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Abstract The main purpose of this paper is to provide an

easy-to-use approximation formula for the inverse Langevin

function. The mathematical complexity of this function

makes it unfeasible for an analytical manipulation and

inconvenient for computer simulation. This situation has

motivated a series of papers directed on its approximation.

The best known solution is given by Cohen. It is used in

a lot of statistically based models of rubber-like materials.

The formula is derived from rounded Padé approximation

[3/2]. The main idea of the presented approach in this paper

relies on improvement of the precision of approximation

formula for the inverse Langevin function by using multi-

point Padé approximation method. We focused our study

strongly on obtaining a simple and accurate approximation.

It is assumed that the proposed approximation formula may

be considered a useful tool for verification of the results

obtained in other ways. Our results are supported by investi-

gating several numerical examples. The paper also presents

a few applications of computer software named Mathe-

matica which can be used to calculate symbolically one

point Padé approximants and numerically multipoint Padé

approximants. Using this software, we showed also how

to compute higher order derivatives of the inverse function

in a simple and elegant way. This issue was discussed by

Itskov et al.
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Introduction

Langevin function L is a mathematical function which is

important in the theory of paramagnetism and in the the-

ory of the dielectric properties of insulators. The analytical

expression for the Langevin function is given by equation

y = L(x) = coth x − 1/x (1)

The inverse Langevin function is an integral component for

statistically based network models which describe rubber-

like materials. These materials can deform largely and

nonlinearly upon loading and return to the initial state when

the load is removed. Such rubber elasticity is achieved

due to very flexible long-chain molecules and a three-

dimensional network structure that is formed via cross-

linking or entanglements between molecules. Such mate-

rials can be described by two theories at different scales.

The most important for these theories is the formulation of

the stress-strain models. The first one which is more classi-

cal is a phenomenological model. It is based on experiment

and allows to formulate the stress-strain relation for a cho-

sen class of materials. In a microscopic statistical model,

the stress-strain relation for the system originates from

intermolecular mechanisms. The first statistical attempt for

modeling the single chain was made by Kuhn and Grün

(1942). They assumed that the single chain is unconstrained

and has an entirely random orientation in space which a

priori ignores a dependency on the motion of neighboring

chains. These theories do not account for the interaction

between different molecules which form the network. In the

statistical treatment of a single polymer chain, its geometri-

cal structure is idealized to be composed of N segments of

equal length l, the so-called Kuhn segment length. The con-

tour length L of the chain is L = Nl. They introduced the

kinematic variable of the single chain r which describes the
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current end-to-end distance. For an unstrained free chain,

r assumes the random walk-type root mean square value

r =
√

Nl. They derived an expression for the entropy of the

single chain using the inverse Langevin function L−1
(

r
L

)

.

They neglected the internal energy of the chain and gave the

following formula for the elastic strain energy

uc = kT N

(

r

L
L

−1
( r

L

)

+ ln
L−1

(

r
L

)

sinhL−1
(

r
L

)

)

(2)

where:

k is the Boltzmann constant,

T is the absolute temperature,

N is the number of rigid links in the chain,

r is the chain end-to-end distance, and

L is the contour length of the chain. The inverse Langevin

function L−1( r
L
) characterizes the alignment of rigid links

towards the stretch direction and the corresponding reduc-

tion in entropy as r approaches L. The axial force versus

displacement relationship is obtained via fc = duc/dr ,

giving:

fc =
kT N

L
L

−1
( r

L

)

(3)

Several micromechanically motivated network models have

been proposed in the literature such as the 3-, 4-, and

8-chain, the micro-macro unit sphere model, and the full-

network model which are based on non-Gaussian statis-

tics. These models use Langevin statistics which consider

finite extensibility of the molecular chains. In the paper

by Hossain and Steinmann (2012), the authors summarized

various micromechanical and phenomenological models.

Other interesting review articles are written by Boyce and

Arruda (2000), Elias-Zuniga and Beatty (2002), Böl and

Reese (2006), Gillibert et al. (2010), Kroon (2011), Linder

et al. (2011), Gloria et al. (2012) and Walasek and Jedynak

(2013, 2014). These papers present also a significant con-

tribution to the modeling of rubber-like materials. All the

listed and summarized models use the inverse Langevin

function. This function cannot be represented in a closed

form. It can only be solved using numerical methods or

requires an approximation formula. That is why it is very

important to find a simple and highly accurate approxi-

mant. The paper is constructed as follows: In “Previous

approximations”, we summarize the previous approxima-

tions of the inverse Langevin function. These approximants

occur generally in two forms: as Taylor expansions and Padé

approximations. The Padé approximations can be given in

a relatively simple form and they are able to describe the

asymptotic behavior of the inverse Langevin function in the

vicinity of the maximum chain extensibility. Different one-

point Padé approximants are discussed in “One-point Padé

approximation of L−1(y)”. We compare their relative errors

with the Cohen approximation. The Cohen approximation

is the most popular formula which is used for approxima-

tion of the inverse Langevin function. According to Scholar

Google, this formula is cited by about 200 papers and books.

It has a simple form which is convenient for analytical trans-

formation and it gives quite a good accuracy. The maximum

relative error is near 5 %. In “N-point Padé approximation

of L−1(y)”, we introduce a new method for finding the

approximant of the inverse Langevin function. It uses N-

point Padé approximation method (Gilewicz et al. 2005;

Jedynak and Gilewicz 2014). Results which are obtained

by this method are compared with the Cohen approxima-

tion. In “Sample applications of proposed N-point Padé

approximation of L−1(y)”, we describe a few applica-

tions of proposed N-point Padé approximation. Finally,

“Conclusion” contains some concluding remarks.

Previous approximations

The inverse Langevin function x = L
−1(y) cannot be writ-

ten in a closed form. It can be found by numerically solving

the inverse problem. In this case, the problem is formu-

lated by the nonlinear equation L(x) − y = 0. For a given

y, we can find numerically x. This method is rarely used

in practice because it is not applicable for further analyt-

ical analysis. A better and more practical solution gives

the approximation. So far, there are two ways discussed

in the literature to approximate the inverse Langevin func-

tions: series expansion and rational (Padé) approximation.

The first method is based on a series representation of

L−1(y) using Taylor series at the point y = 0. It is some-

times used but gives poor results close to the singular point

y = 1. It is connected with the fact that Taylor series of

L
−1(y) converges very slowly at y → 1 (high extensions).

This method was firstly used by Kuhn and Grün (1942).

It consisted of the first ten nonzero terms. This series has

nonzero coefficients only for odd powers of y. Recently,

Itskov and Dargazany (2011) proposed a simple recurrence

procedure for calculating Taylor series coefficients of the

inverse function. This formula was further applied to the

inverse Langevin function. They showed the solutions based

on different numbers of series terms (20, 50, 100, 115,

200, and 400). Next, they compared accuracy with a few

rational approximations (Cohen 1991; Puso 2003; Treloar

1975). They stated that the solution based on 115 series

terms shows the best accuracy within the region [0, 0.95]

between examined approximations. This method of calcu-

lation of higher order derivatives of the inverse function

was also presented by Dargazany et al. (2013). The authors
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compared it with other methods known in literature both

with respect to the computation time and memory usage.

This proposition is rather difficult to implement for exam-

ple in the full-network rubber model which uses the inverse

Langevin function. Generally, a Taylor series is not a good

option for finding L−1 (y) since it gives poor approximation

close to the singular point y = 1. We can write the following

script which calculates the first n numbers of series terms

of expansion of the inverse Langevin function at the point

y0 = 0 using well-known mathematical software called

Mathematica. Thanks to a compact coding in Mathematica

the program is short.

y0 = 0

Langevin[x ] := Coth[x] − 1/x

series = Normal[InverseSeries[Series[Langevin[x],
{x, y0, n}]]]/.x− > y

where:

n is the number of series terms.

The k coefficient ck which stands close to yk can be

reached by the following command:

c[k ] := Coefficient[series, y, k]

The efficiency of the presented script has been thor-

oughly examined by comparing it with the results of Itskov

et al. (2011). Figure 1 shows the magnitude of the first 100

odd coefficients ck (all even are equal 0) calculated using

the Mathematica script.

The second method of solution for the inverse Langevin

function is connected with rational function representation,

typically by a Padé approximation. The best known Padé

approximation [3/2] is given by Cohen (1991), but it is usu-

ally used in the rounded form. Padé approximant [3/2] does

not have a singularity at y = 1. That is why Cohen (1991)

proposed rounding off one of the coefficients of the denom-

inator to ensure that such singularity does occur. A further

simplification was proposed by Cohen (1991) by rounding

off another coefficient in the nominator to get the simple

formula. The work of Haward (1999) is a good example of

Fig. 1 Magnitude of the first 100 odd coefficients ck

the application of the Cohen formula which is used to model

nominal stress-strain curves for thermoplastic elastomers.

This approximant has been widely accepted and developed

by numerous researchers.The main reason of its popularity

is its simplicity and good accuracy. We note that Treloar

(1975), in his book, provided an empirical approximation

for the inverse Langevin function, which is closely related

to the [1/6] Padé approximation of the inverse Langevin

function. Puso (2003) proposed the rational approximation

formula {1/3}. Horgan and Saccomandi (2002) showed that

the Gent model is closely related to Padé approximants

for the inverse Langevin function that arises in the non-

Gaussian molecular models. The model proposed by Gent

is the phenomenological constitutive model for incompress-

ible rubber. To summarize our discussion, the following

models of approximation of L−1 which are based on the

Taylor series expansion were proposed:

(i) Kuhn and Grün (1942)

L
−1(y) = 3y +

9y3

5
+

297y5

175
+

1539y7

875
+

126117y9

67375

+
43733439y11

21896875
+

231321177y13

109484375

+ +
20495009043y15

9306171875
+

1073585186448381y17

476522530859375

+
4387445039583y19

1944989921875
+ O

(

y21
)

(4)

(ii) Itskov et al. (2011)

L
−1 (y) = 3y +

9

5
y3

+... +
519588001407316958447129785511020819131555326399179970047767492196701159

902903623205422824379381653441368510859764577156376354396343231201171875
y59

+O
(

y61
)

(5)
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and the following approximation which are based on the

rational approximation that are close to one-point Padé

approximation:

(i) Cohen exact Padé approximation [3/2] (Cohen 1991)

L
−1(y) = y

3 − 36
35

y2

1 − 33
35

y2
, (6)

(ii) Cohen rounded Padé approximation [3/2] (Cohen

1991)

L
−1(y) = y

3 − y2

1 − y2
. (7)

(iii) Puso approximation (Puso 2003)

L
−1(y) =

3y

1 − y3
, (8)

(iv) Treloar approximation (Treloar 1975)

L
−1(y) =

3y

1 − ( 3
5
y2 + 36

175
y4 + 108

875
y6)

≈
3y

1 − ( 3
5
y2 + 1

5
y4 + 1

5
y6)

, (9)

(v) Warner approximation (Warner 1972)

L
−1(y) =

3y

1 − y2
, (10)

The approximations of the Langevin function by differ-

ent rational approximation approaches (7–10) for y ∈ [0, 1]
are illustrated in Fig. 2. Figure 3 presents their relative error.

We define the relative error ε to be the ratio between the

absolute error and the absolute value of the correct value.

The absolute error is the absolute value of the difference

between the two values: the correct value and its an approx-

imation. Padé approximation is superior to the polynomial

Fig. 2 Comparison between different rational approximations of the

inverse Langevin function for y ∈ [0, 1]

Fig. 3 Graphs of relative error for y ∈ [0, 1]

approximations derived from Taylor series expansions. It

shows the singular behavior of inverse Langevin function at

y = 1 and exhibits very good results.

From the mathematical point of view, the approximation

given by Bergström (1999) is worth noting. It is quite dif-

ferent from the ones discussed earlier. The interval of y is

divided into two subintervals, and the approximation for-

mula is defined by two different mathematical equations in

each subinterval in the following way:

L
−1(y) =

{

1.31446 tan(1.58986y) + 0.91209y if |y|0 < 0.84136

1/(sign(y) − y) if 0.841360 ≤ |y| < 1

(11)

The idea of this approximation originates from compar-

ing behavior of L
−1(y) for small y and L(x) for large

x to other well-known function. For small y, the inverse

Langevin function can be Taylor expanded into series which

is similar to the Taylor expansion of function γ tan(αy)

(where γ and α are constants). For large x, the asymptotic

form of the Langevin function is 1− 1
x

. If we combine these

two facts, we can derive the formula given by Bergström.

As a curiosity, we can give the following fact. To improve

the accuracy of determining the location of the point which

joins this two different functions, we can set a new value,

0.843951. For this value, the discussed functions differ at

this point from the exact value of about 10−8, while for

0.84136, this difference is about 10−3. This formula is

more accurate than all the described approximations of the

inverse Langevin function. According to Bergström (1999),

the approximant has a relative error that is less than 0.064 %

for y ∈ [0, 1]. Because of its form, it is not easily applicable

for physical models which use the inverse Langevin func-

tion. We always have two subintervals in which analytical

equations are different. Also, the point of their connection is
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assigned with the specified accuracy. Despite the high pre-

cision, this formula is generally used only by its author. This

fact confirms the thesis that a given approximation reaches

a high popularity if it has a simple form and relative high

accuracy.

One-point Padé approximation of L−1(y)

In the previous section, we demonstrated a few rational

approximations (6–10) which are used for calculating the

inverse Langevin function. The most popular one is given

by Cohen (7) and it is based on Padé approximation (PA)

[3/2] (6). It needs six information about inverse Langevin

function at the point y = 0 for construction. Generally, the

numerator of PA of L−1(y) contains only the odd powers

of y and the denominator consists only of even ones. Other

variants which need the same number of information are

described by the following PA [1/4] and [5/0]. The PA [2/3]

and [4/1] correspond, respectively, to PA [1/2] and [3/0]. We

can construct Padé approximants [m/n] of L−1(y) using the

Mathematica script described in the previous section. To do

that, we add the following command:

PadeApproximant[series, {y, 0, {m, n}}]

This method is based on solving linear systems (Jedynak

and Gilewicz 2013a, 2013b, 2014). We can find more gen-

eral information of approximation theory and practice in the

recently published book by Trefethen (2013). The author

gives numerical examples which are written in Matlab.

Many methods of computation of Padé approximants use

also the relation between the convergents of continued frac-

tions and Padé approximants (Gilewicz and Jedynak 2010).

Recently, Beckermann et al. (2012) described a new method

of computing matrix Padé approximants of series with inte-

ger data. Three Padé approximants [3/2], [1/4], and [1/2]

have asymptotic points at y0 which are close to y = 1. The

PA [5/0] and [3/0] represent in fact Taylor series.

(i) Padé approximation [3/2] (Cohen 1991)

[3/2]L−1(y) = y
3 − 36

35
y2

1 − 33
35

y2
, (12)

y0 =
√

35

33
= 1.02986

(ii) Padé approximation [1/4]

[1/4]L−1(y) =
3y

1 − 3
5
y2 − 36

175
y4

(13)

y0 =
1

2

√

5

6

(√
161 − 7

)

= 1.08863

(iii) Padé approximation [1/2]

[1/2]L−1(y) =
3y

1 − 3
5
y2

(14)

y0 =
√

5

3
= 1.29099

(iv) Padé approximation [5/0]

[5/0]L−1(y) = 3y +
9y3

5
+

297y5

175
(15)

(v) Padé approximation [3/0]

[3/0]L−1(y) = 3y +
9y3

5
(16)

Figure 4 shows the discussed Padé approximants (12–16)

for y ∈ [0, 1] and Fig. 5 presents relative error of these

approximations. Figure 5 shows that the smallest relative

error has [3/2] Padé approximant next [1/4] and the worst

is [3/0]. The relative error is less or equal 1 % within the

following ranges:

[3/2]L−1 for y ∈ [0, 0.66]

[1/4]L−1 for y ∈ [0, 0.60]
[5/0]L−1 for y ∈ [0, 0.50]
[1/2]L−1 for y ∈ [0, 0.44]
[3/0]L−1 for y ∈ [0, 0.37]

N-point Padé approximation of L−1(y)

According to Baker and Graves-Morris (1981), we can find

in the literature a few names for N-point Padé approx-

imants like multipoint Padé approximants (Golub 2003,

2004), rational interpolants, or Newton Padé approximants.

Despite the wealth of research on different approximations

Fig. 4 Comparison between different Padé approximants of the

inverse Langevin function for y ∈ [0, 1]
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Fig. 5 Graphs of relative error for y ∈ [0, 1]

of the inverse Langevin function, we have been unable to

identify in the literature any N-point Padé approximant that

has been used for the considered function. If we compare

this method with traditional PA, we can claim that this

method usually gives more accurate results and it is also

characterized by low cost like traditional PA. Let f be an

analytic function at N real different points having the power

expansions. The N -point Padé approximant (NPA) to f is a

rational function Pm/Qn = [m/n] denoted if it is needed,

as follows:

[m/n]p1p2...pN
y1y2...yN

(y) =
a0 + a1y + . . . + amym

1 + b1y + . . . + bnyn

m + n + 1 = p = p1 + p2 + . . . + pN (17)

satisfying the following relations:

f (y) − [m/n](y) = O((y − yj )
pj ) j = 1, 2, . . .N. (18)

Each pj represents the number of coefficients ck(yj ) of

expansion actually used for the computation of NPA. If all

pj = 1, then the construction of NPA [m/n] is equivalent

to the construction of the rational interpolation Pm/Qn. In

the present problem p1 = 2 which means that we need two

information about function at the point y1, it is the value

of L−1(y1) and its first derivative. Other pj are equal one.

The classical Padé approximant (PA) is a one-point PA com-

puted from the development of the function f at the origin

y = 0. It is defined by the linear system obtained by the

definition (18) with right-hand side O(ym+n+1). At the first

time, we estimate the function L−1(y) by NPA [3/2] with

the values given in Table 1 in the interval [0, 1] with the

additional condition on the value of the first derivative of

the function L−1(y) at the point y = 0 e.g. (L−1)′(0) = 3.

The general form of the function is given by equation:

NPA[3/2]L−1(y) =
a0 + a1y + a2y

2 + a3y
3

1 + b1y + b2y
2

(19)

Table 1 Computed by the Mathematica program values of L−1(y)

used to build the approximation formula of NPA [3/2]

y L−1(y)

0 0.000000

0.2 0.614967

0.7 3.303540

0.9 10.00000

0.99 100.00000

The choice of position of the points has a huge impact on

the approximation accuracy. Optimal selection of the nodes

was a very difficult task. We investigated numerically a lot

of different combinations of points to find the best solution.

In certain extreme situations, asymptotes within the interval

were observed. Trials of the maximal relative error reduc-

tion by moving one node from the beginning of the interval

to the middle gave as a result the significant increase of the

relative errors in the initial interval.

We find easy coefficient a0 from the condition

L−1(0) = 0. Hence, we obtain a0 = 0. From the condition

(L−1)
′
(0) = 3, we get a1 = 3. The rest of the unknown

coefficients of the Eq. 19 is calculated by special program

which was written in the Mathematica language.

Langevin[x ] := Coth[x] − 1/x

y0 = 0;
a0 = 0;
a1 = 3;
y1 = 0.2;
y2 = 0.7;
y3 = 0.9;
y4 = 0.99;
z1 = FindRoot[Langevin[x] − y1 == 0, {x, 1}];
x1 = z1[[1, 2]];
z2 = FindRoot[Langevin[x] − y2 == 0, {x, 1}];
x2 = z2[[1, 2]];
z3 = FindRoot[Langevin[x] − y3 == 0, {x, 1}];
x3 = z3[[1, 2]];
z4 = FindRoot[Langevin[x] − y4 == 0, {x, 1}];
x4 = z4[[1, 2]];
res = Flatten[Solve[
{a3 ∗ y13 + a2 ∗ y12 + a1 ∗ y1 + a0 == x1(b2 ∗ y12 + b1 ∗ y1 + 1),

a3 ∗ y23 + a2 ∗ y22 + a1 ∗ y2 + a0 == x2(b2 ∗ y22 + b1 ∗ y2 + 1),

a3 ∗ y33 + a2 ∗ y32 + a1 ∗ y3 + a0 == x3(b2 ∗ y32 + b1 ∗ y3 + 1),

a3 ∗ y43 + a2 ∗ y42 + a1 ∗ y4 + a0 == x4(b2 ∗ y42 + b1 ∗ y4 + 1)},
{a2, a3, b1, b2}]];
a2 = res[[1, 2]];
a3 = res[[2, 2]];
b1 = res[[3, 2]];
b2 = res[[4, 2]];
W [y ] = (a3 ∗ y3 + a2 ∗ y2 + a1 ∗ y + a0)/(b2 ∗ y2 + b1y + 1)
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After running the script, we received the following values

for the searched coefficients ai and bi (19):

a0 = 0

a1 = 3

a2 = −2.57382

a3 = 0.654931

b1 = −0.895129

b2 = −0.105085

Next we can examine the roots of the denominator and

factorize it.

1 + b1y + b2y
2 = −0.105085y2 − 0.895129y + 1.

= −0.105085(y − 0.999807)(y + 9.51797)

One of the roots y1 = 0.999807 is very close to y = 1, so

we can round it to 1. As a result, the rounded denominator

has a new form

1 + b1y + b2y
2 = −0.105085(y − 1)(y + 9.51797)

= −0.105085y2 − 0.895109y + 1.00019

To normalize fraction, we can divide all the coefficients of

nominator and denominator by 1.00019. Finally, we obtain

the following formula:

NPA[3/2]L−1(y) = y
2.99942 − 2.57332y + 0.654805y2

1 − 0.894936y − 0.105064y2

(20)

which can be rounded to a simpler form

rounded NPA[3/2]L−1(y) = y
3.0 − 2.6y + 0.7y2

1 − 0.9y − 0.1y2

= y
3.0 − 2.6y + 0.7y2

(1 − y)(1 + 0.1y)
(21)

Table 2 contains the exact values of L−1(y), its approx-

imation NPA [3/2], rounded NPA [3/2], and the Cohen

approximation.

Here, we see that the rounded NPA [3/2], that is, an NPA

built with the same information that the Cohen approxima-

tion, is the best. The comparison of the standard deviations

also shows the advantage of our approximation. The for-

mula is more exact than the Cohen formula, and its com-

plexity is similar to the Cohen approximation. The maximal

relative error is 1.5 % at the vicinity of the point y = 0.85.

The maximal relative error of the Cohen formula is 4.9 %

at the vicinity of the point y = 0.8. For y ∈ (0.44, 0.97),

the relative error of the Cohen formula is more than 1.5 %.

The relative error of the Cohen formula is low than 1 % for

y ∈ [0, 0.37) ∪ (0.98, 1]. Figure 6, which represents the

error of our approximations, illustrates the sharpness of our

results.

Table 2 6-Point Padé approximation of L−1(y)

y Exact L−1(y) NPA
[

3
2

]

(y) Rounded NPA
[

3
2

]

(y) Cohen

0.0 0 0 0 0

0.05 0.150226 0.150388 0.150393 0.150251

0.1 0.301817 0.302229 0.3022 0.30202

0.15 0.456207 0.456596 0.45652 0.456905

0.2 0.614967 0.614818 0.614706 0.616667

0.25 0.779897 0.778556 0.778455 0.783333

0.3 0.953149 0.949926 0.949931 0.959341

0.35 1.13739 1.131678 1.13194 1.147721

0.4 1.33605 1.327454 1.328205 1.352381

0.45 1.55372 1.542197 1.54378 1.578527

0.5 1.79676 1.782807 1.785714 1.833333

0.55 2.07437 2.059218 2.064165 2.127061

0.6 2.4005 2.386308 2.39434 2.475

0.65 2.79751 2.787417 2.800101 2.901082

0.7 3.30354 3.301416 3.321184 3.445098

0.75 3.98905 3.998222 4.02907 3.178571

0.8 4.99772 5.017620 5.066667 5.244444

0.85 6.66652 6.685706 6.767358 6.976126

0.9 10.000000 9.980668 10.13119 10.37368

0.95 20.000000 19.793243 20.15822 20.43718

1.0 ∞ ∞ ∞ ∞
stand. dev., stand. dev., stand. dev.,

0.01 0.01 0.04

Comparison with Cohen results (the bold digits are exact)

Cohen compared his modified [3/2] Padé approximant

at the neighborhood of the maximum normalized extension

(y = 1) with the Warner approximation (Warner 1972) and

the exact values of the inverse Langevin function. The sec-

ond figure in the study of Cohen (1991) proved that his

approximation is really accurate. We also made the same

comparison between proposed modified NPA [3/2] and the

Cohen formula. Figure 7 clearly demonstrates that modified

NPA [3/2] is more accurate than the Cohen approximation

(Table 3).

Fig. 6 Graphs of relative error for y ∈ [0, 1]
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Fig. 7 Graphs of relative error for y ∈ [0.985, 0.999]

It is possible to try other approximations using the Padé

technics. The numerical tests show that simple use of other

interpolation nodes does not improve the approximation.

Sample applications of proposed N-point Padé

approximation of L−1(y)

In this section, we show two examples which use new

approximation (21). The first example refers to the inte-

gration of the inverse Langevin function and the sec-

ond is connected with differentiation of this function. For

both examples we show their relative error which appears

after application of the Cohen and proposed formula for

Table 3 6-Point Padé approximation of L−1(y) in the vicinity of

asymptote y = 1

y ExactL−1(y) Rounded NPA[ 3
2
](y) Cohen

0.985 66.6667 66.8418 67.1479

0.986 71.4286 71.6041 71.9110

0.987 76.9231 77.0991 77.4068

0.989 83.3333 83.5098 83.8183

0.990 90.9091 91.0860 91.3953

0.991 100 100.1774 100.487

0.992 111.111 111.289 111.600

0.992 125 125.178 125.490

0.993 142.857 143.036 143.348

0.994 166.667 166.846 167.159

0.995 200 200.180 200.494

0.996 250 250.180 250.495

0.997 333.333 333.514 333.830

0.998 500 500.181 500.497

0.999 1000 1000.181 1000.499

Stand. dev.: Stand. dev.:

0.05 0.1

Comparison with the Cohen results (the bold digits are exact)

the mentioned mathematical operations. The chain free

energy of rubber-like material is proportional to the inverse

Langevin function L−1(y) integrated between zero and r/L.

This fact can be expressed by the following equation

uc(r) = NkT

∫ r/L

0

L
−1(y) dy (22)

This equation is valid in the entire range of chain extension

r/L between zero and unity. Using the Cohen approxima-

tion the elastic free energy can be calculated in the following

way

uc

NkT
(r) =

∫ r/L

0

L
−1(y) dy

≈
∫ r/L

0

y
3 − y2

1 − y2
dy

=
∫ r/L

0

(

y +
1

1 − y
−

1

y + 1

)

dy

=
(

1

2
y2 − ln(1 − y) − ln(1 + y)

)

∣

∣

∣

r/L

0

=
1

2
y2 − ln(1 − y2)|r/L0 =

1

2
(
r

L
)2 − ln

(

1 −
( r

L

)2
)

(23)

This final formula (23) can be found for example in

the papers of Jarecki and Ziabicki (2002) or Perrin (2000).

Jarecki and Ziabicki compared also this solution with

the result given by integration of the series expansion of

the inverse Langevin function. Perrin, after replacing the

inverse Langevin function by the Cohen approximant, per-

formed analytically integration over all chain directions and

obtained the formulas for stresses: σ1, σ2, and σ3. They are

expressed by the Legendre incomplete elliptic integrals of

first and second kinds. Using the proposed rounded NPA

[3/2] (21), the elastic free energy can be calculated in the

following way:

uc

NkT
(r) ≈

∫ r/L

0

y
3.0 − 2.6y + 0.7y2

(1 − y)(1 + 0.1y)
dy

=
∫ r/L

0

(

−7y + 89 +
1

1 − y
−

900

y + 10

)

dy

=
(

−
7

2
y2 + 89y − ln(1 − y) − 900 ln(10 + y)

+900 ln(10)

)

∣

∣

∣

r/L

0

= −
7

2

( r

L

)2

+ 89
r

L
− ln

(

1 −
r

L

)

−900 ln
(

10 +
r

L

)

+ 900 ln(10) (24)

To compare the accuracy of the derived formulas (23, 24)

with exact values, we can calculate a numerically definite

integral of the inverse Langevin function L−1(y). The result
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of integration is shown by Eq. 2 and it can be obtained by

using the well-known rule for integration by parts

∫

f (y) dy = yf (y) −
∫

yf ′(y) dy (25)

and the following identity y = f −1(f (y)). After substitu-

tion in Eq. 25, we get

∫

f (y) dy = yf (y) −
∫

f −1(f (y))f ′(y) dy (26)

Hence, we obtain
∫

f −1(f (y))f ′(y) dy = yf (y) −
∫

f (y) dy (27)

Using this formula after the required transformations, we

finally obtain

∫ L(r/L)

0

L
−1(y) dy =

r

L
L

−1(
r

L
) + ln

L−1
(

r
L

)

sinhL−1
(

r
L

) (28)

which complies with Eq. 2.

The maximal relative error is 0.7 % at the vicinity of the

point y = 0.94. The maximal relative error of formula (23)

is 3.5 % at the vicinity of the point y = 0.9. For y ∈ (0.5, 1),

the relative error of the formula (23) is more than 1 %.

At the neighborhood of the maximum normalized extension

(for y ∈ (0.985, 0.999)), it decreases from 2.7 to 1.7 %

for formula (23). In the case of our formula (24), it slightly

decreases from 0.6 to 0.4 %.

Now, we consider the formulas for the first derivative

of the inverse Langevin function. In the study of Miehe

et al. (2004), we can find the approximate expressions for

the derivatives of the micro-energy needed for calculat-

ing the stresses and tangent modulus. These formulas were

obtained by using the Cohen approximation. First, we derive

the approximation formula which is based on the Cohen

formula.

d

dy
L

−1(y) ≈
d

dy

(

y
3 − y2

1 − y2

)

=
3 + y4

(1 − y2)
2

(29)

Using the proposed rounded NPA [3/2] (21), the first

derivative of the inverse Langevin function can be calculated

in the following way:

d

dy
L

−1(y) ≈
d

dy

(

y
3.0 − 2.6y + 0.7y2

(1 − y)(1 + 0.1y)

)

= −7 + 1/(1 − y)2 + 900/(y + 10)2

=
300 − 520y + 474y2 − 126y3 − 7y4

(1 − y)2(y + 10)2
(30)

To compare the accuracy of the derived formulas

(29, 30) with exact values, we should calculate numerically

the first derivative of the inverse Langevin function L−1(y).

Fig. 8 Graphs of relative error for y ∈ [0, 1] for the first derivative of

the inverse Langevin function using two described methods

To obtain a convenient formula, we can use the well-known

formula for the derivative of the inverse function (it can be

easily derived from the following identity y = f −1(f (y))).

d

dy
L

−1(L(y)) =
1

dL(y)
dy

(31)

Using this formula, we can compute numerically the first

derivative of the inverse Langevin function L−1(y) in the

following way:

d

dy
L(y) =

1

y2
−

1

sinh2 y
(32)

d

dx
L

−1(L(y)) =
sinh2 y − y2

y2 sinh2 y
(33)

The relative error for the formulas (29, 30) is presented in

Fig. 8. Figure 9 shows this error at the neighborhood of the

Fig. 9 Graphs of relative error for y ∈ [0.985, 0.999] for the

first derivative of the inverse Langevin function using two described

methods



38 Rheol Acta (2015) 54:29–39

maximum normalized extension (y = 1). The maximal rel-

ative error is 3.3 % at the vicinity of the point y = 0.72.

The maximal relative error of the formula (29) is 7.5 % at

the vicinity of the point y = 0.65. For y ∈ (0.35, 0.85), the

relative error of the formula (29) is more than 3 %. At the

neighborhood of the maximum normalized extension (for

y ∈ (0.985, 0.999)), it decreases from 0.028 to 0.00013 %

for the formula (29). In the case of our formula (30), it

decreases from 0.01 to 0.00004 %.

Conclusion

When we start to construct a new approximation formula,

we should answer ourselves how important its accuracy

and its simplicity should be. Only recently, a paper which

includes a new approximation of the inverse Langevin func-

tion was published (Nguessong et al. 2014). From the phys-

ical point of view, the final formula proposed in this paper

seems to be a little bit artificial. The procedure of receiv-

ing an approximant is based on the two-step modification of

the Cohen formula. After each step, the error between the

Cohen formula and the inverse of the Langevin function is

minimized. Finally, the authors achieved very high approx-

imation accuracy, but its simplicity and transparency are

rather poor. In the natural way, our new formula (21) can be

practically improved to any precision by adding next nodes

and running the program from “N-point Padé approximation

of L
−1(y)”. The discussed study can raise the question

of the compromise between accuracy and simplicity of an

approximant. If we analyze the very high popularity of the

Cohen formula, we can find the answer.

The novelty of the present paper is twofold. First of all,

the new approximation formula for the inverse Langevin

function which leads to the significant improvement of

accuracy in comparison to the well-known Cohen formula

is derived and presented. Secondly, the applicability of this

formula in a few examples is shown. This formula is a

perfect tool for everybody who used to use the Cohen for-

mula in their theoretical work as a fundamental brick. Now,

they can significantly improve precision of their final for-

mulas using our proposition with a little effort. It is also a

very good suggestion for researchers who start to use the

inverse Langevin function in their studies and appreciate the

simplicity and reasonable accuracy.

After investigating the quality of the existing approxima-

tions of the inverse Langevin function (4–11), we proposed

a new simple formula (21). It is similar to the well-known

Cohen formula (7) which is rounded Padé [3/2] approxi-

mation. Our solution shows how to adjust N -point Padé

approximation method to the special physical problem. All

known approximants of the inverse Langevin function use

Taylor expansion (4–5) or one-point Padé approximation

methods (6–10). This method of approximation appears

to be the first appearance in the literature for the inverse

Langevin function. To compare the accuracy of our approx-

imation (rounded NPA [3/2]) with the Cohen formula, we

computed numerically the average relative errors, using the

mean value theorem for definite integrals, for the discussed

cases and obtained the following results:

– 0.53 % for our approximation of the inverse Langevin

function and respectively 2.07 % for the Cohen formula

– 0.26 % for our approximation of the integral of the

inverse Langevin function and respectively 1.35 %

using the Cohen formula

– 1.12 % for our approximation of the first derivative of

the inverse Langevin function and respectively 3.23 %

using the Cohen formula

We showed how to apply the well-known mathematical

computer software called Mathematica to solve analytically

and numerically the discussed problems of Padé approxi-

mation. Using this software, we wrote a short script which

can be used for finding a solution of higher order deriva-

tives of the inverse function in a simple and elegant way. The

mentioned problem was discussed by Jarecki and Ziabicki

(2002) and Dargazany et al. (2013).

Using the new approximant (21), we can obtain new

formulas for the discussed statistically based models of

rubber-like materials. Our numerical tests proved that the

new approximants (24, 30) are more exact than based on

the Cohen approximation (23–29). We showed that the com-

plexity of the new formulas is similar to those derived from

the Cohen formula. We pointed out that Bergstróm approx-

imation (11) can be slightly improved by introducing a new

value for the location of the point which joins two different

functions which describe the approximant.
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