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ABSTRACT. Many results and problems in Fourier and Gabor analysis are formulated in the
continuous variable case, i.e., for functions on R. In contrast, a suitable setting for practical
computations is the finite case, dealing with vectors of finite length. We establish fundamental
results for the approximation of the continuous case by finite models, namely, the approximation
of the Fourier transform and the approximation of the dual Gabor window of a Gabor frame. The
appropriate function space for our approach is the Feichtinger space S0. It is dense in L2, much
larger than the Schwartz space, and it is a Banach space.

1. Introduction

1.1 Approximating the Fourier Transform

The Fourier transform f̂ of an integrable function f on R is obtained by the Fourier integral

f̂ (ω) =
∫

R

f (t)e−2πi ω t dt, ω ∈ R . (1.1)

For suitable functions f the integral can be approximated as a Riemann sum from suffi-
ciently dense samples. If f decays well, then already a finite number of such samples
yields a good approximation of f̂ (ω), that is, the problem reduces to computations in Cn.
In fact, it is essentially the Fourier transform in Cn which arises in these computations, so
fast algorithms based on the Cooley-Tukey FFT can be used. Results on approximating f̂
in this way are found, e.g., in [1, 3, 5, 12].
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In contrast to these established facts, we show how to obtain the approximation of
f̂ even as a function on all of R, not just pointwise, from using the Fourier transform in
Cn. Our results hold for arbitrary functions from the Feichtinger space S0, described in
Section 1.3, which is dense in the space L2 of square-integrable functions on R. Indeed,
we obtain the convergence to f̂ in S0, which in particular implies Lp-convergence on both
the time and the Fourier side, for all 1 ≤ p ≤ ∞.

1.2 The Dual Window of a Gabor Frame

A Gabor system is a family of functions

G(g, a, b) = {gk,l : k, l ∈ Z} ⊂ L2 ,

obtained from time-frequency shifts of a Gabor window g ∈ L2 along a time-frequency
lattice, i.e.,

gk,l(t) = g(t − k a)e2πi t l b, t ∈ R ,

for k, l ∈ Z, where a, b > 0 are the lattice constants. A useful framework in Gabor analysis
is the notion of a frame in Hilbert space, which is a more general concept than a Riesz basis,
see [9]. The family {gk,l : k, l ∈ Z} is a frame if there exist constants A,B > 0 such that

A ‖f ‖2 ≤
∑
k,l∈Z

|〈f, gk,l〉|2 ≤ B ‖f ‖2, for all f ∈ L2 . (1.2)

For any frame there exists a dual frame, which plays a similar role in frame theory as the
biorthogonal system of a Riesz basis. The (canonical) dual frame is given by {S−1gk,l : k, l ∈
Z}, where S denotes the frame operator

Sf =
∑
k,l∈Z

〈f, gk,l〉gk,l, f ∈ L2 .

We note that S is bounded and invertible if and only if the frame condition (1.2) holds. The
special structure of Gabor frames yields that the dual frame is again a Gabor frame, namely,
its elements are of the form S−1gk,l = g̃k,l , for k, l ∈ Z, where

g̃ = S−1g .

The function g̃ ∈ L2 is called the (canonical) dual Gabor window and it is the focus
of many results and questions in Gabor analysis. For details on Gabor systems we refer
to [24, 25, 28], see also [8, 13, 31, 33, 40], [9, Sections 8-9], and [13, Chapters 3-4]. The
analogous notations of a Gabor system are defined for vectors in Cn, see Section 2.4. We
are concerned with the approximation of the dual Gabor window g̃ for a given Gabor frame
in L2 by using only computations in Cn.

Since the dual window g̃ is obtained from inverting the Gabor frame operator S,
one is interested in approximations for S−1. We mention the frame algorithm, based on
Neumann series expansions for S−1, see [9, Section 1.2], [28, Algorithm 5.1.1]; iterative
methods with higher order of convergence are discussed in [36]. However, our focus is
different, we are concerned with approximations by finite-dimensional computations. A
brief summary of developments in this direction is included in [15] and we refer to the list
of references therein. A fundamental general approach is the Casazza-Christensen double
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projection method [6, 7], see [9, Section 16.2]. By this technique the inverse frame operator
of an arbitrary frame can be approximated from a reduced problem in a finite-dimensional
subspace of L2. For the application of this method to Gabor frames see [9, Sections 16.3
and 16.4], [10, Section 8.3.2].

The Casazza-Christensen method is a technique for general frames. Making use of the
special structure of Gabor frames, Strohmer has established a practicable method specific
to approximating the dual Gabor window g̃ [42], see [9, Section 16.5], [10, Section 8.3.3].
The Strohmer method indeed reduces the approximation problem in L2 to solving a sys-
tem of linear equations in Cn. We mention that, if g and its Fourier transform ĝ have
exponential decay, then this approach also describes the convergence behavior, namely,
the approximation error in L2 decreases also exponentially. Strohmer’s method involves
a general approximation scheme, the finite section method, and for more on this topic we
refer to [11], [30, Section 1.1.3].

Our technique is a new approach, based on the results by Janssen in [34] which
describe the transition from continuous to finite Gabor frames. We complement these results
by describing the converse direction and, thus, we show how the dual Gabor window can
indeed be approximated from algorithms for Gabor frames in Cn. The advantage is that the
dual window of a Gabor frame in Cn can be computed considerably faster than solving a
general system of linear equations in Cn, see [41]. These Gabor frames in Cn are obtained
in a simple way from the original Gabor frame. The only assumption for our method is
that the Gabor window g belongs to the Feichtinger space S0 ⊂ L2, described below. As a
bonus, the approximate dual windows converge not just inL2 but indeed in S0. We note that
convergence of the (dual) Gabor window in S0 has an important implication which does not
hold for just convergence inL2. Namely, it implies convergence of the corresponding frame
operators in the operator norm on L2, see [19, Corollary 2.3], [26, Corollary 3.3.3 (i) (b)].

1.3 The Feichtinger Space

The Feichtinger space S0 is the appropriate space for many results in time-frequency anal-
ysis. It was introduced in [17] as a new Segal algebra, cf. [39]. S0 is dense in L2 and all its
members are continuous and integrable functions. In general terms, S0 is the space of all
functions on R which are represented in the time-frequency domain by an integrable func-
tion, cf. [18, Theorem 15]. More precisely, the norm of a function f in S0 is the L1-norm
of its short-time Fourier transform Vgf with respect to the Gaussian window g, i.e.,

‖f ‖S0 =
∫∫

R2
|Vgf (x, ω)| dx dω ,

where g(t) = e−πt2 , and the short-time Fourier transform is defined by

Vgf (x, ω) =
∫

R

f (t) g(t − x) e−2πi ω t dt, x, ω ∈ R .

An equivalent norm is obtained when the Gaussian function g is replaced by an arbitrary
non-zero function g from S0. Examples are the triangle function, the trapezoidal function,
or any Schwartz function. If g ∈ S0 generates a Gabor frame for L2 as described in
Section 1.2, then an equivalent discrete norm for S0 is the �1-norm of the Gabor coefficients
of a given function f ,

‖f ‖′
S0

=
∑
k,l∈Z

|〈f, gk,l〉| .
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The space S0 shares several properties with the Schwartz space S, yet S0 is much larger, it
does not rely on differentiability, and it is a Banach space. Time-frequency shifts and the
Fourier transform are isometries on S0. Feichtinger has obtained S0 from several different
concepts, namely, S0 coincides with the modulation spaceM1 and with the Wiener amalgam
spaceW(A, �1), whose local component is the Fourier algebra A = FL1. For more on S0,
see [18, 19, 26, 28] and the original source [17].

The space S0 is defined on Rd , for d = 1, 2, . . . , we restrict the presentation of our
results to the case d = 1; the general case is mentioned in Section 6. Practicable sufficient
conditions for membership in S0 are given in [26, Theorem 3.2.17] and [27]. For instance,
if a function f (t) on R and its Fourier transform decay like O(|t |−3/2−ε), for some ε > 0,
then f ∈ S0. Another useful sufficient condition for f to be in S0 = S0(R) is that f, f ′ and
f ′′ are inL1 [37]. Yet a function in S0 need not be differentiable. For example, a compactly
supported function is inS0 if and only if its Fourier transform is integrable. Correspondingly,
because of the Fourier invariance of S0, any integrable band-limited function is in S0.

The article is arranged as follows. In Section 2 we state the main results. The relevant
properties of the function space S0 are summarized in Section 3. In Section 4 we formulate
crucial steps of our approach as preliminary results. The proofs of the main results are
found in Section 5 and, finally, in Section 6 we briefly comment on the case of functions
on Rd , for d ≥ 2.

2. The Main Results

2.1 The Sampling and Reconstruction Operators Rn and Ln

We establish the definitions which are used for formulating our main results. First, given
n ∈ N, we define a set of n points on the real line which we will later use as sampling
points. For t ∈ R, let 
t� denote the greatest integer less or equal to t , and let �t denote
the least integer greater or equal to t .

Definition 1. Given n ∈ N, define τ0, . . . , τn−1 ∈ R by

τk =
{
k/

√
n, for k = 0, . . . , 
n2 � ,

(k − n)/
√
n, for k = 
n2 � + 1, . . . , n− 1 .

For example, we have for n = 16,

(τ0, . . . , τ15) = 1
4 (0, 1, . . . , 7, 8,−7, . . . ,−1) .

Remark 1. The points τ0, . . . , τn−1 are inside the interval [−√
n/2,

√
n/2] and they are

regularly spaced by 1/
√
n. Consequently, for n → ∞, the diameter of this set of points

and the local density increase simultaneously.

Next, given n ∈ N, we define a set of n real numbers which we will later use as
weights for a set of sampling values.

Definition 2. Given n ∈ N, define λ0, . . . , λn−1 ∈ R by

λk =
{

1, for k = 0, . . . , 
n4 � and k = � 3n
4 , . . . , n− 1 ,

|n2 − k|/n4 , for 
n4 � + 1, . . . , � 3n
4  − 1 .
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For example, we have for n = 16,

(λ0, . . . , λ15) = (
1, 1, 1, 1, 1, 3

4 ,
1
2 ,

1
4 , 0, 1

4 ,
1
2 ,

3
4 , 1, 1, 1, 1

)
.

Remark 2. (i) The numbers λ0, . . . , λn−1 can be viewed as the values of a trapezoidal
function wn at the sampling points τ0, . . . , τn−1. In fact, let

w(t) =


1, |t | ≤ 1/4 ,

(2 − 4|t |), 1/4 < |t | < 1/2 ,

0, |t | ≥ 1/2 ,

t ∈ R ,

and define wn(t) = w(t/
√
n), for n ∈ N. Then we have

λk = wn(τk), for k = 0, . . . , n− 1 . (2.1)

For later use we also note that (2.1) implies

n−1∑
k=0

λkf (τk) =
∑
l∈Z

wn
(
l/

√
n
)
f

(
l/

√
n
)
, f ∈ S0 . (2.2)

Observe that the summation is finite also at the right-hand side of (2.2), sincewn is compactly
supported.
(ii) Our results also hold, when λ0, . . . , λn−1 are defined as the values of a functionwn(t) =
w(t/

√
n) as in (i), for an arbitrary function w in S0 with the properties w(0) = 1 and

suppw ⊆ [−1/2, 1/2].
Now we define the key players of our results, an operator Rn which maps a function

from S0 into a vector in Cn and, for the converse direction, an operator Ln which maps a
vector into a function. It will be convenient to consider the vectors v in Cn as functions on
the cyclic group Zn and write v = (

v(0), . . . , v(n− 1)
)
. In particular, computations with

the indices of such a vector will always be understood modulo n. We also mention that all
norms on Cn are equivalent and L2(Zn) = S0(Zn) = Cn.

Definition 3. (i) Define the operator Rn : S0 → Cn by

Rnf (k) = λkf (τk), k = 0, . . . , n− 1 . (2.3)

(ii) Define the operator Ln : Cn → S0 by

Lnv(t) =
n−1∑
k=0

λk v(k) ϕ
(
(t − τk)

√
n
)
, t ∈ R , (2.4)

where ϕ(t) = (1 − |t |)+ is the linear B-spline or roof function.

Remark 3. (i) The operator Rn amounts to sampling the function f at the points
τ0, . . . , τn−1 ∈ [−√

n/2,
√
n/2]. The coefficients λ0, . . . , λn−1 are used as weights for

the sampling values. The use of the weights avoids a sharp jump from v(n − 1) to v(0),
when v is viewed circularly as a function on Zn. A priori such a jump is possible since f (τ0)

need not be close to f (τn−1). In some cases the weights can be omitted, see Remark 5 (i).

(ii) Applying Ln to a vector v ∈ Cn amounts to linear interpolation of the data

{(τ0, y0), . . . , (τn−1, yn−1)}, where yk = λkv(k), k = 0, . . . , n− 1 .
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It yields a function on R with support slightly larger than [−√
n/2,

√
n/2]. The use of the

weights prevents the interpolator function from having sharp transitions at the endpoints of
the supporting interval. For the possibility of using Ln without weights, see Remark 5 (ii).

By δk,0 we denote the Kronecker delta, equal to one when k = 0, and equal to zero
otherwise.

Remark 4. The function ϕ used in the definition of Ln is not differentiable. However,
if smoothness of the approximants is desired, ϕ can be replaced by higher order B-splines.
More generally, we can use an arbitrary function ϕ ∈ S0 which generates a partition of
unity,

∑
k∈Z

ϕ(x − k) = 1, x ∈ R, or, equivalently, which satisfies ϕ̂(k) = δk,0, for k ∈ Z.
In approximation theory this is the basic Strang-Fix condition and we note that for our
purpose no higher order Strang-Fix condition is required for ϕ.

2.2 Approximation from a Vector of Samples

Our first main result describes the reconstruction of a function f ∈ S0 from the sequence
of vectors {vn ∈ Cn : n = 1, 2, . . . }, obtained by sampling f according to the definition of
the operatorRn : S0 → Cn. The reconstruction is described by the operator Ln : Cn → S0.

Theorem 1. Suppose that f ∈ S0. For n ∈ N, define the vector vn = Rnf ∈ Cn. Then
‖Lnvn − f ‖S0 → 0, as n → ∞.

Remark 5. (i) In the proof of Theorem 1, the coefficients λ0, . . . , λn−1 in the definition
of Rn will not be used explicitly. Their use is implicit and corresponds to approximating f
by a compactly supported function fn in S0. If already f itself is compactly supported, so
that supp f ⊂ (−√

n/2,
√
n/2) for sufficiently large n, then the coefficients can be omitted

for Rn.

(ii) The coefficients λ0, . . . , λn−1 in the definition of Ln are required for obtaining conver-
gence in S0 in Theorem 1. For just convergence in Lp, 1 ≤ p ≤ ∞, the coefficients can
be omitted for Ln. Note that convergence in Lp is considered here for f ∈ S0 and not for
general Lp-functions.

2.3 Approximation of the Fourier Transform

The operators Rn and Ln are defined in such a way that they allow us to obtain our second
main result. We show that the Fourier transform of a function from S0 can be approximated
in the S0-norm from computing the Fourier transform of a vector in Cn. This vector is
determined by finitely many samples of f .

Recall the normalization of the Fourier transform, given in (1.1). The Fourier trans-
form on Cn is normalized as a unitary operator v �→ v̂ in Cn,

v̂(k) = 1√
n

n−1∑
l=0

v(k)e−2πi k l/n, k = 0, . . . , n− 1 .

It is usually denoted discrete Fourier transform (DFT) and can be calculated efficiently by
fast Fourier transform (FFT) algorithms.

Theorem 2. Suppose that f ∈ S0. For n ∈ N, define the vector vn = Rnf ∈ Cn. Let f̂
denote the Fourier transform of f in S0, and let v̂n denote the Fourier transform of vn in
Cn. Then ‖Lnv̂n − f̂ ‖S0 → 0 as n → ∞.
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Recall that convergence in S0 implies convergence in Lp for all 1 ≤ p ≤ ∞.

Remark 6. The possible simplification of the operatorsRn andLn indicated in Remark 5
can be applied to Theorem 2 as well.

2.4 Approximation of the Dual Gabor Window

Here, we obtain a method for the approximation of the dual window of a Gabor frame using
finite Gabor methods. First, we recall the relevant notions for Gabor systems in Cn, see,
e.g., [41], or [9, Chapter 10]. Let n ∈ N. Given a Gabor window vector v ∈ Cn and divisors
p, q ∈ N of n, we define the Gabor system

G(n)(v, p, q) = {
vk,l : k = 0, . . . , n

p
− 1, l = 0, . . . , n

q
− 1

} ⊂ Cn ,

where

vk,l(m) = v(m− k p) e2πi l q m/n, m = 0, . . . , n− 1 ,

for k = 0, . . . , n
p

− 1 and l = 0, . . . , n
q

− 1. The system G(n)(v, p, q) is a Gabor frame

for Cn if it spans Cn. This is the case if and only if the frame operator S(n)v,p,q : Cn → Cn,
defined by

S(n)v,p,qu =
n/p−1∑
k=0

n/q−1∑
l=0

〈u, vk,l〉vk,l, u ∈ Cn ,

is invertible. Then the dual vector is defined by ṽ = (
S
(n)
v,p,q

)−1
v ∈ Cn, in analogy to the

dual window for a Gabor frame in L2.
Before we state the theorem, the following remark indicates how we narrow our focus

from the case of general lattice constants a, b > 0 to the case a = b < 1.

Remark 7. (i) It is one of the fundamental results in Gabor analysis that, if the Gabor
systemG(g, a, b) is a frame, then ab ≤ 1, see [28, Section 7.5]. Furthermore, if the Gabor
window g is well time-frequency localized, then we must have ab < 1, as implied by the
Balian-Low theorem, see [28, Section 8.4]. A variant of this theorem, found in [4], implies
that we have ab < 1 also for all Gabor frames with a Gabor window g from S0. Hence, for
our results we can assume that ab < 1.

(ii) By dilating the Gabor window one can reduce the investigation of general Gabor systems
G(g, a, b) to the case a = b. Namely, givenG(g, a, b), let c = √

a/b and define the dilated
function gc(t) = g(c t), t ∈ R. ThenG(g, a, b) is a Gabor frame if and only ifG(gc, c, c) is
a Gabor frame. In this case, the dual window g̃ forG(g, a, b) is obtained by g̃(t) = g̃c(c t),
t ∈ R, where g̃c is the dual window for G(gc, c, c). Consequently, the fact that S0 is
invariant under dilation [26, Theorem 3.2.14] allows us to restrict our attention to the case
a = b.

(iii) We mention that the reduction in (ii) can be formulated for arbitrary time-frequency
lattices	 ⊂ R2, more general than	 = aZ × bZ, by replacing the dilation in (ii) with the
suitable metaplectic transform, see [28, Proposition 9.4.4 and p. 198, Remark 2]. Therefore,
since S0 is invariant under metaplectic transforms [17], our results can also be useful for
the case of a hexagonal, or a quincunx lattice, for example. In the setting of functions on
Rd , d ≥ 2, mentioned in Section 6, this remark applies to all lattices 	 ⊂ R2d which are
symplectic [28, Definition 9.4.2].
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In view of Remark 7, we restrict the presentation of our results to the case of Gabor
frames of the special form G(g, a, a) with 0 < a < 1, having indicated how they can be
used for arbitrary a, b > 0.

Theorem 3. Given g ∈ S0 and 0 < a < 1, suppose that G(g, a, a) is a Gabor frame for
L2. For q ∈ N, let p = �a2q, let n = pq, and define the vector vn = Rng ∈ Cn. Then
the following hold.

(i) For all q sufficiently large, the system G(n)(vn, p, p) is a Gabor frame for Cn.

(ii) Denote the dual window of G(g, a, a) by g̃, which is in S0, and denote the dual vector
of G(n)(vn, p, p) by ṽn in Cn. Then ‖√nLnṽn − g̃‖S0 → 0 as q → ∞.

We note that in Theorem 3 the parameters n and p depend on q.

Remark 8. (i) Observe that p/q → a2 and n = pq → ∞, as q → ∞ in Theorem 3.
We mention that for any sequence of integers p and q with these properties, the theorem
holds as well. The assignment suggested in the theorem is applicable in practical situations.
That is, by varying q one indeed obtains useful values of n for actual computations and
with

√
p/q close to a.

(ii) The possible simplification of the operators Rn and Ln mentioned in Remark 5 can be
applied also to Theorem 3.

3. Relevant Properties of S0

For the definition of the Feichtinger spaceS0, see Section 1.3. The spaceS0 is the appropriate
window class for time-frequency analysis [28, Section 12.1]. Our work utilizes a variety
of features of S0, summarized next.

Lemma 1 ([17, 26]). (i) The space S0 is a Banach algebra both under pointwise multi-
plication and under convolution. In particular, S0 is closed under these operations.

(ii) Time-frequency shifts and the Fourier transform are isometries on S0.

(iii) Given c > 0, the restriction mapping f �→ (f (c k))k∈Z is a bounded (and surjective)
operator from S0 into �1.

A fundamental tool in Fourier analysis is the Poisson summation formula, see [28,
Section 1.4]. With the next lemma we recall that the Feichtinger space S0 is a natural
domain for this identity, much larger than the Schwartz space [17], [26, Corollary 3.2.9],
[28, Corollary 12.1.15]. Secondly, we include a time-frequency variant of the Poisson
summation formula, related with observations in [2, 23, 34, 43].

Lemma 2. (i) ([17, 26]) For f ∈ S0, the Poisson summation formula
∑
k∈Z

f̂ (k) =∑
k∈Z

f (k) holds with absolute convergence of both series.

(ii) For f, g ∈ S0, the following Poisson summation formula for the short-time Fourier
transform holds,

∑
k,l∈Z

Vgf (k, l) = ∑
k∈Z

f (k)
∑
k∈Z

g(k), with absolute convergence
of these series.

Proof. (ii) First, denoting hx(t) = f (t) g(t − x), for t, x ∈ R, we have

Vgf (x, ω) = ĥx(ω), x, ω ∈ R ,

cf. [28, Lemma 3.1.1]. Note that hx belongs to S0 since S0 is invariant under transla-
tion and closed under multiplication. Hence, the Poisson summation formula implies that
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∑
l∈Z

ĥx(l) = ∑
l∈Z

hx(l), for x ∈ R and, thus, we obtain∑
k,l∈Z

Vgf (k, l) =
∑
k∈Z

( ∑
l∈Z

ĥk(l)
)

=
∑
k∈Z

( ∑
l∈Z

hk(l)
)

=
∑
k,l∈Z

f (k) g(k − l) =
∑
k∈Z

f (k)
∑
k∈Z

g(k) .

Remark 9. (i) Several more general versions of the Poisson summation formula follow
from the generic version in Lemma 2 (i) by using standard relations of the Fourier transform.
For example, given a > 0, we have for f ∈ S0,∑

k∈Z

f̂ (ω − k a) = 1

a

∑
k∈Z

f (k/a)e2πi ω k/a, ω ∈ R , (3.1)

with absolute convergence of both series.

(ii) Using standard properties of the short-time Fourier transform, see [28, Section 3.1],
we obtain more general versions of the formula given in Lemma 2 (ii). For example, for
a, b > 0 and f, g ∈ S0, we have∑

k,l∈Z

Vgf (x − k a, ω − l b)

= 1

b

∑
m∈Z

f
(m
b

)( ∑
k∈Z

g
(m
b

− x − k a
) )
e2πi ωm/b ,

(3.2)

where x, ω ∈ R, with absolute convergence of the series.

The space S0, viewed as a Banach algebra under pointwise multiplication, contains
approximate units obtained by dilation.

Lemma 3 ([26]). Suppose that ν ∈ S0 with ν(0) = 1. Given r > 0, let νr(t) = ν(t/r),
for t ∈ R. Then ‖νrf − f ‖S0 → 0 as r → ∞, for all f ∈ S0.

Our main results implicitly use the technique of quasi-interpolation, which we briefly
describe next. Schoenberg’s quasi-interpolation is a general scheme in approximation
theory. Commonly used techniques described by this paradigm are linear interpolation
and spline approximation with refining sampling lattices.

Definition 4. Given ψ ∈ S0 and h > 0, let Qψ
h denote the quasi-interpolation operator,

defined for f ∈ S0 by

Q
ψ
h f (t) =

∑
k∈Z

f (h k)ψ(t/h− k), t ∈ R .

Moreover, given ν ∈ S0 and r > 0, we define the operator Q̂ν
r for f ∈ S0, by

Q̂ν
r f (t) = ν(t/r)

∑
k∈Z

f (t − r k), t ∈ R .

Remark 10. The operator Q̂ν
r is a Fourier transformed version of Qψ

h . More precisely,
assuming that ν = ψ̂ and r = 1/h, we have by [22] that

̂
Q
ψ
h f = Q̂ν

r f̂ , f ∈ S0 .
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It is a remarkable feature of S0 that the quasi-interpolation converges for functions
from S0 indeed in the norm of S0.

Lemma 4 ([22]). (i) Suppose that ψ ∈ S0 satisfies ψ̂(k) = δk,0, for k ∈ Z. Then for all

f ∈ S0 we have ‖Qψ
h f − f ‖S0 → 0 as h → 0.

(ii) Suppose that ν ∈ S0 satisfies ν(k) = δk,0 for k ∈ Z. Then for all f ∈ S0 we have
‖Q̂ν

r f − f ‖S0 → 0 as r → ∞.

Remark 11. In view of Remark 10 we have that the statements (i) and (ii) in Lemma 4
are equivalent, since the Fourier transform is an isometry on S0.

Next, we describe the Janssen representation of Gabor frame operators [28, Sec-
tion 7.2], found in [33]. It is the expansion of a Gabor frame operator into a series of time-
frequency shifts. The Janssen representation can be understood as an important part of a
general duality principle in Gabor analysis, which includes results in [14, 32, 33, 40, 43, 44]
and is sometimes called Wexler/Raz-Janssen-Ron/Shen duality. The function space S0 turns
out to be a suitable setting for this general paradigm, see [23, 26]. For example, the Janssen
representation cannot be used for general Gabor windows g ∈ L2, while it always converges
absolutely for g from S0 [26, Theorem 3.5.11 (iii)], as described next.

Lemma 5 ([26, 33]). Let a, b > 0. For g ∈ S0, the frame operator Sg,a,b has an
absolutely convergent Janssen representation

Sg,a,bf (t) = a◦b◦ ∑
k,l∈Z

Vgg(k a
◦, l b◦)f (t − k a◦)e2πi t l b◦

, t ∈ R , (3.3)

where a◦ = 1/b and b◦ = 1/a.

Remark 12. (i) The lattice	◦ = a◦Z×b◦Z ⊂ R2 is sometimes called the adjoint lattice
and it is a rotation of the orthogonal (dual, reciprocal) lattice 	⊥. See [23, 26] and [21,
p. 2014] for a more general setting.

(ii) The normalization factor a◦b◦ = 1/(ab) in (3.3) is usually called the redundancy of the
Gabor system G(g, a, b).

The following is an important property of S0 and a celebrated result in Gabor anal-
ysis. It is found in [19] for rational time-frequency lattices 	 = aZ × bZ with ab ∈ Q,
see [28, Theorem 13.2.1], and the intricate irrational case ab /∈ Q has been settled in [29,
Theorem 4.2].

Lemma 6 ([19, 29]). Given g ∈ S0 and a, b > 0, suppose that G(g, a, b) is a Gabor
frame. Then the dual window g̃ also belongs to S0.

The next result is another crucial step in our approach, developed in [21] after pre-
liminary results in [26].

Lemma 7 ([21]). Given g ∈ S0 and a, b > 0, let G(g, a, b) be a Gabor frame. Let
gn ∈ S0 and an, bn > 0, for n = 1, 2, . . . , and suppose that ‖gn − g‖S0 → 0 and
(an, bn) → (a, b), as n → ∞. Then the following hold.

(i) For all n sufficiently large n, we have that G(gn, an, bn) is a Gabor frame for L2.

(ii) Denote the dual window ofG(g, a, b) by g̃ in S0 and for n ∈ N, denote the dual window
of G(gn, an, bn) by g̃n in S0. Then ‖g̃n − g̃‖S0 → 0 as n → ∞.

We note that this result fails for general Gabor windows g from L2, see [20], or the
surprising example of Janssen’s tie [35].
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4. Preliminary Results

4.1 Periodization and Sampling

In our main results, the transition from functions on R to vectors in Cn is given by the opera-
torRn, i.e., by truncated sampling with weights. Our preliminary results are formulated for
a different operator Pn, defined by sampling and periodization, without using weights. We
note that the application of Rn is based on just n samples of f , while Pn involves infinitely
many samples of f . Our use of Pn is that it satisfies certain properties, described below,
which are relevant for our approach. By showing that Rn and Pn are closely related, we
will, then obtain similar properties for Rn in our main results.

Definition 5. For n ∈ N, define the operator Pn : S0 → Cn by

Pnf (k) =
∑
l∈Z

f
( k√

n
− l

√
n
)
, k = 0, . . . , n− 1 . (4.1)

Remark 13. (i) The operatorPn combines sampling and periodization. The function f is
sampled and, then the sequence so obtained is periodized. An equivalent point of view is that
first f is periodized and, then the function so obtained is sampled on a fundamental domain.
Either way, the sampling density and the length of the period increase simultaneously, as
n → ∞.

(ii)Pn is bounded and surjective from S0 into Cn and the series in (4.1) converges absolutely.
Indeed, sampling is bounded and surjective from S0 into �1 by Lemma 1 (iii), and the
periodization is bounded and surjective from �1 into Cn.

(iii) For later use we note the following inconspicuous but important relation between Pn
and a class of time-frequency shifts. Given f ∈ S0, let fk,l(t) = f (t − k/

√
n)e2πi t l/

√
n,

for k, l ∈ Z. Then Pnfk,l(m) = Pnf (m− k)e2πi m l/n.

We have mentioned that Pn maps S0 into Cn in a different way than the operator Rn
from (2.3), yet Pn and Rn are closely related. Indeed, we express Rn by using Pn and the
weight function wn given in Remark 2 (i).

Lemma 8. Given n ∈ N, we have Rnf = Pn(wnf ), for f ∈ S0.

Proof. Since suppwn ⊂ [−√
n/2,

√
n/2], for n ∈ N, we have by using (2.1) that

Pn(wn f )(k) =
∑
l∈Z

(wn f )
( k√

n
− l

√
n
)

=


(wn f )

( k√
n

)
, k = 0, . . . , 
n2 � ,

(wn f )
( k√

n
− √

n
)
, k = 
n2 � + 1, . . . , n− 1 ,

= (wn f )(τk) = λk f (τk) = Rnf (k) ,

where k = 0, . . . , n− 1.

4.2 Pn and the Fourier Transform

The transition from the Fourier transform of functions on R to the Fourier transform in Cn

can be obtained formally by sampling and periodization [12, Theorem 1] and it is often used
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in the literature under various conditions on f which ensure its validity. A solid background
is given in [2]. The operator Pn has been defined in such a way that it fits into this scheme
and, indeed, the transition holds in a precise sense for all functions from S0. The result
follows from the observations in [2, 12], since the required assumptions are always satisfied
for functions from S0. We include a condensed proof.

Proposition 1 (see [2, 12]). Suppose that f ∈ S0. Given n ∈ N, define the vector
u = Pnf ∈ Cn. Let f̂ denote the Fourier transform of f in S0 and let û denote the Fourier
transform of u in Cn. Then Pnf̂ = û.

Proof. Using the Poisson summation formula in the form of (3.1), with ω = k/
√
n and

a = 1/
√
n, we have

Pnf̂ (k) =
∑
l∈Z

f̂
( k√

n
− l

√
n
)

= 1√
n

∑
l∈Z

f
( l√

n

)
e2πi k l/n

= 1√
n

n−1∑
m=0

∑
l∈Z

f
( m√

n
− l

√
n
)
e2πi k m/n = P̂nf (k) ,

where k = 0, . . . , n− 1. Note that S0 is invariant under time-frequency shifts and all series
converge absolutely by Lemma 1. Hence, the result is proved, since by Lemma 2 (i) the
Poisson summation formula generally holds for f ∈ S0.

4.3 Pn and the Dual Gabor Window

The transition from functions to vectors by sampling and periodization has been investigated
also for Gabor systems. First structural relations are derived in [44, Appendix D]. For Gabor
systems G(g, a, b) with ab = 1, more details are given in [38]. Finally, rigorous results
for general Gabor frames, ab ≤ 1, and with attention to frame bounds have been developed
in [34]. Here we outline that the operator Pn is suitably defined for this purpose and S0 is
an appropriate function space, see Proposition 2.

Let n ∈ N and v ∈ Cn. The short-time Fourier transform in Cn with respect to v is
defined for u ∈ Cn, by

V (n)v u(k, l) =
n−1∑
m=0

u(m) v(m− k) e2πi l m/n, k, l = 0, . . . , n− 1 .

The following result describes sampling and periodization of the short-time Fourier trans-
form, it is closely related to observations in [23, 34, 43, 44]. By P [2d]

n we denote the
analogue of Pn for functions on R2, described in (6.1), see Section 6.

Lemma 9. Let f, g ∈ S0 and n ∈ N. Then P [2d]
n Vgf (k, l) = 1√

n
V
(n)
v u(k, l), for

k, l = 0, . . . , n− 1, where u = Pnf ∈ Cn and v = Png ∈ Cn.
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Proof. Using the general time-frequency Poisson summation formula (3.2), which is
applicable since f, g ∈ S0, we calculate

P [2d]
n Vgf (k, l)

=
∑
r,s∈Z

Vgf
( k√

n
− r

√
n,

l√
n

− s
√
n
)

= 1√
n

∑
m∈Z

f
( m√

n

) ∑
r∈Z

g
(m− k√

n
− r

√
n
)
e2πi m l/n

= 1√
n

n−1∑
m=0

∑
s∈Z

(
f

(m− s n√
n

) ∑
r∈Z

g
(m− s n− k√

n
− r

√
n
)
e2πi (m−s n)l/n

)

= 1√
n

n−1∑
m=0

( ∑
s∈Z

f
( m√

n
− s

√
n
))( ∑

r∈Z

g
(m− k√

n
− r

√
n
))
e2πi m l/n

= 1√
n

n−1∑
m=0

u(m) v(m− k) e2πi m l/n = 1√
n
V (n)v u(k, l),

where k, l = 0, . . . , n− 1.

Next, we recall that an analogous form of the Janssen representation (3.3) can be
formulated for Gabor frame operators on Cn, see [34, Equation (5.4)]; we mention that the
result indeed holds, more generally, on groups [23, Corollary 7.7.8]. Given v ∈ Cn and
p, q ∈ N divisors of n ∈ N, the Gabor frame operator S(n)v,p,q on Cn, defined in (2.4), has
the following Janssen representation. For u ∈ Cn, we have

S(n)v,p,qu(m) = p◦q◦

n

q−1∑
k=0

p−1∑
l=0

V (n)v v(k p◦, l q◦) u(m− k p◦)e2πi m l q◦/n , (4.2)

with m = 0, . . . , n− 1, where p◦ = n/q and q◦ = n/p.

Remark 14. The normalization factorp◦q◦/n = n/(pq) in (4.2) is called the redundancy
of the Gabor system G(n)(v, p, q), cf. Remark 12 (ii).

The next lemma relates sampling and periodization with the action of Gabor frame
operators. The result follows from [34, Proposition 3 and Section 5], the proof is based on
the Janssen representation; we condense the proof by making use of Lemma 9 and properties
of S0.

Lemma 10 (see [34]). Given f, g ∈ S0 and 0 < a < 1, suppose that a2 = p/q ∈ Q and
let n = pq. Then PnSg,a,af = 1√

n
S
(n)
v,p,pu, where u = Pnf ∈ Cn and v = Png ∈ Cn.

Proof. Since g ∈ S0, by Lemma 5 the frame operator Sg,a,a has an absolutely convergent
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Janssen representation (3.3). Hence, using a2 = n/q2 and p/a = √
n we calculate

Sg,a,af (t)

= 1

a2

∑
r,s∈Z

Vgg(r/a, s/a)f (t − r/a)e2πi t s/a

= 1

a2

p−1∑
k,l=0

∑
r,s∈Z

Vgg
(k − r p

a
,
l − s p

a

)
f

(
t − k − r p

a

)
e2πi t (l−s p)/a

= q2

n

p−1∑
k,l=0

∑
r,s∈Z

Vgg
(k q − r n√

n
,
l q − s n√

n

)
f

(
t − k q − r n√

n

)
e2πi t (l q−s n)/√n ,

(4.3)

where t ∈ R. Next, we apply Pn to (4.3). Thus, using Lemma 9, Remark 13 (iii) and (4.2)
we obtain

PnSg,a,af (m)

= q2

n

p−1∑
k,l=0

( ∑
r,s∈Z

Vgg
( k q√

n
− r

√
n,
l q√
n

− s
√
n
))
u(m− k q)e2πi m l q/n ,

= q2

n

p−1∑
k,l=0

P [2d]
n Vgg(k q, l q) u(m− k q)e2πi m l q/n ,

= 1√
n

q2

n

p−1∑
k,l=0

V (n)v v(k q, l q) u(m− k q)e2πi m l q/n

= 1√
n
S(n)v,p,pu(m), m = 0, . . . , n− 1 .

The next proposition is concerned with sampling and periodization of a Gabor window.
The result follows essentially from [34, Proposition 4 and Section 5]; we formulate the result
specifically for our purposes, using the Feichtinger space S0, and include the proof.

Proposition 2 (see [34]). Given g ∈ S0 and 0 < a < 1, suppose that G(g, a, a) is a
Gabor frame for L2 with a2 = p/q ∈ Q. Let n = pq and define the vector v = Png in
Cn. Then the following hold.

(i) The system G(n)(v, p, p) is a Gabor frame for Cn.

(ii) Denote the dual window of G(g, a, a) by g̃, which is in S0, and denote the dual vector
of G(n)(v, p, p) by ṽ in Cn. Then ṽ = 1√

n
Png̃.

Proof. First, for S = Sg,a,a and S(n) = S
(n)
v,p,p, we have by Lemma 10 that

PnS = 1√
n
S(n)Pn . (4.4)

Since by assumptionG(g, a, a) is a frame we have that S : S0 → S0 is surjective. Since by
Remark 13 (ii) alsoPn : S0 → Cn is surjective, we conclude from (4.4) that S(n) : Cn → Cn

is surjective. That is, S(n) is invertible and G(n)(v, p, p) is a frame for Cn. Consequently,
the dual window is of the form
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ṽ = (
S(n)

)−1
v = (

S(n)
)−1

Png = (
S(n)

)−1
PnSg̃

= 1√
n

(
S(n)

)−1
S(n)Png̃ = 1√

n
Png̃ .

4.4 Reconstruction from Pn

As a crucial result for our approach we show how a function in S0 can be reconstructed
from the vectors obtained by applying Pn, that is, from sampling and periodization.

Proposition 3. Suppose that f ∈ S0. For n ∈ N, define the vector un = Pnf ∈ Cn.
Then ‖Lnun − f ‖S0 → 0 as n → ∞. In particular, {LnPn : n ∈ N} is uniformly bounded.

Proof. By direct computation we find that

LnPnf (t) =
n−1∑
k=0

λk
∑
l∈Z

f
( k√

n
− l

√
n
)
ϕ
(
(t − τk)

√
n
)
, t ∈ R , (4.5)

and also obtain

Q
ϕ

1/
√
n
Q̂w√

n
f (t) =

∑
k∈Z

wn(k/
√
n)

∑
l∈Z

f
( k√

n
− l

√
n
)
ϕ
(
t
√
n− k

)
, (4.6)

where t ∈ R. Now using (2.2) we conclude that (4.5) and (4.6) coincide, that is,

LnPn = Q
ϕ

1/
√
n
Q̂w√

n
. (4.7)

Next, we have ϕ̂(k) = δk,0 and w(k) = δk,0, so (4.7) and Lemma 4 imply

‖LnPnf − f ‖S0 = ‖Qϕ

1/
√
n
Q̂w√

n
f − f ‖S0 → 0, as n → ∞ .

5. Proofs of Theorems 1–3

Proof of Theorem 1. Suppose that f is in S0, let vn = Rnf and define fn = wnf . By
Lemma 3 we have that

‖fn − f ‖S0 → 0, as n → ∞ . (5.1)

Next, by Lemma 8 we obtain

vn = Rnf = Pn(wnf ) = Pnfn , for n ∈ N. (5.2)

Thus, using (5.1), (5.2), and Proposition 3 we conclude that

‖Lnvn − f ‖S0 = ‖LnPnfn − f ‖S0

≤ ‖LnPn(fn − f )‖S0 + ‖LnPnf − f ‖S0

≤ C ‖fn − f ‖S0 + ‖LnPnf − f ‖S0 → 0, as n → ∞ .

Proof of Theorem 2. Suppose that f is in S0, let vn = Rnf and define fn = wnf .
From Lemma 1 (ii) and Lemma 3 we obtain

‖f̂n − f̂ ‖S0 = ‖fn − f ‖S0 → 0, as n → ∞ . (5.3)
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Next, by Lemma 8 we have vn = Rnf = Pn(wnf ) = Pnfn, for n ∈ N, so Proposition 1
implies

v̂n = Pnf̂n, for n ∈ N . (5.4)

Thus, using (5.3), (5.4), and Proposition 3 we conclude that

‖Lnv̂n − f̂ ‖S0 = ‖LnPnf̂n − f̂ ‖S0

≤ ‖LnPn
(
f̂n − f̂

)‖S0 + ‖LnPnf̂ − f̂ ‖S0

≤ C ‖f̂n − f̂ ‖S0 + ‖LnPnf̂ − f̂ ‖S0 → 0, as n → ∞ .

Proof of Theorem 3. For p, q, n defined in the theorem, denote gn = wng and let
an = √

p/q. By Lemma 3 we have ‖gn − g‖S0 → 0 as n → ∞. Since also

an = √
p/q =

√
�a2q/q → a, as n → ∞ ,

we obtain from Lemma 7 that G(gn, an, an) is a Gabor frame for L2, for all n sufficiently
large, and the dual window g̃n satisfies

‖g̃n − g̃‖S0 → 0, as n → ∞ . (5.5)

By Lemma 8 we have vn = Rng = Pn(wng) = Pngn, for n ∈ N. Hence, Proposition 2
implies that G(n)(vn, p, p) is a Gabor frame for Cn and the dual vector satisfies

ṽn = 1√
n
Png̃n, for n ∈ N . (5.6)

Next, using (5.5), (5.6), and Proposition 3 we conclude that

‖√nLnṽn − g̃‖S0 = ‖LnPng̃n − g̃‖S0

≤ ‖LnPn(g̃n − g̃)‖S0 + ‖LnPng̃ − g̃‖S0

≤ C ‖g̃n − g̃‖S0 + ‖LnPng̃ − g̃‖S0 → 0, as n → ∞ .

Thus, the desired statement follows since q → ∞ yields n → ∞.

6. Further Comments

Our results are formulated for functions on R. We note that the corresponding results
hold for functions on Rd , for any d = 1, 2, . . . For example, let d = 2 and by Mn,n(C)
denote the complex n × n-matrices. Then the definition of Rn in (2.3) is modified to
R

[2d]
n : S0(R2) → Mn,n(C),

R[2d]
n f (k) = λk f (τk), k = (k1, k2), k1, k2 = 1, . . . , n ,

where λk = λk1λk2 ∈ R and τk = (τk1 , τk2) ∈ R2. Correspondingly, Ln in (2.4) is replaced
by L[2d]

n : Mn,n(C) → S0(R2),

L[2d]
n v(t) =

n∑
k1,k2=1

λk v(k)�
(
(t − τk)

√
n
)
, k = (k1, k2), t ∈ R2 ,
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where �(t) = ϕ(t1)ϕ(t2), for t = (t1, t2) ∈ R2, and ϕ is given in Definition 3. Finally, Pn
in (4.1) takes the form P

[2d]
n : S0(R

2) → Mn,n(C),

P [2d]
n f (k) =

∑
l1,l2∈Z

f
( k√

n
− l

√
n
)
, k = (k1, k2), l = (l1, l2) , (6.1)

where k1, k2 = 0, . . . , n − 1. With these and analogous modifications all our results hold
for higher dimensions.

Finally, we point out that our work is closely related with the finite approximation of
quantum systems, see [16]. We believe that our results can be useful also in this context.
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