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APPROXIMATION OF THE VIBRATION MODES
OF A PLATE BY REISSNER-MINDLIN EQUATIONS

R. G. DURÁN, L. HERVELLA-NIETO, E. LIBERMAN,

R. RODRÍGUEZ, J. SOLOMIN

Abstract. This paper deals with the approximation of the vibration modes of
a plate modelled by the Reissner-Mindlin equations. It is well known that, in
order to avoid locking, some kind of reduced integration or mixed interpolation
has to be used when solving these equations by finite element methods. In
particular, one of the most widely used procedures is the mixed interpolation
tensorial components, based on the family of elements called MITC. We use
the lowest order method of this family.

Applying a general approximation theory for spectral problems, we obtain

optimal order error estimates for the eigenvectors and the eigenvalues. Under
mild assumptions, these estimates are valid with constants independent of the
plate thickness. The optimal double order for the eigenvalues is derived from
a corresponding L2-estimate for a load problem which is proven here. This
optimal order L2-estimate is of interest in itself.

Finally, we present several numerical examples showing the very good be-
havior of the numerical procedure even in some cases not covered by our theory.

1. Introduction

Finite element discretization of Reissner-Mindlin equations is, to date, the usual
way to approximate the bending of an elastic plate of moderate or small thickness
(see for instance [4, 13, 19]).

For load problems, because of the ellipticity of these equations, the classical the-
ory ensures the convergence of standard finite element approximations. However
these elements lead to wrong results when the thickness is small with respect to
the other dimensions of the plate. This is because of the so-called locking phenom-
enon, which is now well understood (see for instance [7]). In order to avoid this
drawback, reduced integration or mixed methods are usually applied. To perform
their mathematical analysis, a family of problems, one for each thickness t > 0,
is considered and approximation results valid uniformly on t are sought (see for
instance [2, 7, 10]).
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1448 R. G. DURÁN, ET AL.

Among these methods, the so-called MITC ones, introduced by Bathe and
Dvorkin in [6], are very likely the most used in practice. Their application to
load problems has also drawn much attention from the mathematical point of view
([5, 8, 10, 15, 16]). The aim of this paper is to analyze one of these methods, that
of lowest order, when used to approximate the free vibration bending modes of
a plate. Being non-conforming, the spectral theory based on minimum-maximum
principles (see Section 8 of [3]) cannot be directly applied to this method. Instead,
our analysis will be based on the abstract spectral theory for compact operators as
stated in Section 7 of [3].

Optimal order of convergence in H1 norm is known for the application of the
lowest order MITC method to load problems ([8, 10, 16]). This, combined with
known regularity results ([2, 7]), allow us to prove analogous estimates for the
approximation of the eigenfunctions in vibration problems. Let us remark that this
would not be the case for higher order methods, since the eigenfunctions are in
general not regular enough for us to attain similar results.

For conforming methods (which is not our case) the convergence of the eigen-
functions in H1 directly yields a double order of convergence for the eigenvalues
(Lemma 9.1 in [3]). Alternatively, when such double order holds for the L2 con-
vergence in the corresponding load problem without further assumptions on the
regularity of the solution, abstract spectral theory can be used to prove a similar
result even for non-conforming methods (see for instance Section 7 of [3]).

We prove such optimal (in order and regularity) L2 error estimates for the lowest
order MITC method, valid uniformly on the thickness t. This kind of estimates have
been proved before for higher order MITC methods in [8, 15], but the arguments
therein do not apply to our case. Thus, our results complete the analysis of the
MITC elements.

In Section 2 we present the mathematical setting and state the spectral ap-
proximation results. The analysis carried out yields t-independent optimal error
estimates for the approximation of eigenfunctions and eigenvalues. The proofs are
valid for eigenvalues remaining uniformly separated from the rest of the spectrum as
the thickness becomes small. These results rely on properties of the associated load
problems, which are proved in Section 3. Finally, in Section 4, we present numerical
experiments confirming the theoretical results and showing the good performance of
the method. We also exhibit the potential applicability of this method to problems
not covered by the theoretical analysis.

2. Approximation of the eigenvalue problem

Consider an elastic plate of thickness t with reference configuration Ω×
(
− t

2 ,
t
2

)
,

where Ω ∈ R2 is a convex polygonal domain. The deformation of the plate is
described by means of the Reissner-Mindlin model in terms of the rotations βt =
(β1

t , β
2
t ) of its midplane Ω and the transverse displacement wt (see for example [7]).

Assuming that the plate is clamped, its free vibration modes are solutions of the
following problem:

Find a non-trivial (βt, wt) ∈ H1
0 (Ω)2 ×H1

0 (Ω) and ωt > 0 such that

t3a(βt, η) + κt

∫
Ω

(∇wt − βt) · (∇v − η) = ω2
t

[
t

∫
Ω

ρwtv +
t3

12

∫
Ω

ρ βt · η
]
,

∀(η, v) ∈ H1
0 (Ω)2×H1

0 (Ω),(2.1)
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APPROXIMATION OF THE VIBRATION MODES 1449

where ωt is the angular vibration frequency, a is the H1
0 (Ω)2-elliptic bilinear form

defined by

a(β, η) :=
E

12(1− ν2)

∫
Ω

 2∑
i,j=1

(1− ν)εij(β)εij(η) + ν div β div η

 ,
εij(β) being the linear strain tensor, E the Young modulus and ν the Poisson ratio,
κ := Ek/2(1 + ν) is the shear modulus, with k being a correction factor usually
taken as 5/6, and ρ is the density.

The lowest vibration frequencies ωt correspond to bending modes of the plate,
and for each of them λt := ρω2

t /t
2 attains a finite limit as t goes to zero, as is

shown below. Therefore it is convenient for the mathematical analysis to consider
the following rescaled eigenvalue problem:

a(βt, η) +
κ

t2
(∇wt − βt,∇v − η) = λt

[
(wt, v) +

t2

12
(βt, η)

]
,(2.2)

∀(η, v) ∈ H1
0 (Ω)2 ×H1

0 (Ω),

where (·, ·) denotes the standard L2 inner product. Note that all the eigenvalues in
(2.2) are strictly positive, because of the symmetry of the bilinear forms and the
ellipticity of its left hand side (see [7]).

Introducing the shear strain γt :=
κ

t2
(∇wt − βt), problem (2.2) can be written

as

 a(βt, η) + (γt,∇v − η) = λt

[
(wt, v) +

t2

12
(βt, η)

]
, ∀(η, v) ∈ H1

0 (Ω)2 ×H1
0 (Ω),

γt =
κ

t2
(∇wt − βt).

(2.3)

In order to analyze the approximation of this eigenvalue problem it is convenient
to introduce the operator

Tt : L2(Ω)2 × L2(Ω) → L2(Ω)2 × L2(Ω),

defined by Tt(θ, f) := (βt, wt), where (βt, wt) ∈ H1
0 (Ω)2 ×H1

0 (Ω) is the solution of

 a(βt, η) + (γt,∇v − η) = (f, v) +
t2

12
(θ, η), ∀(η, v) ∈ H1

0 (Ω)2 ×H1
0 (Ω),

γt =
κ

t2
(∇wt − βt).

(2.4)

We denote by (·, ·)t the weighted L2(Ω)2 × L2(Ω) inner product in the right hand
side of the first equation of (2.4) and by | · |t its corresponding norm. Clearly Tt is
compact and selfadjoint with respect to (·, ·)t. Then, apart from µ = 0, its spectrum
consists of a sequence of finite multiplicity real eigenvalues converging to zero. Note
that λt is an eigenvalue of (2.3) if and only if µt := 1/λt is an eigenvalue of Tt with
the same multiplicity and corresponding eigenfunctions.

It is known (see [7]) that, when t → 0, the solution of problem (2.4) converges
to (β0, w0) ∈ H1

0 (Ω)2 ×H1
0 (Ω) such that there exists γ0 ∈ H0(rot,Ω)′ satisfying{

a(β0, η) + 〈γ0,∇v − η〉 = (f, v), ∀(η, v) ∈ H1
0 (Ω)2 ×H1

0 (Ω),
∇w0 − β0 = 0,

(2.5)
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1450 R. G. DURÁN, ET AL.

where 〈·, ·〉 stands for the duality pairing in H0(rot,Ω) := {ψ ∈ L2(Ω)2 : rotψ ∈
L2(Ω) and ψ · τ = 0 on ∂Ω} (τ being a unit vector tangent to ∂Ω). This is a mixed
formulation of the Kirchhoff model for the deflection of clamped thin plates:

w0 ∈ H2
0 (Ω) and

E

12(1− ν2)
∆2w0 = f, in Ω.

Moreover, defining T0(θ, f) := (β0, w0) for (θ, f) ∈ L2(Ω)2 × L2(Ω), we will show
in the next section that for 0 ≤ t ≤ tmax

‖(Tt − T0)(θ, f)‖H1(Ω)2×H1(Ω) ≤ Ct |(θ, f)|t.(2.6)

In particular, since | · |t ≤ tmax‖ · ‖H1(Ω)2×H1(Ω) for t ∈ (0, tmax), it follows that
Tt|H1(Ω)2×H1(Ω) converges to T0|H1(Ω)2×H1(Ω) in norm. Then, standard properties
of separation of isolated parts of the spectrum (see for instance [14]) yield the
following result:

Lemma 2.1. Let µ0 > 0 be an eigenvalue of T0 of multiplicity m. Let D be any
disc in the complex plane centered at µ0 and containing no other element of the
spectrum of T0. Then, for t small enough, D contains exactly m eigenvalues of Tt

(repeated according to their respective multiplicities). Consequently, each eigenvalue
µ0 > 0 of T0 is a limit of eigenvalues µt of Tt, as t goes to zero.

Mixed finite elements for the load problem (2.4) have been introduced and ana-
lyzed in several papers (see for example [6, 8, 10, 15, 16]). The method that we will
use here can be seen as the lowest degree member of the so-called MITC elements,
which are based on relaxing the second equation of (2.3). In order to recall this
method let us introduce some notation.

Assume that we have a family of triangulations {Th} satisfying the usual mini-
mum angle condition. The finite element space for the rotations consists of piecewise
linear functions augmented in such a way that they have quadratic tangential com-
ponents on the boundary of each element. Namely, for each K ∈ Th, let n be a unit
normal on ∂K and define

Q(K) := {η ∈ P2(K)2 : η · n|` ∈ P1(`), for each edge ` of K};

then, the finite element space for the rotations is defined by

Hh := {η ∈ H1
0 (Ω)2 : η|K ∈ Q(K), ∀K ∈ Th}.

For the transverse displacements we take standard piecewise linear elements,
namely,

Wh := {v ∈ H1
0 (Ω) : v|K ∈ P1(K), ∀K ∈ Th}.

In order to define the method, we also need the reduction operator

R : H1(Ω)2 ∩H0(rot,Ω) −→ Γh,

where Γh is the lowest order rotated Raviart-Thomas space, namely,

Γh := {ψ ∈ H0(rot,Ω) : ψ|K ∈ P2
0 ⊕ (−x2, x1)P0, ∀K ∈ Th},

and R is the operator locally defined for each ψ ∈ H1(Ω)2 by (see [7, 17])∫
`

Rψ · τ =
∫

`

ψ · τ,(2.7)
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APPROXIMATION OF THE VIBRATION MODES 1451

for every edge ` of the triangulation (τ being a unit tangent vector along `). It is
easy to see that the operator R satisfies∫

K

rot(ψ −Rψ) = 0, ∀ψ ∈ H1(Ω)2,(2.8)

for any element K ∈ Th, and it is also known ([7, 17]) that

‖ψ −Rψ‖0 ≤ Ch‖ψ‖1;(2.9)

here and hereafter ‖ · ‖k denotes the standard norm of Hk(Ω) or Hk(Ω)2 (which
one will be obvious).

Now, the finite element approximate solution (βth, wth) ∈ Hh ×Wh of the load
problem (2.4) is defined by

 a(βth, η) + (γth,∇v −Rη) = (f, v) +
t2

12
(θ, η), ∀(η, v) ∈ Hh ×Wh,

γth =
κ

t2
(∇wth −Rβth).

(2.10)

The method is nonconforming, since consistency terms arise because of the reduc-
tion operator. Existence and uniqueness of the solution of (2.10) follow easily (see
[10]). As in the continuous case, we introduce the operator

Tth : L2(Ω)2 × L2(Ω) −→ L2(Ω)2 × L2(Ω)

given by Tth(θ, f) := (βth, wth). Tth is also selfadjoint with respect to (·, ·)t.
The corresponding eigenvalue problem reads a(βth, η) + (γth,∇v −Rη) = λth

[
(wth, v) +

t2

12
(βth, η)

]
, ∀(η, v) ∈ Hh ×Wh,

γth =
κ

t2
(∇wth −Rβth).

Once more λth is an eigenvalue of this problem if and only if µth := 1/λth is a
strictly positive eigenvalue of Tth with the same multiplicity and corresponding
eigenfunctions.

For t > 0 fixed, the spectral theory for compact operators in [3] can be directly
applied to prove convergence of the eigenpairs of Tth to those of Tt. However, further
considerations are needed to show that the error estimates do not deteriorate as t
becomes small.

To this goal we will make use of the following result, which means that optimal
error estimates in the H1 norm for the rotations and the transverse displacement
hold for the approximations given by (2.10):

‖(Tt − Tth)(θ, f)‖H1(Ω)2×H1(Ω) ≤ Ch |(θ, f)|t,(2.11)

with a constant C independent of t and h. This has been proved for instance in
[10] for pure transversal loads (i.e., θ = 0), but the proofs therein extend trivially
to our case.

As a consequence of (2.11), if µt is an eigenvalue of Tt with multiplicity m, then
exactly m eigenvalues µ(1)

th , . . . , µ
(m)
th of Tth (repeated according to their respective

multiplicities) converge to µt as h goes to zero (see [14]). The following theorem
shows that, under mild assumptions, optimal t-independent error estimates in the
H1 norm are valid for the eigenfunctions:
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1452 R. G. DURÁN, ET AL.

Theorem 2.1. Let µt be an eigenvalue of Tt converging to a simple eigenvalue µ0

of T0, as t goes to zero. Let µth be the eigenvalue of Tth that converges to µt,
as h goes to zero. Let (βt, wt) and (βth, wth) be the corresponding eigenfunctions
normalized in the same manner. Then, for t and h small enough,

‖(βt, wt)− (βth, wth)‖H1(Ω)2×H1(Ω) ≤ Ch,(2.12)

with a constant C independent of t and h.

Proof. For any fixed t ∈ (0, tmax), | · |t ≤ tmax‖ · ‖H1(Ω)2×H1(Ω). Hence, because
of (2.11), Tth|H1(Ω)2×H1(Ω) converges to Tt|H1(Ω)2×H1(Ω) in norm. Then (2.12) is a
direct consequence of the estimate (2.11) and Theorem 7.1 in [3], with a constant C
depending on the constant in (2.11) (which is independent of t) and on the inverse
of the distance from µt to the rest of the spectrum of Tt. Now, according to Lemma
2.1, (2.6) implies that for t small enough this distance can be bounded below in
terms of the distance from µ0 to the rest of the spectrum of T0, which obviously
does not depend on t.

In the next section we will prove the following higher order L2 error estimate for
the aproximate solution of the load problem (2.4):

‖(Tt − Tth)(θ, f)‖L2(Ω)2×L2(Ω) ≤ Ch2|(θ, f)|t,(2.13)

with a constant C independent of t and h. By using it we are able to prove a double
order of convergence for the eigenvalues:

Theorem 2.2. Let µt and µth be as in Theorem 2.1. Then, for t and h small
enough,

|µt − µth| ≤ Ch2,

with a constant C independent of t and h.

Proof. Let (βt, wt) be an eigenfunction corresponding to µt normalized in |·|t. Since
Tt and Tth are selfadjoint with respect to (·, ·)t, we may apply Remark 7.5 in [3],
which in our case reads

|µt − µth|≤C
[(

(Tt − Tth)(βt, wt), (βt, wt)
)
t+|(Tt − Tth)(βt, wt)|2t

]
,(2.14)

with a constant C depending only on the inverse of the distance from µt to the
rest of the spectrum of Tt. By repeating the arguments in the proof of Theorem
2.1 we observe that, for t small enough, this constant can be chosen independent
of t. Thus, since | · |t ≤ tmax‖ · ‖L2(Ω)2×L2(Ω), by using estimate (2.13) in (2.14) we
conclude the proof.

Another consequence of estimate (2.13) is a double order of convergence in the
L2 norm for the eigenfunctions:

Theorem 2.3. Let µt, µth, (βt, wt) and (βth, wth) be as in Theorem 2.1. Then,
for t and h small enough,

‖(βt, wt)− (βth, wth)‖L2(Ω)2×L2(Ω) ≤ Ch2,

with a constant C independent of t and h.

Proof. Since | · |t ≤ tmax‖ · ‖L2(Ω)2×L2(Ω), the arguments in the proof of Theorem
2.1 can be repeated using ‖ · ‖L2(Ω)2×L2(Ω) instead of ‖ · ‖H1(Ω)2×H1(Ω) and estimate
(2.13) instead of estimate (2.11).
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The three theorems of this section are stated for those eigenvalues of Reissner-
Mindlin equations converging to simple eigenvalues of the Kirchhoff model. A
multiple eigenvalue of the latter arises usually because of symmetries of the geom-
etry of the plate; in such a case, the eigenvalue of the former converging to it has
the same multiplicity. The proofs of these theorems extend trivially to cover this
case.

Instead, if the Kirchhoff equations had a multiple eigenvalue not due to symmetry
reasons, it could split into different eigenvalues in the Reissner-Mindlin model. In
this case, the proofs of the theorems above do not provide estimates independent
of the thickness. In fact, the constants therein blow up as the distance between the
Reissner-Mindlin eigenvalues becomes smaller.

For conforming methods, the minimum-maximum principles yield estimates not
involving this distance (see, for instance, Section 8 of [3]). However, to the best
of our knowledge, estimates of this kind have not been proved for non-conforming
methods like ours. Nevertheless, the numerical experiments in Section 4 show that
such estimates also hold in this case for our method.

3. Proofs

The optimal spectral convergence results in the previous section rely on proper-
ties (2.6), (2.11) and (2.13). The proof of the first one is standard, but we include
it for the sake of completeness. The second one is an H1 norm estimate for the load
problem including shear loads, and its proof is an immediate extension of those in
[8, 10, 16]. On the other hand, property (2.13), regarding the approximation with
optimal order in the L2 norm, was not previously known. Similar L2 estimates
have been proved for higher order methods (see [8, 15]), but with proofs relying on
arguments which do not apply to the lowest order case we are considering.

In what follows we will make use of the known a priori estimates for the solutions
of problems (2.4) and (2.5) (see for instance [2]):

‖βt‖2 + ‖wt‖2 + ‖γt‖0 + t ‖γt‖1 ≤ C
(
t2‖θ‖0 + ‖f‖0

)
≤ C |(θ, f)|t,

(3.1)

valid for 0 ≤ t ≤ tmax, with a constant C independent of t.
We begin with the proof of property (2.6).

Lemma 3.1. There exists a constant C, independent of t, such that

‖(Tt − T0)(θ, f)‖H1(Ω)2×H1(Ω) ≤ Ct |(θ, f)|t,

for all (θ, f) ∈ L2(Ω)2 × L2(Ω).

Proof. Subtracting (2.5) from (2.4), we have a(βt − β0, η) + (γt − γ0,∇v − η) =
t2

12
(θ, η), ∀(η, v) ∈ H1

0 (Ω)2 ×H1
0 (Ω),

γt =
κ

t2

[
∇(wt − w0)− (βt − β0)

]
,

and taking η = βt − β0 and v = wt − w0, we obtain

a(βt − β0, βt − β0) =
t2

12
(θ, βt − β0)−

t2

κ
(γt − γ0, γt).
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1454 R. G. DURÁN, ET AL.

Now, using the coerciveness of a and the a priori estimate (3.1) for ‖γt‖0 and ‖γ0‖0,
we have

‖βt − β0‖2
1 ≤ Ct2‖θ‖0 ‖βt − β0‖0 + Ct2 (‖γt‖0 + ‖γ0‖0) ‖γt‖0

≤ Ct |(θ, f)|t ‖βt − β0‖0 + Ct2|(θ, f)|2t ,
and therefore

‖βt − β0‖1 ≤ Ct |(θ, f)|t.(3.2)

Finally, observe that

∇(wt − w0) = (βt − β0) +
t2

κ
γt,

and so, using again the a priori estimate (3.1) for ‖γt‖0, we obtain

‖wt − w0‖1 ≤ C
(
‖βt − β0‖0 + t2|(θ, f)|t

)
which together with (3.2) allow us to conclude the proof.

The arguments to prove the remaining properties are based on the fact that there
exists an operator

Π : H1
0 (Ω)2 ×

[
H1

0 (Ω) ∩H2(Ω)
]
−→ Hh ×Wh

such that, if (η̂, ŵ) := Π(η, w), then

R(∇w − η) = ∇ŵ −Rη̂(3.3)

(R being the reduction operator satisfying (2.7), (2.8) and (2.9)) and

‖η − η̂‖1 ≤ Ch ‖η‖2.(3.4)

The construction of such an operator is based on known properties of the spaces
Hh, Wh and Γh (see [10] for details). It is worth observing that (3.3) corresponds
to a commutative diagram property, usual in the analysis of mixed methods. In
fact, introducing the operators B and Bh such that B(η, v) := ∇v − η, for (η, v) ∈
H1

0 (Ω)2 × H1
0 (Ω), and Bh(η, v) := ∇v − Rη, for (η, v) ∈ Hh ×Wh, that property

can be summarized in the following commutative diagram:

H1
0 (Ω)2 ×

[
H1

0 (Ω) ∩H2(Ω)
] B

//

Π

��

H1(Ω)2 ∩H0(rot,Ω)

R

��

Hh ×Wh
Bh

// Γh

Note that, if R were an L2 projection, this commutative diagram would corre-
spond to Fortin’s well-known property (which in its turn implies that an inf-sup
condition, analogous to that proved in [7] for the continuous problem, holds for the
discrete case). Of course, R is not an L2 projection, and so the commutative dia-
gram property given above can be seen as a generalization of Fortin’s one. In fact,
optimal error estimates in H1 for the rotations and the transverse displacement
yielding (2.11) follow from this generalized property:

Lemma 3.2. There exists a constant C, independent of t and h, such that

‖(Tt − Tth)(θ, f)‖H1(Ω)2×H1(Ω) ≤ Ch |(θ, f)|t,

for all (θ, f) ∈ L2(Ω)2 × L2(Ω).
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Proof. Arguments identical to those in [10], combined with the a priori estimate
(3.1), yield in our case

‖βt − βth‖1 + t ‖γt − γth‖0 ≤ Ch
(
‖βt‖2 + t ‖γt‖1 + ‖γt‖0

)
≤ Ch |(θ, f)|t,

(3.5)

and, as a consequence,

‖wt − wth‖1 ≤ Ch
(
‖βt‖2 + t ‖γt‖1 + ‖γt‖0

)
≤ Ch |(θ, f)|t,

therefore concluding the proof.

We will use a duality argument to show that, under the same conditions, optimal
L2 error estimates for the rotations and the transverse displacement also hold. First
we will prove a lemma which will be useful to bound the consistency terms arising
from the reduced integration of the shear strain.

For ψ ∈ H1
0 (Ω)2, we denote by ψI ∈ H1

0 (Ω)2 a piecewise linear average inter-
polant as defined in [9, 18], satisfying

‖ψI‖1 ≤ C‖ψ‖1(3.6)

and

‖ψ − ψI‖1 ≤ Ch‖ψ‖2.(3.7)

The following estimate holds:

Lemma 3.3. Given ζ ∈ H(div,Ω) and ψ ∈ H1
0 (Ω)2, we have

|(ζ, ψI −RψI)| ≤ Ch2‖ div ζ‖0 ‖ψ‖1.

Proof. From property (2.8) it follows that

rotRψI = P (rotψI),

where P is the L2 projection onto the piecewise constant functions. Now, since
(rotψI)|K ∈ P0, then (rotψI) = P (rotψI). Hence rot(ψI −RψI) = 0, and so there
exists r ∈ H1(Ω) such that

∇r = ψI −RψI ;(3.8)

actually, we can take r ∈ H1
0 (Ω) because the tangential component of (ψI − RψI)

vanishes on ∂Ω. Then, we have

|(ζ, ψI −RψI)| = |(ζ,∇r)| = |(div ζ, r)| ≤ ‖ div ζ‖0 ‖r‖0.(3.9)

On the other hand, from property (2.7) defining R it follows that, for every edge
` with end points A and B, we have

r(A) − r(B) =
∫

`

∇r · τ =
∫

`

(ψI −RψI) · τ = 0.

Therefore, since r vanishes on ∂Ω we conclude that r vanishes at all the nodes of
the triangulation. Hence, since r|K ∈ P2, a standard scaling argument on each
element K yields

‖r‖0 ≤ Ch‖∇r‖0,

which together with (2.9), (3.6), (3.8) and (3.9) allows us to conclude the proof.
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Finally, we will prove the main result of this section, property (2.13), concerning
L2 error estimates optimal in order and regularity. Let us remark that this result
completes the analysis of the MITC elements carried out in [8, 15] for the higher
order methods. (To simplify the notation, in this lemma we will drop the subscript
t from βt, wt, γt and from their discrete approximations.)

Lemma 3.4. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w) = Tt(θ, f) and (βh, wh) =
Tth(θ, f). Then there exists a constant C, independent of t and h, such that

‖β − βh‖0 + ‖w − wh‖0 ≤ Ch2|(θ, f)|t
or, equivalently,

‖(Tt − Tth)(θ, f)‖L2(Ω)2×L2(Ω) ≤ Ch2|(θ, f)|t.

Proof. Subtracting (2.10) from (2.4), we obtain the error equation

a(β − βh, η) + (γ − γh,∇v −Rη) = (γ, η −Rη), ∀(η, v) ∈ Hh ×Wh,

(3.10)

with γ =
κ

t2
(∇w − β) and γh =

κ

t2
(∇wh −Rβh).

We will use a duality argument: let (ϕ, u) ∈ H1
0 (Ω)2 ×H1

0 (Ω) be the solution of

{
a(η, ϕ) + (∇v − η, δ) = (v, w − wh) + (η, β − βh), ∀(η, v) ∈ H1

0 (Ω)2 ×H1
0 (Ω),

δ =
κ

t2
(∇u− ϕ).

(3.11)

An a priori estimate analogous to (3.1) is valid for this problem, namely,

‖ϕ‖2+‖u‖2+‖δ‖0+t ‖δ‖1≤C
(
‖β−βh‖0+‖w−wh‖0

)
,(3.12)

and by taking η = 0 in (3.11) we have

− div δ = w − wh.(3.13)

By taking v = w − wh and η = β − βh in the dual problem (3.11) we have

‖w − wh‖2
0 + ‖β − βh‖2

0

= a(β − βh, ϕ) +
(
∇(w − wh)− (β −Rβh), δ

)
+ (βh −Rβh, δ)

= a(β − βh, ϕ) +
t2

κ
(γ − γh, δ) + (βh −Rβh, δ),

and using the error equation (3.10) with (η, v) = (ϕ̂, û) := Π(ϕ, u) we obtain

‖w − wh‖2
0 + ‖β − βh‖2

0

= a(β − βh, ϕ− ϕ̂) +
t2

κ
(γ − γh, δ)− (γ − γh,∇û−Rϕ̂)

+ (βh −Rβh, δ) + (γ, ϕ̂−Rϕ̂).
(3.14)

= a(β − βh, ϕ− ϕ̂) +
t2

κ
(γ − γh, δ −Rδ)

+ (βh −Rβh, δ) + (γ, ϕ̂−Rϕ̂),
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where we have used the commutative diagram property (3.3), Rδ =
κ

t2
(∇û−Rϕ̂),

for the last equality. Now it only remains to estimate the four terms in the last
expression.

The first two can be easily bounded. In fact, using the error estimates (3.4) and
(3.5) and the a priori estimate (3.12) we have

|a(β − βh, ϕ− ϕ̂)| ≤ C‖β − βh‖1 ‖ϕ− ϕ̂‖1 ≤ C‖β − βh‖1 h ‖ϕ‖2

≤ Ch2|(θ, f)|t
(
‖β − βh‖0 + ‖w − wh‖0

)(3.15)

and, from (2.9), (3.5) and (3.12),

t2

κ

∣∣∣(γ − γh, δ −Rδ)
∣∣∣

≤ Ct2‖γ − γh‖0 ‖δ −Rδ‖0 ≤ Ct2‖γ − γh‖0 h ‖δ‖1

≤ Ch2|(θ, f)|t
(
‖β − βh‖0 + ‖w − wh‖0

)
.

(3.16)

For the third term in (3.14) we have

(βh −Rβh, δ) =
(
(βh − βI)−R(βh − βI), δ

)
+ (βI −RβI , δ).

Now, using successively (2.9), (3.5), (3.7), (3.12) and (3.1), we obtain∣∣∣((βh − βI)−R(βh − βI), δ
)∣∣∣

≤ C‖δ‖0 h ‖βh − βI‖1 ≤ C‖δ‖0 h
(
‖βh − β‖1 + ‖β − βI‖1

)
≤ Ch2

(
‖β − βh‖0 + ‖w − wh‖0

)
|(θ, f)|t,

whereas by using Lemma 3.3, (3.13) and (3.1) we have

|(βI −RβI , δ)| ≤ Ch2‖β‖1 ‖ div δ‖0

≤ Ch2|(θ, f)|t ‖w − wh‖0

Therefore

|(βh −Rβh, δ)| ≤ Ch2|(θ, f)|t
(
‖β − βh‖0 + ‖w − wh‖0

)
.(3.17)

The last term in (3.14) can be bounded in an almost identical way, by using (3.4)
to estimate ‖ϕ̂− ϕ‖1 and the fact that

− div γt = f, in Ω

which follows by taking η = 0 in problem (2.4) and (2.5).
By so doing we obtain

|(γ, ϕ̂−Rϕ̂)| ≤ Ch2|(θ, f)|t
(
‖β − βh‖0 + ‖w − wh‖0

)
.(3.18)

Finally, from (3.14), (3.15), (3.16), (3.17) and (3.18), simple algebra allows us to
conclude the proof.
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Figure 1. Finite element mesh for the square plate: N = 8

4. Numerical experiments

In this section we summarize the numerical experimentation carried out with our
method. The aim of these computations was two-fold: to study the performance of
the method and to discuss the pertinence of the assumptions made in Section 2 to
prove error estimates.

To validate our codes and to test the effectiveness of the method to deal with dif-
ferent boundary conditions, we have first considered a typical benchmark problem:
the computation of the lowest frequency vibration modes of a square plate. We
have applied our codes to thin and moderately thick plates and compared the re-
sults with those reported in [1], in which the same problems were treated by means
of a method introduced by Huang and Hinton in [12] that is based on biquadratic
rectangular finite elements with enhanced shear interpolation.

We have considered a square plate of side length L and two thickness-to-span
(t/L) ratios of 0.1 (moderately thick) and 0.01 (thin). In each case we have also
considered four different types of boundary conditions:

• a clamped plate (as described in Section 2);
• a hard simply supported plate (i.e., with transversal displacements and rota-

tions tangential to the boundary, both vanishing on each edge);
• a plate with mixed boundary conditions (with two opposite edges being hard

simply supported and the other two clamped);
• a plate with a free edge (with three clamped edges and the fourth being free,

i.e., no constraints either on the transversal displacements or on the rotations
along this edge).

We denote each case by C-C-C-C, S-S-S-S, S-C-S-C and C-C-C-F, respectively (C
stands for clamped, S for hard simply supported and F for free edges).

We have used succesive refinements of a uniform mesh like that in Figure 1, the
refinement parameter N being the number of element edges on each side of the
square (hence, h =

√
2L/N).

We have applied our codes to the original unscaled problems analogous to (2.1).
Thus we have computed approximations of the free vibration angular frequencies
ωt = t

√
λt/ρ. In order to compare our results with those in [1] we present the

computed frequencies ωh
mn in the following non-dimensional form:

ω̂mn := ωh
mnL

(
2(1 + ν)ρ

E

)1/2

,

m and n being the numbers of half-waves occurring in the modes shapes in the x
and y directions, respectively.
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Table 1. Lowest non-dimensional vibration frequencies for mod-
erately thick square plates: t/L = 0.1

Bound. cond. Mode N = 10 N = 20 N = 40 H-H D-R
C-C-C-C ω̂11 1.5947 1.5921 1.5913 1.591 1.594

ω̂21 3.1181 3.0595 3.0441 3.039 3.046
ω̂12 3.1181 3.0595 3.0441 3.039 3.046
ω̂22 4.4477 4.3106 4.2746 4.263 4.285

S-S-S-S ω̂11 0.9384 0.9323 0.9308 0.930 0.930
ω̂21 2.2893 2.2366 2.2236 2.219 2.219
ω̂12 2.2893 2.2366 2.2236 2.219 2.219
ω̂22 3.5657 3.4450 3.4153 3.405 3.406

S-C-S-C ω̂11 1.3060 1.3016 1.3005 1.300 1.302
ω̂21 2.4664 2.4120 2.3984 2.394 2.398
ω̂12 2.9617 2.9043 2.8895 2.885 2.888
ω̂22 4.0126 3.8830 3.8500 3.839 3.852

C-C-C-F ω̂ 1
2 1 1.0959 1.0848 1.0814 1.081 1.089

ω̂ 3
2 1 1.7759 1.7525 1.7454 1.744 1.758

ω̂ 1
2 2 2.7413 2.6787 2.6612 2.657 2.673

ω̂ 5
2 1 3.3186 3.2282 3.2035 3.197 3.216

Tables 1 and 2 show the four lowest vibration frequencies computed by our
method with three different meshes (N = 10, 20, 40) and each set of boundary
conditions for each thickness-to-span ratio (t/L = 0.1 and t/L = 0.01, respectively).
Each table includes the results obtained by Huang and Hinton’s method in [12]
(column H-H) and also by an analytical approximation obtained by Dawe and
Roufaeil in [11] (column D-R), both as reported in [1]. In every case we have used
a Poisson ratio ν = 0.3 and different correction factors depending on the boundary
conditions, but always the same as those used in [1] to allow for the comparison:
k = 0.8601 for C-C-C-C and C-C-C-F, k = 0.8333 for S-S-S-S and k = 0.822 for S-
C-S-C. The reported non-dimensional frequencies are independent of the remaining
geometrical and physical parameters, except for the thickness-to-span ratio.

Both tables show that the method can be safely used for any of these boundary
conditions and for thin as well as moderately thick plates.

The goal of our second experiment was to test if the hypothesis on the uniform
separation of the spectrum assumed throughout Section 2 is actually necessary.
For any convex clamped plate, according to Theorem 2.2, the convergence for each
eigenvalue is quadratic. However, the constants in the error estimates arising in its
proof blow up with the inverse of the distance from the approximated eigenvalue
to the rest of the spectrum.

In order to test if this assumption is essential or if it only arises because of the
techniques used to prove the theorems, we have considered a clamped rectangular
steel plate with two very close vibration frequencies, but not exactly coincident.
We have chosen the following values of the physical and geometric parameters: side
lengths: 2 m and 1 m; Young modulus: E = 1.43×1011 Pa; Poisson ratio: ν = 0.35;
density: ρ = 7.7× 103 Kg; and correction factor k = 5/6.
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Table 2. Lowest non-dimensional vibration frequencies for thin
square plates: t/L = 0.01

Bound. cond. Mode N = 10 N = 20 N = 40 H-H D-R
C-C-C-C ω̂11 0.1754 0.1754 0.1754 0.1754 0.1754

ω̂21 0.3668 0.3599 0.3580 0.3574 0.3576
ω̂12 0.3668 0.3599 0.3580 0.3574 0.3576
ω̂22 0.5487 0.5323 0.5279 0.5264 0.5274

S-S-S-S ω̂11 0.0972 0.0965 0.0963 0.0963 0.0963
ω̂21 0.2486 0.2426 0.2411 0.2406 0.2406
ω̂12 0.2486 0.2426 0.2411 0.2406 0.2406
ω̂22 0.4035 0.3893 0.3859 0.3847 0.3848

S-C-S-C ω̂11 0.1417 0.1413 0.1412 0.1411 0.1411
ω̂21 0.2748 0.2688 0.2673 0.2668 0.2668
ω̂12 0.3474 0.3402 0.3383 0.3377 0.3377
ω̂22 0.4814 0.4657 0.4617 0.4604 0.4608

C-C-C-F ω̂ 1
21 0.1182 0.1170 0.1167 0.1166 0.1171

ω̂ 3
21 0.1977 0.1956 0.1950 0.1949 0.1951

ω̂ 1
22 0.3193 0.3109 0.3086 0.3080 0.3093

ω̂ 5
21 0.3874 0.3771 0.3744 0.3736 0.3740

We have considered again two plates of different thickness: one moderately thick
(t = 0.1m) and the other thin (t = 0.01m). For each of them we have computed
the lowest frequency vibration modes with different successively refined uniform
meshes analogous to that in Figure 1, the parameter N being now the number of
edge elements on the shortest side of the plate.

We have observed that the relative error of the approximated angular frequencies
ωh

mn roughly behaves like

ωh
mn − ωmn

ωmn
≈ Cmnh

α,

with an order of convergence α very close to 2 and constants Cmn which depend on
the numbers of half-waves m and n, but which are almost independent of the thick-
ness of the plate. We have also observed that these constants remain remarkably
stable even for very close eigenvalues.

Then, for each mode, we have estimated the exact vibration frequencies ωmn,
the value of the constants Cmn and the order of convergence α by means of a least
square fitting of the model

ωh
mn ≈ ωmn (1 + Cmnh

α)

to the approximate frequencies computed on highly refined meshes (N = 16, 32,
48, 64, 80).

We summarize our results in Table 3 for the moderately thick plate and in Table 4
for the thin one.

It can be observed that the fourth and the fifth eigenvalues in both tables are
very close (approximately 1% of difference). However the corresponding constants
Cmn are not larger than those for other eigenvalues. This fact suggests that the
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Table 3. Lowest vibration frequencies (in rad/s) of a clamped
moderately thick rectangular plate: 2 m×1m, t = 0.1m

Mode N = 8 N = 16 N = 32 α ωmn Cmn

ωh
11 3035.212 3025.827 3023.214 1.97 3022.317 0.071
ωh

21 3918.755 3875.817 3864.488 1.98 3860.631 0.242
ωh

31 5441.309 5351.958 5328.053 1.97 5319.841 0.365
ωh

12 7536.399 7333.836 7280.257 1.98 7262.144 0.616
ωh

41 7630.812 7399.422 7338.489 1.98 7317.795 0.689
ωh

22 8340.381 8076.061 8006.128 1.98 7982.469 0.731
ωh

32 9673.715 9326.597 9233.320 1.97 9201.449 0.830

Table 4. Lowest vibration frequencies (in rad/s) of a clamped
thin rectangular plate: 2 m×1m, t = 0.01m

Mode N = 8 N = 16 N = 32 α ωmn Cmn

ωh
11 328.760 327.663 327.347 1.99 327.240 0.086
ωh

21 429.627 425.210 424.050 2.00 423.665 0.239
ωh

31 607.831 598.992 596.605 1.98 595.794 0.336
ωh

41 878.302 851.895 844.852 1.98 842.468 0.702
ωh

12 888.126 860.941 853.510 1.98 850.980 0.727
ωh

22 991.486 957.454 948.250 1.98 945.136 0.819
ωh

32 1162.198 1121.967 1110.801 1.97 1106.970 0.828

assumption on the separation of the spectrum made in Section 2 is not really
necessary.

Finally, we have made a stringent test of this hypothesis and, at the same time,
of the stability of the method as t goes to zero. The eigenvalues of Kirchhoff
equations for a rectangular plate with simply supported boundary conditions are
exactly known:

λmn
0 :=

Eπ4

12(1− ν2)

(
m2

a2
+
n2

b2

)2

, m, n = 1, 2, 3, . . . ,

where a and b are the side lengths of the plate. If we consider the same lengths as
in the previous experiment (a = 2 m, b = 1m) the fifth and the sixth eigenvalues
exactly coincide: λ41

0 = λ22
0 .

In Reissner-Mindlin equations, this double eigenvalue splits into two different
ones, both converging to this common value and hence getting closer and closer
to each other as t goes to zero. This phenomenon occurs for both hard and soft
simply supported plates. We have chosen the latter (i.e., with vanishing transversal
displacements but no constraint imposed on the rotations along the edges) in order
to test our method also for these boundary conditions, but similar results are valid
for hard simply supported plates too.

We have considered the same values of the physical parameters and successively
refined uniform meshes like those of the previous experiment. We have computed
approximations λ41

th and λ22
th on the meshes corresponding to N = 8, 16, 32, 64, for

decreasing values of the thickness t = 0.1, 0.01, 0.001, 0.0001m.
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Table 5. Fifth eigenvalue λ41
th (multiplied by 10−10) of Reissner-

Mindlin equations for a soft simply supported rectangular plate:
2 m×1m

Thickness N = 8 N = 16 N = 32 N = 64 α λ41
t C41

t = 0.1 3032.768 2801.861 2736.523 2718.535 1.83 2711.216 2.817
t = 0.01 3670.259 3407.412 3341.052 3322.356 1.96 3316.899 3.180
t = 0.001 3678.556 3416.164 3351.528 3335.415 2.02 3330.245 3.459
t = 0.0001 3678.639 3416.253 3351.638 3335.572 2.02 3330.405 3.464

t = 0 (extrap.) 3678.640 3416.254 3351.640 3335.574 2.02 3330.406 3.464

Table 6. Sixth eigenvalue λ22
th (multiplied by 10−10) of Reissner-

Mindlin equations for a soft simply supported rectangular plate:
2 m×1m

Thickness N = 8 N = 16 N = 32 N = 64 α λ22
t C22

t = 0.1 3039.576 2802.288 2736.243 2718.268 1.85 2711.174 2.994
t = 0.01 3676.006 3407.927 3341.083 3322.346 1.98 3317.021 3.322
t = 0.001 3684.276 3416.686 3351.582 3335.421 2.04 3330.376 3.613
t = 0.0001 3684.359 3416.775 3351.693 3335.579 2.04 3330.536 3.618

t = 0 (extrap.) 3684.359 3416.776 3351.694 3335.581 2.04 3330.537 3.618

We have observed that the relative error of the computed eigenvalues roughly
behaves again like

λmn
th − λmn

t

λmn
t

≈ Cmnh
α

with constants Cmn depending neither on the thickness t nor on the mesh size h
and orders of convergence α close to 2.

For each thickness t and both vibration modes, we have estimated the orders
of convergence α, the constants Cmn and the exact eigenvalues λmn

t by a least
square fitting of the computed approximate eigenvalues λmn

th , similar to that of the
previous experiment. Finally we have also estimated by extrapolation the limit
values λmn

0h = limt→0 λ
mn
th .

We summarize these results for λ41
th in Table 5 and for λ22

th in Table 6.

Two conclusions arise immediately from these tables. First, the constants do
not deteriorate as the thickness becomes small (and consequently the eigenvalues
of Reissner-Mindlin equations get closer). Secondly, the method is locking free and
provides very accurate approximations of the eigenvalues of the Kirchhoff equations,
in this case, λ41

0 = λ22
0 = 3330.225× 1010.
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