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APPROXIMATION OF THE STABILITY NUMBER OF A GRAPH
VIA COPOSITIVE PROGRAMMING∗
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Abstract. Lovász and Schrijver [SIAM J. Optim., 1 (1991), pp. 166–190] showed how to formu-
late increasingly tight approximations of the stable set polytope of a graph by solving semidefinite
programs (SDPs) of increasing size (lift-and-project method). In this paper we present a similar idea.
We show how the stability number can be computed as the solution of a conic linear program (LP)
over the cone of copositive matrices. Subsequently, we show how to approximate the copositive cone
ever more closely via a hierarchy of linear or semidefinite programs of increasing size (liftings). The
latter idea is based on recent work by Parrilo [Structured Semidefinite Programs and Semi-algebraic
Geometry Methods in Robustness and Optimization, Ph.D. thesis, California Institute of Technology,
Pasadena, CA, 2000]. In this way we can compute the stability number α(G) of any graph G(V,E)
after at most α(G)2 successive liftings for the LP-based approximations. One can compare this to the
n−α(G)− 1 bound for the LP-based lift-and-project scheme of Lovász and Schrijver. Our approach
therefore requires fewer liftings for families of graphs where α(G) < O(

√
n). We show that the first

SDP-based approximation for α(G) in our series of increasingly tight approximations coincides with
the ϑ′-function of Schrijver [IEEE Trans. Inform. Theory, 25 (1979), pp. 425–429]. We further show
that the second approximation is tight for complements of triangle-free graphs and for odd cycles.

Key words. approximation algorithms, stability number, semidefinite programming, copositive
cone, lifting

AMS subject classifications. 90C22, 68R10, 05C69, 90C25
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1. Introduction. Semidefinite programming has proved to be a useful tool in
formulating approximation algorithms for NP-complete problems in combinatorial
optimization. The most celebrated example is the 0.878-approximation algorithm for
MAX-CUT by Goemans and Williamson [8]. Their ideas have also been extended to
obtain improved approximation guarantees for MAX-Bisection, MAX-3-SAT, MAX-
k-CUT, and a host of other problems.
For problems which do not allow a fixed approximation guarantee, like the max-

imum stable set problem, semidefinite programming has also played a role. Lovász
and Schrijver [16] showed how to formulate increasingly strong approximations of the
maximum stable set of a graph by solving semidefinite programs (SDPs) of increasing
size (liftings). They showed that their procedure is finite—the stable set polytope is
obtained via a suitable projection.
In this paper we present a similar idea, but from a completely different perspective.

We first show how one can compute the stability number by solving a convex conic
optimization problem over the cone of copositive matrices.
Nesterov and Nemirovskii [19] showed that conic programming problems can be

solved to ε-optimality in polynomial time if the cone in question has a computable1 self-
concordant barrier. As a consequence, the copositive cone does not allow a computable
barrier unless P = NP .
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12, 2001; published electronically March 13, 2002.

http://www.siam.org/journals/siopt/12-4/38324.html
†Faculty of Information Technology and Systems, Department of Technical Mathematics and

Informatics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands
(E.deKlerk@its.tudelft.nl, D.Pasechnik@its.tudelft.nl).

1The gradient and Hessian of the barrier must be computable in polynomial time.
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876 E. DE KLERK AND D. V. PASECHNIK

Parrilo [20] has recently suggested that the copositive cone may be approximated
using linear matrix inequalities (LMIs). The approximation involves matrix variables
of size nr × nr after r steps. We will look more closely at this procedure and will
also investigate the link with a weaker linear program (LP)-based lifting scheme.
Subsequently we will show that α(G)2 liftings are always sufficient to obtain the
stability number α(G) of a graph G(V,E) for the LP-based procedure. One can
compare this to the result for the Lovász and Schrijver LP-based lift-and-project
scheme, which requires n− α(G)− 1 liftings in the worst case. For families of graphs
where α(G) < O(

√
n), our procedure therefore requires fewer liftings in the worst

case.
At the first step of our SDP-based lifting scheme, we obtain the Schrijver ϑ′(G)

approximation [25] to α(G), which is already provably stronger than the Lovász ϑ
approximation [15] for certain classes of graphs. The approximation after the second
lifting is tight for complements of triangle-free graphs and for odd cycles.

1.1. Preliminaries.
The maximum stable set problem. Given a graph G(V,E), a subset V ′ ⊆ V is

called a stable set ofG if the induced subgraph on V ′ contains no edges. The maximum
stable set problem is to find the stable set of maximal cardinality. This problem is
equivalent to finding the largest clique in the complementary graph and cannot be
approximated within a factor |V | 12−ε for any ε > 0 unless P = NP , or within a
factor |V |1−ε for any ε > 0 unless NP = ZPP [10]. The best known approximation

guarantee for this problem is O(|V |/(log |V |)2) [5]. For a survey of the maximum
clique problem, see [3].

Conic programming. We define the following convex cones:
• The n× n symmetric matrices

Sn =
{
X ∈ R

n × R
n, X = XT

}
;

• The n× n symmetric positive semidefinite matrices
S+
n =

{
X ∈ Sn, y

TXy ≥ 0 ∀y ∈ R
n
}
;

• The n× n symmetric copositive matrices
Cn =

{
X ∈ Sn, y

TXy ≥ 0 ∀y ∈ R
n, y ≥ 0};

• The n× n symmetric completely positive matrices
C∗
n = {X =∑k

i=1 yiy
T
i , yi ∈ R

n, yi ≥ 0 (i = 1, . . . , k)};
• The n× n symmetric nonnegative matrices

Nn = {X ∈ Sn, Xij ≥ 0 (i, j = 1, . . . , n)}.
Recall that the completely positive cone is the dual of the copositive cone, and that
the nonnegative and semidefinite cones are self-dual for the inner product 〈X,Y 〉 :=
Tr(XY ), where “Tr” denotes the trace operator.
For a given cone Kn and its dual cone K∗

n, we define the primal and dual pair of
conic LPs:

(P ) p∗ := inf
X

{Tr(CX) : Tr(AiX) = bi (i = 1, . . . ,m), X ∈ Kn} ,

(D) d∗ := sup
y∈Rm

{
bT y :

m∑
i=1

yiAi + S = C, S ∈ K∗
n

}
.

If Kn = S+
n , then we refer to semidefinite programming; if Kn = Nn, to linear

programming; and if Kn = Cn, to copositive programming.
The well-known conic duality theorem (see, e.g., [24]) gives the duality relations

between (P ) and (D).
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Theorem 1.1 (Conic duality theorem). If there exists an interior feasible so-
lution X0 ∈ int(Kn) of (P ) and a feasible solution of (D), then p∗ = d∗ and the
supremum in (D) is attained. Similarly, if there exist feasible y0, S0 for (D), where
S0 ∈ int(K∗

n), and a feasible solution of (P ), then p∗ = d∗ and the infimum in (P ) is
attained.
Optimization over the cones S+

n and Nn can be done in polynomial time (to
compute an ε-optimal solution), but copositive programming is reducible to some
NP-hard problems as we will see in the next section.

2. The stability number via copositive programming. The celebrated
sandwich theorem of Lovász relates three characterizing numbers of a graph G(V,E):
the chromatic number χ(Ḡ) of the complementary graph Ḡ, the stability number α(G)
of G, and the so-called theta number ϑ(G). The theta number can be defined as the
optimal value of the following semidefinite programming relaxation of the maximum
clique problem (see [15, 9]):

ϑ(G) := maxTr
(
eeTX

)
= eTXe(1)

subject to

Xij = 0, {i, j} ∈ E (i �= j)

Tr(X) = 1

X ∈ S+
n



,(2)

where e denotes the all-one vector.
The sandwich theorem states the following.
Theorem 2.1 (Lovász’s sandwich theorem). For any graph G = (V,E), one has

α(G) ≤ ϑ(G) ≤ χ(Ḡ).

In what follows, xS denotes the incidence vector of a stable set S of size k = |S|
in G, i.e.:

(xS)i =


 1 if i ∈ S,

0 otherwise.

It is easy to check that the rank one matrix

X :=
1

k
xSx

T
S

is feasible in (2) with objective value

eTXe =
1

k

(
eTxS

)2
=
k2

k
= k.

We therefore have α(G) ≤ ϑ(G), which proves the relevant part of the sandwich
theorem.
We now show that we can actually obtain the stability number α(G) by replacing

the semidefinite cone in (2) by the completely positive cone.
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Theorem 2.2. Let G(V,E) be given with |E| = n. The stability number of G is
given by

α(G) = maxTr
(
eeTX

)
(3)

subject to

Xij = 0, {i, j} ∈ E (i �= j)

Tr(X) = 1

X ∈ C∗
n



.(4)

Proof. Consider the convex cone:

CG := {X ∈ C∗
n : Xij = 0, {i, j} ∈ E} .

The extreme rays of this cone are of the form xxT , where x ∈ R
n is nonnegative

and its support corresponds to a stable set of G. This follows from the fact that
all extreme rays of C∗

n are of the form xxT for nonnegative x ∈ R
n. Therefore, the

extreme points of the set defined by (4) are given by the intersection of the extreme
rays with the hyperplane defined by Tr(X) = 1.
Since the optimal value of problem (3) is attained at an extreme point, there is

an optimal solution of the form:

X∗ = x∗x∗T , x∗ ∈ R
n, x∗ ≥ 0, ‖x∗‖ = 1,

and where the support of x∗ corresponds to a stable set, say S∗. Denoting the optimal
value of problem (3) by λ, we therefore have

λ = max
‖x‖=1

(eTx)2, x ≥ 0, support(x) = support(x∗).

The optimality conditions of this problem imply

x∗ =
1√|S∗|xS

∗ ,

and therefore

λ = (eTx∗)2 =
|S∗|2
|S∗| = |S∗|.

This shows that S∗ must be the maximum stable set, and consequently λ = α(G).
Note that—since X ∈ C∗

n is always nonnegative—we can simplify (3) and (4) to

α(G) = max
{
Tr
(
eeTX

)
: Tr (AX) = 0, Tr(X) = 1, X ∈ C∗

n

}
,(5)

where A is the adjacency matrix of G. The dual problem of (5) is given by

inf
λ,y∈R

{
λ : Q := λI + yA− eeT ∈ Cn

}
.(6)

The primal problem (5) is not strictly feasible (some entries of X must be zero), even
though the dual problem (6) is strictly feasible (set Q = (n + 1)I − eeT ). By the
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conic duality theorem, we can therefore conclude only that the primal optimal set is
nonempty and not that the dual optimal set is nonempty. We will now prove, however,
that Q = α(I + A)− eeT is always a dual optimal solution. This result follows from
the next lemma.

Lemma 2.3. For a given graph G = (V,E), with adjacency matrix A and stability
number α(G), and a given parameter ε ≥ 0, the matrix

Q∗
ε = (1 + ε)α(I +A)− eeT

is copositive.
Proof. Let ε ≥ 0 be given. We will show that Q∗

ε is copositive.
To this end, denote the standard simplex by

∆ :=

{
x ∈ R

n :

n∑
i=1

xi = 1, x ≥ 0
}

and note that

min
x∈∆

xTQ∗
εx = min

x∈∆
(1 + ε)α

(
xTx+ xTAx

)− xT eeTx

= (1 + ε)αmin
x∈∆

(
xTx+ xTAx

)− 1.
We now show that the minimum is attained at x∗ = 1

|S∗|xS∗ , where S∗ denotes
the maximum stable set, as before. In other words, we will show that

min
x∈∆

xTQ∗
εx = ε.(7)

Let x∗ ∈ ∆ be a minimizer of xTQ∗
εx over ∆.

If the support of x∗ corresponds to a stable set, then the proof is an easy conse-
quence of the inequality:

argmax
{‖x‖ : x ∈ ∆, (eTx)2, x ≥ 0, support(x) = S

}
=
1

|S|xS ∀S ⊂ V,

which can readily be verified via the optimality conditions.
Assume therefore that the support of x∗ does not correspond to a stable set, i.e.,

x∗i > 0 and x
∗
j > 0, where {i, j} ∈ E.

Now we fix all the components of x to the corresponding values of x∗, except
for components i and j. Note that, defining c0 :=

∑
k �=i,j x

∗
k, one can find constants

c1, c2, and c3 such that

x∗TQ∗
εx

∗ = min
xi+xj=1−c0,xi≥0,xj≥0

(1 + ε)α
(
x2
i + 2xixj + x

2
j

)
+ xic1 + xjc2 + c3

= min
xi+xj=1−c0,xi≥0,xj≥0

(1 + ε)α (xi + xj)
2
+ xic1 + xjc2 + c3

= min
xi+xj=1−c0,xi≥0,xj≥0

(1 + ε)α (1− c0)
2
+ xic1 + xjc2 + c3.

The final optimization problem is simply an LP in the two variables xi and xj and
attains it minimal value in an extremal point at which xi = 0 or xj = 0. We can

therefore replace x∗ with a vector x̄ such that x∗TQx∗ = x̄TQx̄ and x̄ix̄j = 0.
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By repeating this process, we obtain a minimizer of xTQ∗
εx over ∆ with support

corresponding to a stable set.
The lemma shows that Q∗

ε is copositive and therefore ε-optimal in (6). For ε = 0
we have the following result.

Corollary 2.4. For any graph G = (V,E) with adjacency matrix A, one has

α(G) = min
λ

{
λ : λ(I +A)− eeT ∈ Cn

}
.

Remark 2.1. The result of Corollary 2.4 is also a consequence of a result by
Motzkin and Straus [17], who proved that

1

α(G)
= min

x∈∆
xT (A+ I)x,

where A is the adjacency matrix of G. To see the relationship between the two results,
we also need the known result (see, e.g., [4]) that minimization of a quadratic function
over the simplex is equivalent to a copositive programming problem:

min
x∈∆

xTQx = min
X∈(Cn)∗

{
Tr(QX) : Tr

(
eeTX

)
= 1

}
= max

λ∈R

{
λ : Q− λeeT ∈ Cn

}
for any Q ∈ Sn, where the second inequality follows from the strong duality theorem.
Corollary 2.4 implies that we can simplify our conic programs even further to

obtain

α(G) = max
{
Tr
(
eeTX

)
: Tr ((A+ I)X) = 1, X ∈ C∗

n

}
,(8)

with associated dual problem:

α(G) = min
λ∈R

{
λ : Q := λ(I +A)− eeT ∈ Cn

}
.(9)

Note that both these problems are strictly feasible, and the conic duality theorem
now guarantees complementary primal-dual optimal solutions.

3. Approximations of the copositive cone. The reformulation of the stable
set problem as a conic copositive program makes it clear that copositive programming
is not tractable (see also [23, 4]). In fact, even the problem of determining whether a
matrix is not copositive is NP-complete [18].
Although we have obtained a nice convex reformulation of the stable set problem,

there is no obvious way of solving this reformulation. In [4], some ideas from interior
point methods for semidefinite programming are adapted for the copositive case, but
convergence cannot be proved. The absence of a computable self-concordant barrier
for this cone basically precludes the application of interior point methods to copositive
programming.
A solution to this problem was recently proposed by Parrilo [20], who showed

that one can approximate the copositive cone to any given accuracy by a sufficiently
large set of linear matrix inequalities. In other words, each copositive programming
problem can be approximated to any given accuracy by a sufficiently large SDP. Of
course, the size of the SDP can be exponential in the size of the copositive program.
In the next subsection we will review the approach of Parrilo and subsequently

work out the implications for the copositive formulation of the maximum stable set
problem. We will also look at a weaker, LP-based approximation scheme.
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3.1. Representations as sum-of-squares and polynomials with nonneg-
ative coefficients. We can represent the copositivity requirement for an (n × n)
symmetric matrix M as

P (x) := (x ◦ x)TM(x ◦ x) =
n∑

i,j=1

Mijx
2
ix

2
j ≥ 0 ∀x ∈ R

n,(10)

where “◦” indicates the componentwise (Hadamard) product. We therefore wish to
know whether the polynomial P (x) is nonnegative for all x ∈ R

n. Although one cannot
answer this question in polynomial time in general, one can decide in polynomial time
whether P (x) can be written as a sum-of-squares. Before we give a formal exposition
of the methodology, we give an example which illustrates the basic idea.

Example 3.1 (see Parrilo [20]). We show how to obtain a sum-of-squares decom-
position for the polynomial 2x4

1 + 2x
3
1x2 − x2

1x
2
2 + 5x

4
2.

2x4
1 + 2x

3
1x2 − x2

1x
2
2 + 5x

4
2

=




x2
1

x2
2

x1x2



T 

2 0 1

0 5 0

1 0 −1






x2
1

x2
2

x1x2




=




x2
1

x2
2

x1x2



T 

2 −λ 1

−λ 5 0

1 0 −1 + 2λ






x2
1

x2
2

x1x2


 ∀λ ∈ R.

For λ = 3 the coefficient matrix is positive semidefinite, and we obtain a sum-of-
squares decomposition by taking a Choleski decomposition of the coefficient matrix.

Following the idea in the example, we represent P (x) via

P (x) = x̃T M̃x̃,(11)

where x̃ = [x2
1, . . . , x

2
n, x1x2, x1x3, . . . , xn−1xn]

T and M̃ is a symmetric matrix of order
n+ 1

2n(n− 1).
Note that—as in the example—M̃ is not uniquely determined. The nonuniqueness

follows from the identities:

(xixj)
2 = (x2

i )(xj)
2,

(xixj)(xixk) = (x
2
i )(xjxk),

(xixj)(xkxl) = (xixk)(xjxl) = (xixl)(xjxk).

It is easy to see that the possible choices for M̃ define an affine space.

Condition (10) will certainly hold if at least one of the following two conditions
holds:

1. A representation of P (x) = x̃T M̃x̃ exists with M̃ symmetric positive semidef-
inite. In this case we obtain the sum-of-squares decomposition P (x) = ‖Lx̃‖2,
where LTL = M̃ denotes the Choleski factorization of M̃ .

2. All the coefficients of P (x) are nonnegative.
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Note that the second condition implies the first.
Parrilo showed that P (x) in (10) allows a sum-of-squares decomposition if and

only if M ∈ S+
n +Nn, which is a well-known sufficient condition for copositivity. Let

us define the cone K0
n := S+

n +Nn. Similarly, P (x) has only nonnegative coefficients
if and only if M ∈ Nn, which is a weaker sufficient condition for copositivity, and we
define C0

n = Nn.
Higher-order sufficient conditions can be derived by considering the polynomial

P (r)(x) = P (x)

(
n∑

i=1

x2
i

)r

=


 n∑

i,j=1

Mijx
2
ix

2
j


( n∑

i=1

x2
i

)r

(12)

and asking whether P (r)(x)—which is a homogeneous polynomial of degree 2(r+2)—
has a sum-of-squares decomposition, or whether it has only nonnegative coefficients.
For r = 1, Parrilo showed that a sum-of-squares decomposition exists if and only

if 2 the following system of linear matrix inequalities has a solution:

M −M (i) ∈ S+
n , i = 1, . . . , n,(13)

M
(i)
ii = 0, i = 1, . . . , n,(14)

M
(i)
jj + 2M

(j)
ij = 0, i �= j,(15)

M
(i)
jk +M

(j)
ik +M

(k)
ij ≥ 0, i < j < k,(16)

where M (i) (i = 1, . . . , n) are symmetric matrices.
Similarly, P (1)(x) has only nonnegative coefficients ifM satisfies the above system,

but with S+
n replaced by Nn.

Note that the sets of matrices which satisfy these respective sufficient conditions
for copositivity define two respective convex cones. In fact, this is generally true for
all r.

Definition 3.1. Let any integer r ≥ 0 be given. The convex cone Kr
n consists of

the matrices M ∈ Sn for which P (r)(x) in (12) has a sum-of-squares decomposition;
similarly, we define the cone Cr

n as the cone of matrices M ∈ Sn for which P (r)(x) in
(12) has only nonnegative coefficients.
Note that Cr

n ⊂ Kr
n for all r = 0, 1, . . . . (If P (x) has only nonnegative coefficients,

then it obviously has a sum-of-squares decomposition. The converse is not true in
general.)

3.2. Upper bounds on the order of approximation. Every strictly copos-
itive M lies in some cone Cr

n for r sufficiently large; this follows from the celebrated
theorem of Pólya.

Theorem 3.2 (see Pólya [21]). Let f be a homogeneous polynomial which is
positive on the simplex

∆ =

{
z ∈ R

n :

n∑
i=1

zi = 1, z ≥ 0
}
.

For sufficiently large N all the coefficients of the polynomial(
n∑

i=1

zi

)N

f(z)

2In fact, Parrilo [20] only proved the “if”-part; the proof of the converse is straightforward but
tedious and can be done using the proof technique described in section 5.3 of [20].
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are positive.
One can apply this theorem to the copositivity test (10) by letting f(z) = zTMz

and associating x ◦ x with z.
In summary, we have the following theorem.
Theorem 3.3. Let M be strictly copositive. One has

Nn = C0
n ⊂ C1

n ⊂ · · · ⊂ CN
n �M

and consequently

S+
n +Nn = K0

n ⊂ K1
n ⊂ · · · ⊂ KN

n �M

for some sufficiently large N .
A tight upper bound on the size of N in Theorem 3.2 has recently been given by

Powers and Reznik [22].
Theorem 3.4 (see [22]). Let

f(z) =
∑
j

βj

n∏
i=1

z
αij

i

be a homogeneous polynomial of degree d (
∑n

i=1 αij = d for all j) which is positive on
the simplex ∆. The polynomial

(
n∑

i=1

zi

)N

f(z)

has positive coefficients if

N >
d(d− 1)L
2κ

− d,

where

L = max
j

α1j !α2j ! . . . αnj !

d!
|βj |

and

κ = min
z∈∆

f(z).

For the problem of checking the copositivity of M we have the following.
Corollary 3.5. If a symmetric (n×n) matrix M is strictly copositive, then the

function

PN (z) =


 n∑

i,j=1

Mijzizj


( n∑

i=1

zi

)N

has only nonnegative coefficients if

N > L/κ− 2,
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where

L = max
i,j

|Mij |(17)

and

κ = min
z∈∆

zTMz.(18)

Proof. The function f in Theorem 3.4 is given by f(z) = zTMz in this case. The
exponents αij can now take only the values 0, 1, or 2; d = 2; and the coefficients βj
correspond to the entries of M .
Note that κ is a “condition number” of M , which can be arbitrarily small, and

cannot be computed in polynomial time in general unless P = NP .
Corollary 3.6. If a strictly copositive matrix M satisfies L/κ ≤ r + 1, where

L and κ are respectively defined in (17) and (18), then M ∈ Cr
n ⊂ Kr

n.
Proof. The proof follows immediately from the definition of Cr

n and Corollary
3.5.

4. Application to the maximum stable set problem. We can now define
successive approximations to the stability number. In particular, we define successive
LP-based approximations via

ζ(r)(G) = min
λ

{
λ : Q = λ(I +A)− eeT ∈ Cr

n

}
(19)

for r = 0, 1, 2, . . . , where we use the convention that ζ(r)(G) = ∞ if the problem is
infeasible.
Similarly, we define successive SDP-based approximations via

ϑ(r)(G) = min
λ

{
λ : Q = λ(I +A)− eeT ∈ Kr

n

}
(20)

for r = 0, 1, 2, . . . . Note that we have merely replaced the copositive cone Cn in (9)
by its respective approximations Cr

n and Kr
n.

The minimum in (20) is always attained. The proof follows directly from the
conic duality theorem if we note that λ = n + 1 always defines a matrix Q in the
interior of K0

n (and therefore in the interior of Kr
n ⊃ K0

n for all r = 1, 2, . . . ) via (20)
and that

X0 :=
1

n2 + n+ |E| (nI + ee
T )

is always strictly feasible in the associated primal problem:

ϑ(r)(G) = max
{
Tr
(
eeTX

)
: Tr ((A+ I)X) = 1, X ∈ (Kr

n)
∗} .

The strict feasibility of X0 follows from the fact that it is in the interior of C∗
n: For

any copositive matrix Y ∈ Cn we have
Tr(X0Y ) =

1

n2 + n+ |E|
(
nTr(Y ) + eTY e

)
.

This expression can be zero only if Y is the zero matrix. In other words, Tr(X0Y ) > 0
for all nonzero Y ∈ Cn, which means that X0 is in the interior of C∗

n. Consequently,
X0 is also in the interior of (Kr

n)
∗ for all r, since C∗

n ⊂ (Kr
n)

∗ (r = 0, 1, . . . ).
Note that

α(G) ≤ ϑ(r)(G) ≤ ζ(r)(G), r = 0, 1, . . . ,

since Cr
n ⊂ Kr

n ⊂ Cn.
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4.1. An upper bound for the number of liftings. We can now prove our
main result.

Theorem 4.1. Let a graph G(V,E) be given with stability number α(G), and let
ζ(i) (i = 0, 1, 2, . . . ) be defined as in (19). One has

ζ(0) ≥ ζ(1) ≥ · · · ≥ �ζ(r)� = α(G)

for r ≥ α(G)2. Consequently, also �ϑ(r)� = α(G) for r ≥ α(G)2.

Proof. Denote, as in the proof of Lemma 2.3,

Q∗
ε = (1 + ε)α(G)(I +A)− eeT

for a given ε ≥ 0.
We will now prove that Q∗

ε ∈ Cr
n for r ≥ α(G)2 − α(G)− 2 if

ε :=
1

α(G) + 1/[α(G)− 1] .(21)

Note that if we choose ε in this way, then Q∗
ε corresponds to a feasible solution of

(19), where λ = (1+ ε)α(G) < 1+α(G), and we can therefore round down this value
of λ to obtain α(G).

We proceed to bound the parameters κ and L in Corollary 3.6 for the matrix Q∗
ε .

• The value L is given by L = (1 + ε)α(G)− 1.
• The condition number κ is given by κ = ε, by (7).

Now we have

L/κ =
(1 + ε)α(G)− 1

ε
= α(G)2 + 1.(22)

From Corollary 3.6 it now follows that Q∗
ε ∈ Cr

n for r ≥ α(G)2.

Remark 4.1. If we are only interested in computing a ζ(r) ≤ (1 + ε)α(G) for a
given ε > 0, then it is sufficient to choose r = α(G)/ε. To see this, note that by (22)
we have

L/κ =
(1 + ε)α(G)− 1

ε
≤ α(G)/ε+ 1 ≡ r + 1,

so that Q∗
ε = (1 + ε)α(G)(I +A)− eeT ∈ Cr

n by Corollary 3.6.

Remark 4.2. The bound α(G)2 in Theorem 4.1 on the number of liftings can
be compared to the n− α(G)− 1 bound for the LP-based lift-and-project scheme by
Lovász–Schrijver [16].3 For families of graphs where α(G) < O(

√
n), our LP-based

lifting scheme requires fewer liftings in the worst case. This bound is satisfied, for
example, by random graphs with expected edge density 1

2 , where one almost always
has α(G) ≤ 2 log2 n for n� 0 (see, e.g., p. 148 of [1]).

Example 4.1. Consider the case in which G(V,E) is the 5-cycle (C5). It is well
known that α(G) = 2 and ϑ(G) = ϑ′(G) =

√
5 in this case.

3Lovász and Schrijver called this bound the N-index.
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We will show that ϑ(1)(G) = 2; to this end, note that the matrix

Q =




1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1
−1 1 1 −1 1




(23)

corresponds to a feasible solution of (20) for r = 1, with λ = 2. The feasibility follows
from the known fact that Q in (23) is in K1

n (but not in K0
n = S+

n + Nn); see, e.g.,
[20].

Example 4.2. Let G = (V,E) be the complement of the graph of an icosahedron
(see, e.g., [6]), where α(G) = 3. One can solve the relevant semidefinite programming
problem to obtain ϑ(1)(G) = 1 +

√
5 ≈ 3.236068.

Although �ϑ(1)(G)� = α(G), one has Q := α(G)(A+I)−eeT /∈ K1
n. Thus Q gives

an example of a 12 × 12 copositive matrix which is not in K1
n. This gives a partial

answer to the following question posed by Parrilo [20]: “Do the copositive cone and
K1

n coincide for n × n matrices up to a certain size?” For this size a known lower
bound is n ≥ 4 (for n × n matrices with n ≤ 4, Cn and K0

n still coincide), and an
upper bound is n ≤ 11 (by this example).

4.2. Lower bounds on the number of liftings. The following theorem shows
that the LP-based approximations always require at least α(G)−1 liftings to compute
α(G).

Theorem 4.2. Let a graph G = (V,E) with stability number α(G) be given. If
ζ(r)(G) <∞, then r ≥ α(G)− 1.

Proof. Let (1, . . . , α) be a maximum stable set, where α = α(G). Then for
r = α− 2 the polynomial

zT
(
t(A+ I)− eeT

)
z(eT z)r

has a monomial Cz1z2 . . . zα with C < 0 for any value of t. This shows that problem
(19) is infeasible if r < α(G)− 1.

Example 4.3. Here we show that although α(G)−1 liftings are necessary for com-
puting α(G) via the LP-based approximations, this number of liftings is not sufficient
in general. For the 4-node graph with one edge we have

zT (α(G)(I +A)− eeT )z = 3z2
1 + 3z

2
2 + 6z1z2 + 3z

2
3 + 3z

2
4 − (z1 + z2 + z3 + z4)2,

as α(G) = 3 in this case, which clearly has negative coefficients. In order to get only

nonnegative coefficients, we have to multiply this quadratic form by (
∑4

i=1 zi)
6.

5. The strength of low-order relaxations. In this section we investigate the
strength of the approximations ϑ(r) and ζ(r) to α(G) for r = 0 and r = 1.

Theorem 5.1. If G = (V,E) has α(G) = 2, then ζ(1)(G) ≤ 3.
Proof. Let A be the adjacency matrix of a graph G = (V,E) with α(G) = 2, and

let

Q(z) = zT (3A+ 3I − eeT )z(z1 + · · ·+ zn) := Q+(z)−Q−(z),
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where

Q+(z) := (3z
T (A+ I)z)(z1 + · · ·+ zn), Q−(z) = (z1 + · · ·+ zn)3.

We will show that Q(z) has only nonnegative coefficients, which in turn implies the
theorem. The monomials of Q+(z) can be classified as follows:

3z3
i ∀ i,

3ziz
2
j ∀ i �= j,

6(Aij +Aik +Ajk)zizjzk ∀i < j < k.

Note that Aij +Aik +Ajk ≥ 1 if i < j < k, since α(G) = 2.
The monomials of Q−(z) are as follows:

z3
i ∀ i,
3ziz

2
j ∀ i �= j,

6zizjzk ∀ i < j < k.

Hence Q(z) has only nonnegative coefficients, as for every monomial of Q−(z) there is
a monomial with the same variables in Q+(z) with a coefficient at least as large.
Next we show that ϑ(0) coincides with the ϑ′-function of Schrijver [25], which in

turn can be seen as a strengthening of the Lovász ϑ-approximation to α(G).
Lemma 5.2. Let a graph G = (V,E) be given with adjacency matrix A, and let

ϑ′ denote the Schrijver ϑ′-function [25]:

ϑ′(G) = max
{
Tr
(
eeTX

)
: Tr (AX) = 0, Tr(X) = 1, X ∈ (K0

n)
∗} .

Then

ϑ′(G) = ϑ(0)(G).

Proof. Recall that

ϑ(0)(G) = min
λ

{
λ : λ(I +A)− eeT ∈ K0

n

}
,(24)

whereas the dual formulation for ϑ′(G) is

ϑ′(G) = min
λ,y

{
λ : λI + yA− eeT ∈ K0

n

}
.(25)

Further recall that K0
n = S+

n +Nn, and let

λI + yA− eeT = S +N, where S ∈ S+
n and N ∈ Nn.(26)

Without loss of generality we assume Nii = 0 for all i ∈ {1, . . . , n}, as the sum of two
positive semidefinite matrices is positive semidefinite, and thus the diagonal part of
N can be added to S and subtracted from N .
Assume Aij �= 0. Note that our choice of S and N is such that Sii = λ − 1.

Thus, as Sij +Nij = y − 1 and Sii ≥ Sij ,
4 one obtains λ − 1 +Nij ≥ y − 1, and so

4Here we use the fact that S ∈ S+
n and has a constant diagonal.
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Nij ≥ y − λ. Hence N + (λ − y)A ∈ Nn. Therefore λ(I + A) − eeT ∈ K0
n as long as

(26) holds. Hence we can always assume that y = λ.
Remark 5.1. As far as we know, our simplified formulation of the Schrijver ϑ′-

function, namely,

ϑ′(G) = max
{
Tr
(
eeTX

)
: Tr ((A+ I)X) = 1, X ∈ (K0

n)
∗} ,

is not mentioned in the literature.
Let us restate the definition of ϑ(1)(G) by using (13)–(16) as follows:

ϑ(1)(G) := minβ subject to(27)

β(I +A)− eeT −M (i) ∈ S+
n , i = 1, . . . , n,(28)

M
(i)
ii = 0, i = 1, . . . , n,(29)

M
(i)
jj + 2M

(j)
ij = 0, i �= j,(30)

M
(i)
jk +M

(j)
ik +M

(k)
ij ≥ 0, i < j < k,(31)

where M (i) (i = 1, . . . , n) are symmetric matrices.
For v ∈ V , denote by v⊥ the the union of the neighborhood5 of v with v itself,

and for D ⊆ V denote by G(D) the subgraph of G induced on D (that is, G(D) =
(D, {(x, y) ∈ E | x, y ∈ D})). Also, A(D) will denote the adjacency matrix of G(D).

Theorem 5.3. The system of LMIs (27)–(31) has a feasible solution with β =

1 +maxk∈V (ϑ
′(G(V − k⊥))) and M (i)

ij = 0 for all i, j. Thus

ϑ(1)(G) ≤ 1 + max
k∈V
(ϑ′(G(V − k⊥))).

In particular, if G(V − k⊥) is perfect for all k ∈ V , where k⊥ �= V , then ϑ(1)(G) =
β = α(G).

Proof. Define M = β(I + A) − eeT , and set M
(i)
ij = 0 for all i, j. We now apply

the Schur lemma with respect to the ith row and ith column to the matrix M −M (i)

for each i = 1, . . . , n. This transforms (28) into

βIn−1 + βA(V − {i})− en−1e
T
n−1 − Λ(i) − 1

β − 1mim
T
i ∈ S+

n , i = 1, . . . , n,(32)

where Λ(i) is obtained from M (i) by removing the ith row and column, and mi is the
ith row of M with the ith entry removed. In other words, (mi)j = β − 1 if (i, j) ∈ E,
and (mi)j = −1, otherwise.
By (30), the matrix Λ(i) has zero diagonal. Thus the jth diagonal entry of the

matrix on the left-hand side of (32) is zero if (i, j) ∈ E. This means that the corre-
sponding row and column of this matrix must be zero.
Having fixed some variables as indicated, we now work out the implications from

the constraint (31). There are several cases to distinguish for Λ
(i)
jk with j < k and

(i, j) ∈ E, as follows:
1. (i, k) ∈ E; here (mim

T
i )jk = (β − 1)2.

(a) (j, k) ∈ E; here Λ
(i)
jk = 0.

(b) (j, k) �∈ E; here Λ
(i)
jk = −β.

5By neighborhood of v, we mean the set of vertices adjacent to v in G.
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2. (i, k) �∈ E; here (mim
T
i )jk = 1− β.

(a) (j, k) ∈ E; here Λ
(i)
jk = β.

(b) (j, k) �∈ E; here Λ
(i)
jk = 0.

Note that in case 1(b), the choice Λ
(i)
jk = −β < 0 does not violate (31), as Λ

(j)
ki

and Λ
(k)
ij fall under case 2(a), and thus Λ

(i)
jk + Λ

(j)
ki + Λ

(k)
ij = β > 0. In case 1(a), all

the Λ’s where the indices i, j, k appear are set to 0.

Finally, in case 2(b), one has that Λ
(i)
jk = 0, and Λ

(j)
ki = 0 together with (31) imply

Λ
(k)
ij ≥ 0.
For each i, denote ni = |V − i⊥|, and define ∆(i) as the ni×ni matrix of variables

that is obtained from Λ(i) after all the variables have been fixed as indicated. In other
words, Λ

(i)
jk corresponds to ∆

(i)
jk if and only if neither j nor k are adjacent to i in G.

We arrive at the following SDP:

β∗ := minβ subject to

β(Ini +A(V − i⊥))−
(
1 +

1

β − 1
)
enie

T
ni

−∆(i) ∈ S+
n ∀i ∈ V,

∆
(i)
jk ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥, (j, k) ∈ E,

∆
(i)
jk +∆

(j)
ki +∆

(k)
ij ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥.

Note that β∗ ≥ ϑ(1)(G). Multiplying both sides of all the constraints by 1− 1/β and
setting (1− 1/β)∆(i) = Ω(i), one obtains

β∗ = minβ subject to(33)

(β − 1)(Ini +A(V − i⊥))− enie
T
ni

− Ω(i) ∈ S+
n ∀i ∈ V,(34)

Ω
(i)
jk ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥, (j, k) ∈ E,(35)

Ω
(i)
jk +Ω

(j)
ki +Ω

(k)
ij ≥ 0 ∀i ∈ V, j, k ∈ V − i⊥.(36)

Replacing (36) by a stronger constraint Ω
(i)
jk ≥ 0 (i ∈ V ), we obtain n problems

β∗
i := minβi subject to

(βi − 1)(Ini +A(V − i⊥))− enie
T
ni

− Ω ∈ S+
n ,

Ωjk ≥ 0 ∀j, k ∈ V,

so that

max
i∈V

β∗
i ≥ β∗ ≥ ϑ(1)(G) ≥ α(G).(37)

By the definition of ϑ(0), one has β∗
i −1 = ϑ(0)(G(V −i⊥)), which equals ϑ′(G(V −i⊥))

by Lemma 5.2. If G(V − i⊥) is perfect for all i ∈ V , then

max
i∈V

β∗
i = max

i∈V
ϑ(0)(G(V − i⊥)) + 1 = max

i∈V
α(G(V − i⊥)) + 1 = α(G).

Thus ϑ(1)(G) = α(G) by (37).
Thus, for instance, the 5-cycle example of the previous section can be generalized

to all cycles.
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Corollary 5.4. Let G(V,E) be a cycle of length n. One has ϑ(1)(G) = α(G).
Similarly, α(G) = ϑ(1)(G) if G is a wheel.

Proof. Let G = (V,E) be a cycle of length n. The required result now immediately
follows from Theorem 5.3 by observing that G(V −v⊥) is an (n−3)-path for all v ∈ V .
The proof for wheels is similar.
Also, complements of triangle-free graphs are recognized.
Corollary 5.5. If G = (V,E) has stability number α(G) = 2, then ϑ(1)(G) = 2.
Proof. The proof immediately follows from Theorem 5.3 by observing that G(V −

v⊥) is a clique (or the empty graph) for all v ∈ V .
As a consequence, the complements of cycles or wheels are also recognized. The

proof proceeds in the same way as before and is therefore omitted.
Corollary 5.6. Let G(V,E) be the complement of a cycle or of a wheel. In

both cases one has ϑ(1)(G) = α(G).
Remark 5.2. It is worth mentioning that neither the upper bound β = 1 +

maxk∈V (ϑ
′(G(V − k⊥))) on ϑ(1) given in Theorem 5.3 nor the upper bound β∗ used

in its proof is sharp. This is demonstrated by the example of the 7-vertex graph
G obtained by taking an isolated node and a pentagon and joining these six nodes
with an extra node. (The result can be viewed as a pentagon “umbrella.”) Then
β∗ = 3.068, while ϑ(1)(G) = α(G) = 3, and the bound given by Theorem 5.3 is
β = 1 +maxk∈V (ϑ

′(G(V − k⊥))) = 1 +
√
5 ≈ 3.23.

We conjecture that the result of Corollary 5.5 can be extended to include all
values of α.

Conjecture 5.1. If G = (V,E) has stability number α(G), then ϑ(α(G)−1)(G) =
α(G).
Note that we have proven the conjecture for α(G) ≤ 2.
6. Conclusions and future work. We have introduced two successive lifting

procedures for computing the stability number α(G) of a graph. The first procedure
involves generalizations of the Schrijver ϑ′-function, which in turn is a generalization
of the well-known Lovász ϑ-function. These generalized ϑ-functions were denoted by
ϑ(r) (r = 0, 1, . . . ), where ϑ(0)(G) = ϑ′(G) for all G = (V,E), and ϑ(0)(G) ≥ ϑ(1)(G) ≥
· · · ≥ �ϑ(N)� = α(G) for some sufficiently large N . We have also introduced related
LP-based approximations to α(G), namely, the numbers ζ(r) ≥ ϑ(r), which satisfy
�ζ(N)� = α(G) if N ≥ α2(G). This can be compared to the n − α(G) − 1 bound
for the LP-based lift-and-project scheme by Lovász and Schrijver [16]. For classes of
graphs where α(G) < O(

√
n), our procedure therefore requires fewer liftings in the

worst case. At step r of the respective procedures, an SDP (respectively, LP) problem
involving matrix variables of size nr+1 × nr+1 is solved.
The underlying idea for these approximations was to write the maximum stable

set problem as a conic linear program over the cone of copositive matrices, and to
subsequently perform successive approximations of this cone by using linear (matrix)
inequalities. This link between copositive matrices and the maximum stable set has
also allowed us to give a partial answer to a question posed by Parrilo [20] concerning
a class of copositive matrices (see Example 4.2).
There have been several—seemingly different—lift-and-project strategies for ap-

proximating combinatorial optimization problems. Apart from the approach of Lovász
and Schrijver [16] (see also [7, 11]) for the stable set polytope, Anjos and Wolkowicz [2]
have introduced a technique of successive Lagrangian relaxations for the MAX-CUT
problem, which also leads to semidefinite programming relaxations of size (nr × nr)
after r relaxations. Most recently, Laserre [13, 14] has introduced yet another lift-and-
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project approach, based on the properties of moment matrices. Laurent [11, 12] has
recently shown the relationship between these approaches. In the same vein, it would
be very interesting to explore possible links between the approach of Lovász and Schri-
jver and the lifting scheme introduced in this paper. In particular, it seems unlikely
that the bound on the number of liftings (r = α(G)2) is tight: The Lovász–Schrijver
SDP-based procedure only requires α(G) liftings in the worst case. We conjecture
that the proof of Theorem 5.3 can be extended to show that α(G)− 1 liftings always
suffice for our SDP-based lifting scheme.

Another interesting line of research is to further investigate the theoretical prop-
erties of the ϑ(1) number introduced in this paper. Actual computation of this number
involves SDPs with n2 × n2 matrices having an n × n block diagonal structure, and
it can still be done for graphs of small size (say n ≤ 30) with current interior point
technology.
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