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Approximation of Nonlinear Systems with Radial
Basis Function Neural Networks
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Abstract—A technique for approximating a continuous function ~ The coefficient functions are either zeroth or first-degree poly-
of n variables with a radial basis function (RBF) neural networkis nomials of the input vector. In either case the weights of the
presented. The method uses an-dimensional raised-cosine type of - hetwork can be easily initialized. For the case of constant coef-

that RBF is smooth, yet has compact support. The RBF network co- . . .
efficients are low-order polynomial functions of the input. A simple ficients, the weights can be chosen such that the network output

computational procedure is presented which significantly reduces IS €xact at each of the grid points. For first-degree polynomial
the network training and evaluation time. Storage space is also re- coefficients the weights can be chosen such that both the net-
duced by allowing for a nonuniform grid of points about which the  work output and its derivative are exact at the grid points.

RBFs are centered. The network output is shown to be continuous The proposed network has a fixed structure, rather than one

and have a continuous first derivative. When the network is used . . -
to approximate a nonlinear dynamic system, the resulting system that can grow or shrink as the network is trained [7], [25]-{26].

is bounded-input bounded-output stable. For the special case of However, if the function to be approximated is known to vary
a linear system, the RBF network representation is exact on the rapidly in some regions, but be relatively flat in others, then the
domain over which it is defined, and it is optimal in terms of the  total number of grid points can be reduced by allowing for a
number of distinct storage parameters required. Several examples 1y niform distribution of the grid points with a higher density
are presented which illustrate the effectiveness of this technique. grid used in regions of rapid variation. The localized nature of
_ Index Terms—Function approximation, neural network, non-  the representation can also be exploited to substantially reduce
linear system, radial basis function (RBF). the time required to evaluate and train the network.
A network based on a raised-cosine RBF has a number of
I. INTRODUCTION useful qualitative properties in terms of interpolation. Included

ANY of the applications of neural networks, particularlyampng. these are Fhe s that. the netwo.rk output and |ts_ first
erivative are continuous functions of the input. When a raised-

in the areas of nonlinear system identification and COIg_osine RBF network is used to approximate a nonlinear dynamic
trol, reduce to the problem of approximating unknown functions pp y

of one or more variables from discrete measurements [1]—[7].S stem, the resulting system is bounded-input bounded-output

number of authors have established that multilayer feedforw. GJBO) stable. For the special case of a I|_near system, th? RBF
. . S - network reduces to an exact representation on the domain over
neural networks, with a variety of activation functions, serve

as . . R . .
universal approximators [8]-[18]. For example, Horatkalin wsh|ch it is defined. The resulting linear system is also optimal

[8] use the Stone—Weierstrass theorem to prove thatatwo—la'}/nerﬁ?eet;inse that requires the minimum number of storage pa-
feedforward network can approximate a continuous real funé o . L .
The remainder of this article is organized as follows. A ze-

tion on a compact subset (ﬂ arb|trar|l_y closely n theLo roth-order network based on a raised-cosine RBF is introduced
norm. More generally, continuous nonlinear functionals can be : . ) .
Section Il. The network is generalized to a first-order RBF

approximated with feedforward neural networks, and these CIgtra]twork in Section Ill. Section IV discusses implementation is-
be used to directly approximate the outputs of dynamical s A ' P

fems 5], Ths il ocuses on e problem of apros = "L e e o reess et e
mating a continuous function ef variables over a compact re- y exp 9 P pport property

gion using a radial basis function (RBF) neural network. RB SBF' The application of the RBF network to the approxima-

; . . . tion of continuous-time nonlinear dynamic systems is discussed
implement localized representations of functions, and are eas|d y Y

to initialize and train than multilayer perceptrons [19]-[26]. n éecuon V- Examples of applications involving the modeling

A raised-cosine type of RBF is introduced that is smooth, y:éxpd simulation of linear and nonlinear dynamic systems are pre-

has compact support. Thedimensional RBF is represented agented in Section VI. Conclusions are presented in Section VII.

a product ofn. one-dimensional (1-D) functions. The network
structure consists of a sum of RBF terms with each term cen-
tered about a grid point and scaled by a coefficient functioA. Center Point Grid

Il. ZEROTH-ORDER RBF NETWORK

Let f: S — R denote the function to be approximated where
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It is assumed that values ¢f{x) are available at discrete In order to avoid the need to use separate summations in

points within.S. The RBF network includes terms with the
kth term consisting of RB#:(z) centered about point* and
scaled by weightvy. If w and¢(z) denoter x 1 column vec-

the formulation of the network outpufo(z), it is helpful
to reorder ther grid points into a 1-D array of points
C = {z', 2%, ..., 2"} by introducing ascalar indext which

tors, then the network output can be expressed in compact fazem computed from the x 1 vector indexg as follows:

as

Jolx) = w ¢(x). @)

Suppose there ar¢ > 2 grid points along dimensio#, for
1 < ¢ < n, ordered as follows:
1< < n.

3

Herez;; = a; andx;y, = b;. Since there aré; grid points per
dimension, the total number of grid points is

Ti1 < T2 < .o < Tid;

7’Id1d2...dn. (4)
The total number of grid points can also be expressed as
d" whered = (dy ds ...

numbers of grid points per dimension.

If the function f is known to vary rapidly in some regions,
and be relatively flat in others, then the number of grid point
7, can be reduced by allowing for a nonuniform distribution of
points. Specifically, a higher density grid can be used in tho§
regions ofS where the variation of (x) is large, while a lower

density grid can be used in regions whé(e) is relatively flat.

To provide for an efficient implementation, which reduces t
time required to evaluatg(z), itis useful to develop a function
which maps the nonuniform grid in (3) into a grid with uniforrP
unit spacing. Consider, in particular, the following piecewise-

linear interpolating polynomial for the points in (3).

( 2 — Zi1

1+ , z2 < Zi
LTi2 — Tl
ER <z<
N Tig = 2 < Ti,j+1
pi(z) = Tijp1 — T ®)
1<j<d;, 1<i<n
Z— L, d;—1
di + ——25=— 2>y,
\ Ti,d; — ¥4, d;—1

k=g +di(gz—1)+dida{qgz—1)+...

+d1 dg dn—l(‘]n - 1) (9)
There will be a RBF¢,(z) centered at each grid point with
#,(0) = 1 and|¢, (x)| decreasing as the radilis — «*| in-
creases. Using the scalar indexn (9), the output of the RBN

can then be expressed as in (2) which corresponds to the single
summation

fol@) = wii(). (10)
k=1

d,)*/™ is the geometric mean of theg RBFs

RBFs are constructed such thét(x)| vanishes, or becomes
gxtremely small, for sufficiently large values of the radjus-
A e
|. It is this feature that makes the network an efficient local
%oresentation because for a giveronly a limited number of
terms in (10) will be active and contribute to the output.
To construct a general RBf. () itis useful to first examine

nibe special case of a 1-D RBH =) centered at = 0. Webb

and Shannon [25] discuss several candidate functions, the most
opular one being

1y(2) = exp(—22). (11)
The functiomy,( 2) is the normal oiGaussianRBF. The func-
tion #,(~) can be shown to be optimal, in a least squares sense,
for fitting data that has normally distributed noise on the input
[23]. The Gaussian function is also infinitely differentiable and
all of the derivatives are continuous. Suppgsézr) = 9, [(x —
z%) /o] is used as an RBF. #y, is sufficiently small, therfo(z)
will be a good approximation of(x) at the grid points when the
weights are set ta, = f(z*). However, midway between the

The functionp;: [a;, b;] — [1, d;]. Furthermore, by construc- grid points fo(x) = 0 and the approximation is poor. This can

tion, p; maps thejth grid valuez;; into the integer;

pi(zij) = 7, 1<j<d;, 1<i<n. (6)

It follows that the functionp: S — R™ maps the nonuniform

be remedied by using largey, but then the representation be-
comes less localized with more terms contributing to the output.
This is a consequence of the fact thig{z) > 0 for all finite =.

An alternative approach is to use the followiragsed cosine
as a 1-D RBF centered about zero

grid into a uniform grid with unit spacing between adjacent

points. As a special case, if the original grid in (3) is uniform,
but with a different constant spacing for each dimension, then

pi(2) in (5) simplifies to

% = xi1

1+ 1<:<n.

— @)
Ti2 — Tl

Next, letg € Q™ be avector indexwhich species theth grid
point, z(q), where() represents the positive integers ane<
g; < d; for 1 < ¢ < n. Thus theith element of the vectar(q)
is

8

xl(‘]) = Lig;»

1+ cos(wz)
Pe(z) = 2
0 || > 1

z| <
|2| < 1n,0 ' (12)

Note that.(0) = 1 and.(z) = 0 for |z| > 1. Unlike the
Gaussian RBF).(z) is zero outside the closed bounded region,
|z] < 1 which makes).(z) a function with compact support.
The raised-cosine function in (12) can be regarded as an analog
version of the Hanning window sequence used in digital filter
design. A graphical comparison ¢f,(z) andi.(z) is shown in

Fig. 1(a), and comparison of the derivativgg(z) ands(z),

is shown in Fig. 1(b).
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Raised Cosine and Gaussian RBFs
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Fig. 1. 1-D RBFs: (a) Gaussiaw{) and raised-cosine/{(.) functions. (b) First derivatives of Gaussia,() and raised-cosine/{,) functions.
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Two-Dimensional Raised Cosine RBF
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Fig. 2. A two—dimensional (2-D) raised-cosine RBff;t), centered at the origin with a uniform unit grid.

The 1-D case is generalized todimensions by expressing ¢ () is a product of compositions of continuous functions and
¢r(z) as a product of, 1-D RBFs. is therefore itself a continuous function whose value lies in the
interval [0, 1]. A plot of ¢(x) for the casen = 2, z* = 0,
A & . ok and a uniform unit grid is shown in Fig. 2. Since the raised-co-
Pr(x) = ch[pz(%) s 13)  sine RBF¢y () is continuous, the network outpyi§() in (2)
=t is continuous.
The basic RBF network in (2) has a number of useful qualitative The derivative of the 1-D raised-cosine RBF in (12) is shown
properties. Using (6), (12), and (13), the RBF z) satisfies the in Fig. 1(b) and can be expressed
following orthogonalproperty with respect to the grid points:

7 sin(nz)

1, k=j TARTE) <1
Toagkji<e @ wn=4 =z  FI= (16)
0, k#J 0, 2] > 1

The orthogonal property is a direct consequence of the fa&:

pr(a’) = {

us.(z) is continuous. First consider the case of a uniform
ftl in (7). In this case the derivative of the piecewise-linear
Erpolating polynomialp}(z) = 1/(x;2 — x;1), IS constant.
As a result, the following derivative is then continuous:

that the raised cosine in (12) has compact support. Since
Gaussian RBF does not have compact support, it does
satisfy (14). Using (14), it follows from (2) thaf (z*) = wy
for 1 < k < r. Consequently, ifv, = f(z*) for1 < k < r,
then the zeroth-order RBF network output in (2) is exact at the .

- gri i d ) 7 sin(w|p;(x;) — pi(x?

7 grid points = ulpi(wi) — pilah)] = (2[(];:7;(2 _)xﬂlg @)D (17)

fo(z®) = f(a®), 1<k<r (15)
Sincey.[pi(x;) — pi(x¥)] is a continuous function af;, it then
Another important qualitative property is the relative smootHellows from (13) that the gradier ¢, () is continuous which
ness of the network output. From (12) and Fig. 1(a), it is evineans tha¥ fy(x) is continuous.
dent that).(z) is a continuous function taking on values in the For the more general case of a nonuniform grid, the deriva-
interval [0, 1]. Since the piecewise-linear interpolating polynotive of the piecewise-linear interpolating polynomig(z) is not
mial p;(z) in (6) is also continuous, it follows from (13) thatdefined at the grid point coordinates where the slope abruptly



SCHILLING et al. APPROXIMATION OF NONLINEAR SYSTEMS 5

changes. However if, for example, the right-hand side deriva- 2) If w;, = f(z*) for 1 < k < r, then the network output is

tive, p/(x;"), is used, then from (5) exact on the center point grid, and the gradient is zero on
the grid
( —1 k k
P S folz*) = f(z*),  1<k<r
1 Vfo(xk) =0, 1<k<r.
SE— Tij < 2 < Ty j41
/ .o .. ? .
pi(z) = § FigH+1 ~ Tij (18) 3) If f(z) = «, then the RBF network is an exact represen-
1<j<d; 1<i<n tation of f(z) on S whend; = 2for1 < i < n and
1 S w;, = aforl <qi< 27,
% a, — i a1 # = Lid; 4) The number of weights needed to train the network is

2

Thus the only thing that changes in (17) is that the denomi- r=didz ... dn
nator is replaced b®(x; ;41 — x;;) wherej depends orx;

and changes when; crosses a grid boundary. However, recall 5) The number of nonzero terms fo(z) is, at most2”.
from (6) that the numerator of the right-hand side of (17) is zer The last two properties are concerned with the size and speed

at the grid points. Thus the expression in (17) is again contig— the network. Property 5) is a result of the fact that there are,

uous assuming the right-hand side derivative is used. It then f%}-?&snt(’:tti\gg \?vci)trrlzcec:%p}?chf ;iggzrﬁ)er dimension becaute)
lows from (13) that the gradier¥ ¢ (=) is continuous which '
means tha¥ fo(z) is continuous for a nonuniform grid when
the right-hand side derivative is used. A similar argument could
have been applied using the left-hand side derivative. The exact representation property, in Property 2), can be
Next, recall from (6) that when = 7, the argumeny; (+7)— extended by considering a simple generalization of the ze-
pi(z¥) in (17) is an integer which means that the derivative ifpth-order RBN to a first-order RBN. In particular, the constant
(17) evaluates to zero. Using (13) one can then conclude thawighting coefficients in (2) can be replaced by first-degree
the grid points polynomial functions of the input

filz) = (w+ Vx)Td)(x) (21)

Here the parameters to be identified during training now include
The simplest possible function to approximate is the 1-D coa+ x 1 constantveight vectory and ar x n linearweight matrix
stant function,f(x) = «, which can be thought of as a polyno-V. In this case, the number of weights has increased by a factor
mial of degree zero. Consider the case= 1 with d; = 2 of n + 1.
grid points atz' = a andz? = b. Then from (6) we have  To verify that the first-order RBN satisfies the basic inter-
p1(zt) = 10 andp,(x?) = 2. Finally, using (12) and (13) it polation property on the center point grid, note from (14) and
can be shown that the followirmpnstant interpolatioproperty  (21) that f; (z*) = wy, +v*z* for 1 < k < r wherev* de-

lll. FIRST-ORDER RBF NETWORK

Vep(z') =0, 1<k j<r (19)

holds in this case notes thekth row of V. Therefore the first-order RBF network
in (21) satisfies the following basic interpolation property when
pr(@) +d2(x) =1, a<a<h (20) wi = f(a") —vFatforl <k <.

ky _ k . -
Consequently, whew = [, «]? the network outpuffy(z) = hi(@) = f@5), lskzr (22)
«is exact. Thatis, the raised-cosine RBF network can represenginceq(z) is continuous, it follows thaf; (x) is continuous.

a constant function exactly using two terms. Although this is Nffext observe that the derivative ¢f() with respect taz; is
a profound result, it is a useful one (see, e.g., [24]). Moreover, it
I¢i(z)

is worth noting that when the Gaussian RBF in (11) isused, an ~ 9fi(z) z’: Vi () + (o + ')
k=1

exact representation of a constant is not possible unless a lim- Ox; Ox;

iting special case (the inclusion of a bias tegpo(z) = wp) 1<i<n. (23)
is used. However, the presence of a bias term destroys the local - -

nature of the representation because, in general, the valug ofSince ¢, () and V¢, () are both continuous, it follows that
will affect the values of all of the other weights. The constant g £, () /dx; is continuous forl < i < n. ThereforeV fi(z) is
terpolation property in (20) can be extended to the general casentinuous.

n > 1, and it also holds whed; > 2 (see the Appendix). We  Next recall from (19) tha¥ ¢, (=) = 0 at the grid points. If
summarize the properties of the zeroth-order RBF network # expression in (23) is evaluated at grid paint z/, then

follows. using (14), the partial derivative reduces to

Proposition 1 (Zeroth-Order RBF Network)Vhen the h
raised-cosine RBF is used, the zeroth-order RBF network in 9f1(a7) =V, 1<j<rl1<i<n. (24)
(2) has the following properties. O - T T T

1) The network outputfy(z), and its gradientV fo(x) are  Thus thejth row of the linear weight matri¥” is the gradient
continuous. of f1(z) evaluated at = z7. Consequently, the gradient of the
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network output at the grid points can be specified though timetwork output is not continuous at the grid points. Further-

choice ofV. more, for a second-order RBF network, the number of weights,
Following the constant function, the next simplest functiofil + » + n2)r can become excessive, particularly for larger

to approximate is the:-dimensional affine functionf(z) = values ofn.

a + A%z, which is just a polynomial of degree one. Using

the constant interpolation property in (20), one can show that a IV. | MPLEMENTATION

linear polynomial can be represented exactly by the first-order

RBF network usingly, = 2 grid points per dimension. We sum-g .o o1 RBF network in (21) with the x n weight matrix
matrize the properties of the first-order RBF network as follow .
set toV = 0. Consequently, we focus our attention on the

Proposition 2 (First-Order RBF Network)When the raised- irst-order RBF network. The number of terms in (21) grows

. . : . f
cosine RBFis us_ed,. the first-order RBF network in (21) has trrlgpidly with the number of grid points per dimensidp,and the
following properties:

) ) number of dimensions,. Fortunately, most of the terms are zero
1) The network outputf, (x), and its gradienty f(«), are  5nq therefore do not have to be evaluated. This can speed up the
contlnuous.k - N N calculation off, () significantly, particularly for larger values
2) Ifwy, = f(z¥) —v"z" wherev® = Vf(«") for L <k < of, Foragiven:, the number of nonzero RBFs in each dimen-
r, then the network output and its gradient are exact Qfp, is either one or two. Consequently, the number of nonzero
the center point grid terms in (21) is, at mosg”. The subscripts of the nonzero terms
x x can be efficiently identified by first finding the grid point hyper-
fi(@®) = f@@h), l<k=<r cube inR™ that contains the point. The terms associated with
Vi(e*)=ViEY),  1<k<r the 2" vertices of this hypercube are then examined and their
associated RBFs are evaluated. The procedure is summarized in
3) If f(z) = a+ "z, then the RBF network is an exacthe following algorithm which takes, V andz as inputs and
representation of (z) on S whend; = 2for1 <i <n, produceg; = f,(x) as an output.
w, =aforl <4 <20V, =p4;forl <4< 2"and
1<j<n
4) The number of weights needed to train the network is

The zeroth-order RBF network in (2) is a special case of the

Alg. 1 (Network Evaluation)
1. Set y=0.
2. For i=11t = do

{

5) The number of nonzero terms jia(x) is, at most2". a.  u =int [pi(z;)]
Comparison of Proposition 2 with Proposition 1 reveals that b. I w <1, set w =1.
the size of the first-order RBF networksst 1 times larger than It wi>di—1, set w=d -1
the size of the zeroth-order RBF network. This increase in t e}
number of weights allows one to specify both the value of t
output and the value of its gradient on the center point grid. This, ) . )
in turn, means that an exact representation of a more general a. Convert  j from decimal to n-bit
class of functions is possible as in Property 3). The increase in binary ¢ = ¢n—16n-2 ... co.
the number of weights fromto (n + 1)r will increase the time b For i=110 n compute g =u;+ci.
needed to train the network. However, if the network evaluation Convert ¢ to & using £9)
speed is measured in the number of RBF evaluations, then th? d. Compute y=y+ (wi+ v w)pi(z)
first-order network is just as fast as the zeroth-order network-
because there are still, at md&t,nonzero terms for eache S.
Evaluation of each term is somewhat more expensive becausg&he implementation in Alg. 1 evaluat@8 terms and returns
the number of floating point multiplications increases from ong = f1(x). The increase in speed in using Alg. 1 in comparison
tol+n. with a direct computation of (21) can be substantial. Recall that
Information regarding the gradient of the function to be ag# is the geometric mean of the number of grid points in each
proximated at the grid points may or may not be available. dimension. Whereas direct evaluation of (21) requires d"
it is not, then a good initial guess for the linear weight matrifunction evaluations, Alg. 1 requireX® function evaluations.
can be obtained by approximating the gradient afimerically. Thus ford = 10 andn = 3, Alg. 1 is more than two orders of
For example, the rows d&f can be initialized by approximating magnitude faster than direct evaluation. For larger values of
the gradient numerically using central differences at the interiand a finer grid, the savings are even more dramatic.
grid points and forward or backward differences, as appropriate Since a RBF network has only one hidden layer and a linear
along the grid boundary [29]. output layer, the update formulas for the weights are relatively
The first-order network in (21) can be generalized still fursimple. LetS andZ” denote the set of inputs used to train and
ther by replacing the linear polynomial by a quadratic polyndest the network, respectively
mial in z. In this case an exact representation of a quadratic .
f(z) = a + %z + zTTz can be obtained using two grid S={s"€ R"|[1<k<ns} (25)
points per dimension. However, the second derivative of the T ={t’“ € R*"1 <k <n}. (26)

s=(n+Ddidy ... d,.

For j=0to 2—1 do
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Next, let E(x) = f(x) — fi(x) denote theerror between the 4: R™ x R — R s continuous in both arguments. Under these

actual output and the network output evaluated. &t we mini-

conditions, if the input(t) is piecewise-continuous, then for

mize E?(x)/2 by adjusting the weights after each training inpugach initial conditionz(0) = 2, a unique solutior(t) exists
using a gradient search with a step size.af 0, this leads to for 0 < ¢ < oo [30].

the following least-squares algorithm for updatingnd thel'.

Alg. 2 (Network Training)

1.

2.

3.

Pick Fuo.x >0 and puax > 1. Initialize Vv
and w using Property 2). Set p=0.
Do
{
a Set F=0and p=p+1
b. For h=11t n, do
{
i. Compute FE = f(s")— fi(s") using
Alg. 1.
ii. Compute  w; =int [p;(s})] for
1 <i<n using (5).
iii. For j=0t 2" -1 do
{
a) Convert j from decimal to
n-bit binary C=Cp_1Cpn_2 ... Co.
b) Compute ¢ =uc;_1 for 1<i<n.
c) Convert ¢ to £k using (9)
d) Compute
{
Wy =Wk + uEd)k(sh)
Uk :Uk +NE¢k(3}L)(3}L _xk)T
¥
}
c. For k=1 1to n, use Alg. 1 to
compute
E = max{E, [f(t*) - fi(t")]}
+
While (F > Epax) and (p < pmax)-

Note that the training and test outpufgs*) and f(¢¥), can

A. Stability

Suppose that the right-hand side functigpsand’ in (27)
and (28) are each approximated with a first-order raised-cosine
RBF network of formfi(x) wherez = [27, «]¥ andn =
m + 1. Thus there are networks, each having inputs. Let
S1 C R™ be an extension of the network dométirin (1) that
includes a boundary arourftilwhose width, in dimensiod, is
equal to the grid width. That is

C; I(bz — CLZ)/(dZ — 1), 1 S 7 S n (29)
S1 z{xGR"|ai—ci <z <bj+¢,1 SLSTL} (30)

Thus S is a closed bounded region &". Furthermore, be-
cause the raised-cosine RBF has finite support in the form of a
2 x 2 grid, the network outpuf; (x) has finite support. In par-
ticular

fl(x) = 07

A simple four-point illustration of the regiof; is shown in
Fig. 3wheren = 2,d = [2, 2%, a = [-1, —1]*, b= [1, 1]*,
w=[1, 1,1, 1]¥, andV = 0. In this instance it is evident that
fi(z) = O outside the regio®; = [—3, 3] x [-3, 3]. Note that
Fig. 3 also illustrates the constant interpolation property in (20)
for the caser = 2.

A common way to characterize the stability of a nonlinear
nonautonomous system is to say that the system is BIBO stable
if and only if every bounded input(¢) generates a bounded
outputy(¢). Having a system that is BIBO stable is useful for
simulation purposes because this avoids possible numerical
overflow conditions during simulation runs.

Supposes(t) = x,(t) lies in the intervak,, < u(t) < b,.
Thusu(t) is bounded with bound,,,,; = max{|a,|, |b.|}. TO
show thaty(¢) is bounded, supposg.(z, v) for 1 < &k < m
andh(z, u) are each approximated with a RBF network of the

z¢ S (31)

all be precomputed ahead of time. In addition, from step 2biferm f1(z) wherez = [z, »]". Then from (31).dz/dt =
only 2" terms are used to adjust the weights during training. THisfor z ¢ S1. We examine two cases. #(0) € Si, it then
substantially reduces the training time. Use of the initial guesd@dows thatz(¢) € S; for ¢ > 0. Alternatively, if z(0) ¢
for V andw based on Property 2) further reduces the training:, thenz(t) = 2(0) for ¢ > 0. Thus in either cases(t) is
time. Indeed, for a sufficiently fine grid, the initial values fgr ounded. Since the output equation functigfx, ), in (28) is
anduw in Property 2) should be quite close to the optimal valuedlso approximated by a continuous RBF network, it then follows

V. NONLINEAR SYSTEMS

The raised-cosine RBF network can be used to approxim
any continuous function of. variables [27], [28]. In this ar-

that the RBF outpug(¢) must be bounded.
Proposition 3 (Stability): Suppose the nonlinear system in
27) and (28) is approximated by using raised-cosine RBF net-
Brks for the right-hand side functions. Then the resulting non-
linear system is BIBO stable.

ticle we focus on approximating the right-hand side of a con-
tinuous-timem-dimensional nonlinear dynamic system of thg Linear Systems
following general form:

Here it is assumed that the functignR™ x R — R™ is Lip-
schitz continuous i and continuous in: and the function

PO gleta), ()] @)
y(8) =hle(), (o), (29)

A very important special case of a nonlinear dynamic system
is a linearm-dimensional system of the following form:

d;—(tt) =Fz(t) + gu(t)

y(t) = h' 2(t) + cu(t).

(32)
(33)
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Raised Cosine RBF Network with d =[2,2] T, w=[1,1,1,1]
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Fig. 3. Output of a four-point 2-D raised-cosine RBF network wite= [-11]7,b = [1, 1], w = [1,1,1,1]7,V = 0,5 = [-1, 1] x [-1, 1] and
S1 = [-3, 3] x [-3, 3]

HereFism x m,gism x 1, AT is1 x m andcis 1 x 1. within the domainS over which the network is defined. The
Thus a total ofp = m? + 2m + 1 parameters are needed talomainS can be made arbitrarily large without increasing the
completely specify the linear system. It is of interest to examimaimber of grid points = 2™. Since a total op parameters are
how effective the RBF network is in approximating this simplirequired to specify the linear system coefficiefifs g, h, ¢},
fied system. Using Property 3), it can be shown that the RBRe number of distinct parameter values that must be stored for
network representation is exact on the dom@gin the RBF network is the minimum possible. That is, the network
Proposition 4 (Linear Systems)Suppose the linear systemis optimal in that sense.
in (32) and (33) is approximated by using first-order raised-co-
sine RBF networks for the right-hand side functions. VI. EXAMPLES
1) Letd; = 2for1 < i < nandw = 0. For theith network,

let the ith row of V be as follows forl < 7 < 27 The following examples illustrate the effectiveness of the
J S)>4

raised-cosine RBF network when it is used to approximate the

. [Fi1, Fioy o) Fimy gi], 1<i<m right-hand side of first-ordgr systems of diﬁgrential equat'ions.
= W B L o Example 1—Unstable Linear Systerfio verify the behavior
[h1 B2, - oy B, ], p=m+1. summarized in Propositions 3 and 4, consider the following

Finally, lety, (¢) be the RBF network output for the Outputthree—dimensional (3-D) linear system:

equation in (33). Supposg, < u(t) < b, andz(0) =

[2(0)7, w(0)]T € S. If z(t) € S fort > 0, theny, (t) = dz o010 0
y(t) for ¢ > 0. p7ie —20 —4 0|2+ |0|un
2) The number of distinct scalar parameters that must be 0 00 1
stored for the RBF network representation of thedi- y=[1 -3 02]z+[2u.
mensional linear system in (32) and (33) is
This system has eigenvalues ai » = -2 £ j4 and
p=m?+2m+ 1. A3 = 0. Thus there is a stable second-order mode and an
unstable first-order mode. In this case= [z1, 22, z3, u]*
Thus for a linear system, the RBF network approximation end n = 4. Suppose the domai$ is defined by lower

exact when the input(¢) and solution trajectorg(¢) remain limits ¢ = [-10, —10, —10, —10]7 and upper limits
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Linear System: d=2, u=10, T=3
30 T T T T T

10 B

z(t)
=}

20F 4

_30 I 1 L { |
0 0.5 1 1.5 2 25 3

t

Fig. 4. Solution of 3-D unstable linear system with= [2, 2, 2, 2], a = [-10, —10, —10, —10]" andb = [10, 10, 10, 10]7.

b = [10, 10, 10, 10]*. Thus from (30), the domais and RBF network is BIBO stable due to its compact supgrt it

compact support regiofi; are as follows: can still be used to accurately approximate the solution of an
4 unstable system for as long as the solution remains within the
S={r € B'[-10< ), <10, 1<k <4} domain$ over which the network is defined. Within this domain
Si={zr € R*-30<z, <30, 1<k<4}. the approximation is exact.

Example 2—Nonlinear System with Limit Cyclas an ex-
ample of a nonlinear system, consider the following 2-D au-
tonomous system called the van der Pol oscillator

In this case there are two grid points per dimensidn=
[2, 2, 2, 2], and the total number of terms#s= 16. There are
four RBF networks, each with four inputs. Assigningand V'

as in Proposition 4, the number of distinct values that need to be dz
stored isp = 16 which is the minimum possible. a2
Suppose the initial state i€0) = [2, 10, 0]¥ and the input dzs y
is u(t) = 10. A plot of the three state variablest) and the g = Tl = z)ze.

outputy(t) is shown in Fig. 4 fol0 < ¢ < 3. Also plotted is

the solutions(t) = [z1(t), z2(t), z3(t), 11 (¢)]* obtained by Wheny = 0this is a simple linear harmonic oscillator, whereas
representing the right-hand side functions with four first-ordevhen > 0 the steady-state solution is a limit cycle with the
RBF networks. Note that over the time interval< ¢ < 1, shape of the limit cycle becoming less circularamcreases.
x(t) € S and the network solutios(t) exactly matches the To approximate this system we use two RBF networks, each
actual solution(¢) = [21(¢), z2(¢), z3(t), »(t)]* as predicted with inputz = 2. Note that the first network is actually linear,
by Property 4. Whent > 1, statez;(t) crosses the boundaryso from Property 4(a), we hawe, = 0 andv® = [0, 1] for

of S, and the RBF network representation is no longer exatt< k < r. Suppose the lower limits of area = [-3, —5]%
This becomes evident by abotit= 1.4 where the solutions and the upper limits aré = [3, 5]¥. Let the number of grid
x3(t) andzz(t) and the outputs, (t) andy(t) begin to separate. points per dimension bé = [, §]*". Two initial conditions are
Since this linear system is not BIBO stable, the solufje(t)|| consideredz® = [0.5, 0]7 which is inside the limit cycle, and
continues to grow without bound and escapes the refioat 2 = [—1, 2]¥ which is outside.

t = 3. However, the RBF network solution satisfie&) € S; The solution is computed at= 1000 points uniformly dis-
for ¢ > 0. This is evident from Fig. 4 where the state variabl&ibuted over the time intervdld, 12]. Fig. 5(a) shows the actual
z3(t) begins to saturate as it approaches the bounda§; pf solution and the RBF network solution for the two initial condi-
the point beyond whickiz /d¢ = 0. Note that even though thetions andd = 10 grid points per dimension. Thus using= 100
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Van der Pol Oscillator, d=[1 0,10]T E0=0.155595, E,=0.072531, T=12
6 T T T T i
4 — g
2 _
><N
S Or 1
21 4
41 .
-6 1 1 1 1 1
- -2 -1 0 1 2 3
Z,X,
(@)
Van der Pol Oscillator, d=[20,20]T E0=0.0628758, E2=0.0309462, T=12
6 T T T i T
4+ _
2+ _
><C\l
SOr ]
2ok i
4+ 4
6 1 1 1 1 1
-3 -2 -1 0 1 2 3
zZ,.X,
(b)
Fig. 5. Solutions of van der Pol oscillator with= [—3, —5]7 andb = 3, 5]7: (a) the casel = [10, 10]” with E;, = 0.156, E> = 0.073. (b) the case

d = [20, 20]7 with E, = 0.063, E; = 0.031.
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Van der Pol Oscillator, d=[40,40]T E,=0.0116581, E2=0.00570382, T=12
6 T T T T T

6 1 ! 1 | 1
-3 -2 -1 0 1 2 3
Z,.X,
(©)
Fig. 5. (Continued.)Solutions of van der Pol oscillator with= [—3, —5]” andb = 3, 5]7": (c) the casel = [40, 40]” with E, = 0.012, E, = 0.006.

terms, the RBF solution is generally similar to the actual solthe same for all three cases because there are, at most, only four
tion, but clearly it exhibits some error. Lét denote thekth nonzero terms for each point

solution time forl < &k < p. If ||z||~ denotes the infinity norm  Example 3—Nonlinear System with Chaotic Motiohs a
and||z||2 denotes the Euclidean norm, then the normalized dimal example, one that is challenging to approximate, consider
rors over the solution trajectory can be computed as follows:the following 3-D autonomous nonlinear system

_ maxy_y {llz(ta) — 2(8)ll} dz

Ey =0o(z — 21)
maxy_ {[|2(t)ll oo } dt
dZQ
1]) dt I(l—i—)\—Zg)Zl—ZQ
=3 lla(te) = (8113 dzs
P43 7, T R1R2 — YZ3.
= dt
B, =

This system, known as the Lorenz attractor, can be used to
model turbulent convection in fluids. In particular, the solu-
tion exhibits chaotic motion when the parameters satisfy the
following inequalities [31]:

For the casel = [10, 10]7 shown in Fig. 5(a), the infinity

norm error iskly = 0.156 and the root mean square (RMS) error o>y+1
is F» = 0.073. When the density of the grid increases, the error (0+1)(0+v+1)
is reduced. For example, whén= 20, this leads to- = 400 A>

—~v—-1.
terms and the errors alB, = 0.063 and £, = 0.031. The =7

corresponding plot of the two superimposed solutions is shownTo verify that an RBF approximation can exhibit chaotic mo-
in Fig. 5(b). Finally, for the casé = 40, shown in Fig. 5(c), tion, consider the casgr, A, v) = (10, 24, 2). Suppose the

a total ofr = 1600 terms are used and the errors are reducéalver limits of the domains area = [—-20, —20, 0]* and the

to Ep = 0.012 and E> = 0.006. In this case the two solutionsupper limits areb = [20, 20, 40]*". Finally, suppose that for
are indistinguishable in terms of viewing the plot. Although theach of the three RBF networks there dre= [40, 40, 40]%
size of the network grows by more than an order a magnituged points. Although this is a substantial network with a total
in going from Fig. 5(a)—(c), recall that the execution speed & » = 64 000 terms, there are, at most, eight nonzero terms for
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Lorenz Attractor, d=[40,40,40]T, E0=0.0250923, E2=0.0053793, T=8
20 T T T T T

151 ]

10F -

@

Fig. 6. Solutions of Lorenz attractor with= [—20, —20, 0]7, b = [20, 20, 40]7, d = [40, 40, 40]7, E, = 0.025, andE, = 0.005. (a) Projection onto
z1 versusz, plane.

any givenz. The solution is computed at= 2000 points uni- work representation is exact on the domain over which it is de-
formly distributed over the time intervfh, 8] starting from an fined, and itis optimal in terms of the number of distinct storage
initial condition of 2(0) = [1, 0, 20]*. parameters required. Several examples are presented which il-
Plots of the projections of the two solutions &tF onto the lustrate the effectiveness of this technique. These include an un-
three orthogonal planes are shown in Fig. 6(a)—(c), respectivedtable linear system, a nonlinear system whose steady-state so-
In this case the errors defined in Example 2 &g = 0.025 lution is a limit cycle, and a nonlinear system whose solution
and E> = 0.005. It is evident from Fig. 6(a)—(c) that the RBFexhibits chaotic motion.
network provides an effective approximation even for this fairly
complex nonlinear system whose solution exhibits chaos. When APPENDIX
the length of the solution interval is decreased, the same or im-
proved accuracy can be obtained with fewer grid points. ~ A. Proposition 5 (Constant Interpolation)
Let S, r, and¢y(x) be as defined in (1), (4), and (13), respec-
VIl. CONCLUSION tively. Then

A simple but effective technique for approximating a contin- r
uous function of. variables with an RBF network has been pre- Z o(r) =1, res.
sented. The method uses afdimensional raised-cosine type k=1

of RBF that is smooth, yet has compact support. The coeffi- 1o show that Proposition 5 holds, we first consider the special
cients of the RBF network are low-order polynomial functiongase whem = 2" which corresponds td; = 2, z;; = a; and

of the input. A simple computational procedure is presented, — p, for 1 < i < n. In this case the piecewise linear grid
which significantly reduces the network training and evaluatiqfterpolation function in (5) simplifies to

time. Storage space is also reduced by allowing for a nonuni- T, — a; )
form grid of points about which the RBFs are centered. The net- pilzi) =1+ b —a;’ I=sisn. (34)
}/_vorléoqtpu_t is \i;‘ﬁwn ;0 be contkirjuousdand have a continuoNgxt lets). () be the 1-D raised-cosine RBF in (12) and define
irst derivative. When the network is used to approximate a non- N N N

linear dynamic system, the resulting system is BIBO stable. For (ws) =velpi(ws) = pi(an)] + Pelpilwi) = pilbi)]
the special case of a linear-dimensional system, the RBF net-

1<i<n. (35)
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Lorenz Attractor, d=[40,40,40]T, E0=0.0250923, E2=0.0053793, T=8
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Lorenz Attractor, d=[40,40,40]T, E0=0.0250923, E2=0.0053793, T=8
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Fig. 6. (Continued) Solutions of Lorenz attractor with = [—20, —20, 0]7, b = [20, 20, 40]7, d = [40, 40, 40]7, E, = 0.025, andE, = 0.005. (b)

Projection ontoz, vs. z3 plane. (c) Projection onte, versusz; plane.
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Whenr = 2", the terms in Proposition 5 correspond to RBFEz;;, z;. ;+1]. Using (6) and the definition of.(z) from (12),
centered at th@” vertices of the.-dimensional hypercube yields

hij(xi) =e[pi(wi) — pilwiy)] + Ye[pi(wi) — pilwi, j41)]
=ve[pi(zi) — Jl + Yelpi(@i) — (G + 1)]
_ 1+ cos[n(z; —a;)/(b; — a;) — jn]

S = [a1, bi] x [az, bo] x -+ X [an, by]. (36)

In particular, the sum of = 2" terms can be expressed as a

product ofn sums as follows: 2
n 1+ cos[n(z; —a;)/(b; —a;) — (j + L)n]
2™ n
2
D oulw) = [ [, (37) (1) cosfr(i — ai)/(bi — as)]
k=1 i=1 =1+ 5
Consider theth factor in the product. Using (34), the defini- + (=1)7* cos[m (@i — ai)/(bi — ai)]
tion of ¢.(z) in (12), and a trigonometric identity yields _1 vy <5 < x2m+1. (43)
wi(zi) =elpi(zi) — pila)] + elpi(wi) — pi(bi)] Using (39)—(43), we then have
=e[pi(z:) — 1] + he[pi(w:) — 2]
1 +cos[n(x; — a;)/(b; — a;)] vix;) =1, a; <z <b;, 1 <i<n. (44)
= 5 B
1+ cos[m(z; — a;)/ (b — a;) — 7] Proposmon 5 thel_w follows from (4Q) and (44_1). _ )
+ 2 Itis worth pointing out that the raised-cosine RBF in (12) can
cos[m(z; — a;)/(b; — a;)] be recast, using a trigonometric identity, as one member of the
=1+ 5 following family of RBFs.
COS[W(J}Z‘ - CLZ)/(bZ - CLZ)] iz
B 2 a Jeos' (), [2[<1)
=1 1<4i<n. (38) ilz) = ( 2 ) : (45)

’ 0, |z > 1

From (37) and (38) itthen follows that the constant interpolatiofhe rajsed-cosine RBF in (12) corresponds to the ¢ase2.

property holds whem = 2. This case is optimal in the sense that it is the only valuifof
Next, consider the more general case whére: 2 for 1 < \yhjch the constant interpolation property holds. An illustration

¢ < n. Inthis case, the pair of terms in (35) is replaced by a SU§f the constant interpolation property, corresponding te 2,
of d; — 1 pairs of terms is shown in Fig. 3.
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