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Abstract. We consider the evolution of small amplitude, long wavelength initial data by a
polyatomic Fermi–Pasta–Ulam lattice differential equation whose material properties vary periodi-
cally. Using the methods of homogenization theory, we prove rigorous estimates that show that the
solution breaks up into the linear superposition of two appropriately scaled and modulated counter-
propagating waves, each of which solves a Korteweg–de Vries equation, plus a small error. The
estimates are valid over very long time scales.
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1. Introduction. Newton’s law for an infinite chain of oscillators with nearest
neighbor (conservative) interactions is

(1.1) m(j)ü(j) = V ′
j(u(j + 1)− u(j)− l)− V ′

j−1(u(j)− u(j − 1)− l).

Here j ∈ Z and u(j) is the position of the jth mass. The constant l ≥ 0 is the
relaxation length of the nonlinear spring and can be taken, without loss of generality,
to be zero. The mass of the jth particle is

(1.2) m(j) > 0.

Vj is the potential function for the nonlinear spring which is between the jth and
j + 1st particles. We assume the intersite potential Vj is smooth and

(1.3) Vj(h) =
1

2
κ(j)h2 +

1

3
β(j)h3 +O(h3).

Note that

(1.4) κ(j) > 0

is Hooke’s constant for the springs. We take the masses m(j) and the potentials Vj

to vary periodically. That is, there is N ∈ N such that

(1.5) m(j +N) = m(j) and Vj(h) = Vj+N (h)

for all j ∈ Z and h ∈ R. In the case when the masses and potentials do not depend
on j this system is a classic Fermi–Pasta–Ulam (FPU) lattice (see [7]).
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There is a long history of computing and validating macroscopic effective par-
tial differential equations for solutions of the homogeneous FPU lattice. Depending
on the scaling regime under investigation, these effective equations include nonlinear
Schrödinger equations (see, e.g., [10], [20]), Boussinesq equations (e.g., [2]), or hyper-
bolic conservation laws (e.g., [11]). Our interest is in the propagation of long waves
which are also of small amplitude, the so-called long wave limit. In the homogeneous
case, it is well known that such solutions break up into the linear superposition of
counterpropagating solutions to a pair of Korteweg–de Vries (KdV) equations plus a
small remainder. See [24], [13] for the earliest formal derivations. Various aspects of
the formal arguments were first made precise in the articles [8], [9], [21]. Of these,
[21] is most closely related to the work here. It concerns general solutions of the
initial value problem for FPU in the long wave limit; see below for a more thorough
discussion of this article. The articles [8] and [9] use the KdV approximation as a
jumping off point for rigorous proofs of the existence and stability of small amplitude
solitary wave solutions to FPU.

While there is a wide array of formal asymptotics that demonstrate that long
waves behave in polyatomic FPU much as they do in the homogeneous case (see,
for instance, [5], [14], [15], [18], [19], [22]) and there is a large collection of results
concerning breather solutions in this setting (see [12] and the references therein), at
this time the rigorous validation of long wave limits is complete only in the case when
the system is linear (see [16]) or N = 2 (see [3]). In this article we prove a result which
is similar to those in [21] and [3]. Of particular interest here is that the long wave
analysis follows from the methods of homogenization theory; in short, since we are
interested in long waves, the material coefficients are essentially “rapidly varying” in
comparison. As such, the classic tools of homogenization are perfectly suited for the
analysis (see, for instance, [4]). A complicating feature is that we need to carry out the
homogenization asymptotics to relatively high order so that the “weakly nonlinear”
effects which give rise to KdV dynamics manifest.

2. Formulation and main result. We denote a sequence {x(j)} by x = {x(j)}.
Similarly, when we write V(x) we mean V(x)(j) = Vj(x(j)). Let S± be the shift
operators which act on sequences f = {f(j)} as

(S±f)(j) := f(j ± 1),

and likewise the operators δ+ and δ− are the left and right difference operators given
by

(δ+f)(j) := f(j + 1)− f(j) and (δ−f)(j) := f(j)− f(j − 1).

Defining

r := δ+u and p := u̇,

we convert our second order equation (1.1) to the system

ṙ = δ+p,

ṗ =
1

m
δ−(V ′(r)).

(2.1)

Here is our main result.
Theorem 2.1 (long wave solutions of (2.1) are approximated by KdV equations).

Fix m and V subject to the positivity and periodicity conditions in (1.2), (1.4), and
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(1.5). Define the constants a, b, c, m̄, κ̆ from m and V according to the formulas
found immediately below in Definition 2.2. Suppose that a �= 0. Fix φ, ψ ∈ H5 and
T0 > 0. Let

(2.2) Φ(X) :=

∫ X

0

φ(y)dy and Ψ(X) :=

∫ X

0

ψ(y)dy

and suppose Φ,Ψ ∈ L∞. Then there exists ε0 = ε0(‖φ‖H5 , ‖ψ‖H5 , ‖Φ‖L∞, ‖Ψ‖L∞, T0,
m,V) > 0 and C� = C�(‖φ‖H5 , ‖ψ‖H5 , ‖Φ‖L∞, ‖Ψ‖L∞, T0,m,V) > 0 such that the
following is true for all 0 < ε < ε0.

Let r(j, t) := (r(j, t), p(j, t)) ∈ C1(R; �2 × �2) be the solution of (2.1) with initial
conditions

(2.3) r(j, 0) =
ε2

κ(j)
φ(εj) and p(j, 0) = ε2ψ(εj).

Suppose that A(w, T ) and B(l, T ) solve the KdV equations

(2.4)
1

c
AT + aAwww + bAAw = 0 and

1

c
BT − aBlll − bBBl = 0

with

(2.5) A(w, 0) =
1

2

(
φ(w) −

√
mκ̆ψ(w)

)
and B(l, 0) =

1

2

(
φ(l) +

√
mκ̆ψ(l)

)
.

Then

(2.6) sup
|t|≤T0ε−3

‖r(t)− ε2Aε(t)‖�2×�2 ≤ C�ε
5/2,

where

(2.7) Aε(j, t) :=

(
1

κ(j)

[
A(ε(j − ct), ε3t) +B(ε(j + ct), ε3t)

]
,

1√
mκ̆

[
−A(ε(j − ct), ε3t) +B(ε(j + ct, ε3t))

])
.

Definition 2.2 (homogenized coefficients). The constants above are determined
from m(j), κ(j), and β(j) as follows. Set

m :=
1

N

N∑
j=1

m(j), κ̆ :=
N∑N

j=1 κ
−1(j)

, b :=
κ̆

N

N∑
j=1

β(j)

κ3(j)
, and c :=

√
κ̆

m
.

Let

χ1(1) := − 1

N

N∑
k=2

k−1∑
j=1

(
κ̆

κ(j)
− 1

)
and χ2(1) := − 1

N

N∑
k=2

k−1∑
j=1

(
m(j + 1)

m
− 1

)
and, for k = 2, . . . , N ,

χ1(k) := χ1(1) +

k−1∑
j=1

(
κ̆

κ(j)
− 1

)
and χ2(k) := χ2(1) +

k−1∑
j=1

(
m(j + 1)

m
− 1

)
.
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For N -periodic sequences f(j) and g(j) let

〈f, g〉 := 1

N

N∑
j=1

f(j)g(j).

With this, set

γ0 :=

〈
κ̆

κ
, χ2

〉
, γ1 := 〈χ1, χ2〉 , γ2 :=

〈
χ2
1,
m

m

〉
, γ3 :=

〈
χ2
2,
κ̆

κ

〉
,

and

a :=
1

24

[
1− 12γ0 − 12γ20 − 24γ1 + 12γ2 + 12γ3

]
.

Remark 1. Notice that since m(j) > 0 and κ(j) > 0, it is clear that c > 0.
It is not clear whether the same can be said for a. Nevertheless, we have numeri-
cally computed values of a for a large number of randomly selected positive choices of
m(j) and κ(j) and have always found that a > 0. If a = 0, then notice that the ap-
proximation would be by solutions of Burgers’ equations as opposed to KdV equations
and, as such, would require different techniques for validation. Since we do not expect
this situation to be possible, we exclude it, hence the assumption in Theorem 2.1 that
a �= 0. Finally it is entirely possible for b to vanish, provided β(j) oscillates about
zero just so. This is not an obstruction for our method, as the modulation equations
are then Airy’s equations, which are similar enough to KdV equations that there is no
additional difficulty in including this case.

As stated above, Theorem 2.1 is in many ways an extension of the main results of
[21] (which applies only to chains with constant material coefficients) and that of [3]
(which handles the N = 2 case), to the case of arbitrary N .1 There are other major
differences here, however. The first, and most obvious, is that our error estimate is
a full power of ε less accurate than in those works. We stress here that this is not a
limitation of our method, but is in fact a natural byproduct of the homogenization
process. In particular, we could improve our error estimate to ε7/2, but this would
require substantive restrictions on the form of the initial data—a technical point we
discuss below in Remark 5. Such restrictions are employed in [3] to get their improved
error estimate. Our point of view is that the 1/κ(j) term that appears in the initial
data for r is restrictive enough.

There are other notable distinctions between our result and those in [21] and
[3]. In [21] the initial data is required to lie in Hs ∩ H7(3), where s > 14. (Here,
Hs(m) :=

{
f(X) :

√
1 +X2mf(X) ∈ Hs

}
.) Such burdensome regularity and decay

conditions on initial conditions is typical in rigorous approximation results (see [23]
for a particularly egregious example). In our theorem, we require only H5 regularity
for the initial conditions. Moreover, we have replaced the algebraic decay condition
with the much weaker condition that the antiderivatives Φ and Ψ are in L∞. Much
of the reduction in the needed regularity is attributable to nothing more than careful
bookkeeping when we estimate the “residuals” (see (3.1) below for a precise definition).
Such bookkeeping would allow us to reduce the regularity to H7, which is the same as
the regularity required in [3]. The final two derivatives we eliminate using the fact that

1The results of [16] primarily concern various weak limits for linear problems in high dimensions
and, as such, are not as comparable to the work done here.
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the least regular terms in the residuals appear with extra powers of ε on them. Taking
ε-dependent truncations of the Fourier transforms of the initial data, we are able to
exchange these additional powers of ε for smoothness (see subsection 5.2). As for the
algebraic decay condition, we eliminate this condition by a technical rearrangement
of terms in the approximation (see subsection 3.5, specifically Remark 3).

The paper is organized as follows. In section 3 we derive the KdV equation
semirigorously. In section 4 we provide precise estimates that demonstrate that the
approximation very nearly solves (2.1); that is, it contains estimates on the residuals.
In section 5 we prove Theorem 2.1. In section 6 we carry out numerical simulations
demonstrating various aspects of our results.

3. Homogenization via multiscale asymptotics.

3.1. Preliminaries. For any functions r̃(j, t) and p̃(j, t) define the residuals as

(3.1) Res1(r̃, p̃) := δ+p̃− ∂tr̃ and Res2(r̃, p̃) :=
1

m
δ− (V(r̃))− ∂tp̃.

If (r, p) is a solution of (2.1), then Res1(r, p) and Res2(r, p) are identically zero. The
goal of our asymptotic expansion is to find (r̃, p̃) so that the residuals are sufficiently
small and (r̃, p̃) is (in some sense) easier to compute than a true solution.

In our case, we follow the prescriptions of homogenization theory and look for
(approximate) solutions of the form
(3.2)

r̃(j, t) = r̃ε(j, t) := ε2R(j, εj, εt, ε3t) and p̃(j, t) = p̃ε(j, t) := ε2P (j, εj, εt, ε3t),

where R and P are maps

Z×R×R×R → R.

A critical part of our assumption is that

(3.3) R(j +N,X, τ, T ) = R(j,X, τ, T ) and P (j +N,X, τ, T ) = P (j,X, τ, T )

for all (j,X, τ, T ). That is, the functions are periodic in their first slot with the same
period as m and V .

We must understand how δ± act on functions of this type. It is a straightforward
exercise to use Taylor’s theorem to show that if u(j) = U(j, εj), then

δ±u(j) =
∑
n≥0

εnδ±n U,

where

(3.4) δ±0 := δ̌± and δ±n :=
(±1)n+1

n!
Š±∂nX .

Here δ̌± and Š± act only on the first slot. That is, they are analogous to partial
derivatives with respect to j. Precisely,

(Š+U)(j,X) := U(j + 1, X),

(Š−U)(j,X) := U(j − 1, X),

(δ̌+U)(j,X) := U(j + 1, X)− U(j,X), and

(δ̌−U)(j,X) := U(j,X)− U(j − 1, X).
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Let

(E±
Mu)(j) := (δ±u)(j)−

M∑
j=0

εn(δ±n U)(j, εj)

be the error made by truncating the series expansion of δ±u after M terms. On the
formal level, we have

(3.5) E±
M = O(εM+1).

(A rigorous estimate on E±
M is found in Lemma 4.3 below.)

Before carrying out the expansion, we make one further refinement to our Ansatz
(3.2):

(3.6) r̃ε(j, t) :=

3∑
n=0

εn+2Rn(j, εj, εt, ε
3t) and p̃ε(j, t) :=

3∑
n=0

εn+2Pn(j, εj, εt, ε
3t).

That is to say, R and P themselves have an expansion in ε. The functions Rn and
Pn have the same dependencies and periodic behavior as R and P do in (3.3). Our
decision to take this expansion only to O(ε5) is perhaps not obvious; as the reader
shall see, it is at this level that the KdV dynamics appear.

If we insert these into the definition of Res1 above, we have

Res1(r̃ε, p̃ε) =

3∑
n=0

εn+2δ+Pn −
3∑

n=0

εn+2∂tRn.

If we use the definition of E+
M , this can be rewritten as

(3.7) Res1(r̃ε, p̃ε) =

3∑
n=0

εn+2
3−n∑
k=0

εkδ+k Pn +

3∑
n=0

εn+2E+
3−nPn −

3∑
n=0

εn+2∂tRn.

In light of (3.5), we expect εn+2E+
3−nPn = O(ε6) for n = 0, . . . , 3, provided the Pn

are well behaved. This is, as we see below, the appropriate power of ε the residuals
should satisfy to prove our main theorem.

Next we observe that Rn = Rn(j, εj, εt, ε
3t) implies ∂tRn = ε∂τRn + ε3∂TRn.

This, together with some reorganization, gives

Res1(r̃ε, p̃ε) =

3∑
n=0

εn+2
n∑

k=0

δ+n−kPk −
3∑

n=1

εn+2∂τRn−1 − ε5∂TR0

− ε6∂τR3 −
3∑

n=1

εn+5∂TRn +
3∑

n=0

εn+2E+
3−nPn.

(3.8)

Note that the first row contains only terms which are (formally) O(ε5) and the second
row contains only terms which are higher than O(ε6).

We now carry out a similar calculation for Res2. This is slightly more complicated
because V is nonlinear. Towards this end, let

N1(r̃ε) :=
1

m
δ−

{
V ′(r̃ε)− κr̃ε − βr̃2ε

}
.



POLYATOMIC FPU AND KdV 959

Given the expansion in (1.3), Taylor’s theorem implies that this is formally cubic in
r̃ε. Thus, since r̃ε is O(ε2), N1(r̃ε) is formally O(ε6). Similarly, if we let

N2(r̃ε) :=
1

m
δ−

(
βr̃2 − ε4βR2

0 − 2ε5βR0R1

)
,

then (3.6) implies that this is O(ε6).
These definitions and steps, completely like those used to arrive at (3.8), yield

Res2(r̃ε, p̃ε) =
1

m

3∑
n=0

εn+2
n∑

k=0

δ−n−k (κRk)−
3∑

n=1

εn+2∂τPn−1 − ε5∂TP0

+ ε4
1

m
δ−0

(
βR2

0

)
+ ε5

2

m
δ−0 (βR0R1) + ε5

1

m
δ−1

(
βR2

0

)
− ε6∂τP3 −

3∑
n=1

εn+5∂TPn +

3∑
n=0

εn+2E−
3−n(κRn)

+ ε4
1

m
E−

1

(
βR2

0

)
+ ε5

2

m
E−

0 (βR0R1) +N1(r̃ε) +N2(r̃ε).

The first two lines have terms which are O(ε5) or lower. The last two consist of terms
which are formally of order higher than O(ε6).

As mentioned above, the goal of our asymptotics is to choose the R and P func-
tions so that the residuals are formally O(ε6). We can accomplish this, provided we
have

0 =

3∑
n=0

εn+2
n∑

k=0

δ+n−kPk −
3∑

n=1

εn+2∂τRn−1 − ε5∂TR0(3.9)

and

0 =

3∑
n=0

εn+2
n∑

k=0

δ−n−k (κRk)−
3∑

n=1

εn+2m∂τPn−1 − ε5m∂TP0

+ ε4δ−0
(
βR2

0

)
+ ε52δ−0 (βR0R1) + ε5δ−1

(
βR2

0

)
,

(3.10)

in which case we have

Res1(r̃ε, p̃ε) = −ε6∂τR3 −
3∑

n=1

εn+5∂TRn +

3∑
n=0

εn+2E+
3−nPn(3.11)

and

Res2(r̃ε, p̃ε) =− ε6∂τP3 −
3∑

n=1

εn+5∂TPn +

3∑
n=0

εn+2E−
3−n(κRn)

+ ε4
1

m
E−

1

(
βR2

0

)
+ ε5

2

m
E−

0 (βR0R1) +N1(r̃ε) +N2(r̃ε).

(3.12)

We can make (3.9) and (3.10) happen by setting the right-hand sides of these
equations to zero at O(ε2) to O(ε5). Doing this, and a little algebra, gives the following
equations. At O(ε2) we have

δ+0 P0 = 0 and δ−0 Q0 = 0.(3.13)



960 J. GAISON, S. MOSKOW, J. D. WRIGHT, AND Q. ZHANG

At O(ε3),

δ+0 P1 =
1

κ
∂τQ0 − δ+1 P0 and δ−0 Q1 = m∂τP0 − δ−1 Q0.(3.14)

At O(ε4),

δ+0 P2 =
1

κ
∂τQ1 − δ+1 P1 − δ+2 P0 and δ−0 Q2 = m∂τP1 − δ−1 Q1 − δ−2 Q0 − δ−0

(
β

κ2
Q2

0

)
.

(3.15)

And at O(ε5),

δ+0 P3 =
1

κ
∂TQ0 +

1

κ
∂τQ2 − δ+1 P2 − δ+2 P1 − δ+3 P0 and

δ−0 Q3 = m∂TP0 +m∂τP2 − δ−1 Q2 − δ−2 Q1 − δ−3 Q0 − δ−1

(
β

κ2
Q2

0

)
− 2δ−0

(
β

κ2
Q0Q1

)
.

(3.16)

In the above, to make our calculations less cluttered, we have put

(3.17) Qn(j,X, τ, T ) := κ(j)Rn(j,X, τ, T ).

Note that all of the equations in (3.13) through (3.16) are of the form “δ±0 F = G.”
The following lemma tells us about solving such equations.

Lemma 3.1. Suppose that g(j) is an N -periodic sequence. Then there exists an
N -periodic sequence f(j) which satisfies

δ±f = g

for all j if and only if

1

N

N∑
j=1

g(j) = 0.

Moreover, if f1(j,X) and f2(j,X) are two such solutions, then

f1(j)− f2(j) = constant

for all j ∈ Z. Lastly, if we impose the additional condition that

N∑
j=1

f(j) = 0,

then we have

max
j

|f(j)| ≤ Cmax
j

|g(j)|.

Here C > 0 depends only on N .
As the space of N -periodic sequences is really just RN in disguise, the proof

consists only of elementary linear algebra, so we omit it. Our equations (3.13) through
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(3.16) depend onX as well as j, and so we will actually be using the following corollary
(whose proof is omitted) of the lemma.

Corollary 3.2. Suppose that G : Z ×R → R has G(j + N,X) = G(j,X) for
all j ∈ Z and X ∈ R. Then there exists F : Z×R → R with F (j +N,X) = F (j,X)
for all j ∈ Z and X ∈ R which satisfies

δ±0 F = G

for all j and X if and only if

(3.18)
1

N

N∑
j=1

G(j,X) = 0 for all X ∈ R.

Moreover, if F1(j,X) and F2(j,X) are two such solutions, then there exists F̄ : R →
R such that

F1(j,X)− F2(j,X) = F̄ (X)

for all j ∈ Z. That is to say, F1 − F2 is constant with respect to j. Lastly, if we
impose the additional condition that

N∑
j=1

F (j,X) = 0 for all X ∈ R,

then we have

max
j

‖F (j, ·)‖Wk,p ≤ Cmax
j

‖G(j, ·)‖Wk,p .

Here C > 0 depends only on N .

3.2. Solving the O(ε2) equations, (3.13). These are

δ+0 P0 = 0 and δ−0 Q0 = 0.

These imply that P0 and Q0 do not depend on j. That is,

(3.19) P0 = P̄0(X, τ, T ) and Q0 = Q̄0(X, τ, T ).

Remark 2. In what follows, any function wearing a “ ¯” will not depend on j,
but only on (X, τ, T ).

3.3. Solving the O(ε3) equations, (3.14). These are

δ+0 P1 =
1

κ
∂τQ0 − δ+1 P0 and δ−0 Q1 = m∂τP0 − δ−1 Q0.

If we are to be able to solve these, Corollary 3.2 and (3.19) tell us we must have

1

N

N∑
j=1

(
1

κ
∂τ Q̄0 − δ+1 P̄0

)
= 0 and

1

N

N∑
j=1

(
m∂τ P̄0 − δ−1 Q̄0

)
= 0.(3.20)

Using the expression for δ±1 from (3.4) in (3.20) and then summing gives

∂τ Q̄0 = κ̆∂X P̄0 and ∂τ P̄0 =
1

m
∂XQ̄0.(3.21)
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In the above, we have set κ̆ := N
(∑N

j=1 κ
−1(j)

)−1
and m := 1

N

∑N
j=1m(j), as in

Definition 2.2.

Notice that (3.21) is basically the wave equation, since it implies ∂2τ Q̄0 = c2∂2XQ̄0,
where

c :=

√
κ̆

m
.

Of course, Q̄0 and P̄0 depend on (X, τ, T ), and (3.21) says nothing about the T
dependence. Nevertheless d’Alembert’s formula implies

Q̄0(X, τ, T ) =Ā(X − cτ, T ) + B̄(X + cτ, T ),

P̄0(X, τ, T ) =
1√
mκ̆

{
−Ā(X − cτ, T ) + B̄(X + cτ, T )

}
,

(3.22)

where Ā and B̄ are as yet unspecified; eventually we will show that they should satisfy
KdV equations. Note that the functions Ā and B̄ differ from one another in how they
depend on X and τ . Thus we will write Ā = Ā(w, T ) and B̄ = B̄(l, T ), where

l := X + cτ and w := X − cτ

are used to denote waves which move “left” and “right,” respectively.

Using (3.21) in (3.14), along with (3.4), gives

δ+0 P1 =

(
κ̆

κ
− 1

)
∂X P̄0 and δ−0 Q1 =

(m
m

− 1
)
∂XQ̄0.(3.23)

Define χ1(j) to be the unique solution of

(3.24) δ+0 χ1 =
κ̆

κ
− 1 and

N∑
j=1

χ1(j) = 0.

Define χ2(j) to be the unique solution of

(3.25) δ−0 χ2 =
m

m
− 1 and

N∑
j=1

χ2(j) = 0.

(Note that the expressions for χ1 and χ2 in Definition 2.2 give exact formulas for
these in terms of m and κ.)

Then (3.23) implies

Q1 = χ2∂XQ̄0 + Q̄1 and P1 = χ1∂X P̄0 + P̄1,(3.26)

where

Q̄1 = Q̄1(X, τ, T ) and P̄1 = P̄1(X, τ, T )

are as yet undetermined. They do not depend on j.
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3.4. Solving the O(ε4) equations, (3.15). These are

δ+0 P2 =
1

κ
∂τQ1 − δ+1 P1 − δ+2 P0 and δ−0 Q2 = m∂τP1 − δ−1 Q1 − δ−2 Q0 − δ−0

(
β

κ2
Q2

0

)
.

If we are to be able to solve (3.15), Corollary 3.2 tells us we must have

1

N

N∑
j=1

(
1

κ
∂τQ1 − δ+1 P1 − δ+2 P0

)
= 0 and

1

N

N∑
j=1

(
m∂τP1 − δ−1 Q1 − δ−2 Q0 − δ−0

(
β

κ2
Q2

0

))
= 0.

(3.27)

First of all, note that

(3.28)
N∑
j=1

δ±0 F = 0

for any periodic function F (j), and so
∑N

j=1 δ
−
0

(
β
κ2Q

2
0

)
= 0 in the second of these

equations. Using (3.19), (3.26), the formulas for the δn in (3.4), and the definitions of
χ1, χ2, m, and κ̆, a lengthy but routine computation shows that (3.27) is equivalent
to

∂τ Q̄1 = κ̆

(
∂X P̄1 +

(
1

2
− γ

)
∂2X P̄0

)
and

∂τ P̄1 =
1

m

(
∂XQ̄1 +

(
γ̃ − 1

2

)
∂2XQ̄0

)
,

(3.29)

where

γ :=
1

N

N∑
j=1

κ̆

κ(j)
χ2(j) and γ̃ :=

1

N

N∑
j=1

m(j)

m
χ2(j).

As it happens, γ̃ = −γ. Here is the calculation:

γ =
1

N

N∑
j=1

κ̆

κ
χ2(j) =

1

N

N∑
j=1

(
κ̆

κ
− 1

)
χ2(j) =

1

N

N∑
j=1

(
δ+0 χ1(j)

)
χ2(j)

= − 1

N

N∑
j=1

χ1(j)
(
δ−0 χ2(j)

)
= − 1

N

N∑
j=1

χ1(j)
(m
m

− 1
)
= − 1

N

N∑
j=1

m

m
χ1(j) = −γ̃.

(We used (3.24), (3.25), and summation by parts above.)
A computation using d’Alembert’s solution shows that the following is a solution

of (3.29), given (3.22):

Q̄1(X, τ, T ) = (1/2− γ)
(
Āw(X − cτ, T ) + B̄l(X + cτ, T )

)
,

P̄1(X, τ, T ) = 0.
(3.30)

While this is not the general solution to (3.29), it turns out that all we require is this
particular solution.
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Now we compute P2. Using (3.4), (3.19), (3.24), (3.25), (3.26), and (3.30) in the
first equation in (3.15) gives

δ+0 P2 =

(
κ̆

κ
(χ2 − γ)− Š+χ1

)
∂2X P̄0 +

1

2

(
δ+0 χ1

)
∂2X P̄0.

Define χ3(j) to be the unique solution of

(3.31) δ+0 χ3 =

(
κ̆

κ
(χ2 − γ)− Š+χ1

)
and

N∑
j=1

χ3(j) = 0.

Such a solution exists by our selection of γ. Then

(3.32) P2 =

(
χ3 +

1

2
χ1

)
∂2X P̄0 + P̄2,

where

P̄2 = P̄2(X, τ, T )

is as yet unspecified.
Now we compute Q2. Using (3.4), (3.19), (3.24), (3.25), and (3.26) in the second

equation in (3.15) gives

δ−0 Q2 =
(m
m

(χ1 + γ)− Š−χ2

)
∂2XQ̄0−

1

2

(
δ−0 χ2

)
∂2XQ̄0+

(
δ−0 χ2

)
∂XQ̄1−δ−0

(
β

κ2
Q̄2

0

)
.

Define χ4(j) to be the unique solution of

(3.33) δ−0 χ4 =
(m
m

(χ1 + γ)− Š−χ2

)
and

N∑
j=1

χ4(j) = 0.

Such a solution exists by our selection of γ. Then

(3.34) Q2 =

(
χ4 −

1

2
χ2

)
∂2XQ̄0 + χ2∂XQ̄1 −

β

κ2
Q̄2

0 + Q̄2,

where

Q̄2 = Q̄2(X, τ, T )

is as yet unspecified.

3.5. Solving the O(ε5) equations, (3.16). The equations are

δ+0 P3 =
1

κ
∂TQ0 +

1

κ
∂τQ2 − δ+1 P2 − δ+2 P1 − δ+3 P0,

δ−0 Q3 = m∂TP0 +m∂τP2 − δ−1 Q2 − δ−2 Q1 − δ−3 Q0 − δ−1

(
β

κ2
Q2

0

)
− 2δ−0

(
β

κ2
Q0Q1

)
.

To be able to solve the first equation of these for P3 requires

1

N

N∑
j=1

(
1

κ
∂TQ0 +

1

κ
∂τQ2 − δ+1 P2 − δ+2 P1 − δ+3 P0

)
= 0.
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Using (3.4), (3.19), (3.21), (3.26), (3.29), (3.30), (3.32), (3.34), and the definitions of
m, κ̆, and γ converts this to

(3.35)
1

κ̆
∂T Q̄0 +

⎛⎝−1

6
− γ2 +

1

N

N∑
j=1

κ̆

κ
χ4

⎞⎠ ∂3X P̄0

−

⎛⎝2κ̆

N

N∑
j=1

β

κ3

⎞⎠ Q̄0∂X P̄0 +
1

κ̆
∂τ Q̄2 − ∂X P̄2 = 0.

To be able to solve the second equation in (3.16) for Q3 requires

1

N

N∑
j=1

[
m∂TP0+m∂τP2−δ−1 Q2−δ−2 Q1−δ−3 Q0−δ−1

(
β

κ2
Q2

0

)
− 2δ−0

(
β

κ2
Q0Q1

)]
= 0.

Using (3.4), (3.19), (3.21), (3.26), (3.28), (3.29), (3.32), (3.34), and the definitions of
m, κ̆, and γ converts this to
(3.36)

m∂T P̄0 +

⎛⎝−1

6
− γ2+

1

N

N∑
j=1

m

m
χ3

⎞⎠ ∂3XQ̄0+

(
1

2
− γ

)
∂2XQ̄1 +m∂τ P̄2 − ∂XQ̄2 = 0.

Given (3.22), we see that (3.35) and (3.36) can be solved for ĀT and B̄T . To do
so is a messy but essentially simple process and relies primarily on (3.22) and (3.30).
The result is

ĀT =− c

24

(
1 + 12γ + 12γ2 − 12c1 − 12c2

)
Āwww − c

2
c3ĀĀw

− c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
B̄lll

− c

2

(√
mκ̆J1 − J2

)
− c

2
c3B̄

(
Āw − B̄l

)
− c

2
c3ĀB̄l

(3.37)

and

B̄T =
c

24

(
1 + 12γ + 12γ2 − 12c1 − 12c2

)
B̄lll +

c

2
c3B̄B̄l

+
c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
Āwww

+
c

2

(
−
√
mκ̆J1 − J2

)
+
c

2
c3Ā

(
B̄l − Āw

)
− c

2
c3B̄Āw.

(3.38)

Here we have defined the following constants:

c1 :=
1

N

N∑
j=1

κ̆

κ
χ4, c2 :=

1

N

N∑
j=1

m

m
χ3, and c3 :=

2κ̆

N

N∑
j=1

β

κ3
.

Also, we define

J1 :=
1

κ̆
∂τ Q̄2 − ∂X P̄2 and J2 := m∂τ P̄2 − ∂XQ̄2.

We select Ā and B̄ to solve the KdV equations

(3.39) ĀT = −caĀwww − cbĀĀw and B̄T = caB̄lll + cbB̄B̄l.
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Here

a :=
1

24

(
1 + 12γ + 12γ2 − 12c1 − 12c2

)
and b :=

c3
2
.

Note that careful unraveling the various definitions for γ, c1, c2, c3, and the various χ
functions will convert these definitions for a and b into those given in Definition 2.2.

Our choices for Ā and B̄ reduce (3.37) and (3.38) to

0 =− c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
B̄lll

− c

2

(√
mκ̆J1 − J2

)
− c

2
c3B̄

(
Āw − B̄l

)
− c

2
c3ĀB̄l

(3.40)

and

0 =
c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
Āwww

+
c

2

(
−
√
mκ̆J1 − J2

)
+
c

2
c3Ā

(
B̄l − Āw

)
− c

2
c3B̄Āw.

(3.41)

Surprisingly, it happens that we can solve (3.40) and (3.41) for P̄2 and Q̄2 exactly
in terms of Ā and B̄. If we make a change of variables Q̄2(X, τ, T ) = Q(X − cτ,X +
cτ, T ) and P̄2(X, τ, T ) = P(X − cτ,X + cτ, T ), then we have

0 =− c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
B̄lll

− cQl + κ̆Pl −
c

2
c3B̄

(
Āw − B̄l

)
− c

2
c3ĀB̄l

and

0 =
c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
Āwww

+ cQw + κ̆Pw +
c

2
c3Ā

(
B̄l − Āw

)
− c

2
c3B̄Āw.

Let

Ā(w, T ) :=

∫ w

0

Ā(s, T )ds and B̄(l, T ) :=
∫ l

0

B̄(s, T )ds.

That is, ∂wĀ = Ā and ∂lB̄ = B̄. Then we have

0 =− c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
B̄lll

− cQl + κ̆Pl −
c

2
c3B̄lĀw +

c

4
c3(B̄

2)l −
c

2
c3ĀB̄l

and

0 =
c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
Āwww

+ cQw + κ̆Pw +
c

2
c3ĀwB̄l −

c

4
c3
(
Ā2

)
w
− c

2
c3B̄Āw.

Then we can antidifferentiate these equations with respect to l and w, respectively,
to get

0 =− c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
B̄ll

− cQ+ κ̆P − c

2
c3B̄Āw +

c

4
c3(B̄

2)− c

2
c3ĀB̄
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and

0 =
c

24

(
−3 + 12γ − 12γ2 + 12c1 − 12c2

)
Āww

+ cQ+ κ̆P +
c

2
c3ĀB̄l −

c

4
c3
(
Ā2

)
− c

2
c3B̄Ā.

Note that we have taken the constants of integration to be zero. We solve these for
Q and P (and therefore for Q̄2 and P̄2) to get

Q̄2(X, τ, T ) = g1Āww + g2B̄ll + g3ĀB̄l + g4B̄Āw + g5Ā
2 + g6B̄

2 + g7ĀB̄,

P̄2(X, τ, T ) = h1Āww + h2B̄ll + h3ĀB̄l + h4B̄Āw + h5Ā
2 + h6B̄

2 + h7ĀB̄
(3.42)

for some collection of constants g1, . . . , h7.
Remark 3. In previous works (for instance, [21], [23]), equations analogous to

(3.40) and (3.41) are viewed as evolution equations for P̄2 and Q̄2. A little rearranging
shows that these are equivalent to a forced wave equation, where a typical driving term
would be something like B̄(l, T )Ā(w, T ). The algebraic decay conditions on the initial
data in those articles are put in place precisely so that these driving terms do not
cause their terms analogous to P̄2 and Q̄2 to grow secularly with t and, consequently,
ruin the error estimates. In short, if the initial data is decaying at infinity, then Ā
and B̄ do as well. Since Ā moves to the right and B̄ moves to the left, their product
takes place mostly through their tails and is thus small. By showing that we can solve
these for P̄2 and Q̄2 explicitly allows us to replace the algebraic decay condition with
the weaker condition (2.2).

Our selection of Ā, B̄, Q2, and P2 allows us to use Corollary 3.2 to solve (3.16)
for Q3 and P3. Though possible, it is not necessary for us to have exact formulas for
these. Instead we presume only that

(3.43)

N∑
j=1

P3(j,X, τ, T ) =

N∑
j=1

Q3(j,X, τ, T ) = 0

for all X , τ, and T .

4. The size of the approximation and its residual. Now that we have
explicitly determinedQ0, Q1, Q2, P0, P1, P2 in terms of Ā and B̄, and implicitly defined
Q3 and P3 with (3.16) and (3.43), we can rigorously estimate their sizes and the size
of the residual in terms of Ā and B̄. Specifically we will provide estimates which
control r̃ε(t) and p̃ε(t) and the residual for |t| ≤ T0ε

−3 in terms of T0 and
(4.1)
Ā0(w) := Ā(w, 0), B̄0(l) := B̄(l, 0), Ā0(w) := Ā(w, 0), and B̄0(l) := B̄(l, 0).

We are going to pay more attention to regularity issues here than is typically done
when justifying modulation equations. Note that in Theorem 2.1 the initial conditions
are sampled from functions in H5. As we shall see, to estimate the residual requires
that Ā and B̄ be in H7. We discuss how to close this gap in the next section. To
help us organize the frequently tedious calculations we carry out here, we introduce
the following notation.

Definition 4.1. We write

Z ≤ K5W
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if and only if

Z ≤WΠ
(
T0 + ‖Ā0‖H5 + ‖B̄0‖H5 + ‖Ā0‖L∞ + ‖B̄0‖L∞

)
for some function Π(h) which is continuous, nondecreasing, has Π(0) = 0, and is
determined entirely by m and V. Note that the subscript “ 5” is put in place to
reinforce that this notation involves the H5 regularity of Ā0 and B̄0.

The estimates we require are contained in the following.
Proposition 4.2 (rigorous estimates on the approximation). Fix T0 > 0 and

suppose that Ā(w, T ) and B̄(l, T ) are solutions of the KdV equations (3.39) with a �= 0.
Let Ā0, B̄0, Ā0, B̄0 be as in (4.1). Construct R0, . . . , R3, P0, . . . , P3, r̃ε, and p̃ε from
Ā and B̄ as described above in section 3. Define Res1(r̃ε, p̃ε) and Res2(r̃ε, p̃ε) as in
(3.1). Let2

r̆ε(j, t) :=

3∑
n=1

εn+2Rn(j, εj, εt, ε
3t) and p̆ε(j, t) :=

3∑
n=1

εn+2Pn(j, εj, εt, ε
3t).

Then

(4.2) sup
|t|≤T0ε−3

‖(r̃ε(t), p̃ε(t))‖�2×�2 ≤ K5ε
3/2,

(4.3) sup
|t|≤T0ε−3

‖(r̃ε(t), p̃ε(t))‖�∞×�∞ ≤ K5ε
4,

(4.4) sup
|t|≤T0ε−3

‖(r̆ε(t), p̆ε(t))‖�2×�2 ≤ K5ε
5/2,

(4.5) sup
|t|≤T0ε−3

‖(∂tr̃ε(t), ∂tp̃ε(t))‖�∞×�∞

≤ K5ε
3 +K5ε

7
(
‖Ā0‖H6 + ‖B̄0‖H6

)
+K5ε

8
(
‖Ā0‖H7 + ‖B̄0‖H7

)
,

and

(4.6) sup
|t|≤T0ε−3

‖(Res1(r̃ε(t), p̃ε(t)),Res2(r̃ε(t), p̃ε(t)))‖�2×�2

≤ K5ε
11/2 +K5ε

13/2
(
‖Ā0‖H6 + ‖B̄0‖H6

)
+K5ε

15/2
(
‖Ā0‖H7 + ‖B̄0‖H7

)
.

The main tools for proving the proposition are rigorous estimates on the error
functions E±

M and well-posedness results for KdV equations.

4.1. Long wave approximations. The main estimates we need are collected
in the following.

Lemma 4.3 (error estimates for long wave approximations). Suppose that

u(j) = U(j, εj),

2Note that r̆ε and p̆ε are simply the O(ε3) and higher terms of r̃ε and p̃ε.
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where U(j +N,X) = U(j,X) for all j ∈ Z and X ∈ R. Then

‖u‖�∞ ≤ C sup
j∈Z

‖U(j, ·)‖L∞ ,(4.7)

‖u‖�2 ≤ Cε−1/2 sup
j∈Z

‖U(j, ·)‖H1 ,(4.8)

and

(4.9) ‖E±
Mu‖�2 ≤ CεM+1/2 sup

j∈Z
‖U(j, ·)‖HM+1 .

The constant C > 0 depends only on N and M .
Note that these estimates are sharp with respect to the powers of ε. The loss of a

half power of ε appearing in the �2-based estimates over the formally expected error is
due to the “long wave scaling,” X = εj. Proving these results requires the following.

Lemma 4.4. Suppose that f ∈ H1. Select xj ∈ [j, j + 1] for all j ∈ Z. Then∑
j∈Z

f2(xj) ≤ 2‖f‖2H1 .

Proof. Since f ∈ H1 by the Sobolev embedding theorem we know that f(x) is
continuous. Since f(x) is continuous, so is f2(x). Thus, for each j ∈ Z, there exists

xj ∈ [j, j+1] with f2(xj) = minx∈[j,j+1] f
2(x). Clearly, then, f2(xj) ≤

∫ j+1

j f2(x)dx.
Consequently

(4.10)
∑
j∈Z

f2(xj) ≤ ‖f‖2L2.

Then we use the fundamental theorem of calculus:

f2(xj) = f2(xj) +

∫ xj

xj

∂x(f
2(x))dx.

The chain rule and the Cauchy–Schwarz inequality give

∫ xj

xj

∂x(f
2(x))dx = 2

∫ xj

xj

f(x)fx(x)dx ≤ 2

√√√√∣∣∣∣∣
∫ xj

xj

f2(x)dx

∣∣∣∣∣
√√√√∣∣∣∣∣

∫ xj

xj

f2
x(x)dx

∣∣∣∣∣.
Since xj , xj ∈ [j, j + 1] we get∫ xj

xj

∂x(f
2(x))dx ≤ 2

√∫ j+1

j

f2(x)dx

√∫ j+1

j

f2
x(x)dx.

Using ab ≤ a2/2 + b2/2 we have∫ xj

xj

∂x(f
2(x))dx ≤

∫ j+1

j

f2(x)dx +

∫ j+1

j

f2
x(x)dx.

Using this and (4.10) gives∑
j∈Z

f2(xj)≤
∑
j∈Z

f2(xj)+
∑
j∈Z

∫ j+1

j

f2(x)dx+
∑
j∈Z

∫ j+1

j

f2
x(x)dx≤2‖f‖2L2 + ‖fx‖2L2.
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Proof of Lemma 4.3. The first estimate is trivial. The second estimate follows
from Lemma 4.4 and naive estimates. For the third estimate, we prove the “+” case.

Suppose that f ∈ HM+1. Since f (M+1) ∈ L2, this implies f (M+1) ∈ L1
loc. Taylor’s

theorem with remainder tells us that

f(x)−
M∑
n=0

1

n!
f (n)(y)(x − y)n =

∫ y

x

1

M !
f (M+1)(s)(x − s)Mds

for any −∞ < x ≤ y <∞. A naive estimate gives∣∣∣∣∣f(x)−
M∑
n=0

1

n!
f (n)(y)(x − y)n

∣∣∣∣∣ ≤ 1

M !
|x− y|M

∫ x

y

∣∣∣f (M+1)(s)
∣∣∣ ds.

Using the Cauchy–Schwarz inequality on the last term gives

(4.11)

∣∣∣∣∣f(x)−
M∑
n=0

1

n!
f (n)(y)(x− y)n

∣∣∣∣∣ ≤ 1

M !
|x− y|M+1/2‖f (M+1)‖L2([x,y]).

Now consider E+u. By definition of E+ and the δn we have

(E+
Mu)(j) = (U(j + 1, εj + ε)− U(j, εj))

− (U(j + 1, εj)− U(j, εj))−
M∑
n=1

εn

n!
∂nXU(j + 1, εj)

= U(j + 1, εj + ε)−
M∑
n=0

εn

n!
∂nXU(j + 1, εj).

Using (4.11) with f(·) = U(j + 1, ·), x = εj, and y = εj + ε, we see∣∣(E+
Mu)(j)

∣∣ ≤ 1

M !
εM+1/2‖∂M+1

X U(j, ·)‖L2([εj,εj+ε]).

Squaring and summing this over j ∈ Z gives

‖E+
Mu‖2�2 ≤ 1

(M !)2
ε2M+1

∑
j∈Z

‖∂M+1
X U(j, ·)‖2L2([εj,εj+ε]).

Adding positive terms on the right-hand side can only make things larger, and thus
we have

‖E+
Mu‖2�2 ≤ 1

(M !)2
ε2M+1

N∑
k=1

∑
j∈Z

‖∂M+1
X U(k, ·)‖2L2([εj,εj+1]).

Of course,∑
j∈Z

‖∂M+1
X U(k, ·)‖2L2([εj,εj+ε]) = ‖∂M+1

X U(k, ·)‖2L2 ≤ sup
k

‖U(k, ·)‖2HM+1 .

Thus

‖E+
Mu‖2�2 ≤ N

(M !)2
ε2M+1 sup

k
‖U(k, ·)‖2HM+1

and the proof is complete.
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4.2. Existence and estimates for solutions of KdV equations. The fol-
lowing well-known results concerning solutions of the KdV equation will be used (see
[1] and [17]).

Theorem 4.5 (global existence for solutions of KdV equations). Suppose that
U0 ∈ Hs for s ≥ 2, s ∈ Z and consider the partial differential equation

(4.12) UT = aUyyy + b(U2)y,

where a �= 0 and y ∈ R. Then there exists unique

U ∈ C(R;Hs)

with

∂nTU ∈ C(R;Hs−3n)

for all n ∈ N that has U(y, 0) = U0 and which solves (4.12) for all T ∈ R.
Additionally, one has, for all 0 ≤ k ≤ s, k ∈ Z,

(4.13) sup
T∈R

‖U(T )‖Hk ≤ ‖U0‖Hk + C‖U0‖H1‖U0‖Hk−1 +Π(‖U0‖Hk−2).

The constant C > 0 depends only on a, b, and k. Here Π is a nondecreasing continuous
function with Π(0) = 0; it is wholly determined by a, b, and k.

We also need to control Ā and B̄, the antiderivatives. Lemma 4.6 below does so.
Lemma 4.6 (estimates on antiderivatives of solutions of KdV equations). Sup-

pose that U(y, T ) is the unique global-in-time function (whose existence is asserted by
Theorem 4.5) which solves (4.12) with a �= 0 and for which U0(y) ∈ H4. Assume

(4.14)

∣∣∣∣∫
R

U0(s)ds

∣∣∣∣ <∞.

Let

U(y, T ) :=
∫ y

0

U(s, T )ds.

Then for all T0 > 0

sup
|T |<T0

‖U(T )‖L∞ ≤ ‖U0‖L∞ + T0Π(‖U0‖H4).

Here Π is a nondecreasing continuous function with Π(0) = 0; it is wholly determined
by a and b. Of course, U0(y) := U(y, 0).

Proof. Without loss of generality, a = 1, due to well-known scaling invariances
of the KdV equation. Since U0 ∈ H4, Sobolev embedding implies it is in C3. Thus
U(X, 0), which is an antiderivative of U0(x), is in C4. Condition (4.14) implies that
limX→±∞ U(X, 0) <∞ and so U(X, 0) ∈ L∞.

Next, Theorem 4.5 implies that U(y, T ) is in H4 for all T and, again, Sobolev
embedding tells us then that U ∈ C3 and W 3,∞; that is to say, U(y, T ) is a classical
solution. If we integrate the KdV equation in time, we get

U(y, T ) = U0(y) +

∫ T

0

(
Uyyy(y, t

′) + b(U2)y(y, t
′)
)
dt′.
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Next we integrate from 0 in y to get

U(y, T ) = U(y, 0) +
∫ y

0

∫ T

0

(
Uyyy(y

′, t′) + b(U2)y(y
′, t′)

)
dt′dy′.

Since Uyyy and U are continuous functions and we are integrating over a compact set,
we are free to exchange the order of integration:

U(y, T ) = U(y, 0) +
∫ T

0

∫ y

0

(
Uyyy(y

′, t′) + b(U2)y(y
′, t′)

)
dy′dt′.

Now we use the fundamental theorem of calculus:

U(y, T ) = U(y, 0) +
∫ T

0

(
Uyy(y, t

′)− Uyy(0, t
′) + bU2(y, t′)− bU2(0, t′)

)
dt′.

Thus, if |T | ≤ T0,

‖U(T )‖L∞ ≤ ‖U(0)‖L∞ + 2T0 sup
|t|≤T0

(
‖Uyy(t)‖L∞ + b‖U2(t)‖L∞

)
.

The Sobolev embedding theorem and Theorem 4.5 then imply

‖U(T )‖L∞ ≤ ‖U(0)‖L∞ + 2T0 sup
|t|≤T0

(
‖U‖H4 + b‖U‖2H4

)
≤ ‖U(0)‖L∞ + T0Π(‖U0‖H4).

This estimate finishes the proof.

4.3. The proof of Proposition 4.2. Proving estimates (4.2), (4.3), and (4.4)
is “easy” because of the explicit formulas for Qn and Pn in terms of Ā, B̄, and
their antiderivatives. More or less all we do is search through the formulas (3.16),
(3.19), (3.22), (3.26), (3.30), (3.32), (3.34), (3.42), (3.43), count derivatives, and apply
estimates from Corollary 3.2, Lemma 4.3, Theorem 4.5, and Lemma 4.6 where ap-
propriate. We omit the particulars; most of the critical ideas will be presented below
when we treat (4.6).

Proving (4.5) is much the same. The extra power of ε in this estimate over that in
(4.3) is due to the fact that all of our functions Qn and Pn depend on t only through
τ = εt and T = ε3t, which is to say that the chain rule automatically produces at
least one extra power of ε. Application of ∂t to (r̃ε, p̃ε) produces terms like ∂τQn and
∂TQn. These can always be eliminated using the wave equations (3.21), (3.29) and
the KdV equations (3.39). After that is complete, we count derivatives and apply
Theorem 4.5 and Lemma 4.6. Doing so is straightforward and uninteresting, so we
omit it.

Of the estimates in (4.6), the one for Res2 is the more complicated, and so we
present details for it. Recall that our selection of the Q and P functions was made so
that Res2 was given by (3.12), which we recopy here, recalling that Qn := κRn:

Res2(r̃ε, p̃ε) = −ε6∂τP3 −
3∑

n=1

εn+5∂TPn +

3∑
n=0

εn+2E−
3−nQn

+ ε4
1

m
E−

1

(
β

κ2
Q2

0

)
+ ε5

2

m
E−

0

(
β

κ2
Q0Q1

)
+N1(r̃ε) +N2(r̃ε).
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If we apply (4.8) and (4.9) to this, we get, with some rearrangement,

‖Res2(r̃ε(t), p̃ε(t))‖�2
≤ Cε11/2 sup

j∈Z

(
‖Q0(j, ·, εt, ε3t)‖H4 + ‖Q1(j, ·, εt, ε3t)‖H3

)
+ Cε11/2 sup

j∈Z

(
‖Q0(j, ·, εt, ε3t)‖2H1 + ‖Q0(j, ·, εt, ε3t)Q1(j, ·, εt, ε3t)‖H1

)
+ Cε11/2 sup

j∈Z

(
‖Q2(j, ·, εt, ε3t)‖H2 + ‖∂TP1(j, ·, εt, ε3t)‖H1

)
+ Cε13/2 sup

j∈Z
‖∂TP2(j, ·, εt, ε3t)‖H1

+ Cε11/2 sup
j∈Z

(
‖∂τP3(j, ·, εt, ε3t)‖H1 + ‖Q3(j, ·, εt, ε3t)‖H1

)
+ Cε15/2 sup

j∈Z
‖∂TP3(j, ·, εt, ε3t)‖H1

+ ‖N1(r̃ε)‖�2 + ‖N2(r̃ε)‖�2 .

(4.15)

The most complicated of all of these terms is (unsurprisingly) the one involving
∂TP3. We will present many of the details for this term and also those for N1, as it
(along with N2) is handled a bit differently than the rest. As a byproduct, we will
see all the tricks for handling every other term along the way.

Estimating ∂TP3. Differentiation with respect to T of the “P3” equations (3.16)
and (3.43) shows that ∂TP3 satisfies

δ+0 ∂TP3 =
1

κ
∂2TQ0 +

1

κ
∂τ∂TQ2 − δ+1 ∂TP2 − δ+2 ∂TP1 − δ+3 ∂TP0

subject to

N∑
j=1

∂TP3(j,X, τ, T ) = 0.

The estimate in Corollary 3.2 therefore gives

(4.16)

sup
j∈Z

‖∂TP3(j, ·, τ, T )‖H1 ≤ C sup
j∈Z

(
‖∂2TQ0(j, ·, τ, T )‖H1 + ‖∂τ∂TQ2(j, ·, τ, T )‖H1

+‖δ+1 ∂TP2(j, ·, τ, T )‖H1 + ‖δ+2 ∂TP1(j, ·, τ, T )‖H1 + ‖δ+3 ∂TP0(j, ·, τ, T )‖H1

)
.

Of these five terms, the most complicated is the one involving δ+1 ∂TP2. We present
the details for this term, as the others are handled with the same techniques and are
no worse in terms of regularity or difficulty.

Given (3.4), we have

sup
j∈Z

‖δ+1 ∂TP2(j, ·, τ, T )‖H1 ≤ sup
j∈Z

‖∂TP2(j, ·, τ, T )‖H2 .

P2 is given explicitly by (3.32) and (3.42). Differentiation of these formulas with
respect to T , the triangle inequality, and the fact that H2 is an algebra gives us the
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following crude estimate:

sup
j∈Z

‖∂TP2(j, ·, τ, T )‖H2 ≤ C‖∂T Āww(T )‖H2 + C‖∂T B̄ll(T )‖H2

+ C(‖Ā(T )‖H2‖ĀT (T )‖H2 + ‖Ā(T )‖H2‖B̄T (T )‖H2)

+ C(‖B̄(T )‖H2‖ĀT (T )‖H2 + ‖B̄(T )‖H2‖B̄T (T )‖H2)

+ C‖∂T (Ā(· − cτ, T )B̄l(·+ cτ, T ))‖H2

+ C‖∂T (B̄(·+ cτ, T )Āw(· − cτ, T ))‖H2 .

(4.17)

To handle the first line on the right-hand side, we use the fact that Ā and B̄ are
assumed to solve (3.39). Thus

∂T Āww = −caĀ5w − cb(ĀĀw)ww.

And so we have, for all T ,

‖∂T Āww(T )‖H2 ≤ C‖Ā(T )‖H7 + C‖Ā(T )‖2H5 .

Using the estimate (4.13) in Theorem 4.5 gives

sup
|T |≤T0

‖∂T Āww(T )‖H2 ≤ ‖Ā0‖H7 + C‖Ā0‖H1‖Ā0‖H6 +Π(‖Ā0‖H5)

+ C
(
‖Ā0‖H5 + C‖Ā0‖H1‖Ā0‖H4 +Π(‖Ā0‖H3)

)2
.

Using the “K5” definition (Definition 4.1), we have

sup
|T |≤T0

‖∂T Āww(T )‖H1 ≤ K5‖Ā0‖H7 +K5.

The other three terms in the first three lines of (4.17) are handled using exactly these
same ideas.

Dealing with the terms in the final two lines of (4.17) is a bit different. Consider
the one on the fourth line which requires control of ∂T (ĀB̄l). The product rule and
triangle inequality give

‖∂T (Ā(· − cτ, T )B̄l(·+ cτ, T ))‖H2

≤ ‖∂T Ā(· − cτ, T )B̄l(·+ cτ, T )‖H2 + ‖Ā(· − cτ, T )∂T B̄l(·+ cτ, T )‖H2 .

Then we use the estimate ‖fg‖H2 ≤ C‖f‖W 2,∞‖g‖H2 and the fact that W k,p norms
are shift invariant to get

(4.18) ‖∂T (Ā(· − cτ, T )B̄l(·+ cτ, T ))‖H2

≤ C‖∂T Ā(T )‖W 2,∞‖B̄l(T )‖H2 + C‖Ā(T )‖W 2,∞‖∂T B̄l(T )‖H2 .

Theorem 4.5 implies immediately that sup|T |≤T0
‖Bl(T )‖H2 ≤ K5. Using the

same sort of steps as were used to estimate ∂TAww above, we have

sup
|T |≤T0

‖∂TBl(T )‖H2 ≤ K5‖B̄0‖H6 +K5.
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Controlling the terms in (4.18) with Ā proceeds as follows. First, since Ā is an
antiderivative of Ā, we have

‖Ā‖W 2,∞ = ‖Ā‖L∞ + ‖Ā‖W 1,∞ ≤ ‖Ā‖L∞ + C‖Ā‖H2 .

Here, we used Morrey’s inequality, ‖f‖W s,∞ ≤ C‖f‖Hs+1 . Then Lemma 4.6 and
Theorem 4.5 give us

sup
|T |≤T0

‖Ā(T )‖W 1,∞ ≤ K5.

Second, since Ā solves (3.39), it follows from the fundamental theorem of calculus
that

∂T Ā(w, T ) = −caĀww(w, T ) + caĀww(0, T )− cbĀ2(w, T ) + cbĀ2(0, T ).

Morrey’s inequality implies

sup
|T |≤T0

‖∂T Ā(T )‖W 2,∞ ≤ K5 sup
|T |≤T0

‖Ā(T )‖H5 + C sup
|T |≤T0

‖Ā(T )‖2H3 ≤ K5.

And so (4.18) becomes

sup
|T |≤T0

‖∂T (Ā(· − cτ, T )B̄l(·+ cτ, T ))‖H2 ≤ K5‖B̄0‖H6 +K5.

With this we can establish

sup
|t|≤T0ε−3

sup
j∈Z

‖∂TP2(j, ·, εt, ε3t)‖H2 ≤ K5

(
‖Ā0‖H7 + ‖B̄0‖H7

)
+K5,

which in turn implies

sup
|t|≤T0ε−3

sup
j∈Z

‖∂TP3(j, ·, εt, ε3t)‖H1 ≤ C
(
‖Ā0‖H7 + ‖B̄0‖H7

)
+K5.

Estimating N1(r̃ε). Recall that N1(r̃ε) = 1
mδ

− {
V ′(r̃ε)− κr̃ε − βr̃2ε

}
. Thus,

since δ− is a bounded operator on �2,

‖N1(r̃ε)‖�2 ≤ C‖Ñ1‖�2

with

Ñ1 := V ′(r̃ε)− κr̃ε − βr̃2ε .

Since V(ρ) is a smooth function, Taylor’s theorem implies

Ñ1 =
1

2

∫ r̃ε

0

V(4)(s) (r̃ε − s)2 ds.

Thus crude estimates give

|Ñ1| ≤ C|r̃ε|3G(|r̃ε|),

where

G(ρ) := max
|s|≤|ρ|

∣∣∣V(4)(s)
∣∣∣ .



976 J. GAISON, S. MOSKOW, J. D. WRIGHT, AND Q. ZHANG

Clearly G is nondecreasing. Moreover, since V is smooth, G is continuous. Therefore

|Ñ1| ≤ C‖r̃ε‖2�∞G(‖r̃‖�∞) |r̃ε| .

And so

‖N1(r̃ε)‖�2 ≤ C‖r̃ε‖2�∞G(‖r̃‖�∞)‖r̃ε‖�2 .

The estimates in (4.3) and (4.2) thus give

‖N1(r̃ε)‖�2 ≤ K5ε
11/2.

This completes our proof of Proposition 4.2.

5. Error estimates and the proof of Theorem 2.1. We are now in a position
to prove the main result. We quickly recapitulate the hypotheses and conclusions. Fix
T0 > 0 and φ, ψ ∈ H5. These will be the functions from which we sample the initial

conditions for (2.1). Let Φ(X) :=
∫X

0 φ(y)dy and Ψ(X) :=
∫X

0 ψ(y)dy. These are
assumed to be in L∞.

Definition 5.1. We write

Z ≤ C5W

if and only if

Z ≤WΠ(T0 + ‖φ‖H5 + ‖ψ‖H5 + ‖Φ‖L∞ + ‖Ψ‖L∞)

for some function Π(h) which is continuous, nondecreasing, has Π(0) = 0, and is
determined entirely by m and V.

The initial data for (2.1) are taken as described in (2.3): rε(j, 0) =
ε2

κ(j)φ(εj) and

pε(j, 0) = ε2ψ(εj). We denote the corresponding solution of (2.1) by (rε(t), pε(t)).
Given (2.5), we set

A0 :=
1

2

(
φ−

√
mκ̆ψ

)
and B0 :=

1

2

(
φ+

√
mκ̆ψ

)
with m and κ̆ defined as in Definition 2.2. It is clear that A0, B0 ∈ H5 and in
particular

‖A0‖H5 + ‖B0‖H5 ≤ C5.

Let A(w, T ) and B(l, T ) be the unique global-in-time solutions of (3.39) with
these initial conditions which are guaranteed by Theorem 4.5. Our goal is to estimate

(5.1) e := sup
|t|≤T0ε−3

∥∥∥∥rε(·, t)− 1

κ(·)
[
ε2A(ε(· − ct), ε3t) + ε2B(ε(·+ ct), ε3t)

] ∥∥∥∥
�2

and

(5.2) f := sup
|t|≤T0ε−3

∥∥∥pε(·, t)−√
mκ̆

[
ε2A(ε(· − ct), ε3t)− ε2B(ε(·+ ct), ε3t)

]∥∥∥
�2
.

Namely, we will have proven Theorem 2.1 if we show

e + f ≤ C5ε
5/2.
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5.1. Long time existence for solution of (2.1). The first thing we need to
do is ensure that the solutions of (2.1) exist over the very long time scale |t| ≤ T0ε

−3.
The following theorem does just this.

Theorem 5.2 (small data implies global existence for (2.1)). There exists
ρ∗, C∗ > 0, determined wholly by m and V, such that if

‖(r0, p0)‖�2×�2 ≤ ρ∗,

then there exists a unique function

(r(t), p(t)) ∈ C1(R; �2 × �2)

which solves (2.1) and for which (r(0), p(0)) = (r0, p0). Moreover

sup
t∈R

‖(r(t), p(t))‖�2×�2 ≤ C∗‖(r0, p0)‖�2×�2 .

Proof. Define

H(t) :=
∑
j∈Z

[
1

2
m(j)p2j + Vj(r(j))

]
.

This quantity is the total mechanical energy of (2.1) and thus

(5.3) H(t) = H(0)

so long as the solution exists. Moreover, when ‖(r, p)‖�×�2 is sufficiently small, (1.2),
(1.3), and (1.4) imply that

√
H(t) is equivalent to the usual norm on the �2×�2 norm.

That is, there exist ρ > 0 and C∗∗ > 1 such that ‖(r, p)‖�2×�2 < ρ implies

(5.4)
1

C∗∗

√
H(t) ≤ ‖(r, p)‖�2×�2 ≤ C∗∗

√
H(t).

To see this, note that Taylor’s theorem, (1.3), and (1.4) imply that there exists
ρ > 0 such that |y| ≤ ρ implies

(5.5)
1

4
min
k∈Z

κ(k)y2 ≤ Vj(y) ≤
3

4
max
k∈Z

κ(k)y2

for all j. Now suppose that ‖(r, p)‖�2×�2 < ρ. This implies ‖r‖�∞ ≤ ρ, and thus
‖(r, p)‖�2×�2 ≤ ρ:

(5.6)
1

4
min
k∈Z

κ(k)‖r‖2�2 ≤
∑
j∈Z

Vj(r(j)) ≤
3

4
max
k∈Z

κ(k)‖r‖2�2 .

Similarly (1.2) implies

(5.7)
1

2
min
k∈Z

m(k)‖p‖2�2 ≤
∑
j∈Z

1

2
m(j)p2(j) ≤ 1

2
max
k∈Z

m(k)‖p‖2�2,

and thus we have (5.4) for an appropriately defined constant C∗∗.
Let ρ∗ := ρ/2C2∗∗ and suppose that ‖(r0, p0)‖�2×�2 ≤ ρ∗. Since C∗∗ > 1, we have

ρ∗ < ρ/2. The right-hand side of (2.1) is a smooth and bounded map from �2 × �2

into itself, and so Picard’s theorem provides t0 > 0 and (r(t), p(t)) ∈ C1([−t0, t0];Bρ),
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which uniquely solves (2.1) with (r(0), p(0)) = (r0, p0). Here Bρ :=
{
(r, p) ∈ �2 × �2 :

‖(r, p)‖�2×�2 < ρ
}
. Thus we can employ (5.4) and (5.3) to find

sup
|t|≤t0

‖(r(t), p(t))‖�2×�2 ≤ C∗∗
√
H(t) = C∗∗

√
H(0) ≤ C2

∗∗‖(r(0), p(0))‖�2×�2 ≤ ρ/2.

This implies via a straightforward bootstrap argument that t0 = +∞. Putting C∗ =
C2∗∗ finishes the proof.

Now, if we use Lemma 4.3, estimate (4.8), we see that

‖(rε(0), pε(0))‖�2×�2 ≤ Cε3/2 (‖φ‖H1 + ‖ψ‖H1) ≤ C5ε
3/2.

As such, there exist ε1 > 0, which depends on (‖φ‖H1 + ‖ψ‖H1) such that

‖(rε(0), pε(0))‖�2×�2 ≤ ρ∗

when 0 ≤ ε ≤ ε1. Thus (rε(j, t), pε(j, t)) exists for all t ∈ R. Note that the estimate
in Theorem 5.2 shows that

(5.8) sup
t∈R

‖(rε(t), pε(t))‖�2×�2 ≤ C∗‖(rε(0), pε(0))‖�2×�2 ≤ C5ε
3/2.

5.2. Smoothing. Now that we have established the existence of the solution of
(2.1) for all t, we turn our attention to the approximation. Note that the functions
A and B are only in H5. To use Proposition 4.2 we need functions which are in H7,
and so we will “smooth” our initial conditions using the following result.

Lemma 5.3 (smooth approximation with ε dependent estimates). Define the map

Tε as a Fourier multiplier operator T̂εU(K) = T̂ε(K)Û(K), where T̂ε(K) = 1 when
|K| ≤ ε−1 and is zero otherwise. Then, for 0 ≤ ε ≤ 1, we have

(5.9) ‖U − TεU‖Hs ≤ ε(5−s)‖U‖H5

and

(5.10) ‖TεU‖Hs ≤ ‖U‖Hs

when 0 ≤ s ≤ 5. Also

(5.11) ‖TεU‖Hs ≤ Cε(5−s)‖U‖H5

for s ≥ 5. Here, C = C(s) > 0 does not depend on ε. Furthermore

(5.12)

∫
R

TεU(X)dX =

∫
R

U(X)dX

and

(5.13) ‖U − Ũ‖L∞ ≤ Cε11/2‖U‖H5 ,

where

U(X) :=

∫ X

0

U(X ′)dX ′ and Ũ(X) :=

∫ X

0

TεU(X ′)dX ′.
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Proof. The proofs of the first four estimates are routine and so we omit them.
The proof of (5.13) is less typical. First, note that

U(X)− Ũ(X) =

∫ X

0

[U(X ′)− TεU(X ′)]dX ′.

Using the Fourier inversion theorem gives

U(X)− Ũ(X) =

∫ X

0

∫
R

eiKX′ [
Û(K)− T̂εU(K)

]
dKdX ′.

The definition of Tε gives

U(X)− Ũ(X) =

∫ X

0

∫
|K|≥ε−1

eiKX′
Û(K)dKdX ′.

Now, U ∈ H5 implies that Û ∈ L1. Thus we may exchange the order of integration
above to get

U(X)−Ũ(X) =

∫
|K|≥ε−1

∫ X

0

eiKX′
Û(K)dX ′dK =

∫
|K|≥ε−1

Û(K)

(∫ X

0

eiKX′
dX ′

)
dK.

We evaluate the X ′-integral:

U(X)− Ũ(X) =

∫
|K|≥ε−1

Û(K)
eiKX − 1

iK
dK.

Thus ∣∣∣U(X)− Ũ(X)
∣∣∣ ≤ 2

∫
|K|≥ε−1

|Û(K)||K|−1dK.

Multiplication by 1 gives∣∣∣U(X)− Ũ(X)
∣∣∣ ≤ 2

∫
|K|≥ε−1

(1 +K2)5/2|Û(K)|(1 +K2)−5/2|K|−1dK.

Then Cauchy–Schwarz gives∣∣∣U(X)− Ũ(X)
∣∣∣ ≤ 2‖U‖H5

√∫
|K|≥ε−1

(1 +K2)−5|K|−2dK ≤ Cε11/2‖U‖H5 .

Since X was arbitrary, we have (5.13).
Now let

Ā0 := TεA0 and B̄0 := TεB0.

Then Lemma 5.3 implies

(5.14) ‖Ā0 −A0‖H1 ≤ ε4‖A0‖H5 ≤ C5ε
4 and ‖B̄0 −B0‖H1 ≤ ε4‖B0‖H5 ≤ C5ε

4.

Likewise,

‖Ā0‖H5 + ‖B̄0‖H5 ≤ C5,(5.15)

‖Ā0‖H6 + ‖B̄0‖H6 ≤ C5ε
−1,(5.16)

‖Ā0‖H7 + ‖B̄0‖H7 ≤ C5ε
−2,(5.17)



980 J. GAISON, S. MOSKOW, J. D. WRIGHT, AND Q. ZHANG

and

‖Ā0‖L∞ + ‖B̄0‖L∞ ≤ C5.

Recall that Ā0(w) :=
∫ w

0 Ā0(y)dy and B̄0(l) :=
∫ l

0 B̄0(y)dy. Note that these estimates
imply

‖Ā0‖H5 + ‖B̄0‖H5 + ‖Ā0‖L∞ + ‖B̄0‖L∞ ≤ C5,

which, so to speak, says “K5 ≤ C5.”
Let Ā(w, T ) and B̄(l, T ) be the unique global-in-time solutions of (3.39) initial

conditions Ā0, B̄0 which are guaranteed by Theorem 4.5. These functions are in H7

by virtue of (5.17). Now we return to our estimates of e and f . The triangle inequality
gives

e ≤ sup
|t|≤T0ε−3

∥∥∥∥rε(t)− 1

κ(·)
[
ε2Ā(ε(· − ct), ε3t) + ε2B̄(ε(·+ ct), ε3t)

] ∥∥∥∥
�2

+ sup
|t|≤T0ε−3

∥∥∥∥ 1

κ(·) ε
2A(ε(· − ct), ε3t)− 1

κ(·) ε
2Ā(ε(· − ct), ε3t)

∥∥∥∥
�2

+ sup
|t|≤T0ε−3

∥∥∥∥ 1

κ(·) ε
2B(ε(·+ ct), ε3t)− 1

κ(·) ε
2B̄(ε(·+ ct), ε3t)

∥∥∥∥
�2
.

Using (4.8) from Lemma 4.3 gives

sup
|t|≤T0ε−3

∥∥∥∥ 1

κ(·)ε
2A(ε(· − ct), ε3t)− 1

κ(·)ε
2Ā(ε(· − ct), ε3t)

∥∥∥∥
�2

≤ sup
|t|≤T0ε−3

Cε3/2‖A(· − ct, ε3t)− Ā(· − ct, ε3t)‖H1 .

The H1 norm is shift invariant, and so

sup
|t|≤T0ε−3

∥∥∥∥ 1

κ(·)ε
2A(ε(· − ct), ε3t)− 1

κ(·)ε
2Ā(ε(· − ct), ε3t)

∥∥∥∥
�2

≤ sup
|T |≤T0

Cε3/2‖A(·, T )− Ā(·, T )‖H1 .

To control A− Ā we use the following.
Corollary 5.4 (KdV solution map is Lipschitz). Suppose that U , Ū solve the

KdV equation (4.12) with a �= 0 and with U(X, 0), Ū(X, 0) ∈ H3. Then there exists
μ > 0 such that

‖U(T )− Ū(T )‖H1 ≤ eμT ‖U(0)− Ū(0)‖H1

for all T > 0. The constant μ depends on ‖U(0)‖H3 + ‖Ū(0)‖H3 .
The proof follows from routine energy arguments similar to but easier than those

used to prove the continuous dependence on initial conditions for KdV equations in
[1]. We omit it. Using this, we see that

sup
|T |≤T0

‖A(·, T )− Ā(·, T )‖H1 ≤ C5‖A0 − Ā0‖H1 .
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Using (5.14) gives

sup
|T |≤T0

‖A(·, T )− Ā(·, T )‖H1 ≤ C5ε
4.

The same reasoning applied to the “B” terms gives

e ≤ sup
|t|≤T0ε−3

∥∥∥∥rε(t)− 1

κ(·)
[
ε2Ā(ε(· − ct), ε3t) + ε2B̄(ε(·+ ct), ε3t)

]∥∥∥∥
�2
+ C5ε

11/2

and

f ≤ sup
|t|≤T0ε−3

∥∥∥pε(t)−√
mκ̆

[
ε2Ā(ε(· − ct), ε3t)− ε2B̄(ε(·+ ct), ε3t)

]∥∥∥
�2
+ C5ε

11/2,

and so we need to estimate

e1 := sup
|t|≤T0ε−3

∥∥∥∥rε(t)− 1

κ(·)
[
ε2Ā(ε(· − ct), ε3t) + ε2B̄(ε(·+ ct), ε3t)

]∥∥∥∥
�2

and

f1 := sup
|t|≤T0ε−3

∥∥∥pε(t)−√
mκ̆

[
ε2Ā(ε(· − ct), ε3t)− ε2B̄(ε(·+ ct), ε3t)

]∥∥∥
�2
.

5.3. Energy estimates. Now form (r̃ε(t), p̃ε(t)) from Ā(w, T ) and B̄(l, T ) as
described in section 3. Addition, subtraction, and the triangle inequality give

e1 ≤ sup
|t|≤T0ε−3

‖rε(t)− r̃ε(t)‖�2

+ sup
|t|≤T0ε−3

∥∥∥∥r̃ε(t)− 1

κ(·)
[
ε2Ā(ε(· − ct), ε3t) + ε2B̄(ε(·+ ct), ε3t)

] ∥∥∥∥
�2

and

f1 ≤ sup
|t|≤T0ε−3

‖pε(t)− p̃ε(t)‖�2

+ sup
|t|≤T0ε−3

∥∥∥p̃ε(t)−√
mκ̆

[
ε2Ā(ε(· − ct), ε3t)− ε2B̄(ε(·+ ct), ε3t)

]∥∥∥
�2
.

Using the definitions of r̆ε, p̆ε together with (4.4) in Proposition 4.2, we see that

sup
|t|≤T0ε−3

∥∥∥∥r̃ε(t)− 1

κ(·)
[
ε2Ā(ε(· − ct), ε3t) + ε2B̄(ε(·+ ct), ε3t)

] ∥∥∥∥
�2

= sup
|t|≤T0ε−3

‖r̆ε(t)‖�2 ≤ C5ε
5/2

and

sup
|t|≤T0ε−3

∥∥∥p̃ε(t)−√
mκ̆

[
−ε2Ā(ε(· − ct), ε3t) + ε2B̄(ε(·+ ct), ε3t)

]∥∥∥
�2

= sup
|t|≤T0ε−3

‖p̆ε(t)‖�2 ≤ C5ε
5/2.
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Thus we need to estimate

e2 := sup
|t|≤T0ε−3

‖rε(t)− r̃ε(t)‖�2 and f2 := sup
|t|≤T0ε−3

‖pε(t)− p̃ε(t)‖�2 .

The argument we use is based on a similar one developed in [21]. Define η(j, t) and
ξ(j, t) via

(5.18) rε = r̃ε + ε5/2η and pε = p̃ε + ε5/2ξ.

Clearly, then, (η(t), ξ(t)) exist for all |t| ≤ T0ε
−3. If we can show that they are O(1)

on that interval, we will be done.
A direct computation shows that η and ξ solve

η̇ = δ+ξ + ε−5/2Res1(r̃ε, p̃ε),

ξ̇ =
1

m
δ−

[
Ṽ ′(η; t)

]
+ ε−5/2Res2(r̃ε, p̃ε),

(5.19)

where Ṽ is defined as

Ṽj(z; t) := ε−5
[
Vj(r̃ε(j, t) + ε5/2z)− Vj(r̃ε(j, t)) − V ′

j(r̃ε(j, t))ε
5/2z

]
.

The “primes” on Ṽ are derivatives with respect to z.
The ε−5/2 prefactors which multiply the residuals in (5.19) look troubling, but

recall that (4.6) in Proposition 4.2 implies that the residuals areO(ε11/2). In particular
if we combine that estimate with the smoothing estimates in (5.15), (5.16), and (5.17),
we obtain

(5.20) sup
|t|≤T0ε−3

‖(Res1(r̃ε(t), p̃ε(t)),Res2(r̃ε(t), p̃ε(t)))‖�2×�2 ≤ C5ε
11/2.

That is to say, these terms are, in fact, very small.
Since the residual terms are small, we can gain some insight into (5.19) by con-

sidering the system without them. In this case (5.19) looks formally very much like
(2.1), which, given that H(t) is constant for (2.1), leads us to the conclusion that

E(t) :=
∑
j∈Z

[
1

2
m(j)ξ2(j, t) + Ṽj(η(j, t); t)

]

might be “sort of conserved” for (5.19). We claim that
√
E(t) is equivalent to the

�2 × �2 norm of (η, ξ). We can use (5.7) to handle the “ξ” part of E(t).
Handling the “Ṽ” part of E(t) is very similar to the estimate (5.6) for H(t) above.

Taylor’s theorem gives

Ṽj(η(j, t); t) =
1

2
V ′′
j (b(j, t))η

2(j, t),

where b(j, t) lies between r̃ε(j, t) and r̃ε(j, t) + ε5/2η(j, t) = rε(j, t). Thus

|b(j, t)| ≤ max {‖r̃ε(t)‖�∞ , ‖rε(t)‖�∞} .

Using (5.8) and Proposition 4.2, this gives

sup
j∈Z

sup
|t|≤T0ε−3

|b(j, t)| ≤ C5ε
3/2.
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Since the b(j, t) are small, then we must have V ′′
j (b(j, t)) ∼ V ′′

j (0) = κ(j). More
specifically, there exists 0 ≤ ε2 ≤ C5, with ε2 ≤ ε1 from above, such that 0 ≤ ε ≤ ε2
implies

1

2
min
k∈Z

κ(k) ≤ sup
j∈Z

sup
t∈R

V ′′
j (b(j, t)) ≤

3

2
max
k∈Z

κ(k).

Thus we have

1

4
min
j
κ(j)‖η(t)‖2�2 ≤

∑
j∈Z

Ṽj(η(j, t); t) ≤
3

4
max

j
κ(j)‖η(t)‖2�2 ,

and so there exists Ce > 1 with

(5.21)
1

Ce
‖(η(t), ξ(t))‖�2×�2 ≤

√
E(t) ≤ Ce‖(η(t), ξ(t))‖�2×�2

for all |t| ≤ T0ε
−3; this establishes the equivalence of

√
E(t) to the �2 × �2 norm.

Remark 4. In [21], the authors develop an “alternate energy” to control the
errors in an ad hoc way. Our E(t) is (essentially) the same energy functional that
they use; here we see that it arises naturally using the mechanical energy as a starting
point.

Moving on, we differentiate E(t) to get

Ė(t) =
∑
j∈Z

[
m(j)ξ(j, t)ξt(j, t) + Ṽ ′

j(η(j, t); t)ηt(j, t) + ∂tṼj(η(j, t); t)
]
.

Using (5.19) gives

Ė(t) =
∑
j∈Z

[
ξδ−[Ṽ ′(η; t)] + ε−5/2mξRes2 + Ṽ ′(η; t)δ+ξ + ε−5/2Ṽ ′(η; t)Res1 + ∂tṼ(η; t)

]
,

where we have hidden all explicit dependencies of the functions to make things more
readable. Summing by parts kills a few terms, and we get

Ė(t) =
∑
j∈Z

[
ε−5/2mξRes2 + ε−5/2Ṽ ′(η; t)Res1 + ∂tṼ(η; t)

]
.(5.22)

Cauchy–Schwarz gives∑
j∈Z

ε−5/2mξRes2 ≤ C5ε
−5/2‖ξ‖�2‖Res2‖�2 .

Using (5.20) then implies∑
j∈Z

ε−5/2mξRes2 ≤ C5ε
3‖ξ‖�2 .

Likewise, we have the following for the second term in (5.22):∑
j∈Z

ε−5/2Ṽ ′(η; t)Res1 ≤ C5ε
3
∥∥∥Ṽ ′(η; t)

∥∥∥
�2
.
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Now, the definition of Ṽ tells us

Ṽ ′
j(η(j, t); t) = ε−5/2

[
V ′
j(r̃ε(j, t) + ε5/2η(j, t))− V ′

j(r̃ε(j, t))
]
.

The mean value theorem gives

Ṽ ′
j(η(j, t); t) = V ′′

j (b(j, t))η(j, t),

where b(j, t) is between r̃ε(j, t) and r̃ε(j, t)+ ε
5/2η(j, t). Using the same estimates and

reasoning that led to (5.21) gives∣∣V ′′
j (b(j, t))

∣∣ ≤ 3

2
max
k∈Z

κ(k).

Thus ∑
j∈Z

ε−5/2Ṽ ′(η; t)Res1 ≤ C5ε
3‖η‖�2 .

Finally, a direct calculation shows that

∂tṼj(η(j, t); t)

= ε−5∂tr̃ε(t)
[
V ′
j(r̃ε(j, t) + ε5/2η(j, t)) − V ′

j(r̃ε(j, t))− V ′′
j (r̃ε(j, t))ε

5/2η(j, t)
]
.

Taylor’s theorem again gives

V ′
j(r̃ε(j, t) + ε5/2η(j, t)) − V ′

j(r̃ε(j, t)) − V ′′
j (r̃ε(j, t))ε

5/2η(j, t) =
1

2
V ′′′(b(j, t))ε5η2(j, t)

for b(j, t) between r̃ε(j, t) and r̃ε(j, t)+ε
5/2η(j, t). As before, we know |b(j, t)| ≤ C5ε

3/2,
and so we use the same ideas as above to get∣∣∣∂tṼj(η(j, t); t)

∣∣∣ ≤ C5 |∂tr̃ε(j, t)| η2(j, t) ≤ C5‖∂tr̃ε(t)‖�∞η2(j, t).

Then we have, using (4.5), ∣∣∣∂tṼj(η(j, t); t)
∣∣∣ ≤ C5ε

3η2(j, t),

and therefore ∑
j∈Z

∂tṼj(η, t) ≤ C5ε
3‖η(t)‖2�2 .

Putting the above together gives

Ė ≤ C5ε
3
(
‖(η, ξ)‖�2×�2 + ‖(η, ξ)‖2�2×�2

)
.

Since y ≤ 1 + y2 for all y ∈ R, this implies

Ė ≤ C5ε
3
(
1 + ‖(η, ξ)‖2�2×�2

)
.

Using (5.21), this becomes

Ė ≤ C5ε
3
(
1 + C2

eE
)
≤ C5ε

3(1 + E).
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Gronwall’s inequality then tells us that

E(t) ≤ eC5ε
3t(1 + E(0))− 1.

Thus,

sup
|t|≤T0ε−3

E(t) ≤ C5(1 + E(0)).

Using (5.21),

(5.23) sup
|t|≤T0ε−3

‖(η(t), ξ(t))‖2�2×�2 ≤ C5(1 + ‖(η(0), ξ(0))‖2�2×�2).

A short calculation using the definitions of η and ξ reveals that

(5.24) η(0) = ε−5/2r̆ε(0) and ξ(0) = ε−5/2p̆ε(0),

and so (4.4) indicates

‖(η(0), ξ(0))‖�2×�2 ≤ C5.

Thus,

sup
|t|≤T0ε−3

‖(η(t), ξ(t))‖2�2×�2 ≤ C5.

With this estimate, we have proven Theorem 2.1.
Remark 5. Due to the length of the argument, the origin of the discrepancy

of a power of ε between our error estimates (which are O(ε5/2)) and the results in
[3] and [21] (which are O(ε7/2)) is not immediately transparent. Let us first discuss
the difference between our estimate and that of [21] (which treats the homogeneous
problem). If one examines the formulas in (3.24), (3.25), (3.31), and (3.33), one sees
that the χn are exactly zero when the material constants do not vary. This has the
effect that (more or less) the expansion in (3.6) only has terms with even powers of ε.
The lack of odd powers of ε in the expansion improves the estimate on the residuals in
(4.15) from O(ε11/2) to O(ε13/2) “for free” because there are no terms of O(ε11/2) in
them. Subsequently everything conspires together in a nice way to get the better error
estimate.

On the other hand, in [3], the authors proceed using Bloch wave transforms in-
stead of the homogenization approach we employ. This makes it somewhat difficult to
precisely explain the difference. Roughly speaking, what they do is to include higher
order terms in their definition of the KdV approximation. In our case, the KdV
approximation given by (2.7) can be succinctly written as

(5.25) (r, p) ∼ ε2(R0, P0).

Steps analogous to those undertaken in [3] would be to replace this with something
akin to

(5.26) (r, p) ∼ ε2(R0, P0) + ε3(R1, P1).

Ultimately this would improve the estimate on the residuals to O(ε13/2) and would
result in the better overall error estimate.
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So why do we not do this? Notice that since we made our choice (5.25), given
the long wave data (2.3) for (2.1), the choice of the initial conditions for the KdV
equations is natural and can be done independently of ε. All we do is set the initial
conditions of (2.1) equal to the approximation in (2.7) evaluated at t = 0 and solve
for A0 and B0; all ε cancel.

If we used (5.26), on the other hand, notice that the definitions of R1 and P1 in
(3.26) involve χ1 and χ2, which in the nonhomogeneous case are nonzero. They also
involve derivatives of A and B. It is no longer clear how one would go from (2.3)
to choices for A0 and B0. It certainly cannot be done in a way independent of ε.
Ultimately, the authors of [3] choose the initial conditions for the KdV equations first
and then use their analogue of (5.26) to choose the initial conditions for (2.1). This
amounts to placing further restrictions on the initial conditions of (2.1) which are
more complicated than ours are in (2.3). The price we have paid for allowing a larger
class of initial data is a less accurate estimate. We note that this is an occurrence
of a common problem with the validity of homogenization approximations near the
boundary [4]. Lastly we remark that the discrepancy is not connected in any way to
the loosening of the restrictions on the regularity or decay of the initial data, but only
to the process by which we “reconcile” the initial data of the lattice problem with that
of its long wave limit.

6. Simulations. To demonstrate our results, we carry our simulations of the
lattice differential equation (2.1) and compare them with solutions of the KdV equa-
tions. We simulate (2.1) by truncating the lattice to include M � 0 sites, enforcing
periodic boundary conditions at the ends, and then using a standard Runge–Kutta
(RK4) algorithm to compute solutions of the resulting system of differential equa-
tions. As for the KdV equations, most of our simulations use the well-known explicit
formulas for the soliton solutions (see [6]) and thus do not require simulation.

6.1. Solitary waves. First we specify ε, m(j), κ(j), and β(j) in such a way so
that ab �= 0. We then set

(6.1) φ(X, 0) =
3

b
sech2

(
1

2
√
a
X

)
and ψ(X, 0) =

3

b
√
mκ̆

sech2
(

1

2
√
a
X

)
,

which implies via (2.5) that

A(w, 0) =
3

b
sech2

(
1

2
√
a
w

)
and B(l, 0) = 0.

The initial condition for A is exactly that of the KdV solitary wave, and so

A(w, T ) =
3

b
sech2

(
1

2
√
a
(w − cT )

)
and B(l, T ) = 0

for all T . Given Theorem 2.1, we expect the solution of (2.1) to be approximately a
solitary wave. We compute (r(j, t), p(j, t)) with our RK4 algorithm over the interval
t ∈ [0, ε−3]. We repeat the process for a variety of 0 < ε < 1.

6.1.1. Mass dimer. In this case, we had

(6.2) κ(j) = 1, β = 1, and m(j) = 1.5 + (−1)j0.5.

Since N = 2 here, such a lattice is called a “dimer” [3]. Figure 1 contains snapshots
of the solution of (2.1) together with the approximation at several times. For all ε,
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Fig. 1. Solution (r-component only) of (2.1) with initial data given by (6.1) and coefficients
(6.2) together with the KdV approximation (given by (2.7)). Here ε = 0.075.

the r-component of the solution is qualitatively a solitary wave which propagates to
the right plus minor features which are much smaller than the amplitude of the wave.
(These discrepancies are consistent with those observed in [23].)

In Figure 2 we plot the error between the numerically computed solution and the
KdV approximation (namely, e + f from (5.1) and (5.2) above) as a function of ε.
The slope of the resulting line indicates the power of ε in the approximation. In this
case we find the power is

power ∼ 2.473,

which is in line with the power of ε stated in Theorem 2.1, i.e., 2.5.

6.1.2. General dimer. In this case, we had

(6.3) κ(j) = 1.5 + (−1)j0.5, β = 1.5 + (−1)j0.5, and m(j) = 1.5 + (−1)j0.5.

Again, N = 2. Figure 3 contains snapshots of the solution of (2.1) together with the
approximation at several times. For all ε, the r-component of the solution is qualita-
tively a “spiky” solitary wave which propagates to the right. The irregular features
are due to the prefactor of 1/κ(j) in (2.7). Note that in [15] and [14], the authors
observe the same sort of solution for models of waves in layered elastic media. They
call such solutions “stegotons,” given their resemblance to the dinosaur stegosaurus;
though we prefer “hedgehogons,” we abide by their choice.
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Fig. 2. Error of the approximation of solutions of (2.1) by KdV equations with initial data
given by (6.1) and coefficients (6.2).

Fig. 3. Solution (r-component only) of (2.1) with initial data given by (6.1) and coefficients
(6.3) together with the KdV approximation (given by (2.7)). Here ε = 0.075.
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Fig. 4. Error of the approximation of solutions of (2.1) by KdV equations with initial data
given by (6.1) and coefficients (6.3).

In Figure 4 we plot the error against ε as above. In this case we find the numeri-
cally computed power of ε in the error is

power ∼ 2.450,

which is in line with the power of ε stated in Theorem 2.1, i.e., 2.5.

6.1.3. Mass polymer, N = 10. In this case, we let κ(j) = 1 and β(j) = 1
and randomly selected ten positive numbers (taking values between 0.5 and 2.5) to
be the masses m(j). Figure 5 contains snapshots of the solution of (2.1) together
with the approximation at several times. For all ε, the r-component of the solution is
qualitatively a solitary wave which propagates to the right.

In Figure 6 we plot the error against ε as above. In this case we find the numeri-
cally computed power of ε in the error is

power ∼ 2.682,

which is in line with the power of ε stated in Theorem 2.1, i.e., 2.5.

6.1.4. General polymer, N = 100. In this case, we let κ(j), β(j), and m(j)
each be one hundred randomly selected positive numbers (taking values between 0.5
and 2.5 for κ(j) andm(j) and between 0 and 1 for β(j)). Figure 7 contains a snapshot
of the solution of (2.1) together with the approximation at several times. For all ε,
the r-component of the solution is qualitatively a particularly spiky stegoton which
propagates to the right.
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Fig. 5. Solution (r-component only) of (2.1) with initial data given by (6.1) and coefficients
where κ and β are constant and m(j) varies with period N = 10, together with the KdV approxima-
tion (given by (2.7)).
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Fig. 6. Error of the approximation of solutions of (2.1) by KdV equations when initial data
given by (6.1) and coefficients where κ and β are constant and m(j) varies with period N = 10.
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Fig. 7. Solution (r-component only) of (2.1) with initial data given by (6.1) together with the
KdV approximation (given by (2.7)). Here, the coefficients κ(j), β(j), and m(j) vary with period
N = 100 and ε = 0.03.

6.2. Head-on collision of equal amplitude solitary waves. First we specify
ε, m(j), κ(j), and β(j) in such a way so that ab �= 0. We then set

φ(X, 0) =
3

b

2∑
i=1

sech2
(

1

2
√
a
(X − xi)

)
and

ψ(X, 0) =
3

b
√
mκ̆

2∑
i=1

(−1)i sech2
(

1

2
√
a
(X − xi)

)
,

(6.4)

where x1 and x2 simply translate the peaks horizontally. For these simulations x1−x2

ε
was approximately 30. This implies via (2.5) that

A(w, 0) =
3

b
sech2

(
1

2
√
a
(w − x1)

)
and B(l, 0) =

3

b
sech2

(
1

2
√
a
(l − x2)

)
.

These latter guarantee that

A(w, T ) =
3

b
sech2

(
1

2
√
a
(w − x1 − cT )

)
and B(l, T ) =

3

b
sech2

(
1

2
√
a
(l − x2 + cT )

)
for all T . Given Theorem 2.1, we expect the solution of (2.1) to be the head-on
collision of two equal amplitude solitary waves. We compute (r(j, t), p(j, t)) with our
RK4 algorithm over the interval t ∈ [0, ε−3]. We repeat the process for a variety of
0 < ε < 1.
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Fig. 8. Solution (r-component only) of (2.1) with initial data given by (6.4) together with the
KdV approximation (given by (2.7)). Here the coefficients κ(j), β(j), and m(j) vary with period
N = 10 and ε = 0.045.

6.2.1. General dimer, N = 10. In this case, we took κ(j), β(j), and m(j) to
be ten randomly selected positive numbers each (taking values between 0.5 and 2.5
for κ(j) and m(j) and between 0 and 1 for β(j)). Figure 8 contains snapshots of the
solution of (2.1) together with the approximation at several times. In Figure 9 we
plot the error against ε. In this case we find the numerically computed power of ε in
the error is

power ∼ 2.715,

which is in line with the power of ε stated in Theorem 2.1, i.e., 2.5.

6.3. Approximation by Airy’s equation. It is possible that the coefficients
κ(j) and β(j) are arranged in just such a way that b = 0 in (3.39). The simplest such
case is when

(6.5) m = 1, κ = 1, and β(j) = (−1)j.

We treat this situation here. In this case, the nonlinear problem (2.1) is approximated
by two linear Airy’s equations, which after appropriate rescaling, are of the form

UT = Uyyy.

We compute solutions of this using the explicit formula Û(k, T ) = e−ik3T Û(k, T ) and
using standard techniques to approximate the Fourier transform with the FFT.

We take as initial conditions

(6.6) φ(X, 0) = sech2(X) and ψ(X, 0) = 0.
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Fig. 9. Error of the approximation of solutions of (2.1) by KdV equations when the initial data
given by (6.1) and coefficients where κ(j), β(j), and m(j) vary with period N = 10.

Fig. 10. Solution (r-component only) of (2.1) with initial data given by (6.6) and coefficients
given by (6.5) together with the Airy approximation (given by (2.7)). Here ε = 0.2. Observe how
the solutions break up into a piece which moves left and one which moves right. In the third graph,
note the dispersive tail which forms behind the left-moving wave; this is behavior characteristic of
Airy’s equation solutions.
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Fig. 11. Error of the approximation of solutions of (2.1) by Airy equations with the initial
data given by (6.5) and coefficients given by (6.6).

Figure 10 contains snapshots of the solution of (2.1) together with the approximation
at several times.

In Figure 11 we plot the error against ε. In this case we find the numerically
computed power of ε in the error is

power ∼ 2.919.

Note that this is quite a bit greater than the error expected. In this setting, since
κ and m are constant, χ1 and χ2 are zero. Many of the terms in the approximation
consequently vanish, and we expect a corresponding improvement in the error bound
to 3.5.

Acknowledgment. J. Douglas Wright thanks Aaron Hoffman for his helpful
comments.
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