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APPROXIMATION OF SOME DIFFUSION EVOLUTION
EQUATIONS IN UNBOUNDED DOMAINS

BY HERMITE FUNCTIONS

DANIELE FUNARO AND OTARED KAVIAN

Abstract. Spectral and pseudospectral approximations of the heat equation
are analyzed. The solution is represented in a suitable basis constructed with
Hermite polynomials. Stability and convergence estimates are given and nu-
merical tests are discussed.

Introduction

Many physical models involve the determination of the solution of a partial
differential equation in an unbounded domain. The conditions at infinity are in
general given by a certain asymptotic behavior for the solution. This could be
obtained, for instance, by requiring a prescribed rate of decay at infinity. From
the point of view of numerical approximation, it is not an easy task to give a
constructive interpretation of the behavior at infinity. Among the techniques,
one of the most widely used is to restrict the computation to a finite domain
and impose some relations on the "artificial boundary'" according to the physics
of the problem.

As to the approximation by spectral methods, the literature for this kind
of problems to our knowledge is quite sparse. We may quote three papers.
The first by C. Canuto, S. I. Hariharan, and L. Lustman [1] deals with the
approximation of an exterior elliptic problem in two dimensions by imposing
an appropriate farfield condition at the artificial boundary in order to recover
spectral convergence. In the second by Y. Maday, B. Pernaud-Thomas, and H.
Vandeven [13], the solution of

ut + ux = 0,        (t,x)£(0,T)x(0,+oo),
is approximated by a truncated series of Laguerre polynomials. Finally, O.
Coulaud, D. Funaro, and O. Kavian [3] consider the numerical approximation
of the solution to

-Am + Xu = f,
in the exterior of a ball or a square, using Laguerre polynomials.
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598 DANIELE FUNARO AND OTARED KAVIAN

In this paper we are concerned with the approximation of parabolic (or ellip-
tic) problems by expanding the solution in the basis of the Hermite functions,
i.e., Hermite polynomials multiplied by a Gaussian. This kind of approach is
suggested when the decay at infinity is at least like exp(-ax2) for some a > 0.
For a certain class of evolution equation, when the initial data satisfies the re-
quired decay condition, one can prove that the solution has at each time the
same decay. As we show in § 1, Hermite functions are a very natural choice for
the approximation of solutions to diffusion PDE's, after an appropriate change
of the space and time variables (the so-called similarity transformation). In §2,
we study the spectral Galerkin approximation, we prove the convergence of the
scheme and we give error estimates. Section 3 is devoted to the analysis of the
pseudospectral approximation for the case in which the domain is R , d > X.
Collocation is imposed at the zeros of the Hermite polynomial of degree N+X.
We note that, since the zeros of Hermite polynomials spread all over the infinite
domain with increasing N, no restriction in the size of the domain of approx-
imation is required, and an artificial boundary does not exist. In §4 the results
are generalized to cover the case of problems in unbounded domains which are
Cartesian products of intervals; the case of approximation on a half straight
line is also investigated. Finally, in §5 we give and discuss several numerical
examples in one and two dimensions. Also we briefly indicate how to adapt the
previous analysis to other situations.

1. Statement of the problem

In the study of qualitative properties and the numerical approximation of
solutions to equations such as:

' ut-Au + F(u) = 0   inQ,
(1.1) <  u(0, x) = u0(x),

u(t, •) satisfies certain boundary conditions on <9Q,

a crucial role is played by the fact that the operator A := -A associated with
the specified boundary conditions on the space L (Q) has, or does not have,
a compact resolvent. For instance, if the prescribed boundary condition is the
homogeneous Dirichlet condition u(t, •) = 0 on dQ, and the domain Q is
bounded with <9Q Lipschitzian, then the domain of A is contained in H0 (Q),
and by Rellich's theorem the resolvent of A is compact. Now, as is well known,
for the numerical approximation of the solution by a spectral, pseudospectral, or
a finite element method, the compactness assumption is particularly important.

When Q is unbounded, say Í2 = Rd or Q = M.d~x x R+ , the operator A no
longer has a compact resolvent. In this case, as we shall see in the sequel, one
may use the whole structure of the linear operator dt - A. In order to make
this idea more transparent, we consider as an example the following Stokes
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evolution equation:

(1.2)
ut-Au + Vp = f,        t>0, X£
u(0, x) = u0(x),

{ V -u(t, x) = 0,

where u = (ux, ... , ud) £ R , d = 2 or 3, and / and u0 are given in suitable
spaces. Here, since the domain is R , the inclusion H (R ) c L (R ) is not
compact. As suggested in M. Escobedo and O. Kavian [6] and O. Kavian [9] in
the study of the parabolic equations

ut - Au ± \uf~ u = 0,
one can associate with the function u and the operator (d,-A) another function
v and another operator (dt + L) such that the new elliptic operator L (in an
appropriate Hubert space) has a compact resolvent. Moreover, the functions u
and v are related in a simple way. More precisely, if u and p are given by
(1.2), define v, q, and g by

u(t,x)=:v ílog(l + í), -==

(1.3) p(t,x)=:(X+t)-X/2q(xog(X + 0
vTTT

f(t, x) =: (1 +t)~xg (k>g(l + t), -j=j

Now setting

(1.4) s:=Xog(X + t),       J vTTT
one checks easily that (v , q) satisfies

f v, + Lv + Vq = g,        s > 0, y £ Rd,
(1.5) v(0,y) = u0(y),

{ V-v(s,y) = 0,
where in the first equation of ( 1.5), instead of the elliptic operator -A, we have
the elliptic operator L defined by

(1.6) Lç>:=-Ap-^^.
By the results in [5] this operator is selfadjoint in the weighted Lebesgue space:

(1.7) L2JRd) := j/; J  \f(y)\2w(y)dy < œ} ,

where w(y) := exp(|y| /4), and has a compact inverse. Furthermore, in the
special case considered here, i.e., Q = R , the eigenvalues and eigenfunctions
of L are known, namely (we denote here, for a £ N  , \a\ := a, H-h ad) :

LB) =X;(P:        ,YJ ,a 7~7 ,a '
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600 DANIELE FUNARO AND OTARED KAVIAN

where the 7th eigenvalue A ■ is

(1.8) Xj-.= d + J2~l    forj>X,

and the corresponding eigenfunctions are

a£N  ,   a =7-1,  D   :=—3-=-.
dy?      dya/

These eigenfunctions are nothing but the Hermite functions, and can be written
in terms of Hermite polynomials. We define these by

V\   dm   (      (-x2\\
hm(x):=(-X)   exp   —    —m   exp(1.10) »«v*/-v   v   ^^y^^v^   4   ^

for m G N and x e R.

Then setting

(1.11) Ha(y):=ha(yx)--.had(yd),

we have

y = (yx, ... , yd) £ Rd , a = (ax, ... , ad) £ Nd ,   \a\ = j - X.

Note that definition (1.10) differs slightly from the one used in the literature
where, instead of exp(-x /4), one has exp(-x2/2) or exp(-x2). Now the
resolution of the elliptic equation

(1.13) L¥ = f,        f£L2JRd),

or of the parabolic equation

[ d.(p + Lq> = 0,
(1-14) { -¡s

\<p(0,-) = f(.)£L2w(Rd)

in terms of the above eigenfunctions is quite simple. Indeed (here a! :=
IW(*iO):
(1-15) ^)=E¿caw"w2/4

aeNä

and

(1.16) <p(s,y)= ^cQexp(-A1+|Q|5)//Q(y)exp(-b|2/4),
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APPROXIMATION BY HERMITE FUNCTIONS 601

where the coefficients ca are

c _      S,fly)*.0)dy      _ 2^i f
•    //¡J|/í,M|2exp(-M2/4)¿>'     n'Vctjy'  °W  '

This suggests, as we shall develop in the next sections, a numerical approxima-
tion of y/ or cp using a truncation of the expansions (1.15) or (1.16).

Remark 1.1. The so-called similarity transformation (1.3) introduced for the
study of the linear system (1.2) can be modified to be applied to the nonlinear
Navier-Stokes equation. Indeed, if (u, p) is a solution to

(1.18) ut-Au + (u-V)u + Vp = f,       V-w = 0,
then we define (v, q) and g by

u(t,x)=:(X + t)~x/2v (log(l + r);
vTTT

(1.19) p(t, x) =: (X + t)~Xq (log(l + t), -j==-

f(t, x) =: (1 + ty3/2g (log(l + 0, ^=) •

Setting 5 and y as in (1.4), one checks easily that (v , q) satisfies

(1.20) vs + Lv + (v- V)v + Vq- \v = g,       V-v = 0,
where L is the operator defined in (1.6). In [10] this equation is studied in the
space L2w(Rd).

Remark 1.2. For / = 0, J. Leray in [11] seeks a self-similar solution u to
(1.18) (which blows up at time, say, T := X) by setting

u(t,x) = (X-t)~X/2z(-^=\ ,        0 < í < 1.

It turns out that such a function Z would satisfy

(1.21) -AZ + y^- + (Z-V)Z + Vq + ^Z = 0,        V-Z = 0.
1 1Actually, one can prove that if d = 2, and if Z £ H (R ) satisfies (1.21), then

Z = 0 (cf. [10]). For d = 3, as far as we know, it is an open question whether
(1.21) has a nontrivial solution or not. On the other hand, one can look for
self-similar solutions of (1.18) which are global in time, i.e., such that

u(t,x) = t~XI2z(^Ç\ ,        t>0,

i.e., Z would be a steady state for the evolution equation (1.20). When Z £
Hx (Rd) and d > 2, one can prove that Z = 0.

2.  GaLERKIN APPROXIMATION

For the reader's convenience we begin by recalling some well-known proper-
ties of Hermite polynomials. Let a > 0 be a fixed parameter. For n £ N we
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602 DANIELE FUNARO AND OTARED KAVIAN

define the «th Hermite polynomial on R by

(2.1) hnjx):=(-xrexl'4a2^(e-x2/4al).

We shall denote as in (1.10) hn:= hn ,. These polynomials have the following
properties (cf. for instance [4, 14]):

(2.2)

(2.3)

2a2h''+nh„    = xh',n ,a

¡h0Jx) = X,
h\ a(x) = x/2a2,

{ 4a2hnJx) = 2xhn_Xa(x) - 2(n - X)hn_2Jx)   for n > 2,
and satisfy the orthogonality relations

(2-4)       / hn a(x)hm a^e'*14" dx = 2'""a'2"n\y/liS"   for n, m > 0 .
Jw

Our aim is to approximate the solution of the following parabolic equation
(u(t, x) eR):

dtu-a Au = f,        t<0, xeQ,
u(0, x) = u0(x),        XEfl,

u(t>')\aa = 0> t>0>
^Q = Rd orRrf_1 x (0, oo).

Defining v and g as in (1.3), and s and y as in (1.4), one checks that

(2.5)

( dv -a Av-y-Vv/2 = g,       s>0,y£fl,
(2.6) v(0,y) = u0(y), yen,

I u(5' •)|ao = 0> i>0-
In the sequel we shall use the following notations and functional spaces:

,2\

(2.7)

(2.8)

w(y) := exp
4a2

r 2.       y-Vm       a _  .    _ .
Lacp := -a Acp - y—^- = -—V • (waV<p),

z. wa

(2.9) L2W (fi) := 1 cp : Q -► 1 measurable;   / |^(y)|2^a(y) í/j> < ce i .

For integers m > X,

(2.10) H™(Cï):={<p£L2w(Çi)-Da<p£L2w(iï),  \a\ < m},
a a a

(2.11) H™ 0(Ci):={<p£ H™(n);Da(p = 0 on d Ci, for\a\<m-X}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY HERMITE FUNCTIONS 603

2On L   (SÏ) we denote the scalar product and norm by
a

(2.12) (HvOo a'-= i <p{y)¥(y)wa(y)dy,Ja
(2.13) \\<P\\o,a'-=(<P\<P)o2a>

and for m > X and jj,^6 H™ (Q) :

(2.14) (<P\v)m,a-  ¿2(Da9\Day,)Qia,
\a\<m

(2.15) W<P\\m,a--=(<P\<P)ll2,a-
For 0 < t < 1, we introduce the interpolation spaces

<+T(Q) :=[/£(Q),<+1(fi)] l-T

in the sense of [12]. When a = 1 and fi = R  , it has been proved in [6, §§1
and 2; 9, Lemma (2.1)] that L, is a selfadjoint operator acting on L2w (R ) and
that its inverse L~   exists and is compact. Using these results and a change of
scale in the variable y , one can easily prove the following.

Lemma 2.1. Let Q be as in (2.5) and set D(La) := H2W (fl) n Hxw  0(Í2). Then:

(i) La is a selfadjoint operator on L2W (Q) whose domain is D(La).

(ii) V? € Hxw(Çi), d2\cp\la < \V<p\la = (La<p | <p)0a .
_i 2

(iii) L     exists and is compact on L   (Q).
a

1

Lemma 2.2. Let Q be as in (2.5).
(i)  The embedding H™-x(Çï)cH™(Çï) is compact.

(ii) <p £ HXW(ÇÏ) «. wxJ2"<p = waV2cp £ Hx(Ci) and \ ■ \wxJ2cp £ L2w(Çi).

(Here, HX(Q) denotes the classical Sobolev space, and | • | is the function y y-*
\y\-)

The eigenvalues and eigenfunctions of La on D(La) can be written explicitly
in some cases. We denote by Sp(LJ := {A ; j > 1} the spectrum of La on
D(La), and by 0   the normalized (in Lw) eigenfunctions corresponding to A,.

Proposition 2.3. Let d = X.
(i) If Q. = R, for j > X each eigenvalue A   is simple, A   = 7'/2, and the

corresponding normalized eigenfunction cp. is given by
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604 DANIELE FUNARO AND OTARED KAVIAN

(ii) If SI = (0, ce), for j > X each eigenvalue A ■ is simple, A = j, and the
corresponding normalized eigenfunction <p   is given by

( 22j-2a4j~3 \ 1/2
^•(y):=2^(2;-i)!j    ^'>)exp

Proposition 2.4. Let d > 2 and SI = Rd. For a = (a,, ... , ad) £ Nd, \a\ =
j - 1 > 0, the jth eigenvalue is A. := A. Q := (|a| + d)/2 = (j + d - X)/2, with
multiplicity (j+d~x) ■ The corresponding normalized eigenfunctions are

For other domains such as R x (0, co) or ((0, oc)) one can find the
eigenvalues and eigenfunctions by a suitable combination of the above.

We are now in a position to consider the Galerkin approximation of equation
(2.6). Let N > X be a fixed integer; define the subspace XN of L2w (SI) by

(2.16) XN:=spm{<P; a; 1 <i < N, a£Nd, |a|<i-l}.

Note that, if SI = R  , then the dimension of XN is
N

dimW = £(' +*-')=*•<.

(2.17)

1=1

For instance, if d = X, i.e., SI = R, by Proposition 2.3(i), an element of XN
is a polynomial of degree at most (N - X) multiplied by exp(-y /4a2). If
SI = (0, co), by Proposition 2.3(ii), an element of XN is an odd polynomial of
degree at most (2N - 1) multiplied by exp(-jv ¡4a ).

We approximate the solution v of (2.6) by vN e XN , the unique solution to

^K(S) | Ç>)o,a + (LaVN(S) I <P)o,a = (S(s) I <p)o,a »
Vq>£XN,Vs>0,

. V°) = "0/V>
2where u0N £ XN is the Lw -projection of u0. One has the following conver-

gence result:
Proposition 2.5. Let T > 0 be given, and suppose that

g£L2(0,T;Haw-x(Sl)),    u0£Haw(Sl)nHl  0(S1),       a > 1.
a a a '

Then there exists a unique solution v £ C°(0, T ; Ha (Si) n Hx   ASI)) to (2.6).
a a '

The solution vN is uniquely defined by (2.17), and the following error estimate
holds:

( forO<p<cr, o>X, andO<s<T :

{  \\V(S) - VN(s)\\^a < C^)/2(e-^S\\u0\\a,a + \\g\\û{0,T,Hr)î>
\ wa

where C is independent of N, s, and T.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY HERMITE FUNCTIONS 605

Note that by Propositions 2.3 and 2.4 one sees that XN is proportional to
N ; therefore the error behaves like N~(a~ß)l .

The proof of Proposition 2.5 is classical and can easily be done by writing
the Hubert series for (v(s) - vN(s)) in the basis (<Pj a)|ai=/_i ,•>] •

Now returning to the original equation (2.5), it is natural to define an ap-
proximation of u by uN(t, x) := vN(Xog(X + t), x/y/X +t). As a result of the
previous proposition we can state the following:

Proposition 2.6. Let T > 0 and vN be given by (2.17). Define for t > 0 and
X£Sl

uN(t, x) := vN [Xo%(X + t), -7==-t

Then for 0 < p < a, a > X, there exists a constant C > 0 independent of
N, t, and T such that for f and u0 satisfying

f£L2(0, T; Haw-\Sl)),        u0 £ H°W(SÏ) n <,0(«)

we have for 0 < t < T and u satisfying (2.5) that

\\u(t) - uN(t)\\H,m < CN("-a)l2((X + t)-NI2\\u0\\a,a + H/V(o,r,,c-W •

3. Approximation by the collocation method in the whole space
In this section we analyze the pseudospectral approximation of equation (2.6)

via the formulation (2.17). We begin with the case d = X, SI = R and the
elliptic version of (2.6) and (2.17). Namely, for given A > 0 and g£Haw (R),

a
a > X, we consider

(3.1) Xv - a\y -y-^ = g   fory£R, v£ H°W+2(R)

and its pseudospectral approximation in the space XN+X (defined in (2.16));
here, gN is a suitable projection of g defined below in (3.5):

(3.2) X(vN\(p)0a + (LavN\cp)()a = (gN\cp\a,    Vcp£XN+x, vN£XN+x.

We know that vN is uniquely determined and that there exists a polynomial
PN of degree (at most) N such that

vN(y) = PN(y)exp(-^-2).

Therefore, finding vN is equivalent to finding PN or its values at (N+X) points,
which we choose to be the zeros of the Hermite polynomial hN+x a defined in
(2.1). For the reader's convenience we recall some integration formulae (see,
for instance, [4, Chapter 3], where the results are given for a = 4 ; a change of
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606 DANIELE FUNARO AND OTARED KAVIAN

scale in the variable yields the general result). Define yk N+x a and cok N+x a
by
(3.3) -   (iV+1)! ^

cok,N+l,a 2N+l   2N+3 (h , ,yz        " \nN+2,a\yk,N+l,a>>

for 1 < k < N + X, hN+x a(yk N+x a) = 0. When it is not ambiguous, we shall
write yk,cok instead of yk>N+l>a,'cokN+la.

The following integration formula holds for any polynomial P of degree
<2N+X:

(3.4) /: W-p -¿
N+l

dy = E COk,N+l ,aR(y k,N+l,a>
k=l

For a given function g £ Ha (R), with a > d/2, we define the pseudospectral
a

projection of g onto XN+X by

i psN(g) := gN := QN/wa £ XN+X,
(3.5)      < QN is a polynomial, degQN < N,

{ QN(yk,N+l,a) = Wa(yk,N+l,a)g(yk,N+l,a)> X<k<N+X.
The collocation method to solve (3.2) is defined by

find a polynomial PN, deg PN < N, such that for 1 < / < AT + 1 :

V/>>;) + ̂ P'N(yt) + ÙM + XPN(y.) = QN(y.),
which is obtained from (3.2) by using relation (3.4), after vN is substituted by
vN = PN/wa . Introducing the Lagrange interpolation polynomials

(3.7)

one can write

<-tv) '/V+l ,a(y)

h'N+i,a(yj)(y-yj)'
X<j<N+X,

7V+1
pN(y) = EW/j{y>-

7 = 1

(In fact, / depends on N and a ; but for simplicity we drop these indices as
we do for v .) An easy computation (using (2.2)) shows that

n'N+iJyi)    i

'/<*) =
n'N+ijy^y.-yß

if ¡Vi,

y¡

fiyt) =

^ 4a1
[ h'N+liM_1__

h'N+iJyJ)(yi-yJY

3a2    4a2     2

if i = j,

(<y,-yj)
A
2a2

2      if i ¿j,

ifi = j.
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APPROXIMATION BY HERMITE FUNCTIONS 607

Therefore, problem (3.6) can be written as a linear system in the Lagrange basis.

Remark 3.1. The eigenvalues relative to the pseudospectral approximation of
the operator La are explicitly known. They are the same as in the Galerkin
approximation, i.e.,

Xj = j/2   forj=X,...,N+X.
Let us note that they do not depend on a .   D

In the following we denote by u the Fourier transform of u, and by p the
function p(y) := (X + \y\2)X/2 defined on Rd -> R+. By classical results and
techniques in Sobolev spaces (see, for instance, [12]) one can state the following
proposition (cf. [10] for a detailed proof):

Proposition 3.2. Let d > X be an integer and a > 0 real. Define
S*°(Rd) :={u;u£ H°(Rd) and û £ Ha(Rd)}.

Then S^a(R ), equipped with the norm

IMI^o :=(ll"t+ ll"l¿»)1/2.
is a Hubert space, and the following holds (we denote by [a] the integer part
of a):

(i) u £ S?a(Rd) o pau £ L2(Rd) and pau £ L2(Rd).
(ii) u £ So°(Rd) o Va £ Nd, \a\<a, p°-aDau £ L2(Rd), and pa~aDaû £

L (R ). Moreover, the norms are equivalent.
(iii) u £ S?a(Rd) & V/j, 0 < p < a, /""(/m) £ L2(Rd). Moreover, the

norms are equivalent.
(iv) u £ Ha •» w ' u £ Jt^R ). Moreover, the norms are equivalent.

a

Using this proposition, one may prove the following:

Proposition 3.3. Let a > d/2 and 0 < p < a - d/2 be given. For any u £
^a(R ) one has /« s C0(E ) and there exists a constant C (depending only
on a, p, and d) such that

IAH« < c\\u\\^
'0

■G    .

Proof. In order to see that pßu £ C0(R ), it is sufficient to have (pßu) £
Lx(Rd). Indeed, Vx 6 Rd ,

pM(x)u(x)= f e2inx,i(p^u)(c:)d^
jRd

\pß(x)u(x)\ < ||(A)II/J
1/2 / r ,     \ 1/2

<C||M| y
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608 DANIELE FUNARO AND OTARED KAVIAN

where in the last inequality we use (iii) of Proposition 3.2,  noting that
jV l/""(f )l"2 ¿Í is finite for 2(o - p) > d .   O

Combining Proposition 3.3 and (iv) of Proposition 3.2 yields:

Corollary 3.4. Let a > d/2 and 0<p< a-d/2 begiven. For any u£H   (R )
a

one has pßwxJ2u £ C0(R ) and there exists a constant C (depending only on
a, p, and d) such that

n    M     1/2    ii       ^ ^ii    n\\P  Wa    "lloc^CHML,a-
Next we prove the convergence of psN(g) to g (in appropriate norms) as

N —> co .

Theorem 3.5. Let e > 0 and o > X + e . For any a > 0, there exists a constant
C (dependingonly on a, e, and a) such that

\\g-psN(g)\\^a<CN(X+e-°)l2\\g\\^a,    Vg£H°w(R).

Proof. For g £ L   (R) denote by prN(g) the orthogonal projection of g onto
a

XN+[, i.e.,

PrN(8)-=    ¿2   (*IP,)o,flP,->
l<i<N+l

where (<p,)i>x is the sequence of the eigenfunctions of La . We have

(3.8) \\g-psN(g)\\0ia < \\g-prN(g)\\0ta + \\prN(g)-psN(g)\\0a .

But psN(prN(g)) = prN(g), and using (3.5), (3.4), we may write (note that the
function \wapsN(prN(g) - g)\2 is a polynomial of degree 2N)

\\prN(g)-psN(g)\\0a = \\psN(prN(g) - g)\\Q

-i » e-,vv N+l
¿Z^'^iprM-g^Xjiy)
7 = 1

dy

N+l
= £ CO,

k=l

N+l

Y^exV^2\(prN(g)-g)(y]Vj(yk)

hence by (3.7),

\\prN(g)-psN(g)\\20ia = J2œk
N+l

k=l
exp Í -^ ) (prN(g) - g)(yk)

(3.9) <\\p(x+e)'2wx/2
N+l /     2 \

N+l f    2 \
< C\\prN(g) - g\\2x+ea J2 cokexp \^j p(yk)H{+£)

-d+i)
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(we use here Corollary 3.4 with p = (X + e)/2 and a = X + e). Now following
J. V. Uspensky [15] and using (3.4), we have

N+l (     2 \ »oo
lim £^exp   -^ W)-(1+£) = /     P(y)-{l+e)dy < oc.

Therefore, combining (3.8) and (3.9), we have

\\g-PSN(g)\\o,a < C\\g-prN(g)\\x+ta < cC+ex-a)/2\\g\\aa

and XN+x = (N+X)/2.   D
We are now ready to give the rate of convergence.

Theorem 3.6. Let g £ H° (R) be given with a > X + e (and e > 0).  If v
a

and vN are given by (3.1) and (3.2), then there is a constant C independent of
N > X such that

(3.10) \\v-vN\\2,a<CN{X+e-°)/2\\g\\aa.
1 1Proof. By Lemma 2.1 and Banach's closed range theorem, L : H (R) -+ L  (R)

a a
is an isomorphism. On the other hand, we have

La(v -vN) = g-gN = g- psN(g).

Therefore, there exists C > 0 such that

ll^-Vk^cils-^V^IIo,*-
The proof is concluded in view of Theorem 3.5.   D

Remark 3.7. As a corollary of Theorem 3.6, we can obtain an L°° estimate of
the error on (v - vN), since we have the inequality

sup
y€R

A^expfe <C\\h\\Xta,    Vh£Hxw

For the case of dimension d > 2, we consider the elliptic problem
f Xv + Lv = g   in Rd,

(3.11) \ H
\v£H°Wa(Rd),

where g £ Haw (R ) is given and a > d/2. The pseudospectral approximation
to (3.11) is
(312) (*VN + LaVN = &N>

{ VN £ XN+X ,

where XN+X is defined in (2.16), dimXAr+1 = (N + X)d , and

{ gN:=psN(g) = QN/wa£XN+x,
QN is a polynomial whose degree in each variable is < N,(3.13)

(we denote ya := (ya ,...,y), yk:=yk<N+Ua for X < k < N + X).
lQn = wa(ya)g(ya),      a£{x,...,N+x}d
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We can state the following convergence theorem:

Theorem 3.8. Let e > 0 and o >d + e. There is a constant C > 0 such that if
g £HÖW (Rd) and v , vN are solutions to (3.11), (3.12) for any N > 1, one has

m m        ^ /^ T,Ád+£-o)l2,,    m71—7) < (    N C\\Wu      uNÏÏ2,a - L"/v \\g\\a,a-

Proof. We have \\v - vN\\2 a < C\\g - psN(g)\\0 a.  The conclusion follows,
using the analogue of Theorem 3.5 in R , namely:

Theorem 3.9. Let e > 0 and a > d + e. For any a > 0, there exists a constant
C (depending only on a, e, and a) such that

\\g-psN(g)\\^a<CN^-^2\\g\\aa,    *g£H°w(Rd).

We skip the proof of this last theorem, since it is an easy adaptation of the
one given above for Theorem 3.5.

4. Approximation in some other unbounded domains

For domains which are Cartesian products of intervals (possibly unbounded)
one can use appropriate pseudospectral approximation on each interval. For
instance, one can combine Chebyshev or Legendre approximation (cf. [2]) on
finite intervals and Hermite approximation on unbounded intervals. In this
section we detail two examples: the first for the domain fi = (-l,+l)xR,
the second for the case SI = (-co, 0).

We begin with
, Xv + Lav = g     in (-1, +1) xj Xv + L
\v(±X, 1) = 0,    r/€R,

and y :=(£,, r\)£ (-1, +1) x R. Let

v\S, n) := v(Z, r/)exp \^yj ,        g\Z, r,) = g(Z, r/)exp Í M_

Then v* satisfies

(4.2)
Xv* - a Av* - jÇdxv* + \r¡d2v* + \v* = g*,

{ v (±1, n) = 0,        r¡ £R.

Now we approximate v* and g* by collocation at the Chebyshev nodes in
the variable Ç and at the Hermite nodes yk M+x in the variable r\. More
precisely, let

£,.:=£„„:= cos Í£,       0</<A,
be the Chebyshev Gauss-Lobatto nodes. Denoting by TN the Ath Chebyshev
polynomial, we have T'N(^ N) = 0, X < i < N - X, and

(4.3) f ß(i)7i=^Eo(^)4(ß(1)+o(-1))4E"ß(^)
J'x \JX -£ i=i '=0

for any polynomial Q of degree < 2 N - X .
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Denote by PN M a polynomial of degree at most N in ¿f and of degree at
most M in r\. We seek such a polynomial satisfying

' Wn,m - "2*Rn,m - \&i?n,m + \nd%PN<M + \pn,m){Sí , yk)

(4-4)  \ = g%,yk),
^PN(±X,yk) = 0,        X<k<M+X,   X<i<N-X.

A proof of convergence can be given for this collocation procedure. We prove
first:

Proposition 4.1. There exist Cx, C2> 0 and N0 > X such that, for any N > N0
and polynomial q (in one variable) satisfying q(+X) = q(-X) = 0 and degq <
N, we have

N

C'L i«'2 JT7 S^2T ((-%-?!
(4.5)

,2     di
<C2j i  \q¿¿ VT-?

Proof. We write q =: aNTN + q0 , where deg<?0 < N - 1. Then using (4.3),

(4-6) -£¿"(*«(WO)=/    -í«(Í)9({)-7^«=o ^-i ^1

and it is well known (cf., e.g., [2]) that the right-hand side is uniformly equiva-
lent to

-e

i
2    d!;kí1

-1    vA^1'
On the other hand,

N N

;=0 (=0

(4.7)

(TNq0 + TNq0)-=
\/l

J-x    vi-«

¿2

where we use the fact that
TV

£EVX)W = 2Í r^r^
i=o '-•        vi

= 7tA
./ _ 1 /,        t2
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Now,

0 1   /"' rf{ "£
1 - ¿í

£<?¿g     y-=

1       v/ï^2
-/:

«
:i-a-    t-^^-J-'"^'

while the remaining term on the right of (4.7) can be bounded as follows:

7lA   2~2 2 ^ C  Í
1   V1 e

Therefore, for N large enough, we obtain (4.5).   D

By the previous proposition and the results in §3 it is straightforward to prove
the next theorem.

Theorem 4.2. There exist Cx, C2 > 0 such that, for any polynomial pN M of
degree N in the variable £ (N sufficiently large) and of degree M in the
variable rj, we have

dÇdti
l)xR

N

cf•/(-l.l)xJ \[x^ï2wa(n)
M

(4.8)
^EE

<C

i=0    k=l
-a2^PN,M - 2^PN,M + 2nd2PN,M +2PN,M

* (i/.^/v.ii/ti/.J'*)

Í FPn,J(-l,l)xR

CO,

dÇdrj
Afl 4 Cwa(n)

Stability for problem (4.4) is now a direct consequence of the above result.
The estimates which show the spectral convergence are easily obtained by sep-
aration of variables and then applying Theorem 3.5 and the estimates on the
Chebyshev interpolation projectors (cf. [2]).

Next we consider problem (1.1), when SI = (-co, 0), with the boundary
condition u(t,0) = 0, t > 0. After the substitutions proposed in §§1 and 3
the problem becomes

(4.9)

7j0 defined in
v: R-

v Vyy + iyVy + iV    =«

V*(S,0) = 0,
y < 0, 5 > 0,
s>0,

{vr(0,y) = v¡(y), y<0.

Suppose now that g* and v$ are the restrictions of certain functions g and
. Then v* can be considered as the restriction of the function

which solves the problem
' *i-%y + \y° + ¥ = g>       yel-{0}, i>0,

v(s,0) = 0, s>0,
{v(0,y) = v0(y), y£R.

(4.10)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY HERMITE FUNCTIONS 613

For a given function tp , we denote by tp+ and cp~ respectively the even and
the odd part of tp . As the space of odd (resp. even) functions is stable under
the action of the operator cp i-> -<pyy + \<py, it is easy to check that the solution
v = v+ + v~ of problem (4.10) can be obtained by solving

(4.11)
vf-vfy + jyvf + \v± = g±,      y£R-{0}, s>0,
v±(s,0) = 0, s>0,
v±(0,y) = vít(y), y£R,o

according to the determination of the even or the odd part of v .
We want to approximate the solution v + of (4.11) (similarly we shall argue

for v~). For this purpose, consider the nodes y. N+x a , j = X, ... , 2N + 1.
We have yN+l>2N+Ua = 0 and yj2N+x >fl = -y2N+2-¡,2N+i,a > J = l > • • • > N ■
Denote by X^ the space of the even polynomials p^ of degree at most 2A
satisfying p^(0) = 0. One has dim(A^) = N.

Therefore, an element of X* is uniquely determined by its values at the
nodes y, 2N+X a,j= X, ... , N. Then we approximate v + by a polynomial
Px £ X* such that

'  (P+N,s -P+N,yy + I^/V.v + 2^)^ , N+l, J = g + ̂ j ,2/V+l ,J '
(4.12) \ j=X,...,N, s>0,

- P+N(°>yj,2N+l,a) = «oty.av+l,«)« j=U...,N„

Using the fact that p^ is even, the equations in (4.12) also hold for the
negative nodes. An analysis of stability and convergence for (4.12) can easily
be carried out. In particular, by the theory developed in §3, for the steady state
version of (4.11) and (4.12) we obtain the estimate

(4.13) ||(* + -p;)i»;/2||Jï.((_a0to)) < C(2Nf+e-a)/2\\g\\Ka{R),        o>X+e.

A similar technique is used to approximate the solution v~ in (4.11). This
time, X^ will denote the space of odd polynomials p^ of degree at most
2A - 1 (thus satisfying p^(0) = 0). Again, we have dim(X~) = N, and the
corresponding collocation scheme is obtained by writing p^ , g~ , and i^ in
place of Px, g+, and ij in (4.12).   The approximation of v* in (4.9) is
Pn + Pn restricted t0 (-co, 0).

This kind of approximation involves the resolution of two different N x N
differential systems. On the other hand, N does not need to be very large in
application since, as shown by (4.13), the rate of convergence is in general very
high.

An approximation of v* in (4.9) can also be given in the following way. We
write again equation (4.10), but this time g is such that g(y) = g*(y) if y > 0
and g(y) = g*(-y) if y < 0. Therefore, the corresponding solution p~ to
(4.12) is already an approximation of v without evaluating p^ . In this case we
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only solve an N x N differential system. Nevertheless, the last procedure yields
results that are not very good in general. This can be explained by noting that,
even if g* is a very regular function, its even continuation can be an irregular
function. This may affect very badly the convergence, as observed by numerical
experiments. This difficulty may be avoided by using the first approach.

For the reader's convenience we give the expressions of the entries of the
matrices associated with the discretization in (4.12). The Lagrange interpolation
basis in X^ is the following (here, for simplicity, we take a := 1) :

/+() =    2yh2N+i(y) .   j      N
j   [y>       U        /■., W„2      „2\ ' yj       yj,2N+l,a'      J-1,...,1V.

h'2N+l(yj)(y2-y2)

Then we get

(/¿yW =

{<yy + jC) W

if i¿j,

if i = j,

zyfiw+iiyj)
h'2N+l(yi)(y2-y2)

4y;
4h'2N+x(yi)(y2 + yj)

h'^y^-y2)2

-T2^-4N^+^+v2

Similarly, in XN one has

~(y) 2yjh2N+l{y)

ti1N+x(yj)(y2-y2Y

2yjh'2N+x(yl)

{'r.yW =

K»+Ky) w=

n'2N+i(yj)(y2-y2)
2 TZizl
4y,
*yjyjh2N+M

h'2N+i(yj)(y2-yj)2

j=X,...,N,

if i^j,

if i = 7,

if i Ï j,

if/= 7-

ifi*j,

T2^-AN) + ^-A) + 2    iU = J

5. Numerical tests
We devote this section to the discussion of several numerical experiments.

We begin with some examples with d = X . Consider the problem

(5.1)
ut-uxx = f> 0<t<T= X,  X£
u(0, x) = (sinx)exp(-x /4),       xe

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY HERMITE FUNCTIONS 615

where / is chosen such that the solution is

. sinx
u(x, t) =   u       exp

-x
JY+-r"r\4(X + t)) '

After   the   transformation   suggested   in   §1   (then   putting   v*(s,y)    :=
v(s, y)exp(y2/4)), equation (5.1) becomes (here S := log(2))

i/2, s/2   .    ,     i/2.

(5.2)
v*s ~ v*yy + \yy*y + lv* = ^ cos(ye°'") + *"'* sin(ye°

y el, 0<s<S,
{v*(0,y) = siny,       y£R.

The solution of (5.2) is approximated by pN as in (3.6) (a = X). Let

EN = \\(v* -pN)w\ -1/2!
I/_2(E)

when v* and /^ are evaluated at the time S = log(2). Since we are mainly
concerned in checking the accuracy of pseudospectral approximation studied
in §§3 and 4, we do not look for an optimal discretization in time. Therefore,
we used explicit first-order forward differencing to advance in time. Denoting
by AIT the number of iterations (the time step therefore is S/Nn), Table 5.1
shows the error E20 versus N1T .

Table 5.1
Error E20 for different values of NXT

N,IT

250

1000

4000

16000

"20

.2487E-02

.6203E-03

.1550E-03

.3886E-04

We chose large values of Nn in order to emphasize the error with respect to
the spatial variable.

We recall that the maximum size of the time step in order to get stability is
given by 2/(N + X). Actually, this can be easily determined by knowing the
eigenvalues of the matrix relative to the spatial discretization (see Remark 3.1).

To better examine the convergence behavior with respect to N, we consider
the elliptic problem

(5.3) ye-Vyy + iyvy + $v  =$(y-l)e ,

This admits the solution v*(y) = ey.  The approximate solution pN (given
by (3.6)) is obtained by solving the corresponding linear system by Gaussian
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Table 5.2
Errors versus N for the approximation of problem (5.3)

N+X (v*-pN)w\l2\ L2(R) "N (V* - PN)yWXx/2\\L2m

8

16

24

.5389E-01

.1392E-04

.6959E-09

.3004E-01

.5985E-05

.2415E-09

.7416E-00

.7674E-03

.8875E-07

elimination. Let E™ = max1<.<Ar+1{|ti* -pN\(yj)exp(-y2/S)} (see Remark
3.7); then, in Table 5.2 we report the error for different norms. It is clear that
we have convergence of spectral type.

Similar results can be obtained for d = 2 . We give an example where differ-
ent techniques are used to approximate the spatial operator in each direction
(see §4). On the domain (-1, 1) x R, we solve the equation (4.2) when a = X,
X = 0, and g* is such that v*(Ç, r¡) = sin(?7(l - ¿; )). The approximation is
performed as in (4.4). In Table 5.3, we give the error

N n M
^ E" E(v* - pn,m)2Gí > y*K

1/2

JN,M N
i=0    k=l

for various N and M.  We note that in the relevant system the number of
unknowns is (N - 1) x (M + 1).

Table 5.3
Error for the Chebyshev-Hermite approximation to (4.2)

N

4

8

12

4

8

12

6

M

12

8

4

6

12

JN, M

.6025E-00

.7399E-02

.1338E-03

.5218E-00

.3184E-01

.5098E-02

.9172E-01
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(5.4)

Next we analyze an equation on the half-plane,
J -Av* + {yVv* + v* = g*    fory = (Ç,n) £Rx (-co, 0),
lw(i,0) = 0, ¿eR.

The function g* is chosen such that v*ß, n) = r\ + e^ sin r\, which is an odd
function in the variable r\. The approximation is performed by collocation at
the N+X Hermite nodes in R for the variable ¿J and the M nodes y. 2M+X , ,
j = X, ... , M, for the variable r¡. The approximation, which is a polynomial
of degree at most N in the variable Ç and a polynomial of X^ in the variable
r¡, is denoted by pN M . Let

» 1/2

^N,M =    I  2-i 2-AU    ~Pn,M'   (y¡,N+l,l ' ^7,2A/+l,l)û,i,/V+l,l<U7',2Jf+
/=1   7 = 1

then, in Table 5.4, ^ M is reported for some values of N and M (that are
chosen in order to have the same number of nodes in each direction). The
system is solved by Gaussian elimination.

Table 5.4
Errors for the approximation on the half-plane

N

4

6

8

10

12

M

5

7

9

11

13

JN,M

2.6395

0.6129

0.1110

0.1675E-01

0.2175E-02

Finally, we end the section with the following problem:
r -Av* - ^dxv* + \nd2v* + \v* = g*   in(-l, l)x(-co,0),

(5.5)       | v*(i,0) = 0, «€[-1, 1],
[v*(±X,r)) = 0, r¡<0,

where g* is such that v*(C,r¡) = n cosf£ + (l-£ )(cosr¡-X), which is an even
function in the variable r¡. As usual, by pN M (polynomial of degree at most
N in the variable £ and polynomial in X^ for the variable r¡) we denote the
approximate solution obtained combining Chebyshev collocation with Hermite
collocation as in 54. Table 5.5 shows the error

N       M 1/2

-N ,M y /  -    Z^(V Pn,M>   vS-,/V' yk,2M+l,Vœk,2M+l,lN
i=0    k=l
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Table 5.5
Errors for the approximation of (5.4)

N

4

6

8

10

12

14

M

3

5

7

9

11

13

JN,M

.7686E-02

.2057E-03

.3065E-05

.2966E-07

.1998E-09

.1014E-11

(5.6)
where A > 0, b £

As before, N and M are such that the system has the same number of un-
knowns in each variable.

Remark 5.1. We should point out that, as is usual in pseudospectral approxi-
mation, when other parabolic or elliptic operators are involved, one can use the
same basis of Hermite functions. For instance, consider the following elliptic
equation:

-Au + b • Vw + Xu = f   in R ,
, and / decays at infinity at a suitable rate. Then writing

v(x) :=ex /4u(x),        g(x) := ex /4f(x),

one checks that v satisfies the new equation

-At; + (x + b) • Vv + (d/2 + X - \\x\2 - \b ■ x)v = g.
This equation can be solved numerically by the collocation method as explained
above. The matrix related to the corresponding linear system is easily obtained
by the matrices of first and second derivatives given in §3.

The numerical approximation of semilinear parabolic or elliptic equations
can be treated in a similar way.

Remark 5.2. In the process of computing the nodes, weights, and entries of the
derivative matrices, one encounters numerical difficulties due to the behavior of
Hermite polynomials of high degree. For a study of this aspect, see [7], where
appropriate numerical procedures are suggested.

Bibliography

1. C. Canuto, S. I. Hariharan, and L. Lustman, Spectral methods for exterior elliptic problems,
ICASE, report # 21, 1984.

2. C. Canuto, H. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dy-
namics, Springer Series in Computational Physics, Springer-Verlag, Heidelberg, 1987.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY HERMITE FUNCTIONS 619

3. O. Coulaud, D. Funaro, and O. Kavian, Laguerre spectral approximation of elliptic problems
in exterior domains, Proc. Internat. Congr. Spectral and High Order Methods (ICOSAHOM)
(Como, Italy, 1989), Computer Methods in Applied Mechanics and Engineering #80 (1990),
451-458 (Elsevier Science Publishers B. V. (North-Holland)).

4. P. J. Davis and P. Rabinowitz, Methods of numerical integration, Academic Press, New
York, 1984.

5. M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the
heat equation, Nonlinear Anal. Theory Methods Appl. 11 (1987), 1103-1133.

6. _, Asymptotic behaviour of positive solutions of a non-linear heat equation, Houston J.
Math. 13(1988), 39-50.

7. D. Funaro, Computational aspects of pseudospectral Laguerre approximations, Appl. Numer.
Math, (submitted).

8. D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: Theory and applica-
tions, CBMS Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, PA, 1977.

9. O. Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann.
Inst. H. Poincaré 4 (1987), 423-452.

10. _, The Navier-Stokes equation in weighted Sobolev spaces, Prépublications de l'Institut
Ehe Cartan (Nancy, France), 1991.

ll.J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934),
193-248.

12. J. L. Lions and E. Magenes, Problèmes aux limites non-homogènes et applications, Vol. 1,
Dunod, Paris, 1968.

13. Y. Maday, B. Pernaud-Thomas, and H. Vandeven, Une réhabilitation des méthodes de type
Laguerre, Rech. Aérospat. 6 (1985), 353-375.

14. G. Szegö, Orthogonal polynomials, Amer. Math. Soc, Providence, RI, 1959.
15. J. V. Uspensky, On the convergence of quadrature formulas related to an infinite interval,

Trans. Amer. Math. Soc. 30 (1928), 542-559.

DlPARTIMENTO DI MATEMÁTICA, UNIVERSITA DI PAVÍA, STRADA NuOVA 65, 27 100 PAVÍA, ITALY

Institut Elie Cartan, Département de Mathématiques, Université de Nancy I, B. P.
239, 54506 Vandœuvre lès Nancy Cedex, France

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


