) that for where de-
notes the th row of . Therefore the first-order RBF network
in (21) satisfies the following basic interpolation property when

for .

(22)

Since is continuous, it follows that is continuous.
Next observe that the derivative of with respect to is

(23)

Since and are both continuous, it follows that
is continuous for . Therefore is

continuous.
Next recall from (19) that at the grid points. If

the expression in (23) is evaluated at grid point , then
using (14), the partial derivative reduces to

(24)

Thus the th row of the linear weight matrix is the gradient
of evaluated at . Consequently, the gradient of the
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network output at the grid points can be specified though the
choice of .

Following the constant function, the next simplest function
to approximate is the -dimensional affine function,

, which is just a polynomial of degree one. Using
the constant interpolation property in (20), one can show that a
linear polynomial can be represented exactly by the first-order
RBF network using grid points per dimension. We sum-
marize the properties of the first-order RBF network as follows.

Proposition 2 (First-Order RBF Network):When the raised-
cosine RBF is used, the first-order RBF network in (21) has the
following properties:

1) The network output, , and its gradient, , are
continuous.

2) If where for
, then the network output and its gradient are exact on

the center point grid

3) If , then the RBF network is an exact
representation of on when for ,

for , for and
.

4) The number of weights needed to train the network is

5) The number of nonzero terms in is, at most, .
Comparison of Proposition 2 with Proposition 1 reveals that

the size of the first-order RBF network is times larger than
the size of the zeroth-order RBF network. This increase in the
number of weights allows one to specify both the value of the
output and the value of its gradient on the center point grid. This,
in turn, means that an exact representation of a more general
class of functions is possible as in Property 3). The increase in
the number of weights fromto will increase the time
needed to train the network. However, if the network evaluation
speed is measured in the number of RBF evaluations, then the
first-order network is just as fast as the zeroth-order network
because there are still, at most,nonzero terms for each .
Evaluation of each term is somewhat more expensive because
the number of floating point multiplications increases from one
to .

Information regarding the gradient of the function to be ap-
proximated at the grid points may or may not be available. If
it is not, then a good initial guess for the linear weight matrix
can be obtained by approximating the gradient ofnumerically.
For example, the rows of can be initialized by approximating
the gradient numerically using central differences at the interior
grid points and forward or backward differences, as appropriate,
along the grid boundary [29].

The first-order network in (21) can be generalized still fur-
ther by replacing the linear polynomial by a quadratic polyno-
mial in . In this case an exact representation of a quadratic

can be obtained using two grid
points per dimension. However, the second derivative of the

network output is not continuous at the grid points. Further-
more, for a second-order RBF network, the number of weights,

can become excessive, particularly for larger
values of .

IV. I MPLEMENTATION

The zeroth-order RBF network in (2) is a special case of the
first-order RBF network in (21) with the weight matrix

set to . Consequently, we focus our attention on the
first-order RBF network. The number of terms in (21) grows
rapidly with the number of grid points per dimension,, and the
number of dimensions,. Fortunately, most of the terms are zero
and therefore do not have to be evaluated. This can speed up the
calculation of significantly, particularly for larger values
of . For a given , the number of nonzero RBFs in each dimen-
sion is either one or two. Consequently, the number of nonzero
terms in (21) is, at most, . The subscripts of the nonzero terms
can be efficiently identified by first finding the grid point hyper-
cube in that contains the point. The terms associated with
the vertices of this hypercube are then examined and their
associated RBFs are evaluated. The procedure is summarized in
the following algorithm which takes , and as inputs and
produces as an output.

Alg. 1 (Network Evaluation)
1. Set .
2. For to do

a. int
b. If , set .
c. If , set .

3. For to do

a. Convert from decimal to -bit
binary .
b. For to compute .
c. Convert to using (9)
d. Compute

The implementation in Alg. 1 evaluates terms and returns
. The increase in speed in using Alg. 1 in comparison

with a direct computation of (21) can be substantial. Recall that
is the geometric mean of the number of grid points in each

dimension. Whereas direct evaluation of (21) requires
function evaluations, Alg. 1 requires function evaluations.
Thus for and , Alg. 1 is more than two orders of
magnitude faster than direct evaluation. For larger values of
and a finer grid, the savings are even more dramatic.

Since a RBF network has only one hidden layer and a linear
output layer, the update formulas for the weights are relatively
simple. Let and denote the set of inputs used to train and
test the network, respectively

(25)

(26)
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Next, let denote theerror between the
actual output and the network output evaluated at. If we mini-
mize by adjusting the weights after each training input
using a gradient search with a step size of , this leads to
the following least-squares algorithm for updatingand the .

Alg. 2 (Network Training)
1. Pick and . Initialize

and using Property 2). Set .
2. Do

a. Set and
b. For to do

i. Compute using
Alg. 1.

ii. Compute int for
using (5).

iii. For to do

a) Convert from decimal to
-bit binary .

b) Compute for .
c) Convert to using (9)
d) Compute

c. For to use Alg. 1 to
compute

3. While and

Note that the training and test outputs, and , can
all be precomputed ahead of time. In addition, from step 2biii,
only terms are used to adjust the weights during training. This
substantially reduces the training time. Use of the initial guesses
for and based on Property 2) further reduces the training
time. Indeed, for a sufficiently fine grid, the initial values for
and in Property 2) should be quite close to the optimal values.

V. NONLINEAR SYSTEMS

The raised-cosine RBF network can be used to approximate
any continuous function of variables [27], [28]. In this ar-
ticle we focus on approximating the right-hand side of a con-
tinuous-time -dimensional nonlinear dynamic system of the
following general form:

(27)

(28)

Here it is assumed that the function is Lip-
schitz continuous in and continuous in and the function

is continuous in both arguments. Under these
conditions, if the input is piecewise-continuous, then for
each initial condition , a unique solution exists
for [30].

A. Stability

Suppose that the right-hand side functionsand in (27)
and (28) are each approximated with a first-order raised-cosine
RBF network of form where and

. Thus there are networks, each having inputs. Let
be an extension of the network domainin (1) that

includes a boundary aroundwhose width, in dimension, is
equal to the grid width. That is

(29)

(30)

Thus is a closed bounded region of . Furthermore, be-
cause the raised-cosine RBF has finite support in the form of a

grid, the network output has finite support. In par-
ticular

(31)

A simple four-point illustration of the region is shown in
Fig. 3 where , , , ,

, and . In this instance it is evident that
outside the region . Note that

Fig. 3 also illustrates the constant interpolation property in (20)
for the case .

A common way to characterize the stability of a nonlinear
nonautonomous system is to say that the system is BIBO stable
if and only if every bounded input generates a bounded
output . Having a system that is BIBO stable is useful for
simulation purposes because this avoids possible numerical
overflow conditions during simulation runs.

Suppose lies in the interval .
Thus is bounded with bound . To
show that is bounded, suppose for
and are each approximated with a RBF network of the
form where . Then from (31),

for . We examine two cases. If , it then
follows that for . Alternatively, if

, then for . Thus in either case, is
bounded. Since the output equation function, , in (28) is
also approximated by a continuous RBF network, it then follows
that the RBF output must be bounded.

Proposition 3 (Stability): Suppose the nonlinear system in
(27) and (28) is approximated by using raised-cosine RBF net-
works for the right-hand side functions. Then the resulting non-
linear system is BIBO stable.

B. Linear Systems

A very important special case of a nonlinear dynamic system
is a linear -dimensional system of the following form:

(32)

(33)
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Fig. 3. Output of a four-point 2-D raised-cosine RBF network witha = [�1 1] , b = [1; 1] , w = [1; 1; 1; 1] , V = 0, S = [�1; 1] � [�1; 1] and
S = [�3; 3] � [�3; 3].

Here is , is , is and is .
Thus a total of parameters are needed to
completely specify the linear system. It is of interest to examine
how effective the RBF network is in approximating this simpli-
fied system. Using Property 3), it can be shown that the RBF
network representation is exact on the domain.

Proposition 4 (Linear Systems):Suppose the linear system
in (32) and (33) is approximated by using first-order raised-co-
sine RBF networks for the right-hand side functions.

1) Let for and . For the th network,
let the th row of be as follows for .

Finally, let be the RBF network output for the output
equation in (33). Suppose and

. If for , then
for .

2) The number of distinct scalar parameters that must be
stored for the RBF network representation of the-di-
mensional linear system in (32) and (33) is

Thus for a linear system, the RBF network approximation is
exact when the input and solution trajectory remain

within the domain over which the network is defined. The
domain can be made arbitrarily large without increasing the
number of grid points . Since a total of parameters are
required to specify the linear system coefficients ,
the number of distinct parameter values that must be stored for
the RBF network is the minimum possible. That is, the network
is optimal in that sense.

VI. EXAMPLES

The following examples illustrate the effectiveness of the
raised-cosine RBF network when it is used to approximate the
right-hand side of first-order systems of differential equations.

Example 1—Unstable Linear System:To verify the behavior
summarized in Propositions 3 and 4, consider the following
three-dimensional (3-D) linear system:

This system has eigenvalues at and
. Thus there is a stable second-order mode and an

unstable first-order mode. In this case
and . Suppose the domain is defined by lower
limits and upper limits
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Fig. 4. Solution of 3-D unstable linear system withd = [2; 2; 2; 2] , a = [�10; �10; �10; �10] andb = [10; 10; 10; 10] .

. Thus from (30), the domain and
compact support region are as follows:

In this case there are two grid points per dimension,
, and the total number of terms is . There are

four RBF networks, each with four inputs. Assigningand
as in Proposition 4, the number of distinct values that need to be
stored is which is the minimum possible.

Suppose the initial state is and the input
is . A plot of the three state variables and the
output is shown in Fig. 4 for . Also plotted is
the solution obtained by
representing the right-hand side functions with four first-order
RBF networks. Note that over the time interval ,

and the network solution exactly matches the
actual solution as predicted
by Property 4. When , state crosses the boundary
of , and the RBF network representation is no longer exact.
This becomes evident by about where the solutions

and and the outputs and begin to separate.
Since this linear system is not BIBO stable, the solution
continues to grow without bound and escapes the regionat

. However, the RBF network solution satisfies
for . This is evident from Fig. 4 where the state variable

begins to saturate as it approaches the boundary of,
the point beyond which . Note that even though the

RBF network is BIBO stable due to its compact support, it
can still be used to accurately approximate the solution of an
unstable system for as long as the solution remains within the
domain over which the network is defined. Within this domain
the approximation is exact.

Example 2—Nonlinear System with Limit Cycle:As an ex-
ample of a nonlinear system, consider the following 2-D au-
tonomous system called the van der Pol oscillator

When this is a simple linear harmonic oscillator, whereas
when the steady-state solution is a limit cycle with the
shape of the limit cycle becoming less circular asincreases.
To approximate this system we use two RBF networks, each
with input . Note that the first network is actually linear,
so from Property 4(a), we have and for

. Suppose the lower limits of are
and the upper limits are . Let the number of grid
points per dimension be . Two initial conditions are
considered, which is inside the limit cycle, and

which is outside.
The solution is computed at points uniformly dis-

tributed over the time interval . Fig. 5(a) shows the actual
solution and the RBF network solution for the two initial condi-
tions and grid points per dimension. Thus using
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(a)

(b)

Fig. 5. Solutions of van der Pol oscillator witha = [�3; �5] andb = 3; 5] : (a) the cased = [10; 10] with E = 0:156, E = 0:073. (b) the case
d = [20; 20] with E = 0:063, E = 0:031.
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(c)

Fig. 5. (Continued.)Solutions of van der Pol oscillator witha = [�3; �5] andb = 3; 5] : (c) the cased = [40; 40] with E = 0:012, E = 0:006.

terms, the RBF solution is generally similar to the actual solu-
tion, but clearly it exhibits some error. Let denote the th
solution time for . If denotes the infinity norm
and denotes the Euclidean norm, then the normalized er-
rors over the solution trajectory can be computed as follows:

For the case shown in Fig. 5(a), the infinity
norm error is and the root mean square (RMS) error
is . When the density of the grid increases, the error
is reduced. For example, when , this leads to
terms and the errors are and . The
corresponding plot of the two superimposed solutions is shown
in Fig. 5(b). Finally, for the case , shown in Fig. 5(c),
a total of terms are used and the errors are reduced
to and . In this case the two solutions
are indistinguishable in terms of viewing the plot. Although the
size of the network grows by more than an order a magnitude
in going from Fig. 5(a)–(c), recall that the execution speed is

the same for all three cases because there are, at most, only four
nonzero terms for each point.

Example 3—Nonlinear System with Chaotic Motion:As a
final example, one that is challenging to approximate, consider
the following 3-D autonomous nonlinear system

This system, known as the Lorenz attractor, can be used to
model turbulent convection in fluids. In particular, the solu-
tion exhibits chaotic motion when the parameters satisfy the
following inequalities [31]:

To verify that an RBF approximation can exhibit chaotic mo-
tion, consider the case . Suppose the
lower limits of the domain are and the
upper limits are . Finally, suppose that for
each of the three RBF networks there are
grid points. Although this is a substantial network with a total
of terms, there are, at most, eight nonzero terms for
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(a)

Fig. 6. Solutions of Lorenz attractor witha = [�20; �20; 0] , b = [20; 20; 40] , d = [40; 40; 40] , E = 0:025, andE = 0:005. (a) Projection onto
z versusz plane.

any given . The solution is computed at points uni-
formly distributed over the time interval starting from an
initial condition of .

Plots of the projections of the two solutions in onto the
three orthogonal planes are shown in Fig. 6(a)–(c), respectively.
In this case the errors defined in Example 2 are
and . It is evident from Fig. 6(a)–(c) that the RBF
network provides an effective approximation even for this fairly
complex nonlinear system whose solution exhibits chaos. When
the length of the solution interval is decreased, the same or im-
proved accuracy can be obtained with fewer grid points.

VII. CONCLUSION

A simple but effective technique for approximating a contin-
uous function of variables with an RBF network has been pre-
sented. The method uses an-dimensional raised-cosine type
of RBF that is smooth, yet has compact support. The coeffi-
cients of the RBF network are low-order polynomial functions
of the input. A simple computational procedure is presented
which significantly reduces the network training and evaluation
time. Storage space is also reduced by allowing for a nonuni-
form grid of points about which the RBFs are centered. The net-
work output is shown to be continuous and have a continuous
first derivative. When the network is used to approximate a non-
linear dynamic system, the resulting system is BIBO stable. For
the special case of a linear-dimensional system, the RBF net-

work representation is exact on the domain over which it is de-
fined, and it is optimal in terms of the number of distinct storage
parameters required. Several examples are presented which il-
lustrate the effectiveness of this technique. These include an un-
stable linear system, a nonlinear system whose steady-state so-
lution is a limit cycle, and a nonlinear system whose solution
exhibits chaotic motion.

APPENDIX

A. Proposition 5 (Constant Interpolation)

Let , , and be as defined in (1), (4), and (13), respec-
tively. Then

To show that Proposition 5 holds, we first consider the special
case when which corresponds to , and

for . In this case the piecewise linear grid
interpolation function in (5) simplifies to

(34)

Next let be the 1-D raised-cosine RBF in (12) and define

(35)
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(b)

(c)

Fig. 6. (Continued.) Solutions of Lorenz attractor witha = [�20; �20; 0] , b = [20; 20; 40] , d = [40; 40; 40] , E = 0:025, andE = 0:005. (b)
Projection ontoz vs.z plane. (c) Projection ontoz versusz plane.
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When , the terms in Proposition 5 correspond to RBFs
centered at the vertices of the -dimensional hypercube

(36)

In particular, the sum of terms can be expressed as a
product of sums as follows:

(37)

Consider theth factor in the product. Using (34), the defini-
tion of in (12), and a trigonometric identity yields

(38)

From (37) and (38) it then follows that the constant interpolation
property holds when .

Next, consider the more general case where for
. In this case, the pair of terms in (35) is replaced by a sum

of pairs of terms

(39)

Using this generalization of , the sum of
terms can again be expressed as a product as in (37), but this time
with replaced by .

(40)

Next, let denote the th term of the sum in (39). That is,

(41)

Using the compact support property of , we have

(42)

That is, over the subinterval , the only term in (39)
that contributes to is the term . Consequently, it is
sufficient to examine the value of over the subinterval

. Using (6) and the definition of from (12),
yields

(43)

Using (39)–(43), we then have

(44)

Proposition 5 then follows from (40) and (44).
It is worth pointing out that the raised-cosine RBF in (12) can

be recast, using a trigonometric identity, as one member of the
following family of RBFs.

(45)

The raised-cosine RBF in (12) corresponds to the case .
This case is optimal in the sense that it is the only value offor
which the constant interpolation property holds. An illustration
of the constant interpolation property, corresponding to ,
is shown in Fig. 3.
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